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PHILLIP A. GRIFFITHS

5. The Picard variety with growth conditions

(a) Line bundles of finite order

Let A be a smooth affine algebraic variety and A one of the Λ-rings given by
the three examples in § 2 (b). We want to define the Vicard variety Pic^Ol)
with growth condition.26 To to this, we will give three definitions of what it
means for a holomorphic line bundle L —» A to have order A. It is then a basic
theorem that the three definitions are equivalent.

Definition A. The holomorphic line bundle L-^A has order A if there is
a holomorphic mapping

f' A->PN

such that (i) / has order A, and (ii) f~\H) = L where H -^ PN is the standard
(ample) line bundle.27

Definition B. The holomorphic line bundle L —> A has order A if there is
an analytic divisor V C A such that (i) L = [V] is the line bundle determined
by F, and (ii) V has order A.2S

The third definition is in terms of transition functions relative to a finite open

Fig. 3
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26 The definition and basic properties of Pic,i 04) can probably be given for a general
Λ-ring, but we will not try to do this here.

27 Recall from §2(c) that / has order A if f*[jt(PN)] a j?A(A).
28 Recall from (2.8) that V has order A if the order functions N(V,r) = 0(λ(r)) for some

λ <= A and for all punctured poly cylinders at infinity.
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covering U = {Pμ, Pf(ka)} of A where the Pμ are polycylinders in the interior
of A and where the Pt(ka) are punctured polycylinders obtained by intersect-
ing A with a poly cylinder Pa on a smooth completion A of A.

This definition is somewhat complicated by the fact that, if ka > 2, then the
restriction L\P*(ka) need not be analytically trivial (cf. Proposition (4.18)). In
order to simplify matters, we shall assume that A = A — D is the complement
of a smooth ample divisor D on a smooth projective variety A. With some
additional work together with Proposition (4.18), the general case may also be
done.29

Definition C. The holomorphic line bundle L —> A has order A if, relative
to a finite open covering U = {Pμ P*} of 4̂ by polycylinders Pμ and punctured
polycylinders P*9 L-^A has transition functions {fμv, fμa, faβ} such that

f.β:P*nPf->C*

has order Λ.30

Theorem I. The above definitions A,B,C are all equivalent.

(b) Remarks on the proof of Theorem I

The proof of Theorem I is, to the author, an instructive iterplay between
geometry and function theory. Here is a brief outline of how the arguments
run.

® ẑ> (g): Given a holomorphic mapping f: A-+PN which has order A,
we must find a divisor V on A such that: (i) [V] = f~\H), and (ii) V has
order A. The natural candidate for V is the inverse image J'KPN-I) of a general
hyperplane PN-XCPN.

To see that this works, we choose homogeneous coordinates [ξQ, , ξN] on
PN and set 0 = /*(?0/£i) Then we may assume that f~\PN_ϊ) is given by 0 =
0, where φ is a mermorphic function in JίA{A). Localizing in a punctured
polycylinder P* at infinity in A, we have by the definition (2.13) and (2.11)
of what it means for φ to be in JίA{A) that F Π P * = fe = 0} where 9 <= 0,(P*)
is a holomorphic function of order A. The implication @ =>(g) will then follow
from an estimate

29 From Proposition (4.18), we see that the restriction L \ P*(k) satisfies an equation of
holomorphic line bundles

I ( « Π .

By comparing this equation in the overlap of two such punctured polycylinders, we may
carry out definition C in general.

30 Thus we are measuring the growth of faβ by its maximum modulus; i.e., its "affinity"
for the point ooe/V Equally important, obviously, is the affinity of faβ for 0&Pu i.e.,
the growth of f~£. It is a consequence of the two facts that (i) m(faβ,r) = rn(f~^tr)
(Green's theorem), and (ii) m(faβ,r) = 0(M(/αj8,r)) = 0(m(faβ,2r)) that the growth of* f~£
is determined by that of faβ.
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(5.1)

i.e., we must estimate the area of the zero locus η = Oin terms of the maximum
modulus of the holomorphic junction η. This follows, as in the 1-variable case,
from Jensen's theorem [19].31

(g) => © : Given the divisor VC.A and the open covering U = {Pμ P?} of
A, we may write the intersection

