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SYMMETRIC SPACES
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1. Introduction

The classical Schwartz reflection invariance of minimal surfaces states that
if a minimal surface N in a Euclidean 3-space E3 contains a straight line L,
then N is locally invariant under the symmetry of E* with respect to L [1,
p. 246]. A similar reflection principle has also been proved for a minimal
surface N in a space of constant curvature which contains a geodesic L of the
ambient space [7]. It is the purpose of the present note to investigate to what
extent this reflection principle holds for a minimal submanifold N of a
Riemannian manifold M which contains a totally geodesic manifold B of M as
a hypersurface, in particular, when M is a local symmetric space.

To this end, we introduce the notion of a reflective submanifold of a
Riemannian manifold M. An imbedded submanifold B of M is said to be locally
reflective if there exists an involutive isometry pB (i.e., p% = id), called the
reflection with respect to B, denned at least in an open neighborhood U of B
in M such that B Π U is precisely the fixed point set of pB when restricted to
U. B is said to be globally reflective or simply reflective if it is complete and
the isometry pB is defined everywhere on M with B as its fixed point set. Using
a well-known fact about the fixed point set of isometries [5, p. 61], one can
conclude that every reflective submanifold is a totally geodesic submanifold.

We will prove the following basic facts about reflective submanifolds. Let M
be an analytic Riemannian manifold, and B a locally reflective submanifold of
codimension greater than one. Then every minimal submanifold N of M, which
contains B as a hypersurface, is locally invariant under pB. Furthermore, if B
is globally reflective and N is complete, then N is invariant under pB.

For an arbitrary Riemannian manifold, there may not exist any totally
geodesic submanifold of dimension greater than one. To ensure a good supply
of candidates for locally reflective snbmanifolds we will restrict our attentions
to local symmetric spaces in most parts of this paper.

As with many problems related to symmetric spaces, the problem of finding
reflective submanifolds in Riemannian symmetric spaces can be reduced to
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one in Lie algebra. Using this, we will prove that every geodesic submanijold
B of a space from M is locally reflective // B is complete and M is simply
connected, then B is globally reflective. Together with the basic properties of
reflective submanifolds, we have a generalization of the classical reflection
invariance of minimal surfaces in E3. However, it is not true that every totally
geodesic submanifold of an arbitrary symmetric space is reflective. In fact we
will prove that // a local symmetric space M contains a geodesic segment which
is locally reflective, then M must be a space of constant curvature. We will also
classify all reflective submanifolds in the complex projective spaces and complex
hyperbolic spaces.

The author wishes to thank Professor S. S. Chern for suggesting this problem,
Professor K. Nomizu for many helpful conversations and the referee for some
constructive comments.

For notations and terminologies related to differential geometry we will follow
[5] closely.

2. Reflection invariance for a minimal submanifold containing

a reflective submanifold as a hypersurface

In this section we will prove the following basic facts related to reflective
submanifolds of a Riemannian manifold.

Theorem 1. Let M be an analytic Riemannian manifolds, and B a locally
reflective {imbedded) submanifold of codίmension greater than one. If N is a
minimal submanifold of M which contains B as a hypersurface, then every
point p e B has an open neighborhood W in N such that W is invariant under
the reflection map ρB. Furthermore, if B is globally reflective and N is complete
with respect to the induced metric, then N is invariant under ρB.

We will begin by proving two lemmas and recalling some well-known facts.
In the remainder of this paper, M will denote a real analytic Riemannian
manifold unless otherwise specified.

Lemma l Any C2 minimal submanifold of M is real analytic.
Proof. Any minimal submanifold N of M is locally the solution of a system

of quasi-linear analytic partial differential equations [2, p. 178] which can be
easily seen to be elliptic along the solution under consideration. It follows from
Theorem 6.7.6 in [10] that N is an analytic submanifold. q.e.d.

For completeness we will give a proof of the following lemma which asserts
the uniqueness of the analytic continuation of a real analytic submanifold.

