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CONDITION (C) FOR THE ENERGY INTEGRAL ON
CERTAIN PATH SPACES AND APPLICATIONS
TO THE THEORY OF GEODESICS

KARSTEN GROVE

Introduction

Let M be a complete connected Riemannian manifold, and L*(I, M) the
Hilbert manifold of absolutely continuous maps from the unite interval I =
[0, 1] to M with square integrable derivative. See, e.g., Eells [4] for the mani-
fold structure on LI, M), or Karcher [9] and Palais [16] for analogous spaces.
There are various interesting submanifolds of L3(I, M) related to the study of
different kinds of geodesics on M, which appear as critical points for the en-
ergy integral on the submanifolds.

This paper is divided into three sections. In the first two sections we point
out some interesting submanifolds of L}(I, M) and their related geodesics on
M, and study to which extent the energy integral satisfies Condition (C) of
Palais and Smale (a necessary condition for making critical point theory like
Morse theory and Lusternik-Schnirelmann theory on infinite dimensional man-
ifolds). Our first result was a generalization of those obtained by McAlpin or
Karcher [9] and Palais [16]. However Eliasson has recently obtained a general
result on Condition (C) based on the notion of weak submanifolds and local
coercive properties of the involved function [5]. Conversations with Eliasson
made it clear that his results applies to our case, so that Theorem 2.4 now in
some sense is the best possible result on Condition (C) for the energy function
on path spaces. The author is indebted to Eliasson for pointing out this to him.
Immediate applications of Theorem 2.4 are made to geodesics between sub-
manifolds of M and to geodesics invariant under an isometry without fixed
points; by invariant we mean that the geodesic is mapped onto itself with the
direction of speed preserved. In the last section we apply the results of the first
two sectionsto get existence thorems for geodesics on a compact manifold in-
variant under a given isometry. Our main results in the last section are con-
tained in

Theorem. Let M be a compact Riemannian manifold, and A: M — M an
isometry on M.
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(1) If A is homotopic to the identity map 1, of M, then it has a nontrivial
invariant geodesic.

2) If 7;(M) = 0, then A has a nontrivial invariant geodesic except pos-
sibly when A has exactly one fixed point.

Finally there exist compact manifolds with isometries which have no non-
trivial invariant geodesics.

We note that V. Ozols in [15] studied the square of the displacement func-
tion §,: M — R of an isometry 4 defined by 6 ,(x) = dy(x, A(x)) for all x e M.
If 4 has small displacement, i.e., if A(x) is never in the cut-locus of x for any
x € M, then the critical points for % are the points p ¢ M for which the con-
tinuation of the unique minimizing geodesic from p to 4(p) is invariant under
A. Thus, if M is compact and 4: M — M has small displacement, then 4 has
a nontrivial invariant geodesic. Part (1) of our theorem obviously generalizes
this result.

1. Ciritical points

Let (M,<, >) be a complete Riemannian manifold. Then Li(I, M) has a
natural complete Riemannian structure given by

XYy = | XD, YLD ey + T XD, VY O 0t

where X, and Y, are elements of the tangent space at ¢ € L}(I, M), i.e., X, is
an absolutely continuous vector field along ¢ on M with square integrable
covariant derivative /X, (see, for example, Flaschel [7] or Klingenberg [10]).
All submanifolds of L}(I, M) will be given the induced Riemannian structure
from {{, >>.

It is easy to see that the map P: Li(I,M) — M X M defined by P(o) =
(0(0), (1)) for all ¢ € L¥I, M) is a submersion so that the preimage of any
submanifold of M X M by P is a submanifold of LX(I,M). f NC M X M, we
write Ay(M) for P~(N).

Example 1.1. Let ¥ and V’ be closed submanifolds of M. Then 4, ,.(M)
is a complete Riemannian Hilbert manifold. The study of 4,,,.(M) is as we
shall see related to that of geodesics from V' to V’ orthogonal to V and V’.
(Note the special cases where V, ¥/ or both are points of M.)

Example 1.2. Let A: M — M be an isometry on M, and let G(4) denote
the graph of 4. Then A4; 4(M) is a complete Riemannian Hilbert manifold.
The study of A, 4,(M) is related to that of A-invariant geodesics on M. (Note
that in the special case A = 1,, 4;.4,(M) = 4,M) is the space of closed
curves on M, which is denoted by 4(M) in Klingenberg’s notation [10]).

The relation between the Hilbert manifolds A4,(M) and the corresponding
Banach manifolds C%(M) of continuous maps with the uniform (compact-open)
topology is given by
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Theorem 1.3. Let N C M X M be a submanifold of M x M. Then the
inclusion Ay(M) — C%(M) is a homotopy equivalence.

Proof. CYI,M)— M X M is a fibration by Serre [18], and L}(I,M) - M
X M is a fibration by Earle and Eells [3, Proposition, p. 40]. Thus the
homotopy sequences for

A(P)X(q)(M) i C(()p)X(q)(M)

! l

Ld,M) —— CUM)

l l

MXx M MXx M

MXM

and the five lemma give that 4,,,,;(M) — C{, (M) induces isomorphisms
on all homotopy groups for all fibers P~'({p} X {gq}) because the inclusion
LI, M) — C*(I, M) is a homotopy equivalence by a general theorem of Palais
[17, Theorem 13.14]. Now using this on the inclusion between the fibrations

Amx«q;(M) - C?p)x(q)(M)

l l

Ay(M) Cy(M)
" "
N N

1x

together with the five lemma yields that 4,(M) — C%(M) induces isomorphisms
on homotopy groups and hence is a homotopy equivalence because 4,(M) and
C%(M) are ANR’s (even manifolds).