(5.2) V Π Pΐ = {ηa = 0}

as the zeroes of some holomorphic function ηa e &(P*). The transition functions
of the line bundle L —> A are then the ratios

(5.3) faβ = ηa/ηβ ,

together with the fμv and /̂ ^ which do not concern us. From (5.3) it follows
that, in order to prove the implication (g) => © , we must show: // V has order
A, then the holomorphic function ηa in (5.3) may also be chosen to have order
Λ. In 1-variable, this is a well-known theorem of Hadamard, which is proved
using properties of this Weierstrass primary factors E(μ, q) (cf. [19, pp. 221-
229]), and in several variables, if P* is given by

{(z, w) e C X C"- 1 : 0 < |z| < 1, \Wj\ < 1} ,

then we may use the 1-variable result in the punctured discs J * given by w =
constant (cf. [24] for a similar method).32 Alternatively, with a little work we
may adapt the potential-theoretic methods of Lelong [18] to the case at hand.

© =>(g): Suppose now that L—*A has transition functions as in definition
C, and let /: A —»A be the inclusion. Then we may define a sub-sheaf

31 We may formalize Jensen's theorem as follows: Let Di\%(A) be the group of effective
divisors on A which have order A. Then by Jensen's theorem there is a homomorphism

(5.2) δ:J(Λ(A)-*Όiv+(A)

given by sending φzJίΛ(A) into the hypersurface φ = 0 on A. It will be a consequence
of the results in §5(c) below that we have an exact sequence (cf. Proposition (5.26))

ΘΛ(A) - ^ Div+U) > ϋ\A, Z) > 0 ,

where Div][(A)^>H2(A,Z) is the homology class mapping, provided that A contains the
ring of all polynomials in r (cf. Theorem II below).

32 In the case n — 2, what we do is the following: By choosing P* correctly we may
assume that all intersections

are divisors on the punctured Z-disc such that

\Zj{w)\<ιdwdwΣf
i - 1 J

\
\W\<,1

for some integer q > 0, and where all |zy(w)| < 1 — ε for some e > 0. Then η(ztw) =
Π 7 £ C ( ) / £ > t f ) gives the required function.
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of the direct image i*@hoι(L) whose sections over an open set U C.Ά are the

holomorphic sections of order A over [/* = U Π A. (For example, if A is given

by example 1 in § 2 (b), then it is easy to see that we may choose A such that

there is a holomorphic line bundle L —> A with L \ A = L, and &Λ(L) is just

the sections of L with finite poles along A — A.)

To construct a holomorphic mapping f:A-+PN which has order A and which
realizes Z, -> /4 as f'KH), essentially we must find enough global sections in

H\A, ΘA{L)) .

This in turn results from the following basic
(5.4) Theorem B with ^-growth conditions. For any algebraic vector

bundle E-+A we have the vanishing theorem

H*(A90Λ(L®E)) = O (q>0) .

Outline of the proof. To define the sheaf ΘA{L ® β , w e first let ΘΛ{E) =
®Λ ®0aig ®a.ig(E) where (PΆlg(E) c i*&hol(E) are the sections of E which have
finite poles along A - A. Then we may let 0A(L ® E) = ΘA(L) ®ΘΛΘA(E).

We observe that Theorem (5.4) gives

H«(A,ΘΛ(L)<8)φ&lgS) = 0 (q>0)

for any coherent algebraic sheaf S -• A. Taking S to be &&ιg/mx (mx C Θx be-
ing the maximal ideal of xzA), we obtain global sections σ of ΘΛ(L) with
σ(x) Φ 0.

The proof of our theorem proceeds in several steps.
Step 1. We first choose a family τA = {τ^} ( # e Z + ) of strongly-pseudo-

convex exhaustion functions which are suitable for the problem. Referring to
examples (i), (ii) of Λ-rings in § 2(b) (the algebraic and finite order cases), we
may let respectively

rA,q = \zl\
2q+ •-. +\zN\2* ,

where zi9 , zN are the Euclidean coordinates relative to an embedding
A C CN as a smooth aίfine variety. Localizing in a punctured polycylinder

P* = {(z,w)zCx Cm~ι: 0 < | z | < l , | w | < 1}

at infinity in A, we have that approximately

(5.5)* Γ4
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in the sense that each side is "0" of the other. It follows from (5.5)* that the
holomorphic functions in P* which have order A are exactly those η € Θ(P*)
such that