Lemma 2. Let N and N' be two l-dimensional connected real analytic sub-
manifolds of an analytic manifold M which are both maximal {i.e., not a proper
subset of any other connected submanifold). If there is an open set W in M
such that W Π N = W Π N' and W Π N contains a coordinate neighborhood
of N, then N = N'.

Proof. Let S be the subset of N consisting of points p such that there exists
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a neighborhood U of p in M for which U Γϊ N = U f] N/ contains a coordinate
neighborhood of N. It follows that S is nonempty and open in N. Let q be in
the closure of S, and F be a coordinate neighborhood of q in M such that
F Π i V and F ί l N ' are connected coordinate neighborhoods of N and N'
respectively. Then there exist two finite sets of analytic functions {/<} and {&}
denned on F such that V Pi N' = zeros of {/*} and F ί l W ^ zeros of {g<}.
A=SΓ[VC[N = SCiVΓ\N'is<ιn open subset of F Π N and F Π N'.

The restriction of {/J to F ίl iV' defines analytic functions on it. Since {ft}
vanish on the open subset A c F c W, they vanish identically on F Π iV;.
Therefore F Π N' c F Π iV. Similarly, we can prove F ί l i V ' D F n i V . It
follows that F Π N = V Π N' and 5 = N. q.e.d.

A proof of the following theorem can be found for example in [8, Theorem
6.1].

Theorem 2. Let Gn_ι be an imbedded (n — \)-dimensional submanifold of
M (dim M > ή) and P be an n-dimensional distribution along Gn_1 such that
Tq{Gn_^ C P(q) for all q e Gn_ι. Then assuming the data are real analytic,
for each qzGn_x there exists in every sufficiently small neighborhood U of q
a unique imbedded analytic minimal submanifold N of dimension n such that

l. ί/DND Gn_x n u,

2. Γβ(Λ0 = P(q) for all q € Gn_λ Π U .

Note that Theorem 2 implies in particular that if iVr is another ^-dimensional
minimal submanifolds which satisfies conditions 1 and 2 above, then N = N'.

We are now ready to prove Theorem 1. By Lemma 1, we can assume N
and B to be real analytic. Let p <=. B. Then there exists an open neighborhood
W of p in N such that W and W Π B are imbedded submanifolds of M and
pB is defined on a neighborhood of W in M. Since ^ is an isometry and 5 Π ^
is its fixed point set when restricted to W, it follows that ρB(W) is also a
minimal submanifold of M which contains W Π B. For qe B Π W, Tq(W)
considered as a subspace of Tq(M) is spanned by Tq(B) and a nonzero vector
x e T^WO Π T^(β) 1, Tq(B)L being the orthogonal complement of Tq(B) in
Tq{M). pm leaves Tq(B) fixed. Since p | = id, we must have pB*(x) = —x. In
other words we have

Tq(W) = Tq(pB(W)) for a l l ? e W Π B .

Applying Theorem 2, we can conclude that there exists an open neighborhood
U of W in M such that W Π £/ = ^ ( » 0 ΓΊ t/. This proves the first part of
the theorem. The second part of the theorem now follows ready from Lemm 2.

3. Reflective submanifolds in Riemannian symmetric spaces

For notations and terminologies related to symmetric spaces we will follow
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[5] closely. Let (g, I), σ) be an orthogonal symmetric Lie algebra, and g = I)
+ m the canonical decomposition. We also assume that there is an ad (H)
invariant inner product on g. A linear subspace b of m is said to be reflective
if both b and its orthogonal complement b 1 are Lie triple systems such that

Clearly, b 1 is also a reflective subspace. Let M = G/H be a Riemannian global
symmetric space, where G is the largest connected group of isometries of M,
and H the isotropy subgroup of G at a point 0 (called the origin) of M. We
will also let g = ϊj + m be its canonical decomposition. Upon identifying m
with T0(M), there is an ad (H) invariant inner product defined on m.