The energy integral is defined by

E() = } f (1), 0 (D)o

for all ¢ € L2(I,M). E is differentiable, and its differential at ¢ ¢ LI, M) is
given by

dE,(X,) = f XD, D)t
0

for all X, e T,L%(I, M) (see, for example, Flaschel [8] or Karcher [9]). Thus
we have
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Proposition 1.4. If ¢ ¢ LXI,M) is a geodesic on M, then the differential
of E at ¢ is given by

dE,(X,) = <X, (1), (1)}, — <X,(0),5(0)),

forall X, e T,L3I,M).
Proof.

—57<X.,(t), Y, (D). = VX0, Y, (0)s) + X0, V.Y, (0)oiry

almost everywhere (see, for example, Karcher [9]), and
g geodesic —> ¢’ e T,L3I,M) ANV ,0’ =0 .

On the other hand, we have

Proposition 1.5 (regularity). If X is a submanifold of L*(I,M) such that
T,X for ¢ € X contains all X, e T,LX(I, M) with X,(0) =0 and X,(1) =0,
and if ¢ is a critical point for E|y, then ¢ is C* and ¢ is a geodesic.

Proof. We just remark that our condition on X is sufficient for us to give
a proof quite similar to a part of Karcher’s proof of Theorem 8.39 in [9],
which states that critical points for E: A(M) — R are closed geodesics.

Combining Propositions 1.4 and 1.5 we get

Theorem 1.6. (1) Let V and V'’ be submanifolds of M. Then
o € Ay v (M) is a critical point for E: Ay, (M) — R iff ¢ is a geodesic on M
starting orthogonal to V and ending orthogonal to V', i.e., ¢’(0) € T,V and
dVeT,, V'~

(2) Let A: M — M be an isometry on M. Then g € Ag 4(M) is a critical
point for E: Ag 4, (M) — R iff ¢ is a geodesic on M with the property that
Ayr0,(@(0) = ’(1), i.e., that the unique maximal geodesic on M determined
by ¢’(0) € T, (M) is invariant under A.

Proof. First note that the manifolds A,(M) satisfy the condition on X in
Proposition 1.5 since the tangent spaces are given by

T, AyM) = {X, e T,LiI,M)|(X,0),X,(1) € T,,00nN} -

(1) Assume that ¢ € Ay, (M) is a critical point for E: 4,,,(M) — R. By
Proposition 1.5, ¢ is a geodesic on M, so that dE,(X,) = <X,(1),d’ (1)), —
{X,(0),d’(0)>,, by Proposition 1.4. Now since ¢ is critical, we get from this
that (X,(1),d’(1)),,, = <X,(0),(0)>,4, VX, € T,Ayyy(M), but this cannot
happen unless both are zero.

Assume next that ¢ is a geodesic orthogonal to ¥ and V’. By Proposition
1.4 and the assumption, dE,(X,) = <(X,(1),d’(1)}>,q — <X,(0),d'(0)>,, =0,
VX, e T Ayyy (M).
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(2) Assume that ¢ € 4g.4,(M) is a geodesic on M with 4, ,,(¢’(0)) = o’(1).
By Proposition 1.4

dE,(X,) = {X,(1),d' (1)}, — <X,(0),5(0)>,
= <A*v(0)Xv(0)’ A*v(0>0,(0)>a(1) - <Xa(0)’ 0,(0)>47(0)
=0 since A is an isometry.

Assume next that ¢ € 4,4, (M) is a critical point for E: Ag4(M) — R. By
Proposition 1.5, ¢ is a geodesic on M, so by Proposition 1.4,

dE,(X,) = {X,(1),d'(1)),4 — <X,(0),d(0)>,
= {A4e0X.(0), ' (D>, — <A*,(0)X,(0),A*a(o)o'(0)>,(1,

since A4 is an isometry. This together with dE, =0 gives that ¢’(1) = 4 ,,,,0’(0).

That the maximal geodsic determined by ¢ is A-invariant follows easily from
A,,0,0'(0) = ¢'(1) either by “geometry” or by the fact that 4 induces an iso-
metry on Ag4,(M), which commutes with the energy integral, and similar for
A~

Remark. If 4 = 1, in Theorem 1.6, then we get that ¢ € A(M) is a critical
point for E: A(M) — R iff ¢ is a closed (periodic) geodesic on M. From Theo-
rem 1.6 it is interesting to know under which conditions on V, V’, M and 4
the energy integrals on A, ,y.(M) and 4,4, (M) respectively satisfy Condition
(C) of Palais and Smale. The next section will be concerned with this by first
looking at A,(M) in general as a closed submanifold N of M x M.

2. Condition (C)

Using the metric {{, >> of § 1 on the various submanifolds of LI, M) we
define the corresponding vector field —grad E. To establish Condition (C) of
Palais and Smale we must show that whenever {g,,},» is a sequence on which
E is bounded and for which |||grad E,_|||,, — O when n — oo, ¢, has a con-
vergent subsequence, where ||| |||, denote the norm in T,X corresponding to
oD

Let us first examine what the boundedness of E on {o,,}, y  L3(I, M) implies

Lemma 2.1. Let S C Li(I,M) be a subset of LXI,M) on which E is
bounded. Then S is an equi-continuous family of curves on M with uniformly
bounded length.