(5.6)* f\η\2e-τ
< oo

for some q > 0, and where dμ is Euclidean measure on P * C C " . If we let Φ
denote the restriction to P* of a volume form on A, then Φ — dμ and we shall
rewrite (5.6)* as

(5.6) J\η\2e~T*Φ< oo
P*

(this notation means that for large q we have (5.6)*).
Step 2. We now discuss the groups Hq(Ά,ΘΛ(A)), where L and E are as-

sumed to be trivial. Choose a Kahler metric ds\ — 2 « j Sίjdμidpj on A, and
let Φ be the corresponding volume form. Denote by ^ M the sheaf of C°°
(0, q) forms on v4, and define the subsheaf

by letting the sections of ^ q over a punctured polycylinder P* be the C°° (0, q)
forms f on P* which satisfy the //-conditions

j\\ξ\\2e~τ*Φ < cx> ,
p*

This gives us a complex of sheaves

0 > ΘA{A) > « T -^-> ίPϊ1 -^-> .

We then use the methods of Hormander [15, Chapter IV], to show that the
cohomology sheaves

/«(#£*) = {ker 3: #£« -^ ^ β + ^ / a ^ β - 1

are zero for q > 0. (This is the Poincare lemma for the above complex of

sheaves.) If we let

HYU) = {ker 3:

then it follows that
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H*(A, ΘΛ(A)) = HYU) .

Thus far we have only used the exhaustion function τΛ locally at infinity,
and have made no use of the fact that it exists globally on A. This is now
utilized when we appeal again to the methods of [15, Chapter IV] to show that33

HY{Ά) = 0 (q > 0) .

Step 3. To discuss the groups Hq(Ά, &Λ(L<g) E)), we shall assume for
simplicity that E is trivial. In a sufficiently small punctured poly cylinder P* at
infinity, we have L | P* = P* x C. Therefore the above discussion carries over
completely as far as the local aspects are concerned. The problem is that, for
the global case, we must choose an Hermitian metric along the fibres of L—>A.
Relative to a trivialization L | P* ^ P* X C, the holomorphic sections of L will
be holomorphic functions η, but the norm as a section of L will now be

where a(z) > 0 is the metric. A first condition on our metric is that we should
have

(a) a(z)e-τ*ω ~ e~τ^z) ,

so that the sections in ΘΛ(L) are still characterized by essentially the same In-
growth conditions as before. The second condition on our metric is somewhat
more subtle. Namely, an essential ingredient in the Hormander estimates is
played by the E. E. Levi form ddcτΛ. The effect of the metric in L is to modify
ddcτΛ additively by the curvature form θL — ddc log a(z). Thus a second con-
dition on our metric is

(β) ddcτΛ± θL~ddcτΛ .

To conclude our outline of the proof of Theorem (5.4), we shall therefore
prove the

Lemma. In the finite order case (Λ = {1, r}), we may choose a metric in
L-^A so that (a) and (β) above are satisfied.

Proof. Let {Pf,Pμ} be a covering of A by punctured poly cylinders, and
{faβ> faμ> fμv} the (finite order) transition functions of L relative to this covering.
If ha — 0 is a local defining equation for (A — A) Π Pa, then

where g and μ are holomorphic in Pα. Thus log\faβ\ \ha\
m is of class C (2) in P

33 The author is indebted to P. Deligne for showing the author some notes of his on
the realization of algebraic sheaf cohomology as d-cohomology with growth conditions.
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for m sufficiently large. Choose a global C°° function p > 0 on A such that
p ~ \ha\

m in Pa. Then θaβ = <o log|/α/3| is of class C(2) and

*., + θβr = 0αr

in P β Π Pfl Π P r By a partition of unity, we may find C (2) functions ba in F α

such that

plog\faβ\ = b a - bβ

in PaΠ Pβ. Then we may define our metric by

aa(z) = β"-'" .

