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CONGRUENCE OF HYPERSURFACES

RAVINDRA S. KULKARNI

Perhaps the simplest type of function which measures curvature is the Frenet-
Serret curvature of a plane curve. It is well-known that this curvature as a func-
tion of the arc length determines the congruence class of a curve. Its generaliza-
tion in one direction is the normal curvature (or what we shall call the bend-
ing) of a hyperfurface. It may be defined as follows: let M be a hypersurface
of dimension n in a Euclidean space 2?n+1, τ its tangent bundle, and

a: τ X τ -> R

the second fundamental form. Let π: G1—>M denote the Grassmann bundle
of lines on M. Define the bending Ka: Gx —> R to be the function which assigns
to each tangential direction v (at some point of M) the number

Ka(v) = a(u,v)/\\v\\2 .

This function usually appears in textbooks only as an auxiliary before defining
the sectional curvature. It is perhaps surprising that it has apparently not been
noted before that this function essentially determines the congruence class of
a hypersurface. To make this precise, we shall define two hypersurfaces M, M
of Rn+1 to be similarly bent if there exists a diίϊeomorphism f:M-+M such
that f*Ka = Ka in this case we shall call / a bending preserving diffeomorphism.
We have

Theorem A. LetM, M be two hypersurfaces in Rn+1, n>2, andf:M-^M
a bending-preserving diffeomorphism. Suppose that

a) the nonumbilic points are dense in M, and
b) the sectional curvature of M is not identically zero.

Then j is a congruence.
(Recall that a point x e M is nonumbilic if Ka]π-1{x) is not identically con-

stant.)
The congruence problem for hypersurfaces has a long history. The underly-

ing analytic statement is that a difϊeomorphism /, which is an isometry and
preserves the second fundamental form (meaning f*a — a), is a congruence,
and the point is to catch this analytic content in Frenet-Serret type, more in-
tuitive geometric terms. A very interesting variant of this is Minkowski's
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theorem which asserts that an ovaloid with positive Gaussian curvature is de-
termined by its Gaussian curvature regarded as a function of the outer normal
up to translation. So also is the Cohn-Vossen's rigidity theorem: an isometry
of ovaloids is a congruence. Other variants involve the third fundamental forms,
etc. cf. Chern [2, p. 29]. As late as 1943 E. Cartan [1] again explicitly posed
the problem of investigating the geometry of the second fundamental form. As
opposed to our f*Ka = Ka, he investigated f*a = a which led him to a Cauchy
problem. Because of the difficulties of the Cauchy problem at a singular point
the analysis is quite complicated. This has been further investigated by Grove
[5], Erard [3], Simon [9], and Gardner [4] who have proved congruence for
ovaloids satisfying some additional hypothesis.

Our method of proving theorem A is similar to that in [7] where we proved
Theorem B. Let (M, g), (M, g) be two Riemannian manifolds of dimension

>4, and f:M-*Ma sectional curvature preserving diffeomorphism. Suppose
that
(* ) nonisotropic points are dense in M.
Then f is an isometry.

(A point x 6 M is nonisotropic if the sectional curvature K\π-Hx) is not iden-
tically constant where π\ G2 —> M is the Grassmann bundle of 2-planes.)

In a sense Theorem A is simpler and more primitive than Theorem B. Using
the proof of Theorem A it is possible to simplify the proof of Theorem B as
well as to improve it by setting some cases when dimM = 3. One can ask
similar questions for hypersurfaces of submanifolds of space forms and for
Gauss Kronecker curvatures. In the past these problems have been treated
separately but in our formulation with appropriate hypothesis Theorems A and
B can be generalized to cover these cases. As usual "generic" cases are settled
while the "nongeneric" cases present some interesting problems. It is possible
to give a uniform treatment of these various curvatures and the tensors which
appear in their definitions. This effectively systematizes computations involve-
ing the Bianchi identities, Ricci, Weyl, Gauss Kronecker curvatures, etc. We
shall present it elsewhere.

It is a pleasant duty to thank Professor Klingenberg for his interest in this
work. Thanks are also to Professors Pohl and Takens for some useful com-
ments, and to the NSF GP-20289 and the Sonderforschungsbereich Theo-
retische Mathematik for their financial support.

All manifolds in this paper are assumed to be connected. Also "smooth"
means C2.

1. Proof of Theorem A

Intuitively the proof may be described as follows: consider an infinitesimal
intelligent being standing on the mountain top. What he feels is not the second
fundamental form a but the bending Ka. If the point is umbilic he is lost and
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cannot distinguish between directions. If however thef point is nonumbilic then
by measurements of Ka, in principle, he would discover angles between differ-
ent directions. After this he cannot make any further progress unless he knows
the differential of bending—such as the equation of Codazzi. Of course even
with this he may still miss the absolute measure of distance.

We proceed to a rigorous proof. Let a® (resp. a®) denote the operator cor-
responding to a (resp. a). If v is a nonzero tangent vector, let (v) denote the
corresponding point on the Grassmann bundle of lines.

