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Introduction

The Kodaira-Spencer-Kuranishi theory [3], [6], [7], [10], [11], [12], [13],
[14] of deformations concerns itself mainly with the variation of the complex
analytic structure on a compact complex analytic manifold M. Denoting the
sheaf of germs of holomorphic vector fields by θ, the group of infinitesimal
deformations is shown to be H\M,ff). It is therefore quite natural to expcet
that H\M, θ) would control the local deformations of M. In fact Frolicher-
Nijenhuis [2] discovered in 1957 that if H\M, θ) = 0, any family of deforma-
tions is locally trivial at the reference point. There is a natural quadratic map
ff(M, θ) —> H2(M, θ) which assigns to every infinitesimal deformation, the
obstruction to prolonging it one step. If such a prolongation is possible, then
one meets another obstruction which also lies in H2(M, θ). Subsequent obstruc-
tions also lie in H2(M,Θ). If one can pass all these obstructions, one can con-
struct formally a family of deformations of M. But then, one meets the signifi-
cant analytic question of convergence; the formal deformations constructed
apriori need not converge and therefore need not define a genuine deforma-
tion of M. In the special case when H2(M, θ) = 0, there is no serious difficulty
in constructing formally a family of deformations. Kodaira-Nirenberg-Spencer
[5] proved that in this case, the formally constructed family actually converges
to a genuine family of deformations of M. Moreover, Kodaira-Spencer [8]
proved that this family is universal and effective.

In [9] Kuranishi introduced the notion of a normal family of deformations
of a compact complex manifold and proved the existence of a holomorphic
normal family of deformations for any given compact complex manifold. This
family, constructed by Kuranishi, is more general than the one constructed by
Kodaira-Nirenberg-Spencer and reduces to their family when H2(M, θ) — 0.

In [10], [12] Kuranishi proved the fundamental existence theorem of defor-
mation theory, namely, the existence of a universal and effective family of
deformations for any compact complex manifold.
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his thanks to Professor M. Kuranishi for his valuable guidance in the preparation of this
paper.
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In order to define and prove the existence of a normal family of deforma-
tions, Kuranishi defined a decreasing filtration of the first cohomology group
H\A) of the complex A = J]P^OAP, with respect to the exterior differential
operator 3. Here Ap denotes the space of differential forms on M of type (0, p)
with values in the complex vector bundle of tangent vectors of type (1,0). We
call this filtration the normal filtration of Hι(A).

In order to construct a universal family, Kuranishi constructed an analytic
injective map Φ: W —• A\ W being an open neighborhood of the origin in
H\M,Θ). This mapping plays the crucial role in the construction of universal
family. We call this mapping Φ the canonical universal map.

The main theorem of this paper gives a characterization of the normal filtra-
tion of H\M, θ) in terms of the canonical universal map Φ.

This paper consists of two parts. In Part I, there are three sections the first
section contains known facts on complex manifolds, which are needed for our
purpose the second section gives the definition of the normal filtration and the
third section describes how and in what context the mapping Φ was construct-
ed by Kuranishi. The second part consists of four sections. The first section
gives the statement of our main theorem the second gives the statements of
a lemma and a proposition on which the proof of the main theorem mainly
rests, the third section gives the proof of the main theorem and the final sec-
tion gives the proofs of the lemma and the proposition of § 2.

PART I. NORMAL FILTRATION OF H\M, θ)

1. Some facts on compact complex manifolds

In this section we briefly mention some well known facts which we need, on
compact complex manifolds. Let M be a compact complex manifold, and let
M denote the underlying C°° differential manifold. Let TM and T'M be the
complex vector bundles of type (1,0) and (0,1), respectively, of M. Then
TM®R C = TM 0 T'M where TM®R C is the complex tangent bundle of
M. TM is the complex conjugate of T'M. Let Ap denote the space of C°°
differential forms of M of type (0, p) with values in TM. If θ e Ap, in terms
of complex analytic local coordinates Z = (Z1, , Zn) of M, we have

θ = Σ βai,...,apdZai Λ Λ dZβ> ,
ai, ,ap

where 0βlϊ...>αp are vector fields of type (1,0) and are skewsymmetric in
«i> * 9 Up. We have the exterior derivative 5: Ap —• Ap+1 defined by

dθ = Σ dθai^a*dZt ΛdZa>Λ Λ dZ'p .
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Also we have the bracket operator [ ] : Ap x A" -^ Ap+q. If θ e Ap,
Φ = Σ Λ , . A Φβu-,β,dZβι Λ Λ dZ' s Λ«, then locally

= Σ 0.,,...,.,. 0Λ, ,ί.WZ~"1 Λ Λ dZ«* Λ dZ* Λ Λ

Since the change of charts are complex analytic, it can be checked easily that
this definition of [ ] is independent of the chart Z. Then A = Σ1P>O^-P *S a

graded Lie algebra complex with respect to S and [ ]. This means that 5 is
linear, d-d = 0, [ ] is bilinear, and the following three formulas hold for

(1.1) [0,0] = (

(1.2) 5[0,0] = [dθ,φ] + (-

Let ^»p(/4) be the p-dimensional cohomology group of the complex^ with
respect to the differential operator S, and HP(M,Θ) be the p-dimensional
cohomology group of M with coefficients in the sheaf θ of germs of holomorphic
vector fields of M. Then we have the Dolbeault isomorphism

(1.4) H°fp(A) ~H*(M9Θ) .

We are mainly interested in Ax as it plays a very important role in deforma-
tion theory of compact complex manifolds. This is due to the following Prop-
osition 1.1. An almost complex structure on M is, by definition, a C°° vector
subbundle over C, say Tn', of TM ®R C such that we have a direct sum decom-
position

(1.5) TM®RC= T"®T" ,

where Γ" denotes the conjugate of Ί". Every complex structure M on M in-
duces on M an almost complex structure in a canonical way since TM ®R C =
T"M®T'M and TM is the conjugate of Ύ"M. Let p'(M) (resp. p'\M)) denote
the projection of TM®RC onto TM (resp. T'M) with kernel TM (resp.
Γ'M).

Definition (1.1). An almost complex structure T{ on M is said to be of
finite distance from the complex structure M on M if and only if p"(M) induces
an isomorphism of Ί" onto T'M.

Then we have the important proposition.
Proposition (1.1) [4], [13]. There is a bijective correspondence between

almost complex structures on M having finite distance to the complex structure
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M on M and the elements of A\M) sufficiently closed to zero in the Cf topol-
ogy.

We give now a brief explanation of the bijective correspondence. Let T" be
an almost complex structure on M having finite distance to M, and β be the
inverse of the isomorphism p"(M): T" -> T'M.