Since τ ^ | Pa ~ l/|Λα|Q, it follows that (a) is satisfied. Futhermore, the curvature

where ca is bounded. From this it follows that (β) is satisfied, provided that

we add to τΛ q in (5.5) a term \Pλ(z)\2 + + \Pk(z)\2 for suitable polynomials

in Pa(z).
Remark. Let ΓΛ(L) = fl°(i4, ^(L)) be the global holomorphic sections of

L-+A with ^-growth conditions, and set Γ(L) = H\A, 0h o l(L)). Then, with
the topology of uniform convergence on compact sets KdA, ΓΛ(L) is a com-
plete topological vector space. We shall write

ΓΛ(L) = U ΓAtq(L)
q = l

as an increasing union of Hubert spaces ΓΛ^q(L) such that each mapping

ΓΛtq(L) - Γ(L)

is completely continuous (bounded sets go into compact sets). For this we let

Letting Ψq be the measure e~TΛ^Φ on A, we let

and this converts /\ α (L) into a complete Hubert space with the required
properties.

Example. In case A = Cn,L is the trivial bundle, and A = R+ are the
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algebraic growth conditions, ΓΛiq(L) is just the finite dimensional vector space
of polynomials of degree q — n.

(c) Definition of Pic* (A) and Theorem II

Given a line bundle Z—• A which is of order A, it follows from footnote 30

that the dual L* is also of order Λ. Therefore, if both L and V are of order

A 9 we may define the sheaf

and use the global sections of this sheaf to say when L and V are Λ-isomorphic.
We will now give two equivalent definitions of FicΛ(A), the Picard variety

with Λ-growth conditions.
Definition a. YιoΛ {A) is given by the ^-isomorphism classes of holomor-

phic line bundles of order A on A.
Definition β. YιcΛ {A) is the group Div, {A) of divisors of order A on A

modulo principle divisors (φ) where φ e JtA(A).u

(5.7) Proposition. The above definitions of Pic^ (A) are equivalent.
We want to see how Pic {A) varies with Λ. Referring to the three examples

in § 2(b) of brings, Pic, {A) will be denoted respectively by

Pic a l g 04) (A = R) ,

KCf.o.U) (Λ = {l,r}),

Pich o l (A) (A = all functions) .

If Ax C A2, then there is an obvious map

Pic* (A) - Pic,2 (A) .

Referring to the examples in § 4, we see that the mapping

(5.8) Pic a l g (A) - Pich o l (A)

is, in general, neither injective nor surjective. On the other hand, denoting
H\A, Z) by Pic t o p (A), it follows from § 3 that

(5.9) Pichol (A) -> Pic top (A)

is an isomorphism.
Theorem II. (i) The group Pic^(^t) is functorially associated to the

algebraic structure on A. (ii) // A is any λ-ring which contains {l,λ}, then the
mapping

34 We recall that the group Divj[(A) of effective divisors of order A was defined in
§2(b), and ΌivΛ(A) is the group of divisors V=V1-V2 where Vlt F2eDiv+(^) (cf.
footnote 31).



ALGEBRAIC VARIETIES. Ϊ ( B ) 53

Pic, (A) -* Pic t o p (A)

is an isomorphism, (iii) Finally, {l,r} is the smallest λ-ring with this property.

Remark. This theorem establishes the Oka principle for junction theory of
finite order for the relatively simple case of divisors. Moreover, it follows from
this result that function theory of finite order is the smallest category for which
the Oka principle might possibly hold in the general case (use Kiinneth on the
case of divisors).

The Proof of Theorem II is deceptively simple, once we have established
Theorem I (§ 5(a)) which essentially says that everything makes sense. We will
outline the argument that the mapping

Picf.o. (A) -> Pich o l (A)

is an isomorphism in the case A = A — D where D is smooth and ample. First
we make three comments:

( i ) Let Φ(t.o.) be the sheaf on Ά of meromorphic functions with poles of
finite order along D, and 0(oo) = i*(ΘA) be the sheaf of meromorphic functions
with arbitrary singularities along D. Then (cf. [2])

H«(A, 0(f .o.) = 0 (q > 0) ,
( 5 1 0 )

(ii) Let S —> A be a sheaf of abelian groups, and i%(S) the <?th-direct image
of S for the inclusion mapping i: A^A. Then there is a spectral sequence
which abuts to H*(A, S) and whose £2-term is

We shall use this in the case S = 0J. Since i%(βf) = 0 for q > 0, the spectral
sequence is trivial and gives

(This spectral sequence is not trivial in the general case when A — A may not
be smooth. Utilizing it we may relate the local Pic/s at infinity to the global
Pica's, and using Proposition (4.18), may then prove Theorem II in the general
case.)