Lemma 1. Under the hypothesis a) of the theorem, f is conformal.
At first we deduced this lemma from a more general theorem to appear in

[8]. This short proof in this special case was pointed out to us by Professor
P. Hartman.

Proof. Because of continuity it suffices to show that the differential /* is a
homothety at a nonumbilic point x e M.

First consider the case of a 2-dimensional hyper surf ace. Let {e19 e2} be the
unit principal direction vectors at x so that

λl9 λ2 are characterized by the fact that they are respectiely maximum and
minimum of Ka]π-1{x), and must be preserved by a bending preserving map. It
follows that ]*ex = e19 f*e2 — e2 are the principal directions at x which are
necessarily orthogonal since λι Φ λ2. Let | | ^ | | 2 = au i = 1, 2. Now the bending
preserving condition Ka{xeι + ye2) = Ka(xe1 + ye2) leads to

+ Y = W + W (x,y)Φφ,0)
x2 + y2 aλx

2 + a2y
2

which implies

α - λOiβ, - a2) = 0 .

Since λλ Φ λ2, we have ax — a2, i.e., f* is a homothety at x.
When dimM > 2, it is easy to see that v is an eigenvector of a® if and only

if O) is a critical point of Kalπ-Hx). Since a critical point is carried into a
critical point by f% it follows that an eigenvector of a® is carried into an eigen-
vector of a.

The argument in the 2-dimensional case shows that if v, w are two unit
eigenvectors of a® with distinct eigenvalues, then f^v and f*w have the same
length. Since x is nonumbilic, it easily follows that /* is a homothety on each
eigenspace of a® with the same homothety factor, and hence is a homothety.
q.e.d.

Using Lemma 1 we can write f*g = e2ψg where ψ: M —> R is a smooth func-
tion. The condition f*Ka = Ka then implies
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f*a = e2ψa .

To simplify the notation we identify M with M via /, and omit /* from the
formulas.

We shall need the following fact about the connections F, V defined by the
conformally related metrics g, g respectively: Set

S = V — V and G = grad φ (with respect to g),

and let x be a vector field on M. Considered as a derivation of the full tensor
algebra, Sx is determined as follows:

a) If / is a smooth function, then SJ = 0.
b) If y is a vector field, then

Sxy = (χφ)y + (yφ)χ - <χ, y>G .

c) If θ is a 1-form, then for any vector field y

(Sxθ)y - -θ(Sxy) .

(For a proof of b) see [7, Proposition 2.1] a) and c) easily follow.)
Using this fact we have

Vxa + Sxa) .

Substituting this in the Codazzi's equation

iVXla)(x2,y) - (PXta)(x19y) = 0

and using the Codazzi's equation for a (with respect to g), we get the follow-
ing basic differential equation satisfied by φ:

( * ) 2(xλφ)a(x2, y) - 2(x#>)a(x19 y) + a(x19 SX2y) - a(x2, SXly) = 0 ,

for any vector fields x19 x29 y.

Lemma 2. Under the hypothesis a) of the theorem, f is a homothety.
Proof. Suppose at a point m e M, Gm = grad ^>|m =̂  0. In the system (*)

set

*i = Λ = G m / | | G m | | , χ2 = χ, y2 = y-

Suppose that x is orthogonal to h, and y is arbitrary. Since

Shy = \\Gm\\y and 5Λy = ( W ) * - <x,y>| |Gm | | A ,

the system (*) becomes
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0 = 2 | |Gm | | φ, y) + a(h, Sxy) - φ9 Shy)

= \\Gm\\φ,y) + (yφ)a(h,x) - <*,y>||Gw|| α(Λ,Λ) .

In this equation settting y = x and y = h in turn we get

a(h, I) = a(x, x) , a(h, x) = 0 .

It clearly follows that Xα = constant at the point m, i.e., m is umbilic. But
then the set {m | Gm Φ 0} is an open subset consisting of umbilics which con-
tradicts the hypothesis. Hence G = 0. In other words / is a homothety. q.e.d.

The proof of Theorem A can be completed as follows. By Lemma 2 there
exists a constant c > 0 such that

i) f*g = eg .

Thus if K, K are the respective sectional curvature functions of M, M, then

ii) f*K = K/c .

But since bending is preserved, we also have

iii) f*a = ca ,

and i), iii) together with Gauss equations imply

iv) f*K = K .

From ii) and iv) it follows that c = 1 since K -φ 0. So / is an isometry. Con-
gruence is now classical and the proof is finished.

2. Discussions

If hypothesis a) or b) of the Theorem A is omitted, some interesting patho-
logies appear. We discuss the various possibilities.

1) Suppose that (M,g) is analytic. Then either all points of M (and so of
M) are umbilics or nonumbilic points are dense. In the first case M, M are
parts of either hyperplanes or hypersheres with the same radius, and so any
difϊeomorphism of M onto M is bending preserving. Thus M, M need not be
globally congruent although they are locally congruent. However, if we assume
that M, M are also complete, then they are either whole hyperplanes or whole
hypersheres with the same radius. So they are congruent.