Let ω = -p'(M)oβ. Then ω: Ί"M-*TM is a C°° homomorphism of
vector bundles and thus can be considered as an element of A1. Hence Ί" —
{L — ω(L) L € T"M). Conversely, let ω be a C°° homomorphism of vector
bundles T"M -> TM. Then {L - ω(L) L € T"M) defines a C°° vector sub-
bundle Ί" of Γ M ®R C which is an almost complex structure having finite
distance to M.

Another important fact which should be mentioned in this connection is the
integrability condition. An almost complex structure on M is said to be inte-
grable if it is induced by a complex structure on M. Let ω e A\M) give rise
to an almost complex structure Mω on M. If Mω is integrable, then it is easily seen
that we must have

(1.6) dω - i[ω,ω] = 0 .

Newlander andNirenberg [15] proved that the converse is also true. It should
be remarked that the proof of the converse is difficult. Kuranishi has given in
[13] a proof of the converse for the real analytic case under a more general
formulation.

2. Normal filtration of H\A)

Let ul9 •• , ut be an ordered sequence of indeterminates we keep these
fixed in our discussion here. Then B(Ap, u19 , ut) denotes the space of
polynomials φ of the form

(2.2) φ = Σ Σ Φn,-,Huiι ' 'uu > &i,-,«, * AP

l l < ί < < i < 1

If φ e B(Ap, u19---9 Ut), then 3: Ap -> Ap+1 can be extended to

B(Ap, ul9 , iii)

by defining

(2-2) dφ=Σ Σ

The bracket operator [ ] can also be extended as follows. Let φ 6 B(AP ut,
• > Wi)7 ψ1 € 5(/ l9 \uu - - ,ut). Then [^, ψ] is defined to be the element 0 in

^ u19 , Mi) such that
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(2.3) *ί = ° '
0 Σ i ί Φ ^ i

f or # > 2 and 1 < ix < < iq < I, where ia means omission of iα(1), ,

*α(s)

It should be remarked, however, that this definition of extension of the
bracket [ ], is dependent of the order of the indeterminates ul9 , ut. We
are mainly concerned with the space B(Aι u19 , ut).

Definition (2.1). An element φ e B{Aι u19 , ut) is said to be distinguish-
ed if and only if dφ — [φ, φ] — 0.

Definition (2.2). Take a subsequence 1 < i\ < . < iq < I. We then have
the projection opepator p[uh, , uiq\ of B(AP u19 ••• , «j) onto 5(^4P uil9

• , wίβ) defined by

where a(k) = ik. It is easy to check that if φ is distinguished, so is p[uh,

In [9] Kuranishi defined a subset G(hil)(u19 - , MΛ_X ΪI Λ , , MΣ) of
l 1 MΛ, - , Mi) for 1 < ft < /. From the definition this subset is independent

of u19 , wΛ_! preceeding ι/Λ, , w;. Hence we can write G ( M ) (w Λ , , ut)
instead of G(/M)(w1? , uh_λ uh9 , wλ). When there is no possibility of con-
fusion, we denote this subset by G ( M ) also. The definition is by double induc-
tion of (A,/).

G ( 1 ' 1 ) (M 1 ) is defined to be the subspace of distinguished elements in B(Aι Wj).
Assume G ( Λ ' ' n is defined for 1 < ft' < ft < /' < /. Then Gih*ι+1) is defined by
induction of ft:

(1) G ( M + 1 ) is the space of distinguished elements in B(Aι u19 , uι+1).
(2) Assuming that &h'>ι+1) is defined for 1 < h! < ft, G ( Λ + 1 ' i + 1 ) is the set

of all elements φ in #04 x uh+19 , uι+1) satisfying the following four condi-
tions :

(i) For any ft + 1 < j ι < < /', < / + 1 with ft + s < /,

ρίuJl9 , ujs](φ) e σh+1>h+'\uJι9 , ujs) .

(ii) Identify B(Aι iιΛ+1, , uι+1) canonically with a subset of B(Aι uh9

. . . , i ι ι + 1 ) . Then

(iii) Consider w1? , MΛ_15 M Λ + 1 , , w u i instead of uλ, - , MZ + 1. Then
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(iv) For any /, h + 1 < i < / + 1, and any θ in G{h>l)(uh, . . , ύi9

uι+1) such that

p[uh+1, - , ώ*, , Wi+i](0) = /o[wΛ+1, , ώt, • , uι+1](φ) ,

there exists φ* e G ( Λ ' ι + 1 )(ιιΛ, - , M ί + 1) such that

^[wΛ+i, , Mί+J(^*) = ^ , /0[wΛ, , At, , uι+1](φ*) = θ .

Definition (2.3). Za) = {a e A1 \aut e Gα 'π(wz)}.
The following proposition follows from Kuranishi [9].
Proposition (2.1). (i) Za) is a vector subspace of Z α " υ .
(ii) BA° c Z α ) for all I.

In view of this proposition, we can define

H(l)(A) = Za)/3A° .

Thus we get a filtration of Hι(A):

(2.4) H\A) = Hω 2 # ( 2 ) 2 ,

which we call the normal filtration of Hι(A). It should be remarked that the
proof of the above proposition is quite complicated.

Let L(Hω, ••, Hiq) A1) denote the space of multilinear mappings of
# ( 1 ) X x H(q) into A1. A mapping / e L(Hω, - , #(«> A1) is said to be
symmetric if / can be extended to a symmetric g-ple multilinear mapping of
Hω X X Ha) into A1. The space of symmetric multilinear mappings of
# ( 1 ) X . . . X H^ into A1 is denoted by SL(H«\ , Hw ^l1). Let JRX: H

( 1 ) ->
A1 be such that Λ^JC) = x for all JC € # (1 ) , and let jRα € L(# ( 1 \ . , //(Q) A1),
2 < q < n. We then denote the sequence {R19 , Rn} by i?.

Definition (2.4). i? = {JR15 ,Rn} is called an ΛfD-sequence of length n
over # ( 1 ) if and only if, for every (t19 . , tn) e Hω X X i^(w),

TB(ti, , ί») = Σ Σ ^ α ( ^ ? > ί*.)"*! * * * UH

is a distinguished element.
In [9, p. 287] Kuranishi proved that there exists an M)-sequence of any

given length over Hω. Moreover, these Rq can be taken to be symmetric in
view of Theorem 3 [9, p. 291].

For (tl9 - ,tn, tn+1) e H™ X x Jϊ<»> X H^ and (ζ2, ,C») € H™ x
. . . X H(n~ι\ set
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-*VR(A> * ' # 5 tπ> tn + l \ S25 * * # 9 Zn)

τ ι - 1

= Σ Σ K ? + lVίl> ' ' ' 9 tiqi tn + V 9
q = 0 l<.ii< ~<iq<.n

( 2 . 5 ) £ « _ , ( * ! , , * \ > , h q , ••,*,)]
W = l f c - 1

+ Σ Σ Σ LRα+i(*<i> 9 ti , , ζfc+i) ,
* = 1 g = o l<ΰ< <ig<fc

R k-q\ίi9 ' ' ' 9 tit9 * 9 tiq9 * J ί*J

Also set £*(*!, ί2) = [t1912] for any (t1912) <= Hω x H{2\ It is to be noted that
£R(*I> ^) does not depend on R. The following theorem of Kuranishi [9, p. 287]
gives a characterization of the filtration Hω Z) H(2) Z) ..