(iii) Suppose that / = 0 is a local defining equation for D in an open set
UcΆ, and let 0fmOm be the sub-sheaf of i*(Θt) generated over U by functions
of the form

φ = ew*).f.u y

where h and u are holomorphic in all of U with u -ψ 0. Then, from Theorem
I we have
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(5.11) Picf.o. (A) s Hι(A, OfΛ) .

To outline the proof of theorem II, we consider the exact sheaf sequences :

0 > ZΊ > Θ{i.o.) > exp

(5.12) i
0 >Zj > 0(oo)

Using (5.10) we obtain from the cohomology sequences of (5.12) the isomor-
phisms

(5.13) H\A, exp [0(f.o.)]) ^ Hι(A, exp [0(oo)]) ^ H\Ά, Z) .

On the other hand, there is a mapping

given by sending φ into the Poincare residue of dlogφ along D. This gives

( 5 . 1 4 ) I I II
Res

1 • exp [(P(oo)] • ι*(0 ί) • Zp • 0 .

Combining the cohomology sequences of (5.14) together with (5.13) and (5.11)
gives

(5.15) > H\A, Z) — Picf.o. (A) - H\D, Z) -> . .

By comparing (5.15) with the standard exact sequence

> H\A, Z) — H2(A, Z) -> Hι(D, Z) -> . . ,

we arrive at the proof of (ii) in Theorem II.

(d) Picf o. {A) and Hodge structure

In algebraic geometry the basic final objects of study are, without doubt, the
smooth projective varieties. One may study these by either algebraic or analy-
tic methods and arrive at the same conclusions (G.A.G.A.). The main advan-
tage in using the underlying complex analytic and C°° structures is that these
are much closer to the topological properties and, most importantly, lead to the
Hodge structure on cohomology [25]. For affine varieties, however, the holo-
morphic functions contain much more information than do the rational func-
tions, and the main goal of this study has been to try in general to interpolate
between the analytic and algebraic categories. One of our basic premises is that
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the function theory of finite order should satisfy the Oka principle and should,
therefore, contain all of the topological information. Our second basic premise
is that there should be step-by-step obstruction theory going from function
theory of finite order to algebraic function theory, and such that the successive
obstructions are measured by the Hodge structure on cohomology. The first of
these premises has been illustrated in the preceding section, and we shall now
give a special case of the second.

Thus, let A be a smooth, projective variety and D a sufficiently ample (to
be made precise later) smooth divisor on A. Then the complement A = A — D
is a smooth affine variety and, from Theorem II, we have

(5.16) P i c f . o . 0 4 ) ^ P i c t o p 0 4 ) .

Given a line bundle L e Picf o (A), there exist divisors V of finite order such
that [V] = L. For each such divisor V we may define the order p(V) by

(5.17) p(V) = HE (log N(V, r)/log r) .

Then 0 < ρ(V) < + oo and ρ{V) = 0 if V is algebraic, but not conversely (cf.
Proposition (4.20)). We then define the order

(5.18) ^) = LMLp{V) .

(5.19) Proposition. Let V be a divisor of finite order and ξ =
dlogVeH\A,Ω]) = H2(A,C) the corresponding cohomology class. If the
residue Res ξ <= H\D, C) is zero, then we may find a divisor V such that', (i)
(W) < p(V) and [ Π = [V] in Picf.o. (A) and (ii) p(Vf) = 0&Vf is algebraic.

Outline of proof. Let {Pμ, Pf} be a covering of A by polycylinders and
punctured polycylinders. Then we will have

v n P* - {ηa = 0},

where ηa is a holomorphic function in P* of finite order p(V). The transition
functions of [V] are faβ = ηa/ηβ (plus the fμv and fμa). If fa = 0 is a local equa-
tion for V (Ί Pa, then we will have

where k = [p(V)] is the largest integer in p(V). It follows that

Kβ + hr = K

in Paf)Pβn Pr9 and the cocycle {laβ} e Hι(D, Z) is the residue of dlog V in
H\D,C). If this class is zero, then we may find new transition functions
{/;„/^,/U for [F] of the form



56 PHILLIP A. GRIFFITHS

Then we may find a divisor V on A with ρ(Vf) = k and [V] = [F] (cf.
Theorem (5.4)). Furthermore, if k — 0, then we may take V to be algebraic.

q.e.d.