Theorem 3. Let M = G/H be a simply connected global Riemannian
symmetric space. There is a one-to-one correspondence between the set of
reflective linear subspaces b of m and the set of complete globally reflective
submanifolds B through the origin 0 of M, the correspondence being given by
b = T0(B) C TQ(M) under the identification m = T0(M).

Proof. Let B be a reflective submanifold of M, and p the involutive
isometry whose fixed point set is B. Put b = T0(B), and denote by b x its
orthogonal complement in m = TQ(M). It follows directly from the definition
of p that b and b 1 are respectively the + 1 and —1 eigenspaces of p^.. Let s0

be the symmetry of M at 0. Then s0* = — id. Since ^ o ^ and s0op both leave
0 fixed and p^ o sQ* = sQ* o p^, we can conclude that pos0 = s0 o p. The involutive
isomorphism a of the symmetric space (G, H, σ) is given by [5, p. 244]

σ(g) = sQogos-1 for g e G .

Define an automorphism p: G —> G of G by

pogop-1 for g€ G .

It is obvious that p(H) = H. It also follows readily from the fact pos0 = s0op
that poσ = σop. Therefore p is in fact an involutive automorphism of
(G, H, σ). If we denote also by p the induced map on g, then we have p(fy =
ΐ> and ^(m) = m, since the eigenspaces of a are invariant under ô. For x, y, z
€ m we have p([[x,y],z\) = [[p(x),ρ(y)]9p(z)]. Using the fact that b and b-1

are respectively the + 1 and —1 eigenspaces of p restricted to m, it is easy to
see that b-1 is also a Lie triple system and is a reflective subspace of m.

Conversely, suppose b is a reflexive subspace of m = T0(M), b x its
orthogonal complement, and g — ή + m the canonical decomposition. First of
all we consider the case where M is a Euclidean «-space with the usual flat
metric. Then (g, ϊj, σ) is of Euclidean type. Since [m, m] = 0, every subspace
b of m is reflective. The corresponding submanifold is the linear subspace N
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through 0 such that TQ(N) = b, and the usual reflection map p with respect to
the linear subspace N (cf. [6, p. 195]) will have N as its fixed point set. N is
therefore a reflective submanifold. Furthermore p induces an involutive auto-
morphism p of (g, I), σ) such that when restricted to m, p has b and b 1 as its
+ 1 and —1 eigenspaces respectively. Next we assume that (g, §,σ) is
irreducible so that [m, m] = ΐ). We can now define a linear mapping p on g by
setting p = idonb + [h,h] + [h^,^1-] and^ = — i d o n b 1 + [bjb-1]. We claim
that p is an involutive automorphism of the symmetric Lie algebra (g, ή, σ). To
see this let x19 , xA e b, y19 , yA e b x , and denote respectively by g+, g~ the
+ 1, —1 eigenspaces of p. Using the properties of a reflective subspace, we
have

