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A CHARACTERIZATION OF RIEMANNIAN MANIFOLDS
OF CONSTANT CURVATURE

RICHARD HOLZSAGER

As in [2], consider the parallel bodies of a hypersurface in a Riemannian
manifold. That is, suppose M is a submanifold of codimension 1 with
oriented normal bundle in a manifold M. Define a homotopy A: M X R —
M, by letting h(x, t) = 7,(¢), where 7, is the geodesic through x whose tangent
at x is the positive (with respect to the orientation on the normal bundle of M)
unit normal vector. In other words, 4,(M) is obtained by translating M distance
t along orthogonal geodesics.

If M is a compact hypersurface (with or without boundary), it makes sense
to consider the area (or volume) A,(?) of the singular hypersurface M,. If M
and M are C*, so is A, : R — R. In [1], we showed that surfaces of constant
curvature ¢ are characterized by the fact that for any hypersurface (i.e., curve)
Ay satisfies the differential equation A” + ¢4 = 0. This result is now gener-
alized to higher dimensions.

Theorem. For an n-dimensional C= Riemannian manifold M, there is a
differential equation A + a, A"V + ... + a,A = 0 (a, constant) satisfied
by A, for every hypersurface M if and only if M has constant sectional
curvature. The relation between the equation and the curvature is

c=a/3).

Remark. It is impossible for an equation of order m less than n to be
satisfied by every 4. To show this choose some x ¢ M and an orthogonal base
T, ---,T, for the tangent space at x. Define a coordinate system ¢,, about x
by ¢n(ry, - -+, 1) = exp, X, where y = exp, ),%,, 1. T;, and X is the parallel
translation of X "*'r,T; to y along exp,t >,%.,r;T;. Let U be a small
neighborhood of (1,0, - - -, 0) in an m-sphere S™, and V' a small neighborhood
of the origin in an (n — m — 1)-dimensional Euclidean space R®~™~!. For
small values of ¢, ¢,, will imbed (tU) X V in M, ¢,,((tU) x V) forms a family

of “parallel” hypersurfaces and A(f) = t"‘fﬁ ogo (¢ X id) d Vol, integral

over U X V, where g is the determinant of the metric tensor on M with respect
to ¢. Then A™(0) = m! Vol (U X V), A®(0) = 0 for i < m. Thus A cannot
satisfy an equation of order m.
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Proof of the theorem. Assume the equation is satisfied by every A,. Let
¢ = ¢,_, be as in the remark (i.e., build a coordinate system using tubes about
the geodesic through T,). Let

Ay®) = lim A®)/Vol (U X V) = »~/ g ((1,0, - --,0)) ,

limit taken as U and V converge down to (1,0,-.-,0)eS"% and Oe¢ R
respectively. A, will also satisfy the equation, giving for t = 0

(1) (a=2! TTWE+ (1= D —2)!aT/ g + (1— ! g =0,

where we write T'; for 3/dx; throughout the coordinate system.

Let us also write D; for covariant differentiation with respect to T,. Then,
as in [2], T\Wg= 22,74V g, where DT, = X, 7,T, and T\T;v/ g =
(Z25esutss + 2 Tr)¥ 8 - By definition of ¢, Y17 r,D; (D321 r,T,) = 0
at any point of the form (¢r, - - -, tr,_,, r,). In particular, this implies D,T; =
Oforalli,j<n—1atx. Also, D,T, =0 for all i, so D,T, = D, T, = 0.
Consequently 7;;(x) = O for all i. Thus

(2) (;)ZTIr”+a2=O at x .

Ty = ; (Tyyi)XTs, Ty =T, (; 76T s Tj>> - ; 7 TCTo Tjp
= T1<Ti’ DlTi> = <D1TiaD1Ti> + <Tz'> D1D1Ti> = <Tz': DlDiT1> >

so (2) becomes
(3) (o) = <TDDT) + 4, = 0.

At ¢(xy, - -+, X)), D%k X;xD,;Ty, = 0. Applying D, i=1,-.--,n—1)
at ¢(x,, 0, - - -,0) gives 2 x,D,T, + x}D,D,T, = 0. Dividing by x, and applying
D, give 2D,D;T, + D,D.D, + x,D,D;,D,\T, = 0, so D;,D,\T, = —2D,D,T, at x.
Therefore the sectional curvature determined by 7, and T; at x for i =
1,---,n — 1isR(1,i) = —3(D,D,T,, T;>. Also, R(1,n) = —(D,D,T,, T,>,
since D, T, vanishes along ¢(0, - - -, 0, #), so D,D,T; = 0 at x. Now (3) becomes

(4) R(l,n)+%an(1,i)=a2/<;) .