This proposition suggests that we let Picf o (A) C Picf>0 (A) be the image of

Pic t o p (A) - Pic top (A)

under the isomorphism (5.16). We then set

(5.20) Pk f.o. (A)k = [L e Pk f.o. (A): p(L) < k} .

Theorem III. (i) The groups Picf o (A)k give a filtration of P ic f o (A) by non-
negative integers k;35 (ii) a line bundle LeFic{o(A)0^L is algebraic; and
(iii) the successive quotients have injective maps

(5.21) dlogiPic^.ί^/Pic^.^), . ,- . Σ H*-*(A).
p-q^k
p + q = 2

Remarks. Statements (i) and (ii) follow from the proof of Proposition
(5.19). Implicit in (5.21) is the assertion that the filtration {Pϊcfo. (A)k} is the
2-step filtration

Pίcf.o. (A\ C Pδ f . o . (A\ ,

and the mapping (5.21) is

(5.21)' dlog: Pkf.o. (A\/Wcf.o. (A\ - IP*\A) .

The proof of (iii) is by a careful modification of the proof of Proposition (5.19).
The assumption that D is sufficiently ample appears in the mechanism of the
proof by use of the vanishing theorem

H\Ά, ΘΊ[IDJ) = 0 (/ > 0) .

(e) Some special cases

We want to give some special cases of Theorems I—III above. These results
will contain proofs of the examples discussed in § 4 above.

( i ) Results on curves. Let A be an affine algebraic curve represented as
a branched covering π: A —> C over the z-plane. Given a positive divisor δ =
{JC1? x2, •} on A, we define the exponent of convergence σ(δ) to be

σ(δ)= \int{λ}: Σ \Φn)
I 71 = 1

3 5 Cf. statement (ii) in Proposition (4.1).
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By a variant of Jensen's theorem, if / e Θ{A) is holomorphic on A, then

(5.22) σ(f) < p(f)

i.e., the exponent of convergence of the divisor / = 0 is bounded by the order of /.
(5.23) Proposition. We may always find f β Θ(A) with (/) = δ and p(f) <

max{σ(δ), 2g} where g is the genus of A. Moreover, this is the best possible
estimate in general

(5.24) Corollary (Hadamard). If A is a rational curve (g = 0) then we
may find f <= Θ(A) with (/) = δ and p(f) = σ(δ).

Our next result deals with the field Jί P(A) of meromorphic functions of finite
order p on A. Let ΘP(A) denote the ring of holomorphic functions of order p
on A.

(5.25) Proposition. If ρ> 2g, then JίP(A) is the quotient field of ΘP(A),
and this is the best possible general estimate.

Corollary. // A is a rational curve, then JίP(A) is the quotient field of
Θp(A) for any p (cf. [21]).

(ii) Function fields on general affine varieties. Let A be a smooth affine
algebraic variety, JltmOm (A) the field of meromorphic functions of finite order on
A, and ΦtmOm (A) the ring of holomorphic functions in Jίt,Om (A). Finally, denote
by 0f.o. G4)/0f.o. W) Λe quotient field of 0f.o. (A).

(5.26) Proposition. ( i ) We have an exact sequence

0 -> 0f.o. (A)l0tmO. (A) -> uTf.o. (A) -> H\A, Z) -> 0 .

(ii) There exist functions fl9 , fb <=. JltΛm (A) (b = rank (H2(A, Z)) such
that every f e JttmOm (A) satisfies an equation

(5.27) fk = (Λ)fcl (fb)
kb(8lh) (g, h € 0f.o. (A)) .

Furthermore, we may take k — 1 in (5.27) ^ H2(A, Z) has no torsion.
Remark. The functions of finite order is the smallest class of functions with

^-growth conditions for which Proposition (5.26) is true in general.
(5.28) Corollary (cf. [21] and [24]).