[IX, x2], [*3, xj\ = - [*3, [x4, [x19 x2]]\ - [x4, [[x19 x2], x3]] € g+ ,

[ [ j i ^L [y^yJ\ = - b ^ b ^ Iji,^]]] - fro [Lyi,^],^]] € g+ ,

[[^i,yj, [^2^2]] = -U2, [y2, [χi,yj\] - ^ [Ui,yJ,^2]] € g+ ,

It is now easy to check that p is an automorphism of the Lie algebra g.
Obviously, we have p(fy) = ζ and poσ = σop. Therefore p is an involutive
automorphism of (g, ϊ), σ). In the general case, we have (g, t), σ) = X] (gfc, ζΛ, σfc),
a direct sum of orthogonal symmetric Lie algebras (gfc, ήfc, σfc), which are either
Euclidean or irreducible. We also have m = 2 mfc, where gfc = ΐ)fc + mfc is
the canonical decomposition of (gfc, ^fe, σk). It is easy to see that b Π mfc is also
reflective. By previous considerations, there is a unique involutive automorphism
defined on (gfc, §k,σk) whose fixed point set on mk is b Π mk. Therefore we
have a uniquely defined involutive automorphism p of (g, §,σ) whose fixed
point set on m is precisely b. Furthermore, p is an isometry of m = TQ(M)
and also preserves the curvature tensor of M restricted to TQ(M). Therefore p
can be extended to a unique isometry p of the Riemannian symmetric space
M = G/H, [11, p. 61]. Let B be the unique totally geodesic submanifold of
M through the origin 0 of M (cf. [5, p. 237]) such that TQ(B) = b. Since the
fixed point set of p on m is b and p also leaves [b, b] fixed, it is easy to see that
the fixed point set of p as an isometry of M is precisely B. Obviously p2 = id.

Remark. Using Theorem 3, we also have a characterization of the locally
reflective submanifolds. Indeed, every imbedded geodesic submanifold B of a
complete local symmetric space M can be considered as an open submanifold
of a complete totally geodesic submanifold B of M, the universal covering
manifold of M. Then B is locally reflective if and only if B is globally reflective.
The reflection map of B is a suitable restriction of that of B.

Proof. Obviously, if B is reflective, then B is a also locally reflective.
Conversely, if B is locally reflective, then B is the fixed point set of a local
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isometry pB. By 2.3.14 in [11], it is easy to see that ρB can be extended to a
unique global isometry of M whose fixed point set is B. q.e.d.

We will prove that every totally geodesic submanifold of a space of constant
curvature is reflective. More precisely we have the following theorem.

Theorem 4. Let M be a complete Riemannίan manifold of constant curva-
ture. Then every totally geodesic submanifold B of M is locally reflective.
Furthermore, if M is simply connected and B is complete, then B is globally
reflective.

Proof. Instead of giving a Lie algebra theoretic proof of this theorem by
using Theorem 3, we will construct the reflection maps explicitly. By the previous
remark we can assume M to be simply connected. When M is En, the reflection
map is simply the reflection map with respect to the linear subspace under
consideration. For simply connected Riemannian manifolds M of nonzero con-
stant curvatures, one can use the standard models as hyper surf aces of Euclidean
spaces En+1 or pseudo-Euclidean spaces ZJJ*+1, [11, p. 66]. Totally geodesic
submanifolds are merely intersections of M with linear subspaces through the
origin of En or E™\ the reflection maps are induced by the reflection with
respect to the corresponding linear subspaces (cf. [7, p. 340]). q.e.d.

Combining Theorems 1 and 4, we have the following reflection principle for
minimal submanifolds in spaces of constant curvatures, which generalizes the
Schwartz reflection invariance of minimal surfaces.

Theorem 5. Let N be a minimal submanifold of a complete Riemannian
manifold M of constant curvature. If N contains an imbedded totally geodesic
submanifold B of M as a hypersurface, then M is locally invariant under the
reflection pB with respect to B. Furthermore, if M is simply connected, and
N,B are both complete, then pB(N) — N.

Proof. We only need to observe that any local symmetric space is an
analytic manifold [3, p. 18]. q.e.d.

For an arbitrary local symmetric space it is not true that every imbedded
geodesic submanifold is locally reflective. In fact, we have the following
theorem.

Theorem 6. Let M be a complete Riemannian local symmetric space. If
there exists an imbedded geodesic L in M such that L is reflective, then L must
be a space of constant curvature.

Proof. By the remark after Theorem 3 we can assume M to be simply con-
nected and hence globally symmetric, and assume L to be a complete geodesic.
Without loss of generality we can also assume that L goes through the origin
0 of M. Let 6 be the subspace of m corresponding to L. From Theorem 3
and definitions it follows that the orthogonal complement hL of b is also a
reflective subspace. Since the reflective submanifold LL corresponding to h1 is of
codimension 1 and the reflection map of b 1 is a "reflection" in the sense of
[4], by Theorem 1 in [4] M must be a space of constant curvature, q.e.d.