Theorem (2.1). Let R = {7^, - •,/?„} be a symmetric ND-sequence of
length n over Ha\ Then

H{n+1) = {xeH<n)\S* ίnL(H(k\ . . , f l ( n ) ; J ϊ ^ - " ) , k = 2, . . . , / i ,

Λ ^ 5 X in L(i7 ( 1 ) , , H ( n ) A1) such that

S*(t19 ••-,**) + Kfo, , ί n , Λ ; 5?(ί2, - -,tn), - -,S*n(tn)) = 0

forall(t19...,tJeH™ X --- X H ( w ) } .

3. Kuranishi space

Here, after stating some definitions concerning deformations of compact
complex manifolds, we state the fundamental existence theorem of Kuranishi.

Definition (3.1). By a family of compact complex analytic manifolds we
mean a triple (X, π9 V) of reduced analytic spaces X, V and a proper surjec-
tive holomorphic map π: X —> V satisfying the following property (*): For each
point p € X we can find an open analytic subspace Y of X containing /?, an
open analytic subspace V of V containing 7r(p), a domain U' in a complex
Euclidian space Cn, and a complex analytic isomorphism h: Y —> U' x V
such that π(q) = p(h(q)) for all g in Y, where ^ is the projection to P" of
W X F 7 .

When 7r satisfies the above property (*), we say it is simple. Thus a family
of compact complex manifolds means a triple (X, π, V) of reduced analytic
spaces X, V and a proper, surjective, simple holomorphic map π: X —» V. It
can be seen that π~ι(i) for each t β F is a compact complex manifold.

Definition (3.2). A family of deformations of a fixed compact complex
manifold M is a family (X, π, V) with a distinguished point 0 € F , together
with an isomorphism i: M-* π~\0).

Definition (3.3). A family of deformations (X, π, V) is said to be effec-
tively parametrized at 0 € F if the Kodaira-Spencer map p0: TQV-*H\π~\Q),
θκ — l ( 0 )) is injective, where T0V is [1] the Zariski tangent space of F at 0,
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and θπ — l ( 0 ) is the sheaf of germs of holomorphic vector fields on π~K0).
Definition (3.4). A family (X, π, V) of deformations of M is said to be a

complex analytic universal family at the reference point 0 if for any family
(X\ π', V) of deformations of M with reference point 0', there are holomorphic
maps /: U -> V, f: π'~\U) -> X such that f maps πf~\t) holomorphically iso-
morphic to π'Kf(t)) for each t e U, where U is an open neighborhood of 0' in
V such that /(0') = 0.

The existence of a holomorphic family of deformations of a compact com-
plex manifold M for which H2(M, θ) = 0 was proved by Kodaira-Nirenberg-
Spencer [5]:

Theorem (3.1) Kodaira-Nirenberg-Spencer). Let M be a compact complex
manifold. If H2(M, θ) = 0, then there exists a complex analytic family (X, π,
V, 0) of deformations of M such that p0 maps the tangent space TQV isomor-
phically onto H\M, θ), where X and V are complex manifolds.

Kodaira-Spencer [8] proved that the above family is universal at 0.
Kuranishi obtained a theorem in [9] more general than Theorem (3.1) of
Kodaira-Nirenberg and Spencer. This theorem is concerned with normal families
of deformations, a concept which we define below.

Definition (3.5). Let (X, π, V) be a family of compact complex manifolds
where X and V are complex manifolds. Let Mt = π~\t) for t € V, and assume
for each t a subset K(t) of Hp(A(Mt)) is given. Then the family {K(t)} is said
to be coherent at tQ if and only if the following condition is satisfied: For each
cocycle β in Ap(MtQ) representing an element in K(tQ), there is a family βt

depending differentiably no t and defined for t sufficiently near tQ such that
β ίo = β and that βt is a cocycle representing an element in Kit).

Definition (3.6). Let (X, π, V) be a family of compact complex manifolds
where X and V are complex manifolds. Let Mt = π~ι(t), t e V. Let
H\A(Mt)) 3 H\A(Mt)) 3 . . . be the normal filtration of H\A(Mt)). Then
the family (X, π, V) is said to be normal at tQ € V if and only if the family
{Hir\A(Mt))} is coherent at t0 for each r = 1,2, .

Kuranishi [9] obtained the following very interesting properties of normal
families of deformations:

Theorem (3.2). Let (X, π, V) be a family of compact complex manifolds
which is normal at tQ e V. Then the image of the infinitesimal deformation of
the family at t0 is in H*(MtQ) = Π?=i JΪ ( r )U(Λί ί o).

Theorem (3.3). Let M be a compact complex manifold. If H2(M, θ) = 0,
then any family (X, π, V, 0) of deformations of M is normal at 0 e V.

The following theorem gives a generalization of Theorem (3.1):
Theorem (3.4). For any compact complex manifold M, there exists a

holomorphic family (X, π, V, 0) of deformations of M, which is normal at 0,
such that the infinitesimal deformation at 0 is a bijective mapping to H*(M) =

The most important existence theorem in deformation theory is the theorem
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on the existence of a universal and effective family of deformations for a com-
pact complex manifold. Kuranishi proved this theorem in [10], and gave a
different proof in [12]. One may find the proof of this theorem with complete
details in [13].

Theorem (3.5) (Kuranishi), (Fundamental existence theorem of deformation
theory). For any compact complex manifold there exists a universal and ef-
fective family of deformations.

It becomes necessary for us to state the main ideas which Kuranishi used to
prove this theorem, as our main theorem is based on these.

Let us fix a hermitian metric on M, and let (θ, ψ) be the L2 inner product
of θ, ψ e Ap. With respect to the fixed hermitian metric, we have the formal
adjoint operator δ of 3, which is characterized by (dθ, ψ) = (θ,δψ). We then
define the complex Laplace-Beltrami operator • = dδ + δd, which plays an
important role. The fact that the metric is hermitian implies that Uθ is of the
same type as θ. A form θ is said to be harmonic if Q0 = 0 or equivalently
dθ = 0 = δθ. The fact that the operator • is a strongly elliptic second order
operator implies that the space Hp of harmonic forms in Ap is finite dimen-
sional. Also we can establish the existence of the harmonic projection operator
P and the corresponding Green's operator G, yielding the Hodge decomposi-
tion:

(3.1) θ = Pθ + dQΘ + Qdθ , where Q = δG, θ € A* .