Proof. Write d,, for the distance on M, and L, for the length of a curve
on M. For ¢ e L¥I, M) we have

du(a(t), 0(t)) < Lu(6lp) = [ <@, S Odt

<|t; — 4,]*- (RE(0))"? by Cauchy-Schwartz,
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from which it follows that S is an equi-continuous family of curves on M and
furthermore that L,(¢) < 2E(e) for all ¢ in LI, M), where equality holds iff
¢ is parametrised proportional to arc length.

Proposition 2.2. Let N C M X M be a closed submanifold of M X M
with compact P(N) C M or P,(N) C M. Then any sequence {c,} in Ay(M),
on which E is bounded, has a subsequence converging uniformly to a continu-
ous path h e C%(M) on M.

Proof. Assume without loss of generality that P,(N) C M is compact. From
Lemma 2.1 we have that {s,},» is an equicontinuous family of curves on
M of bounded length, i.e., there exists a closed and bounded set K C M such
that ¢,(I) C K for all n e N since ¢,(0) e P (M) for all ne N. Since M is a
complete Riemannian manifold, K is compact by the Hopf-Rinow theorem and
hence we can apply Ascoli’s theorem to obtain the statement of the proposi-
tion.

Remark. It is easy to see that the conclusion of Proposition 2.2 fails in
general when we omit the condition that P,(N) or P,(N) is compact. Since
the manifold topology on Ay(M) is stronger than the uniform topology
d.(f, 8 = max,.; d(f(9), g(t)), it becomes more difficult to obtain conver-
gence in Ay(M).

Definition 2.3. By a “natural chart” around ¢ in L*I, M) we understand
a chart defined by means of the exponential map for { , > in the following way :

expa : TaLg(I$ M) d L%(I, M)

is given by exp, (X,)(¢) = exp,., X,(t) for all X, e T,LX(I,M) and all tel;
exp, is a diffeomorphism of a neighborhood around 0, in 7,L}(I, M) on a neigh-
borhood around ¢ in L%(I, M), i.e., a chart on L2(I, M), (Eells [4] and Karcher
[9]). We can as well consider T,L%(I, M) as Li-sections in the pullback ¢*TM
of TM by g.

Theorem 2.4. Let M be a complete Riemannian manifold, and NC M X M
be a closed submamifold of M X M such that P (N) C M or P,(N) C M is
compact. Then E: Ay(M) — R satisfies condition (C) of Palais and Smale.

Proof. Let{g,},x be a sequence in 4,(M), on which E is bounded (say
E(e,) < k e R,yn e N) and for which |||grad E(s,)]||,, — O, or, equivalently,
[l|dE(e,)]]l,, — 0. We want to show that {¢,} has a convergent subsequence.
Now by Proposition 2.2 we can assume that ¢, converges uniformly (in the
d_-topology) to a continuous map 4 ¢ C%(M). From this follows that all g,
from a certain step, say n, € N, is in the domain of a “natural chart” on L}, M)
without loss of generality centered at a C= curve say a € Cy(M).

From now on we work locally in a natural chart around a. Let 0, C a*TM
be an open neighborhood of the zero-section such that exp,: LXd,) — LI, M)
is a natural chart around a in L%(I, M), where L3(0,) is L2-sections of a*TM
belonging to @,, i.e., an open neighborhood of 0, in T,L¥I, M) = L¥(a*TM).
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Now by the orthogonal decomposition L}(a*TM) = Li(a*TM), + V where
Li(a*TM), is the subspace of Li(a*TM) consisting of sections being zero at
the endpoints, we have
V ={X e L¥(a*TM) | KX, Y)>) = 0 VY e L}(a*TM),}
- {X] f (Xt — PX(@), Y(©)dt = 0 vY ¢ Li’(a*TM)o} ,
0
V' = {X|/''X = X} = {X|X(® = ¢,(0X,() + c,0)X,®},
where ¢ =¢;, ¢,(0) =1, ¢,(1) =0, ¢,(0) = 0 and c,(1) = 1, or precisely,

e!
e — e

e
e — e

et e =—t e~ L e,

Cl(t)=— —¢€ —€
e —e e —ée

et -
1 1 -1

and X, and X, are parallel fields along a.

V D V' is obvious, and ¥V = V’ then follows since both have dimension 2n.

Let N, C 0y X 0., be the submanifold of 0,4 X 0,, which by
€XPg(oy X €XP,q, IS mapped into N C M X M. Then P;'(N,) = L}y, (0,) is
mapped diffeomorphically by exp, onto an open neighborhood of a in 4y(M),
where P,: LY0,) — Oy, X Oy, is of course the map defined by P,(X) =
(X(0), X(1)). From L¥a*TM), C T,Ax(M) and the orthogonal decomposition
Li¥(a*TM), + V = L¥a*TM) it then follows that L}y (0,) = (L}(a*TM), +
Vy) N LYO,) where Vy = {X e V[(X(0), X(1)) = (X,(0), X,(1)) e N,} is a
submanifold of the 2n-dimensional vector space V. Thus L}y (0,) is diffeomor-
phic to the product of a finite dimensional manifold and an open subset of
Hilbert space.