(iii) The Lefschetz theorem again. It is clear that Theorem III contains
the Lefschetz theorem [17] to the effect that a cohomology class ξ € H\Ά, Z)
is algebraic £=} f(2>0) = 0 in IP>0(Ά). Our proof, which is very close in fact to
the original Lefschetz proof, consists of making ξ analytic on a affine open set
AaΆ, and then showing that the Hodge condition ξ(2'0) = 0 precisely allows
one to take the closure in A of the analytic divisor on the affine set A and to
obtain an algebraic subvariety of A.
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6. K-theory of finite order

This section is mostly conjectural. The author's purpose is to isolate the
questions in complex function theory whose resolution would be a major step
towards allowing us to do "^-theory of finite order" in a good fashion similar
to the finite order Picard variety discussed in the section above. Thus, given a
Λ-ring Λ, we should like to assign to each smooth, quasi-projective variety A
a ring36 KA(A) which has the following properties:

( i ) KA(A) is functorial for the algebraic structure37 on A.
(ii) For the three Λ-rings in § 2(b), we obtain respectively K&lg(A), Kfo(A),

Khol(A) where KΆls(A) and Khol(A) have been previously defined.
(iii) If A C Λ', then there is a natural map KΛ,(A) -> KΛ(A'), and the Oka

principle with growth conditions

(6.1) KtmOXA) ^ Khol(A)

is valid.
(iv) There is a natural map (cf. § 3(c))

(6.2) d log: K^XA) -> β Λ . g )

which is an isomorphism on Ki0{A) ®ZC.
(v) There is a natural map (cf. § 4(e))

(6.3) ch: KΛ(A) ®zQ-* « W ®zQ >

which is an isomorphism if A 2 {1, r).
(vi) For the case of line bundles, KA(A) specializes to Pic^ (A) as defined

in § 5 .
Remarks. The map "dlog" in (6.2) was discussed in § 3(c) where we gave

a homomorphism

Recall that Kfm0XA) is hopefully the missing term (?) in (3.19).
The map "ch" in (6.3) is to be defined by taking the Chern cycles (cf. § 6(b)

36 We shall concentrate on the case when A is affine. The general case is derived
from this by "recol lement" .

37 It is important to emphasize that KΛ(A) depends functorially on the algebraic, but
generally not on the complex, structure on A . Thus, e.g., the biholomorphic automor-
phism {zi,z<i)-+ (zi + ezz,z<i) of C 2 transforms polynomials into transcendental functions.
An important special case where KΛ(A) depends functorially on the complex structure
of A is when there is a smooth completion A of A such that, for large μ,

dim {H\A, 0(JΓJ))} > cμn (c > 0) ,

where Kλ-^Ά is the canonical bundle of A . This condition is independent of the
smooth completion A , and when it happens we will say that A is of general type (cf.
appendix in [9]).
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below) of holomorphic bundles of order A over A, and then taking the Chern
character of these Chern cycles so as to have a ring homomorphism [3].

(a) Tentative definition of KΛ(A)

Let Grass (ra, N) be the Grassmann manifold of (N — m)-planes through
the origin in CN. Over Grass (m,N) we have the universal quotient bundle
Q —> Grass (ra, N) whose fibre Qπ over a plane π e Grass (ra, N) is just the quotient
space CN/π. There is an obvious evaluation map

(6.4) e: CN -+H° (Grass (ra, ΛO, 0(β)) ,

which is an isomorphism of vector spaces.
(6.5) Definition. A holomorphic vector bundle E —> A has order A if

there is a holomorphic mapping /: A —• Grass (ra, N) such that: (i) / has order
Λ, and (ii) f-'(g) s £ .

Remarks. If £Ί and Jζ, are of order A9 then so are Eλ® E2 and Eλ®E2.
However, it is by no means clear that the dual bundle Ef also has order A, and
likewise for Horn (E^ E2). Referring to the three examples of Λ-rings in § 2(b),
the first and third examples specialize respectively to the usual definitions of an
algebraic vector bundle and holomorphic vector bundle.

Now we consider a smooth completion A of A and denote by i\ A-^Ά the
inclusion. As in § 2 we may define the subsheaf on A

ΘΛ{A) C i*Θ(A)

of holomorphic functions of order A on A. Let E -> A have order A. Referring
to (6.4) there is a canonical mapping

(6.6) e:(9A(A)N^h®(E) .

(6.7) Definition. The sheaf ΘΛ(E) of holomorphic sections of E-+A of
order A is the image of e in (6.6).

Remarks. ΘΛ(E) is a sheaf of ^-modules. In case E—>A is a line bundle,
it may be shown that the above definition of ΘA{E) coincides with the previous
one given by using transition functions in § 5(b) (here A is restricted to the ex-
amples in §2(b)).