We will classify all reflective submanifolds of the complex projective space
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CPn, with the Fubini study metric, and its dual, the complex hyperbolic space
[5, p. 282].

Let M be a complex manifold with the almost complex structure / . For a
point x € M, a subspace S of TX(M) is said to be holomorphic if J(S) — 5, and
to be totally real if J(S) ±_ S.

It is well-known ([12, Theorem 1] and [5, pp. 277, 285]) that the totally
geodesic submanifolds of CPn are CPk, 1 < k < n, and RPι, 1 < I < n,
naturally imbedded in CPn as well as their images by holomorphic isometrics
of CPn. Let g = ϊ) + m be the canonical decomposition of CPn as a Rieman-
nian symmetric space. It is easy to see that the totally geodesic submanifolds
of CPn described above correspond to the holomorphic subspaces and totally
real subspaces of m respectively (cf. [9]). If g = ή + m is the canonical
decomposition of the complex hyperbolic space as a symmetric space, then by
duality or by classifying its Lie triple systems one can obtain that the totally
geodesic submanifolds through its origin correspond to the holomorphic sub-
spaces and totally real subspaces of m (cf. [9]). The complex projective space
and complex hyperbolic space are both Kahler manifolds of constant
holomorphic sectional curvatures. Now let / denote the almost complex struc-
ture, and < , ) the inner product arising from the Kahlarian metric of the
complex projective spaces or complex hyperbolic space. Then their curvature
tensors are given by (cf. [5, p. 165])

R(ξ, V) = ^{ξ Aη + Jξ AJη + 2<f, Jη)J) ,

where c > 0 for the complex projective space, c < 0 for the complex hyper-
bolic space, and ξ Λ η is the endomorphism such that (ξ Λ rj) ζ = <ζ, η)ξ —
<ζ, ξyη. With these preparations we are now ready to prove the following
theorem.

Theorem 7. The reflective submanifolds of CPn are CPk, 1 < k < n, and
RPn, naturally imbedded in CPn and their images by holomorphic isometries
of CPn. The reflective submanifolds of the complex hyperbolic space are the
geodesic submanifolds which correspond to the reflective submanifolds of CPn

under duality.
Proof. Let cj = ΐ) + m be the canonical decomposition of the complex

projective space or complex hyperbolic space as Riemannian symmetric spaces.
By our previous considerations it suffices to show that the reflective subspaces
of m are the holomorphic subspaces and the totally real subspace of maximal
dimension. For ξ,η,ζe m, it is well-known (cf. [5, p. 231]) that [[?, η], ζ] =
—R(ξ,η)'ζ. Therefore we have
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Let eA, 1 < A < n be a set m such that {eA, J(eA) 1 < A < ή] is an ortho-

normal basis of m. A typical holomorphic subspace fy of m is the one generated

by the vectors {ei9 ]{e^) 1 < / < k < n}, and bf is generated by {ea; J(ea)

k + 1 < a < ή). A typical totally real subspace of maximal dimension B2 of

m is the one generated by {eA 1 < A < n}, and h£- is generated by {JeA 1 <

A < n}. Using (*) it is straightforward to check that h1 and b2 are both reflec-

tive subspaces of m. Obviously, any totally real subspace of m of dimension

less than n cannot be reflective, since for that subspace there is no Lie triple

system of the complementary type, q.e.d.

Finally we will mention some more examples of reflective submanifold in

symmetric spaces.

1) Let M = Mι x M2, where Mx and M2 are simply connected Rίemannian

symmetric spaces. Then M1 and M2 are both reflective submanijolds of M.

2) Let Gp>q(R) be the oriented grassmann manifold. For pf < p,q' < q,

Gp,>q,(R) naturally imbedded in Gp>q(R) are totally geodesic submanijolds.

Among these, GPtQ,(R) and Gp,)q(R) are reflective submanijolds.
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