Let X, =exp,'(s,) so that there exists an X, e C%,(0,) such that
|1 X, — X.|l. — 0 when n— . Using the local expression for the energy (see
Eliasson [6]) it follows from the boundedness of E that ||| X,]||| is bounded.
Furthermore, the estimates in [6] also show that E is locally coercive (see also
Eliasson [5]), i.e., there exist constants 2 > 0 and C such that

(%)  W@EX) —dEY)NX —Y) 221X - Y|If - C|IX — Y|

for sufficiently small || X ||, and || Y||.. ; we have used E for E o exp, which should
cause no confusion.
Write now X, = X + Y, where X% e L}( ), and Y, € V. Then (%) gives

21X — X||IF < C||X; — Xyl + (dEN(X) — dEN(X D)X — X5)
+ (dE(X) — dEQX))Y; — Yy,

or
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AlIX: — X5|IF < C X — Xl
+ (ExXD|I| + NN dEx(X)]ID-[II X7 — X5]]]
+ |(dEX;) — dEX )Y, — Y )|,

where E denotes E|;s, ,,- From || X, — X_..|l.. — 0, || dEx(X,)|[| — 0 and the

boundedness of ||| X, ||| it follows that the first two terms on the right side of
the above ineqality tend to zero, and that the last term also tends to zero by
using the local expression for dE in [6] and the fact that Y, converges, since
X, converges uniformly and the C’norm dominates the V y-norm. Thus
{Xa}tnen is a Cauchy sequence and therefore convergent. Hence {g,}ncn is
convergent.

Corollary 2.5. Let M be a complete Riemannian manifold, V and V' be
closed submanifolds of M, and A: M — M be an isometry on M. Then the
following hold :

(1) E: Ay.p.(M) — R satisfies Condition (C) if V or V' is compact.

(2) E: Ag4(M) — R satisfies Condition (C) if M is compact.

By using Condition (C) (for its consequences see Palais [16]) we get imme-
diately:

Theorem 2.6. Let M be a complete Riemannian manifold, and let V and
V'’ be closed submanifolds of M with say V compact. Then in any homotopy
class of curves from V to V' there exists a geodesic orthogonal to V and V'’
with length smaller than that of any other curve in that class. Furthermore,
there exists a geodesic orthogonal to V and V' with length equal to d(V, V"),
and there are at least cat (Ay .. (M)) geodesics joining V and V' orthogonal.

Proof. Condition (C) implies that the energy integral on A, ,.(M) attains
its infimum on any component of A, (M) and its lower bound (see Palais
[16, § 15]). The inf points are of course critical points of the energy. Now we
only have to apply Theorem 1.6, and note that an inf of the energy is an inf
of the length by using the proof of Lemma 2.1 and the fact that a change of
parameter does not affect the homotopy class of the curve. The cat ( ) state-
ment is a consequence of Lusternik-Schnirelmann theory.

By using Theorem 1.6 and Corollary 2.5 similar arguments prove the

Proposition 2.7. If M is a compact Riemannian manifold, and A: M — M
an isometry without fixed points, then A has a nontrivial invariant geodesic.

Remark. Propositron 2.7 and part of Theorem 2.6 are also easy to prove
by geometrical arguments.

In § 3 we shall study the case where the fixed point set of 4 is nonempty.

3. Invariant geodesics

Throughout this section M will be a compact connected Riemannian mani-
fold, and 4: M — M an isometry on M. We ask the following question: under
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what conditions on M and A there is a nontrivial maximal geodesic on M,
which is mapped onto itself by 4? One way to investigate this question as we
have seen from §§ 1, 2 is to study the space 4, 4,(M) introduced there (Theo-
rem 1.6); a main reason why this becomes successful is that the energy inte-
gral E: A; 4 (M) — R satisfies Condition (C) when M is compact (Corollary
2.5).

We have seen that if 4 has no fixed points it has a nontrivial invariant
geodesic. Let us therefore assume that the fixed point set of A is nonempty,
i.e., Fix (4) # 0.

First we give examples to show that not all isometries on a compact manifold
in general has nontrivial invariant geodesics.

Examples 3.1. Let M = T? = §' X §* with flat metric.

(1) Let A: T* — T? be induced from a rotation through 90° in R?*:

4 3
bR 0

11 . 3 —— 4 . 42
2 1

Then A4 is an isometry on the flat torus with two fixed points and no non-
trivial invariant geodesics.

(2) Let A: T* — T* be the map induced from a rotation through 180° in
R*:

1s x b3 — 3¢ . ¢ 1

Then A is an isometry with four fixed points and no nontrivial invariant
geodesics. If we did not require that 4 should preserve the direction of the
geodesic, 4 would have infinitely many “invariant” geodesics.

By Theorem 1.6 we see that the fixed points of 4 occur as critical points of
the energy integral on A; 4,(M) (trivial invariant geodesics) with E-value zero.
Thus in order to prove the existence of nontrivial invariant geodesics we shall
prove the existence of positive critical values. Let us therefore first study how
the fixed point set Fix (4) of 4 behaves by itself and inside of A 4 (M).
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Proposition 3.2. Let A: M — M be an isometry on M. Then the set of
fixed points for A is a disjoint union of totally geodesic submanifolds each of
which is a nondegenerate submanifold of Ag 4,(M) with index 0.