Also with respect to the Sobolov's A -norm, we have for any θ e Λv

(3.2) \PΘ\k<c\θ\k, \QΘ\k+1<c\θ\k.

where c is a constant.
Using these tools and the implicit mapping theorem in Banach spaces,

Kuranishi proved that there exist an open neighborhood W of the origin in Hι

and a complex analytic injective mapping Φ: W —> A1 such that {Φ(t), t e T},
where T is the analytic set in W defined by

(3.3) T = {s 6 W\P[Φ(s), Φ(s)]} = 0 ,

represents a complex analytic universal and effective family of deformations
of M. T is called the Kuranishi space.

The mapping Φ is of vital importance to us, and is called the canonical uni-
versal map. Our main theorem gives a characterization of the normal filtration
of Hι(M, θ) in terms of Φ. We give below some important properties of this
map Φ.

By construction, Φ satisfies the following identity:

(3.4) Φ(t) - iQ[Φ(f), Φ(t)] = t for all tin W .
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Let U be an open subset of M with complex analytic chart Z = (Z1, , Zn).
Then locally

(3.5) φ(t) = Σ ®i(Z, t)dZa-d/dZβ ,

where Φβ

a(Z, t) is C°° in Z and t. Also the local expression for [Φ(t), Φ(t)] is
given by

(3.6) [φ(t),Φ(t)]= Σ Φβ

ai,a2(Z,t)dZ«> ΛdZ°> d/dZβ ,

where Φβ

aia2(Z, i) is C°° in Z and ί, and is skewsymmetric in ax and a2.
Lemma (3.1). For any integer I > 1, we have

dΦif) - #Φ(t),Φ(i)] = Qι

Φ(t)5Φ(t) ~ i ΣQlvAΦW'ΦW >

where the operator Qξ is defined by Qςη = —Q[η, ξ] and η € Ap, and Q\ is the
k-fold composition of Qξ.

Proof. By (3.4) we have for all t in W

dΦ(t)-i3Q[Φ(t),Φ(t)] = 0 .

Use of the Hodge decomposition (3.1) gives

Sφ(f) - ilΦ(t),Φ(t)] = -iQ3[Φ(t),Φ(t)] - iP[Φ(t),Φ(t)]

(by (1.1) and (1.2))

= Qiw3Φ(t)-iPMt)

Now writing

dΦ{t) = i[Φ(t),Φ(t)] + Ql(t)dΦ(t) - %P[Φ(t),Φ(t)]

and observing that [[Φ(t), Φ(i)]9 Φ(t)] == 0, we have

dΦit) - i[Φ(i),Φ(t)] = Ql{t)dΦ(t) - i Σ &itAΦ(f)9Φ(f)] .
k = 0

On iteration we get the required result.

PART II. CHARACTERIZATION OF THE NORMAL

FILTRATION OF H\M, θ)
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1. Statement of the main theorem

Throughout this part M will denote a compact complex manifold, and θ the
sheaf of germs of holomorphic vector fields. In § 2 of Part I we have defined
the normal filtration of H\M, θ):

ff(M, θ) = Hω 3 H(2) 3 . . . .

In § 3 of Part I we have defined the canonical universal map Φ: W —+A1, where
W is an open neighborhood of the origin in H^M, θ). Our main theorem gives
a characterization of the normal filtration of H\M, θ) in terms of Φ.

We know that Hι(M, θ) is a finite dimensional vector space. Let m be the
dimension of H\M, 0), and (S1, , Sm) a linear chart of H\M, θ). For t =
(t1, , tm) € Hλ(M, θ) we define a differential operator Dt = ΐd/dS1 -f . . . +
tmd/dSm. It is well known that Dt is defined independently of the choice of the
chart (S\ •• ,Sm).

Define a new filtration of H\M, θ):

and a sequence of maps φ ( 7 l ~ 2 ) : flW -» A1, n = 1,2, . by induction of n as
follows:

Define H™ = Hι(M,θ) and Φ ( " υ = Φ, and assume that # [ 1 ] , . . , # ™ ;
φί-1), φ<°>, . . . , φ<»-» are defined. We are going to construct Hίn+1^ and Φ ( w " υ .

Definition (1.1). A linear subspace L of Hw is called an allowable sub-
space when there is a polynomial map

(1.1) μ

of the form

(1.2) μ(t) - t + ^»-»(0 .+ • • . + μ«>(t) ,

where //$.s)(ί) is a homogeneous map of degree r with values in Hίsl satisfying the
following condition:

(1.3) PDtlt...9tu+ί[Φin-2)oμ9φ^^oμ] = 0

for all (t19 . 5 tn+1) e //[1] X X H™ x L.
Then we prove
Propositin (1.1). // Lx and L2 are allowable subspaces of Hίnl, then Lλ + L2

is also an allowable subspace of HM.
By the Proposition there is therefore the unique maximal allowable subspace

of Hinl which we define to be Hίn+11. Let μn~ι be a map as in (1.1) correspond-
ing to # C w + 1 ] , and set φ ( n ~ υ = φ(n-2) oμ71'1. Then our main theorem is the fol-
lowing :
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Main Theorem. The two filiations

Hι(M, Θ) = Hω 2 # ( 2 ) 2 , Hι(M, Θ) = # [ 1 ] 3 flM 2 . . .

coincide.

2. Statements of a lemma and a proposition

To prove our main theorem we need a lemma and a proposition, which are
stated in this section and are proved in § 4.

Lemma (2.1). Let # [ s ] , Φ ( s~2 ) be defined for s < n as in § 1. Assume that
Hisi = #(*) j o r au s < n L e t

ffr-*:Hω-+Hω (r = 3, .- ,n)

fee ̂  polynomial map of the form

(2.1) fl'-2(ί) = t + θ?-*\t) + • + 0 ^ ( 0 ,

where θ[s)(t) is a homogeneous map of degree I with values in Hω. Assume
that

PDtlt...ttr[Ψ{r-*\ W{r~2)] = 0

X . . . X H«\ (r = 1, . , n), wAβrβ

o^o ... o0'-2 , r ( 0 ) = ?r("1) == Φ .

(2.

foi

(2.

Tf

(2

.2)

-all

.3)

•4)

, , tr) s H

ψlr-2) _

sequence

w «n ND-sequence of length n over Ha\
Proposition (2.1). Lei IF*\ Φ ( s " 2 ) b^ defined fors<n as in § 1. Assume

that H^ = // ( s ) /or α// j < n. L ^ 0 r " 2 : H 1 -* Ψ (r = 3, , n) fee Λ mα/7
satisfying (2.1) αnίί (2.2). Assume that the sequence (2.4) w ^n ND-sequence
of length r. Then for r= 1, , nand (tl9 . . . , ί r+1) € # (1 ) X X # ( r ) X ̂ ( r ) ,

• • • ,θrλ\tr,tr+x) (mod B').