The roles played in this whole argument by T, and T; ({ = 2, - - -, n — 1) may
be switched, adding £(R(1,7) — R(1, n)) to the left side without changing the
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right. Thus R(1,7) = R(1,n), so n '; 1R(l,n) = az/ (;) , or R(1, n) =

a, / (n ':i; 1). Since x, T,, T, were arbitrary, this finishes the proof in one
direction.

Now assume M has constant curvature. For any tangent ¥ to M at x, V has
a canonical extension along the orthogonal geodesic (V(h,(x)) = dh,(V)), so
if T is the unit normal vector, then D,V makes sense. Note that if W is another
tangent to M at x, {D,V,W)» = (D,W, V). To see this, a coordinate system
¢ in M about x is said to be allowable if it is obtained by taking a coordinate
system +» in M about x and setting ¢(ry, « - -, 7,) = b, (Y, - -+, ). KT, V, W
are extended to have constant components in an allowable coordinate system,
then [V, W] = [T, V] =I[T, W] =<T,Vy=<T,W) =0, so

(DyV, W5 = (D,T, W) = —(T,D,W> = —(T,D, V>
= (DT, V> = (D W, V> .

Further, applying T to the relation <DV, W) = (D, W, V) gives{DD,V, W)
= (DD W, V>.

Since <DV, W) is symmetric and bilinear in ¥ and W, it is possible to
choose an orthonormal base T, - - -, T, for the tangent space to M at x such
that <D;T;,T;> = 0 for i # j, and also an allowable coordinate system so
that at x /ox; = T; fori = 1, - - -, n (where we now write T, for T). If V is
a linear combination of T, - - -, T, at any point of the coordinate neighborhood
and R is the curvature tensor, then <(R(T,, VT,,V) =<{D,DT, V) —
{DDyT,,Vy = —(D\D,T,,V> = —(D,D,V, V) since D,T, is identically O.
If ¢ is the sectional curvature, then since <{7,V) =0 and <T,,T,> =1,
¢c= —(DDV,V>/{V,V). Thus, as quadratic forms on the span of
T,,---,T, at any point, {(D,D,V, V> is equal to {—cV, V). The symmetric
bilinear forms {(D,D,V,W) and {—cV,W) are equal, so <D,D\T;,T;> =
{—cT;, T;> for i,j > 2. Since also

<D1D1T1:, T1> = T1<D1T1:, -T1> - <D1Tz', D1T1> = T1<DiT1a T1>
= _I'TlTi<T1’ T1> =0= <—CTi, T1> s

it follows that D.D\T; = —cT,;fori =2, ---,n.

Next note that ¢{T;, T;> + <D,T;, D,T;> is constant along A,(x) (i,j > 2),
since

TI(C<T¢, Tj> + <D1T1:7 DITJ>)
=D\, T;) + «Ty,D,T;» + <D,D\T;,D,\T;) + <{D,T;,D,D,\T;) =0 .

But at x, {D,T;, T;»> = Oforj+i,soD,T;isamultipleof T;fori =2, .--,n,
so (T;, T;> + <D,T;, D;T;» = 0 at x and consequently at ,(x). Thus
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T.TLT;, T = <DD\T;, Tj) + 2{D\Ty, DT + <Ti, DD\ Ty
= —"4C<Ti, Tj> Y

for i,j > 2, i # j. This second order equation, together with the initial con-
ditions {T;, T;> = T\{T;, T;> = 0 at x, implies that {T;, T;> is identically O
along A,(x). Therefore |dh,(T, A\ --- A\ T,)| = [[#|T;| at h,(x). Now

I Ti| = —c|Ti| + (To Ti)XD\Ti, DiTi) — <D\Ts, T)Y) | Tif
= —c|T4|

(DT, being a multiple of T;). This means that |T;| is a linear combination of
sinv/ ctand cos v/ ct or of sinhy/—ct¢ and coshv/—ct or of 1 and x,
depending on whether c is positive, negative or 0. Therefore |dh,(T, N - - -
A T,)| is a linear combination of sin ¢4/ ¢t cos *¢~'4/ ¢t or of sinh i/ —c ¢
cosh” "4/ _ctor of 1,.-.,x*'. In any of these cases there is a (unique)
differential equation of order n with constant coeficients satisfied by any such
combination. The same equation would hold for 4, applied to the unit (n — 1)-
vector at any y in M, and therefore also for 4,, since integration over M will
commute with differentiation by .

Added in proof. More general results have been announced in the author’s
paper, Riemannian manifolds of finite order, Bull. Amer. Math. Soc. 78 (1972)
200-201.

References

[1] R. A.. Holzsager & H. Wu. A characterization of two-dimensional Riemannian
manifolds of constant curvature, Michigan Math. J. 17 (1970) 297-299.

[2]1 H. Wu. A characteristic property of the Euclidean plane, Michigan Math. J. 16
(1969) 141-148.

AMERICAN UNIVERSITY