Proof. Using exp,,c Ay, = A oexp,, when A(x,) = x,, it is easy to see
that Fix (4) = (U}, Fi(A4), where Fy(4) N Fy)(A) #+ 0 = F(4) = F,(A4) and
Fy(A) is a totally geodesic submanifold of M (see also, e.g., Kobayashi
[11]). Furthermore, F(4) C Az 4,(M) is a critical submanifold of A ,,(M).
Thus we now have to prove that F,(4) is nondegenerate and of index O (see
Meyer [14]).

Since A: M — M is an isometry, by a computation of the Hessian of E on
the manifold A4, 4,(M), which is quite similar to that of H(E), in the space of
closed curves (see Flaschel [8]), we get

HE),(X,,Y,) = f WX, (O rdt

0

_ f CRELW), D) @), Y. 0ndt

when ¢ € A44,(M) is a critical point of E.
Now let ¢ € F;(4). Then o(t) = ¢(0) vt e I, and therefore ¢’(!) =0 vt e l.
Thus

HE),(X,,Y,) = f XD YO dt, VX, Y, € Ty AguM) .
0

The adjoint map A(E), is given by <Ka(E) X,,Y,>>, = H(E),(X,,Y,), from
which we see that ker W(E), = {X, e T,44.4,M)|V,X, = 0 almost every-
where}. Since V,X, as a curve in T,,M is just X/(¢), X,(f) is constant in
T,n,M when X, e ker A(E),. Furthermore, since A,,,,(X,(0)) = X,(1), we
have that X,(¢) € T,,,F:(A), so that ker /(E), = T,,,F:(4).

Using that A(E), is self-adjoint it is now easy to show that A(E),,: T ,F(4)*
— T,F,(A)* is bijective, i.e., F;(A4) is a nondegenerate critical submanifold of
Ags,(M). From the fact that H(E), is semi-positive definite for any
o e A% (M) = E~'(0), it follows that the index of F;(4) is 0.

Remark. We note that if 4: M — M is an orientation-preserving isometry
on an oriented Riemannian manifold M, then codim (F,(4)) is even (quite
similar to Kobayashi [11]) for each F; (4) C Fix (4). Thus, if M is compact
and odd-dimensional, then any such isometry has of course a nontrivial in-
variant geodesic.

Proposition 3.2 has the important

Corollary 3.3. There exists an e > 0 such that Fix (4) is a strong defor-
mation retract of A%, (M) = E~* ([0, e]).
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Proof. We first look at a fixed component F;(4) C Fix (4) of the fixed
point set of A.

Let N(F;(A)) denote the total space of the normal bundle v; = (N(F;(4)),
n, Fy(A)) to F;(A) in Ag 4,(M). Then v, is a Hilbert bundle with metric induced
from Ag 4 (M). Since M is compact and Fix (4) is closed, F,(4) is compact,
so that there exists an » > 0 such that N,(F;(4)) = {V, e N(F) |||V, ]|l, < r} is
diffeomorphic to an open neighborhood (a tubular neighborhood, Lang [13])
of Fi(A) in Ag4(M), say ¢;: N, (F(A4)) — ¢,N,(F(A))) = U,, a diffeomor-
phism with ¢, (0-section) = F;(4). Now E = Eog;: N, (F;) — R has the O-sec-
tion as nondegenerate critical submanifold. Since F,;(A4) is compact, there exist
an ¢; > 0 (without loss of generality, ¢; < r;), a fiber-preserving 0-section-
preserving diffeomorphism -: N, (F;(A4)) — (N, (F;(A4))) (CN, (F,(4)) with-
out loss of generality), and an orthogonal bundle-projection P;: N(F;) — N(F,)
such that

Eop (V) =[P, (VIR — 1T; — PV, IIE
for all ¥, e N, (F,) (see Meyer [14]). But from index F;(4) = 0 we conclude
that I, — P, =0, i.e.,

(%) Eoy (V) =|||V|If  forall VeN,(F) .

By defining ¢ = | J; ¢; and = (J; ¢, we obtain o(-(; N, (F(4)))) =
A%.4,(M) with e = min, &.

D o@(N,) C A% is trivial by (), so assume that

2) there exists a g, € [p(¥(N,)) with E(g) < e.

Having chosen e small enough we can assume that the only critical value less
than or equal to e is zero, otherwise we could pick a sequence of critical points
of E with decreasing E-values. By Condition (C) this sequence would have a
convergent subsequence necessarily converging to a critical point with E-value
Zero, i.e., to an element of F;(4) C Fix(A4) say. Thus there would exists critical
points in N,(F;(A)) besides F;(4) contradicting (x).

A contradiction to 2) is now obtained as follows.

Since the energy is decreasing along integral lines for —grad E and any
integral curve has a critical point as limit point (by Condition (C) see Palais
[16, §15]), i.e., a point of Fix (4) by our assumption on e, the integral
curve through g, starts from the outside of ¢(4+(N,)) and eventually gets into
o(¥(N,)), a contraction by (x) again. Since | J; {O-section of N(F,(A4))} is
a strong deformation retract of N,(Fix (4)), this finishes the proof of the
corollary. q.e.d.