Here Br is the subspace of A2 generated by all elements of the form

D,lt...t,t[¥(q-2\ ψ(q-2)] where (J,, ,sq) 6 Hw X X H(q\ q < r.
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3. Construction of the filtration H\M, θ) = # C 1 ] 3 IF* 3 .

and proof of the main theorem

By definition H^ = Hι(M,θ) and Φ ( " υ = Φ.
Construction of # [ 2 ] and proof of # [ 2 ] = Hi2). By our construction, ffn is

the maximal subspace of # [ 1 ] such that for all (t19t2) e # [ 1 ] x Hί2\ PDtlM[Φ, Φ]
= 0 and Φ(0) = Φ. According to Kuranishi's construction,

(3.1) # ( 2 ) = {t2 e H{ί) \P[t19t2] = 0} for all tx e HW .

Since DtuH[Φ,Φ] = 2 ^ , ^ ] , it is clear that FD ί l ί 2 [Φ,Φ] = 0 if and only if
P[ί1? ί2] = 0. Hence we have proved that Hm = //(2). In other words, we have

Proposition (3.1). t € # [2 ] = H(2) if and only if P[t, u] = 0 /or every
uzHa\

Construction of Hί3\ We have # [ 1 ] = # ( 1 ) , /?C2] = H ( 2 ) and Φ ( " υ = Φ(0) = Φ.
We are going to construct 7?C3] and Φ ( 1 ). Let F £ H121 be an allowable sub-
space. This means, according to Definition (1.1), that there exists a map:

(3.2) μ: Hw-* Hω

of the form

(3.3) μ(t) = t + μ?>(f) .

where μil)(t) is a homogeneous map of degree 2 with values in H1, such that

(3.4) PDtlMM[Φoμ,φoμ]=0 .

Now by Lemma (2.1), {DhΦ,DtlMΦ} is an ND-sequence R = {/?i,/?2} of
length 2 over ff. Thus according to Proposition (2.1), for all (t1912, t3) e Hω

X Hi2) X V. we have

(3.5) DtlMM[Φ oμ,φoμ]~ 2KΛ(tl912, t3 μ^(t2, Q) (mod B2) .

By observing the definition of B2 and applying the previous case (namely, the
case n = 2), we find that F(β2) = 0. Hence

(3.6) PDtutΛttM[Φ oμ,φoμ]=0 +± PKR(tl91%913 ^ ι ) ( ί 2 , 0 ) = 0 .

Expanding KΛ(t1912912 /4υ(ί2, ί3)) by means of (2.5) of Part I, we see that
V is an allowable subspace of Hw if and only if there exists a symmetric
bilinear map μ^: H(2) x V -> # ( 1 ) such that

(3.7) ^ P Σ Wifo), ^ 2(ί 2, 0 ] = Pltu μίl)(t2, ί3)] for all (ί2, ί3) e //(2) X V .

By denoting the left hand side of (3.7) by Δ(tx,t2,tz), we have a symmetric
trilinear map
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Δ\ Hω x # ( 2 ) x V-*H2(M,Θ) .

Thus we have proved that V is an allowable subspace of Hω if and only if
there exists a symmetric bilinear map μ^: H(2) x V —>• # ( 1 ) such that

(3.8) Δ(tl912, h) = Pfc, ^»(ί a, ί3)] for all (t2, tz) e #<2) x V .

We want to prove now the following proposition.
Proposition (3.2). // V19 V2 are allowable subspaces of Hi2), then Vx + V2

is also an allowable subspace of Hi2).
This proposition follows immediately from the following Lemma.
Lemma (3.1). V is an allowable subspace of H{2) if and only if F(H(2) X V)

C Q, where

(3.9) V: Hω x H(2) -> L(# ( 1 ) , H\M, θ))

is a symmetric bilinear map defined by F(t2, t^) = Δ(tl912, t3) for all (t2, t3) e
fl(2) X H™ and all tx e Ha\ and Ω is a linear subspace of L(H«\H2(M,Θ))
defined by

Ω = {λz L(Hω, H\M, θ)) I there is h, in Hω

such that λ{t) = P[t,hJ\ .

Proof of Lemma (3.1). Let V be an allowable subspace of Hω. Then by
the definitions of V and Ω, we get

(3.11) F(H(2) x F ) c i 3 .

Conversely, let V c Hi2) satify the above condition. We have to prove that
there exists μ^\ Hi2) x V->Hω such that (3.8) is satisfied. We now define a

(3.12) <K*i)(A) = JP[Λ, AJ for all A, hx € // (1) .

Since this is a surjective linear mapping, there exists a linear mapping β: Ω —>
//(1) such that σo/2 = identity. Extend /? to L(//(1) ff(M, 0)), and denote the
extension by μ. By assumption, for all (t2, t3) e H ( 2 ) x V we have Γ(ί2, t3) β iβ.
Hence we can define a map /4υ H(2) X V —> Hω by

(3.13) μ^Q^μoFit^O .

As F is symmetric, /4υ is also symmetric, and by its construction we easily see
that it satisfies (3.8). This completes the roof of Lemma (3.1).

Proposition (3.2) is an immediate consequence of Lemma (3.1). From
Proposition (3.2) it follows that there is the unique maximal allowable sub-
space of H{2\ which is defined to be //C3]. Let μ1 be a map as in (3.2) corre-
sponding to fl[3]. Then define Φω = Φ(0) o μ\
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Proof of HP* = # ( 3 ) . Let t3 <= Hί3\ Then there exists a map μ™: Hi2) x
•> fl(1) such that

jyV" ( f i t * tiO-^ίt i \\ C\ ( t i \ c £/(!) N/ ί/(2)
* 4* ijv^i5 ^2' *3 ? j^2 \*2? *3// — ^ ? V*15 *2/ *• •'•* ^ •'•*

Define S<3: # ( 2 ) -> Hw by Sffe) = ^ " f e , *s) Then Theorem (2.1) of Part I is
satisfied, and hence tz € H(3).

By retracing the steps the converse is easily seen. Thus #C3] = # (3), and
hence we have proved

Proposition (3.3). t € /ZC3] = H™ if and only if there exists a map
μι: HiΌ -> Hω of the form μ\i) = t + μ£\t) such that PDtl H t9[φ oμ\φo μ1]
= 09forall(t19tJeH™ X H™.

General case. We assume that # C 1 ] , , Hίnl Φ ( ~ υ , , Φ{n~2) are con-
structed, and also that Hίrl = Hir) for 1 < r < n. We are going to construct
fJin + H a n ( J φ(n-i) a n ( J p r o v e flCn + i]---. H{n + 1\

Remark. The construction of HC3] does not clearly indicate how the con-
struction should go in the general case. The construction becomes quite com-
plicated even in the case of Hm. Once we construct iϊC4], we see the general
pattern of construction for Hίn+11. Hence it should be remarked that we get
the motivation for the various steps of construction of Hίn+11 from the corres-
ponding steps for the construction of # C 4 ] .