2) Suppose that nonumbilic points are dense in M and the sectional curva-
ture is identically zero. Then Lemma 2 still applies, and the map / is a homo-
thety. But / need not be a congruence, and indeed M, M need not even be locally
congruent. It is not difficult to construct local examples of this phenomenon.
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In the following we construct one for two complete, analytic, similarly bent
noncongruent flat hyper surf aces.

Let

ψ:R->(-π/2,π/2)

be any analytic function. Let 0 < c < 1, and consider the function ψ defined
by

ψ(s) = cψ(s/c) .

Let C, C be the complete, analytic plane curves whose intrinsic equations are,
respectively,

The map f: C ->C defined by

f(ψ,s) = (cψ,cs)

is easily seen to be homothety which preserves the Frenet-Serret curvature.
Let M, M be cylinders in Rn+1 on C, C respectively such that the generators

of M, M are orthogonal to the planes of C, C respectively. We can easily extend
/ to a difϊeomorphism from M to M which is a bending preserving homothety.
However, it is plain that in general M, M need not even be locally congruent.

3) Suppose that nonumbilic points are dense and M, M are complete, flat
hypersurfaces. By Lemma 2, f*g = eg where c is a positive constant. By a
theorem of Hartman and Nirenberg [6], we have

M = C X R n l , M = C X R n l ,

i.e., M, M are cylinders built on plane curves C, C such that the generators are
orthogonal to the planes of C, C respectively. It is clear that / induces a
homothety of C onto C.

If C happens to be closed, then that / is necessarily an isometry follows
easily from the well-known integral formula

k(s)ds = 2π ,

where k(s) is the Frenet-Serret curvature. In this case / is a congruence.
If C is not closed, then M, M need not even be locally congruent as was

pointed out in 2).
4) Suppose that nonumbilic points are dense. The following is a local con-

dition which ensures the congruence.
(A) Suppose that there exists a nongeodesic curve C such that / preserves its
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first Frenet-Serret curvature (either with respect to either M or Rn+1).
Then / is a congruence.

Proof. Indeed, let x be the unit tangent vector field to C, and let

Then x\*J c is a unit tangent vector field to C, and also

So

The first Frenet-Serret curvature of C with respect to M is ||Fa.Jt||, and with
respect to Rn+1 it is

where V is the connection in Rn+1. In either case since Vxx Φ 0, it follows from
our hypothesis that c = 1.

5) Let Sn+1(c) denote the (n + l)-dimensional complete simply connected
space of constant curvature c. Theorem A can be generalized to hypersurjaces
of Sn+1(c) this is basically due to the fact that the second fundamental form
of a hypersurface in Sn+1(c) again satisfies the Codazzi's equation. Now sup-
pose that c Φ 0 and n > 3. In this case the Gauss equation implies that if
c > 0, then a hypersurface cannot be flat; and if c < 0, then a flat hypersur-
face is totally umbilical. Hence in this case we may omit the hypothesis "the sec-
tional curvature of M is not identically zero" from Theorem A. This hypothesis
seems to be necessary in case n = 2. The author does not know whether one
can replace it by a global hypothesis, e.g., M, M are complete. Indeed it would
also be interesting to determine the shape of a complete flat hypersurface in
5 3 ( l ) o r 5 3 ( - l ) .

6) Finally we consider the congruence of π-dimensional submanifolds of
SN(c). In this case the second fundamental form a must be interpreted as a
bilinear form on the tangent bundle of a submanifold with values in its normal
bundle. The bending Ka defined by the same formula as before also has values
in the normal bundle. An umbilic point is defined as before. We define two
submanifolds M, M with normal bundles v, ϊ> and second fundamental forms
a, a respectively to be similarly bent if there exists a diffeomorphism f: M->M
which is covered by an isometry f'.v-*vof normal bundles such that Ka o /„,
= f°Ka. However to get a congruence statement we shall have to take into
account the connection in the normal bundle also. We define M, M (as above)
to be similarly twisted if / is connection-preserving, and ask:

are similarly bent and similarly twisted submanifolds congruent!
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The answer to this question is also affirmative if the conditions a), b) of
Theorem A formally hold. Lemmas 1 and 2 are still valid although the proof
of Lemma 1 requires a major modification (cf. [8]). At the final step one has to
invoke the following analytic fact:

Let M, M be submanίjolds of SN(c). Suppose that there exists an ίsometry
f: M -* M covered by a connection preserving isometry ) : v — v such that
foa = ao/^. Then f is a congruence.

This fact is essentially well-known; see, e.g., Sternberg [10, p. 245]. The
essential points in this fact are (i) the characteristic property of SN(c) that given
two points p, q in SN(c) and orthogonal frames bp, bq at p, q respectively
there exists a unique isometry of SN(c) carrying p into q and bp into bq, (ii)
the uniqueness of solution for the initial value problem of a system of first
order partial differential equations (in which form the Codazzi-Mainardi equa-
tions may be expressed). We need not elaborate this further.

Of course, the condition that / be connection-preserving is very strong. But
to replace it by "torsion functions" (as in the theory of space curves) although
possible seems very artificial to us.
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