For any compact subset @ C A 4,(M) the function max, ., E(¢,(c)), where
¢; is the flow for —grad E, is continuous and decreasing. Putting C(®) =
lim, ., max, ., E(¢,(0)) and using Condition (C) it is then easy to see that



218 KARSTEN GROVE

C(®) ¢ R is a critical value of the energy integral. Furthermore, a proposition
analogous to that on pp. 77-78 in Klingerberg [10] holds. We could define the
critical values of homology classes of A; (M) mod Fix (A4), study the sub-
ordinated homology classes, etc. However, we will not go into those topics and
turn our attention instead to our main

Lemma 3.4. Let M be a compact Riemannian manifold, and A: M — M
an isometry with Fix (A) + @. If A has no nontrivial invariant geodesics, the
inclusion i: Fix (A) — Ag4,(A) is a homotopy equivalence.

In particular, if the number of components of Fix (A) is different from that
of Ag,(M), then A has a nontrivial invariant geodesic. By Proposition 2.7,
it is also true if Fix (4) = @.

Proof. Choose a base point in Fix (4), and let the corresponding constant
curve be the base point for 4, 4,(M).

1) iy 7 (Fix (A)) — n(dg 4y (M)) is 1—1.

Let [f] e ,(Fix (4)) be represented by f: S — Fix (4) such that i,[f] = 0
in 7y(4g4,(M)), thus iof: S? — A;,4,(M) is null homotopic in Ag 4, (M). Let
H:S* X I — Ag (M) be a homotopy between iof and the zero-map (map
into the base point). Then H(S? X I) C Az 4,(M) is compact, and the assump-
tion gives that C(H(S? X I)) = 0 (see above Lemma 3.4). Choose e as in
Corollary 3.3 and ¢, € R, so that ¢, (H(S? X 1)) C 4% 4,(M), where ¢, is the
flow for —grad E. Let D: 4% 4/(M) — Fix (4) be a deformation retraction.
Then Do ¢,, 0 H is a homotopy between iof and the constant map inside of
Fix (4), and hence [f] = 0.

2) i, ny(Fix (4)) — n(Ag.4,(M)) is onto.

Let [F] € n,(44.4,(M)) be represented by F: S7— A; 4, (M). Proceed as under
1) and obtain thereby that Do ¢, o F: §2 — Fix (4) is homotopic to F. Thus
i,([D o ¢, 0 F1) = [F]. Since i,: 7y(Fix (4)) — 7(4g4,(M)) is an isomorphism
for all ¢ in N U {0}, and the spaces Fix (4) and 44 4,(M) are ANR’s, i is a
homotopy equivalence.

Before we go on with the study of isometries in general, let us apply Lemma
3.4 to prove the well-known

Theorem 3.5. Let M be a compact Riemannian manifold. Then there exists
a nontrivial closed geodesic on M.

Proof. With A = 1y, Agy,,(M) = A4,(M) = A(M) is the space of closed
curves on M, and critical points of E: A(M) — R are closed geodesics (as we
have seen). Now Fix (1) = M. When =,(M) # 0, by Theorem 1.3 we get
0 # m,(2(M)) = n(A(M)), where 2(M) = C*(S*, M) are the free loops on M.
Thus the “particular part” of Lemma 3.4 applies.

When 7;(M) = 0, assume that there are no nontrivial closed geodesics on
M. Then by Lemma 3.4, i,: z,(M) — z,(4(M)) is an isomorphism for all q.
Since the fibration A(M) — 4 = M with fiber 4, (M) = /A ,0x(»,(M) has a sec-
tion, the exact homotopy sequence for 4, (M) — A(M) 72 M splits:
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(xx) 0 — (4 (M) — 7 (AM)) T2 7,M) —> 0 Vvq.

iq
We start the induction with z,(M) = x,(M) = 0, and assume that z,(M) = 0.
Then #,(A(M)) = 0, and thus

0= ﬂ'q(Apo(M)) = ﬂq(gpo(M)) = 7Tq+1(M) =0

by (%) and Theorem 1.3. Hence =, (M) = 0 vg € N U {0}, which is a contra-
diction (Hurewicz). q.e.d.

It is obvious that it is rather restricted what we can say in general about the
space Ag 4,(M) and therefore about the existence of invariant geodesics, not
knowing much about the manifold and the isometry 4. Let us first see what
we can say if 4 is homotopic to 1,.

Lemma 3.6. Let A: M — M and B: M — M be homotopic. Then A 4(M)
and Ag 5, (M) have the same homotopy type.

Proof. By Theorem 1.3 it is sufficient to prove that G 4,(M) and C% 5,(M)
have the same homotopy type. Let H: M X I — M be a homotopy with H, = A
and H, = B. Then

Fy: Cy 0y (M) — Cl5(M) , Fy: Cyp — Csy(M)

defined by
h(2t) if 0<t<?,
F\(m)(0) = {H(h(O),2t -0 it <<,
(22) f 0<t<4%,
F,(N® = {H(f(O),2(1 — 1) if <1<

are continuous. It is easy to check that F,o F, ~ IC% 1) and F,oF, ~ 140

( G n:
Theorem 3.7. Any isometry homotopic to the identity on a compact
Riemannian manifold has a nontrivial invariant geodesic.
Proof. Let A ~ 1, be an isometry on M. By Lemma 3.6, 4, ,,(M) =

A(M), so that
7 (Adg (M) = 7 ,(A(M)) forallge N U {0} .