Let V c H{n) be an allowable subspace of H{n). This means that there exists
a map

(3.14) μ:Hil)->Hιl)

of the form

(3.15) μ(f) = t + μl*-»(f) + + μ™(t)

such that for (t19 • • - , * „ , ί n + 1 ) e H{1) x . . . x Hin) x V

(3.16) PDtu.^tn+1[Φ{n-2)°μ,Φ{n-2)oμ\ = 0 .

Since all the assumptions of Lemma (2.1) are satisfied, DtlΦ
{n~2) and

Dtu.m.ttnΦ
(n~2) form a symmetric M)-sequence R = {R19 -,Rn} of length n

over i/(1). Thus by Proposition (2.1) for all (t19 , tn+1) e i^(1) X # ( 2 ) X •
X //(w) x V,

(3.17) t l - t +1 O / / ' °μ " ( n _ υ "+ 1

By induction assumptions we have P(β r ) = 0 for all r, 2 < r < n, so that

(3.18) ί ^ 'ί»+1 Oi"' ^ ^ o / i



240 D. SUNDARARAMAN

By expanding KR and using (2.5) of Part I, we see that F i s an allowable
subspace of H{n) if and only if there exist symmetric multilinear maps

(3.19) /#_-&,:#<*> x . . . χWn) x V-+&*-» , k = 2, ,n

such that

n - l

~P Σ Σ [^? + l( î> * J *ίβ> tn + 1), Rn_q(ti, , L , , tn)]
P=0 l<ii< <iβ<n

(3.20) π-1*-l

- ^ L L Σ L**g + 1 ( ί ί 1 , * * J ti , μn-k+i\tk + i9 ' ' ' ? ̂ TO + I ) )
Λ l 0 l < i i A

where tIq means the omission of th, , tiq.

Denoting the expression on the left hand side of (3.20) by Δ(tγ, , tn+1),
we see that

(3.21) Δ: Hω X X H(n) X V -> //2(M? Λ

is a symmetric (n + l)-linear map. Thus V £ H{n) is an allowable subspace if
and only if there exist symmetric multilinear maps

(3.22) μ^Uji # ( f e ) X X # ( w ) X V -> H^~l) , k - 2, . ., n ,

such that

,* o ^ J ( ^ ' * * ' ' r»+i> = F " Σ *Σ Σ lRq+i(til9 , tiq,
(3 .23) * = 1 Q=0 l<ii< <iβ<fc

μn-k + l(tlc + l> * * > ί n + l ) ) » Rk-qihi ' " 9 * Iq, , ί f c ) ] ,

where ί/ff means the omission of ίίχ, , ίίβ.
Proposition (3.3). // F l 5 F 2 are />vo allowable subspaces of H(n\ then

Vx + V2 is also an allowable subspace of H(n).
This proposition follows from the following Lemma 3.3.
Lemma (3.3). V is an allowable subspace of H(n) if and only if

F(H(n) XV)^Ω where

V\ H{n) x Hw -> L(Hω X X H{n-ι\H2(M,θ))

is defined by

(3.24) P(tn, tn+d(t19 , tn_J = ά(t19 , tn+ι)

for all (tn,tn+1)zH(n) X H™ and (t19 , tn_J € Hω X . X H^~ι\ and
Ω c L(7Ϊ(1) x . . . x Hin'ι\ H\M, θ)) is defined by



NORMAL FILTRATION OF HX(M,Θ) 241

Ω = ίλ\hkeSL(Ha+1) x . . . x H{n'ι\Hm),k = 1, . , n - 2

ύtnd A n - 1 e H{n~l) such that λ(t19 « «, ίn + 1)

w-2 λ -1
— p v y1 v r/?Γf . . . / A ίv ... t \\

(3.25) A Q4Ό i S i l < ^ < i g S / " v * * + 1 ' » - i " '

• , ί/.. . <*)] + f *Σ Σ W(ifl, , tiq, K-d,

o/ Lemma (3.3). Let F be an allowable subspace of H{n). Then from
the definitions of Γ, fl and (3.23) it follows that Γ(//w χ F ) C f l . Conversely,
assume that V satisfies this condition. Then we prove that V is allowable by
proving that there exist symmetric multilinear maps μ(n-i+2 °£ ώ e form (3.22),
which satisfy (3.23).

By the definition of Ω we obtain a surjective linear map

σ: Wn~l) 0 SL(H{n~ι\ H(n'2)) 0 SL(Hin-Ό x H(n~2\ H{n~3)
(3.26)

' 0 . .. 0 SL{H'n~l) X . . . X H™,Hω) -> fl .

Thus there exists a map

fi: Ω — iffί»-» 0 SUH^-v,H'n~2))
(3.27)

0 . . . 0 SL(H(n~υ X X # ( 2 ) , H(1))

such that σo/2 = identity. Extend /2 to (Hω X X fl(n-υ, H2(M,Θ)) and
denote the extension by μ. By assumption, P(tn,tn+1) z Ω for all (tn,tn+1) €
H(w) x V. Hence μoP(tn, tn+ι) is well defined. Let

(3.28)

where (/

(

t»,tn.

*n + l) = (

« + l))r

iμoP(tn,tr,

l ~", and

" X

for

X

r =•2,, , n — 1 .

Then we define

^ n " 1 ) ( ί » > ί » + i ) = C M o Γ ( ί n , ί Λ + 1 ) ) 1 ,

(3.29) / 4 w - r + 1 ) ( ί w _ r + 2 , , ί n + 1 ) = O ι o Γ ( ί n , ί n + 1 ) ) ( r . υ ( ί w _ r + a , , ί π _ 1 )

for r = 3, -,n .

F r o m the construction of these maps μ(n-k+i it follows that they satisfy (3.23)

but may not be symmetric. We should note that μ{nlk+i(tk+1, , tn+1) is sym-
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metric in the last two variables tn, tn+, since V is so, and it is also symmetric
in the first n — k — 1 variables since (μoF(tn, tn+,))k is so. Hence, if only we
can interchange ts and tr where k + ί <s <n — 1 and n < r < n + 1, then
μ(n-k+i will be symmetric as seen from the following lemma.

Lemma (3.4). Let E\ E\ , En, F be vector spaces, and f e L(E\
En F) be such that

/or 1 < r < s < n and xr9 xs € Eω. Then there exists a symmetric multilinear
map

f:E1χ χEι(n factors) -> F

such that fit,, ., tn) = f(t,, ••-,„) for it,, - •, ίn) 6 B 1 X X £ n .
We give a proof of this lemma in § 4. Hence to complete the proof of the

lemma we have to prove the following proposition.
Proposition (3.4). There exists a solution {μ{nlk+i,k = 1, ,n — 1} of

(3.23) such that μ(nlk+1 are all symmetric.
Proof of Proposition (3.4). (3.23) can be written in the following form:

J , - ,tk,μίk±k+,itk+ι, . . -,tn+,)) ,

x Ha) X H{k) -> H\M,Θ)

, ί<β, f t ) ,

(3.30) Ait,,

where

is defined by

Mkit,, - >,tk,

For a fixed a e 1

• , ί . + i )

Mk:W

t'κ) = ί5

Ψk\ we

= Σ ^

:1) X

define

I o Xl X fl(*> -* H 2 (M, (9)

by

A^ί(ίi, * , tk) = Mkit,, -9tk9ά) .

Then it is clear that Ma

k e SLiHω, -,Hk; H\M, θ)). We now claim that we
can find *μ™k+1 e SLiHa+1), , Hin), V H(lc)) such that they satisfy (3.30).

Take a basis e,, , em of H\M, θ) such that ea{j)+ι, , em is a basis of
and e α ( n + 1 ) + 1 , , em is a basis of V for a sequence α( l ) < • •
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Extend μ%lk+1 to multilinear mappings of H1 X X H1 (n — k + 1 factors)
into H(k\ Then there exists *μ™k+1 ε SL(HW x . . . x # ( 1 ) # ( i f e )), (n - k + 1
factors of # ( 1 ) ) , such that

{ό.όl) μn-k + Aeλ!9 ' ' •> eλn-k + 1) — ^n-k + Aex^ ' ' " 9 eλn-k+1)

for any 1 < eλl < < ^ n _ 4 + 1 < m. We prove that the restriction of *μ(n±k+1

to H{k+1) x . . . x H^-v satisfy (3.30). Let tteHu\ i= 1, -. , n , and

ί Λ + 1 e F . Let ί< = Σ** c ^ ^ r τ h e n

4(ίi, , ίn+i) = Σ c ί x * <%#Δ(eλl9 , eiΛ+1)

(3.32) 2 l > "" > 2 " + 1 . v
— V I T rh . -c^+A/Ke . . . P }

Z-l I Zj C l CΠ+1 \"yyμ\9 5 Cμn + 1/ 5

where (^, , ̂ n + 1) is a permutation oί (μλ, - -, μn+ι).
There exists a permutation π of (/i1? , μn+1) such that ^̂  = π(μi) and

^ t > a(ί). This implies ^^ > a(ι) for all /. Thus from (3.30) we have

n-l

(3.33) *nl\

k = l

Now if (λl9 ,λk) is a permutation of (μί9 - j ^ ) , then ϋ f c + 1 , , Λw+i)
must also be a permutation of (μΛ + 1, , μΛ + 1).

Since *μ(nlk+ι and Mk*μ%)_k+ι are symmetric, we have

7 1 - 1

( 3 . 3 4 ) Δ(e 9 , ̂ ( n + 1 ) ) : = Σ Mk(eλl, , e^, *//$ίί.A;+i(βJi*+i> ^n+i))
fc = l

If Uu , Λfc) is not a permutation of (μ15 , μk), then by induction assump-
tion both Mk(eh,. , eik9 *μ™k+1(e**+i> eχn+J) a n d Mte(eμi9 , ̂ f c, *^*2 f c + 1(^ t + 1,
• ,.^n + 1)) vanish. Thus (3.34) holds in all cases. This shows that *μ%±k+ι
satisfy (3.30), and therefore Proposition (3.4) is proved.

By Proposition (3.3), there exists a unique maximal allowable subspace of
H(n\ which is defined to be Hίn+11. Let μn~ι be a map as in (3.14) correspond-
ing to lfn+11

9 and define φ ( n ~ υ = φ ( n - 2 )

 o μ
n~\ This completes the construction

Proof of # [ 7 Z + 1 ] = H(n+1\ Let tn+1<zHίn+1\ Then for every (ί1? . ., tn) e

Ha) X x H{n) we have

*&R\t\i ' * * ) *n + l ? μh V^2J ' # ' 9 *n + l/J * * * 9 μ% ' \*n9*n + l)) = z "

Define
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5*«+i:fl(*) χ . . . x #<•*>_> # < * - D , k = 29... ,n,

by

Sln+1(tk, ••-,*„) = μίk-^2(tk, , ίΛ+i) , Λ = 2, . . - , / ! .

Then by Theorem 2.1 of Part I we see that tn+ι€H(n+1). Conversely, if
tn+1 e H(n+ι\ using Theorem 2.1 of Part I we can construct symmetric maps
μn~kl2 satisfying (3.23) proving that tn+ι <= Hίn+11. Hence we have proved the
following proposition.

Proposition (3.5). t e Hίn+Ϊl — H(n+1) if and only if there exists a map
μ: H{1) -> H(1) of the form (3.15) such that (3.16) holds for all

(*„ , tn) 6 # ( 1 ) X . . . X H^ .

This completes the proof of our main theorem.
Remark. (1) Since Hι(M,θ) is of finite dimension, the normal filtra-

tion of H\M, θ) must terminate. Hence there exists a positive integer l0 such
that

(2) The maps ^ ^ ( ί ) = ί + μ^ΉO + + /£?!,+1(0 + + ^ ( 0
can be so chosen that μ{nίs+ι(t) is in the orthogonal complement of H(s+1) in
Hω. Hence for any / > /0, μι~2 can be so chosen that μlι°ϊo

r2r(t) = 0 for all
r = 0, 1, . . - , / - / 0 - 2.

4. Proofs of Lemma (2.1) and Proposition (2.1)

The proof of our main theorem depends very much on Lemma (2.1) and
Proposition (2.1). We prove these as well as Lemma (3.4) in this section. The
proof of Lemma (3.4) is quite elementary; however for the sake of complete-
ness we give it here

Proof of Lemma (3.4). Let {βi, •• ,e r i} be a basis of E1 such that
{e19 , erk) is a basis of EK Define / such that / (evi, , ej = /(<?„,(1), , eVπ(n))
if there exists a permutation TΓ of (1, « , ή) such that (eVπω, , eVπ(n)) € E1 x
••• χ £ " . /is defined to be zero otherwise. The proof is complete, once we
show that / is well defined. Let π, πf be two permutations of {1, , n} such
t h a t b o t h (eVπω, , eVπ(k)) a n d (eVπ,(1), , eVχ,(n)) e E1 x . . . x En. C o n s i d e r
Λevπ/(1)j > ^'(n))- We can assume that π'(n) = π(n) by hypothesis. Let π'(s)
= π(s) for 5 = r, , n. Then using the hypothesis it is easily seen that

π\r - 1) = τr(r - 1). Thus

and / is well defined.
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We now introduce some notations. Let Φ: Hω —> W be the canonical uni-
versal map. Then Φ can be written as