If dim F;(4) > 1 for some component F;(4) of Fix (4), then 4 obviously
has a nontrivial invariant geodesic (Proposition 3.2), so assume that 4 has only
isolated fixed points. Thus z,(Fix (4)) = 0 for ¢ > 1, and from Lemma 3.4
it follows that if 4 has no invariant geodesics, then z,(4g4,(M)) = =, (Fix (4))
=0forg > 1, ie., n,(A(M)) = 0 for ¢ > 1. Using (xx) we get that z,(M)
= 0 for g > 1 and hence for all g, a contradiction.

Corollary 3.8. Let M be a compact Riemannian manifold, and A: M —M
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an isometry on M. Then there exists an n € N such that the n’th power A™ =
Ao..-0A of A has a nontrivial invariant geodesic.

Proof. Since the isometry group &# (M) of M is a compact Lie group
(Theorem 3.4, Chapter VI in Kobayashi and Nomizu [12]), the quontient
F (M) | F (M) by the identity component & (M) is a finite group. Thus some
power of A, say n, satisfies A™ ¢ # (M), in particular, A® ~ 1,, and hence
by Theorem 3.7 has a nontrivial invariant geodesic.

In the following we do not assume that A ~ 1,, but instead we make rest-
rictions on the fixed point set of A together with the topology of M.

Proposition 3.9. Let M be a compact connected and simply connected
Riemannian manifold. Then any isometry A on M without or with at least two
fixed points has a nontrivial invariant geodesic.

Proof. When Fix (4) = @, the proposition is proved by using Proposition
2.7. Since # Fix (4) = oo means that dim F;(4) > 1 for some component
F,(A) of Fix (A), as in the proof of Theorem 3.7 we only need to consider
the case where Fix (A4) is a finite set of points.

By Lemma 3.4, 4 has a nontrivial invariant geodesic if § 7 ,(4g 4, (M) #
% Fix (A), so the statement of Proposition 3.9 follows from n(4s4,(M)) = 0.
Since the fibration A4 4, (M) — G(4) = M has fiber 4, (M) where A(p,) = p,
is the base point in M, the homotopy sequence

— 1o(Apy(M)) — 7(4g 4, (M) — m(G(M))
I n

mo(2,,(M)) (M)
Il {
(M) 0
[
0

gives immediately that zy(4s4,(M)) = 0.

Corollary 3.10. Let M be a compact Riemannian manifold with finite
fundamental group n,(M), and let A: M — M be an isometry.

(1) If A has prime power order m = p° with p odd or A has order two,
then A has a nontrivial invariant geodesic.

(2) If the universal covering space M of M is homeomorphic to an n-
sphere S*, then A has a nontrivial invariant geodesic.

Proof. (1) Let M be the universal covering space of M. Then M is com-
pact and n-l(M ) = 0. Assume further without loss of generality that Fix (4) + 0
is finite. From the properties of the universal covering space, 4 can be covered
by an isometry A: M — M with Fix (A) = @ and order (4) = order (4).
Now Theorem 7.1 in Atiyah and Bott [1] gives that A has more than one fixed
point and hence, by Proposition 3.9, has a nontrivial invariant geodesic which
then projects to a closed nontrivial invariant geodesic for 4 on M since A™ =
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1,. If 4 is an involution, it cannot have exactly an odd number of fixpoints
(see, e.g., Conner and Floyd [2, p. 66]).

(2) follows from a consequence of Brouwer’s fixed point theorem that any
isometry on a manifold homeomorphic to S* has at least two fixed points.

Let us now examine what we can say in the nonsimply connected case.

Sublemma 3.11. Let A: M — M be an isometry on M with A(p) = p for
some peM. If o€ Ag4, (M) with ¢(0) = p is in the same component as
P e Ag4,(M) defined by p(t) =p for all tel, then there exists a loop
p € Ag.ay(M) in p such that

[o] = [p] — Aylp] in =(M),

where A, € Iso (z,(M)) is the map induced from A.

Proof. Let ¢: I — Ay 4, (M) be a path connecting ¢ and p, i.e., c(0) = ¢
and ¢(1) = p. By evaluation ¢ induces a map ¢: I X I — M. Putting p = &(-,0)
we get Aop = ¢(-, 1) both being loops at p, i.e.,

1 p lo] = [p] + [p] + [—4 op]

! =[o] — Aylpl  inz,M).
po; AOP
o, 1

Proposition 3.12. Let M be a compact Riemannian manifold with =,(M)
#* 0, and let A: M — M be an isometry with exactly one fixed point. If the
map

1zy X (—A4y)
_

(M) —2> (M) X 7,(M) 2(M) X 1(M) — > z,(M)

is not onto, then A has a nontrivial invariant geodesic.
Proof. By Lemma 3.4 we only need to prove that z,(4s4,(M)) # 0. From
the assumption we have

A[o] € 7,(M) : [a] # [p] — A lpl VIp] € (M) .

Sublemma 3.11 shows that ¢ € Ag4,(M) (without loss of generality) is not in
the same component as ¢(0) = p € Ag4(M); as remarked this finishes the
proof of Proposition 3.12.