φ(t) = t + ΦJLt) + Φ3(t) + .. .

where Φr(t) is homogeneous of degree r. Let μ: Hω —• Hω be any polynomial
map. Then we can write

μ(t) = t + μ2{t) + + μι(f) ,

where μr(t) is homogeneous of degree r. Let (S\ ,Sm) be a chart of # ( 1 ) ,
and let t = (t\, , tf) e Hω. Consider the differential operator Dtl = tld/dS1

H + t?d/dSm. We denote (Dtlμ)(0) by μ(ί,), and similarly for t19-<9tn in
# ( 1 )

? μ(t19- -9tn) denotes (Dtu...tnμ)(0). Also we recall that if / is any
homogeneous map of degree / of Hω, then there exists a unique symmetric
Z-linear map F such that F(t, , 0 = /!/(*)• Also it is easy to check that
F(t19 , U) = (Dtlί...tιf)(0). By a decomposition / of (t19 - , ίf) into Λ sub-
sets we mean a collection (J19 , /fc) of /: subsets of (t19 , ίj) such that they
are disjoint and their union is (t19 -,tt). We consider two such decomposi-
tions /, V to be the same if and only if, as sets, Jr = Jf

r for r = 1, , k, where
/' = (J[, ,/Q. Define an equivalence relation in the set of all decomposi-
tions of (t19 , tι) into /: subsets as follows. We say /, /' are equivalent if and
only if there exists a permutation π of (1, , k) such that, as sets, Jr = J'π{r)

for r = 1, , k. Denote by / an equivalence class of this type. | / r | denotes
the number jr of elements in Jr, and J\ denotes /Ί! j k ! . Then we have the
following result.

Lemma (4.1).

(4.D Dtl^tι(φoμ) = Σ (l/J!)Dμ(I)Φ = Σ Dμ{I)Φ .

Proof. We can assume that Φ is homogeneous of degree h. Then there
exists a unique symmetric Λ-linear map Φ such that Φ(t) = (1/h l)Φ(t9 , i).
Thus Φoμ(t) = {l/hl)Φ(μ(t)9 - -9μ{f)). Similarly let μr denote the symmetric
r-linear map corresponding to μr. Let (Φ o μ(t))t denote the homogeneous part
of degree / of Φ o μ(t). Then

(4.2) {Φoμ{t)\ = Σ d/ADΦ^ω, ,μJh(t))

Consider

(4.3)

Since this is a symmetric /-linear map, there exists a unique symmetric map of
degree /such that Nit, - , t) = l\j{t). We claim that f(t) = (Φ-
we have
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N ( t , • • •, t) = Σ ( J l l h l ) Φ ( μ h ( t ) , •••, μ l h ( t ) )
J

(4-4) = Σ U Σ ]\)φ{μjί{i),...,μjh{t))

= WΦoμ(t))l9

and therefore

Now we are in a position to prove Lemma (2.1) and Proposition (2.1).
Proof of Lemma (2.1). The proof is by induction on the length of the

MD-sequence. Using the fact that P[tl912] = 0 for all (t1912) e Hω x H(2), it is
quite easy to check that DtlΦ, DtιMΦ form an ND-sequence of length 2 over
Hω. Now assume that Hίs\ Φ(s~2) are defined for s < r and that Hs = H(s) for
s < r. We further assume that there exist polynomial maps θ\ , θ7"2 of the
form (2.1) such that

(4.5) PDtlt...tta[¥<-*\Ψ<-»] = 0,

for all (t19 , ts) e Hα) x . x Hω, s = 2, - ., r, and that DtlW's~2), ,
^tU" ,t^{s~2) form an ΛfD-sequence of length s for s = 2, , r — 1.

We prove now that DtlW
(r~2), > ,Dtlr..^rΨ

ir~2) form an ND-sequence of
length r. Observing the definitions (2.1) and (2.4) of Part I, we note that it is
sufficient to prove that

(4.6) SDtίi^tiΨ^-2) = \Dtί^.MW{r-2\ Ψ{r~2)]

for all 1 < ix < < iq < r. By Lemma (3.1) of Part I, we have

Noting that Q^l)ω(d¥(r-2)(t)) = 0(Γ+ 1), we find that the first term on the
right hand side of (4.7) vanishes. Also the induction hypothesis implies that
the second term vanishes. Hence we have the required result.

Remark. Lemma (3.4) implies that the ND-sequence DtlΨ
{r~2), ,

Dtu~ >tFw~2) i s symmetric.
Now we prove Proposition (2.1).
Proof of Proposition (2.1). Once again the proof is by induction. The

Proposition is trivial for r = 1, because DtlM[Φ,Φ] = 2[t1912] = 2KB(t19t2).
Let (t1912913) € Hω x H™ x # ( 3 ) . Then we have
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(4.8) DtlMtHW«\Ψ™λ = 2 Σ lDttΦoθ\DtututΛΦoP] .

Now applying Lemma (4.1), the right hand side of (4.8) becomes

2 Σ [DtiΦ, DttttttttΦ + 0i(f19 ii9 ί3)]

~ 2KR(t1912, ί3 θ&t2, h)) , mod B2 .

Thus the proposition is proved for r = 2.
As we proceed further, the computations become quite complicated. For

example for (t19 - , ί4) € # (1) X # (2) X H(3) X H(3\ we have

The exact expression for Dtu...M+^Ψ{r~ι\Ψ{r~l)] turns out to be very compli-
cated, but we do not need it.

Assume that (2.3) is proved for all r = 1,2, . , n — 1. Then

Dt t \ψ^n-ι\ψ{n-l))

(4.io) tu'"^+1

2 ^ ^ ^ [ r - " , © , t t Ψ{n-l)λ,

where ?7 ? means omission of ίίl5 •' 9tiq. Now we apply Lemma (4.1) to
expand Dttit...ttιW

in-1) and Dtl... , t

A

J g,..., i n + 1?
r ( n"1 ). Observing the definition of

£*(*i> »ϊn+i ^ifej »ίn+iX * ? θin-λ)(tn, tn+1)) and applying the induc-
tion hypothesis, we have

2 ^ ^ , , ίn+1 β»>(ί2, , tn+1), , ̂ "-"( ίn, ίn+1))

I V D ίn- l) A Λ Γ ? Γ ( n " 2 ) W{n~2)λ
"Γ Z J ^ ^ 1 ) ( ί < 1 , t < a ) , ί 1 > . . . , ί < 1 , . . . , t < a , . . . , t n + iL5ί/

 ? ^ J
«i,ί2)=s£=(n,n + l)

modB 7 1" 1

2* :^- , , ίn+1 ^ υ ( ί 2 , , ίn + 1), , θin-ι\tn9 tn+1))

mod 57 1

This completes the proof of Proposition (2.1).
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