Corollary 3.13. If M is a compact Riemannian manifold such that
H,(M; Z) has an odd number of Z-components or a single Z,., term for some
g e N, then any isometry on M with exactly one fixed point has an invariant
geodesic.
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Proof. An isometry with one fixed point induces an isomorphism of z,(M),
so from Proposition 3.12 we see that if the map =,(M) — =,(M) defined by
x — x — A(x) is not onto for Y e Iso (z;(M)), any isometry with exactly one
fixed point has a nontrivial invariant geodesic. However, if the lower map
in the commutative diagram

71'1(M ) e 71'1(M)

| |

(M) /[, 7] —> m(M)/[x,, 7,]

is not onto, the upper one is not onto either. Since H,(M, Z) = n,(M)/[x,, =],
the statement of the corollary follows.

Remark. Example 3.1 shows that our result in Proposition 3.12 in some
way is best possible. The general case where 4 has more than one but finitely
many fixed points is more difficult to handle. It is, however, easy to see from
Lemma 3.4 that if there exist a path «: I — M on M with 4(«(0)) = «(0) and
A(a(1)) = a(1) such that « is homotopic to 4 o« rerative to the end points,
then 4 has a nontrivial invariant geodesic. Also, if there exists a component
of Ag4,(M) without fixed points, then A4 has a nontrivial invariant geodesic;
in terms of curves on M this means that there exists a path §: I - M on M
such that any loop determined by paths y: I — M, 8 and —A oy with A(7(0))
= 7(0) and (1) = B(0) is not null-homotopic relative to 7(0).

Combining Proposition 2.7, Proposition 3.2, Theorem 3.7, Proposition 3.9,
and Corollary 3.13, we get

Theorem 3.14. Let M be a compact connected Riemannian manifold.

(1) Any isometry homotopic to the identity map 1, of M has a nontrivial
invariant geodesic.

(2) Any isometry with not exactly one fixed point has a nontrivial invariant
geodesic if the fundamental group n,(M) is zero.

(3) If M is not simply connected but H\(M ; Z) has a single Z,, torsion
term for some q € N or an odd number of Z-summands, then any isometry with
exactly one fixed point has a nontrivial invariant geodesic.

(4) Any isometry without or with infinitely many fixed points has a non-
trivial invariant geodesic.

Remark. Given a diffeomorphism on a compact manifold we can deduce
the existence of invariant 1-dimensional immersed submanifolds under condi-
tions like those in Theorem 3.14 if the diffeomorphism is an element in a com-
pact subgroup of the diffeomorphism group Diff (M) of M.

There might be other ways to get existence theorems for geodesics invariant
under an isometry, e.g., by theory of dynamical systems used on the geodesic

spray:
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If A: M — M is an isometry on a complete Riemannian manifold M, then
the differential A,: TM — TM of A induces a map on the sphere bundle
A,: STM — STM which commutes with the action of the real line on STM
(the flow for the geodesic spray restricted to the sphere bundle of the tangent
bundle), and therefore we get a continuous map Z*: STM/R — STM|/R. The
space STM/R is in 1—1 correspondence with the set of oriented maximal
geodesics on M, and the fixed points for 4, are in 1—1 correspondence with
nontrivial A-invariant geodesics on M, so the question is: Under what con-
ditions on (M, {-, ->) and A4, does Z* have fixed points?

References

[1] M. F. Atiyah & R. Bott, A Lefschetz fixed point formula for elliptic complexes.
11, Applications, Ann. of Math. (2)_,88 (1968) 451-491.

[2] P. E. Conner & E. E. Floyd, Differentiable periodic maps, Springer, Berlin, 1964.

131 J. Earle & J. Eells Jr., Foliations and fibrations, J. Differential Geometry 1 (1967)
33-41.

[4]1 J. Eells, Jr., On geometry of function spaces, Sympos. Internac. Topologia Alge-
braica (Mexico 1956), 1958, 303-308.

[51 H. 1. Eliasson, Condition (C) and geodesics on Sobolev manifolds, Bull. Amer.
Math. Soc. 77 (1971) 1002-1005.

[6] , Morse theory for closed curves, Sympos. Infinite Dimensional Topology,

Annals of Math. Studies, No. 69, Princeton University Press, Princeton, 1972,

63-77.

[71 P. Flaschel, Grundlagen zur Geometrie der Mannigfaltigkeiten H.:(I, M), 4(M),
Apg(M) der H'-kurven auf einer euklidischen Mannigfaltigkeit M, Preprint,
Bonn, October, 1969.

[8]1 ——, Periodische Geoditische, -Lusternik -Schnirelmann Theorie, Preprint, Bonn,
November, 1969.

[91 H. Karcher, Closed geodesics on compact Riemannian Manifolds, J. T. Schwartz,
Non-linear functional analysis, Gordon and Breach, New York, 1969, Chapter
VIIL

[10] W. Klingenberg, Closed geodesics, Ann. of Math. 89 (1969) 68-91.

[11] S. Kobayashi, Fixed points of isometries, Nagoya Math. J. 13 (1958) 63-68.

[12] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. 1, Inter-
science, New York, 1963.

[13] S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1967.

[14] W. Meyer, Kritische Mannigfaltigkeiten im Hilbertmannigfaltigkeiten, Math. Ann.
170 (1967) 45-66.

[15] W. Ozols, Critical points of the displacement function of an isometry, J. Differ-
ential Geometry 3 (1969) 411-432.

[16] R. S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963) 299-340.

[17] ——, Foundations of global non-linear analysis, Benjamin, New York, 1968.
[18] J. P. Serre, Homologie singuliére des espace fibrés, Ann. of Math. 54 (1951)
425-505.

AARHUS UNIVERSITY, DENMARK