(6.8) Definition. If Eί9 E2 have order A, then we define the subsheaf

Horn, (E19 E2) C ij) (Horn (E19 E2))

by

Horn,, (El9 E2) =

(cf. [11, p. 125]).
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Using this definition, we may define an isomorphism of order A between Ex

and E29 as well as yl-exact sequences

(6.9) 0 >E'-UE-?->E' >0

involving holomorphic bundles of order A (both / and p should have order A).

(6.10) Definition. The ring KΛ(A) is defined to be the ring generated by
Λ-isomorphism classes of holomorphic bundles of order Λ, the algebraic opera-
tions being 0 and (x), and with the relation E = E' + En whenever we have
a Λ-exact sequence (6.9).

We shall be giving several comments on this definition of KΛ(A). For the
moment, we should like to observe three simple facts. The first is that KΛ(A)
is functorially associated to the algebraic structure on A (cf. footnote 37). The
second is that, referring to the first and third examples of Λ-rings in § 2(b), we
obtain respectively KΛlg(A) and Khol(A) as defined previously. Thus properties
(i) and (ii) stated at the beginning of § 6 are satisfied. The final comment is
concerning the standard Pliicker embedding [14]

p: Grass (m,N) -> P m .

A holomorphic mapping /: A —> Grass (ra, N) induces g = p o /: A —> P/N^

such that

where H'—> P/N\_ is the standard ample line bundle. It follows more or less

from the definitions that / has order A (=$ g has order A.

(b) K/A) and Chern cycles

Let A be a smooth affine variety, /: A —> Grass (ra, N) a holomorphic map-
ping, and E = f~\Q) the inverse image of the universal quotient bundle over
Grass (ra, N). Then there are iV distinguished holomorphic sections σ1? , σN

oi Q—>A corresponding to (6.4).38

(6.11) Definition. The q-th Chern cycle Vq(E) is the analytic subvariety
of A where ax A Λ σm_q+ι = 0.

Remarks. Geometrically, Vq(E) is the intersection of the image f(A) with
a Schubert cycle Σq in Grass (ra, Λ0 [14]. Vq(E) is an analytic subvariety of
pure codimension q on A (cf. footnote 38 and [8, p. 225]). The extreme cases
are: (i) Vm(E) is the set of zeroes of the section σλ of Q —• A and (ii) Vλ(E)
is the divisor of the section σλ Λ Λ σm of det (Q) = Λm£?.

3 8 It will make this discussion easier if we assumed that σlf }σ^ generate an ample
space of sections of Q —• A (cf. [8, p . 185]). We may always twist Q by an ample,
algebraic line bundle to arrive at this situation.
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Problem B. If A is a Λ-ring, and / has order A, then does Vq(E) € <£q(A J?39

Remarks. This is the analogue of the basic implication @ =̂> (g) in Theorem
of § 5(a). We shall reduce Problem B to either of two semi-local statements in
several complex variables.

First observe that, by the argument using Jensen's theorem given in § 5(b)
(cf. footnote 31), Problem B is true for q = 1 (case of divisors). Since each
Schubert cycle Σq is contained in an intersection of hypersurfaces on
Grass (m, N), Problem B follows from Problem A in § 4(e). Problem A follows
in turn from either of the following two questions:

(6.12) Question. Let η19 , ηq be holomorphic functions on a punctured
polycylinder P* such that

Let V = {ηx = = ηq = 0} be an analytic subvariety, assumed to have
pure codimension q in F*. Then do we have

N(V,r) = 0U/(r)) (Jl'gΛ)?

(6.13) Question. Let F c C n b e an analytic set of pure codimension q and
assume that

Γ
F [ ]

= 0U(r))

for some λ e A (cf. Question (4.14)). Suppose that O C Cn is a linear subspace
such that the intersection W = V C1 has pure codimension q in Cι. Then do
we have

for some X e A ?
Remark. These questions are essentially the same as "Bezout's problem"

discussed in Appendix 2 to [9].
In concluding this section we observe that the resolution of Problem B is neces-

sary in order that the map "ch" in (6.3) be defined. At the risk of being over-
ly categorical, we might say that: Jensen's theorem for algebraic varieties
would be the assertion that the map

ch: KΛ(A)^V*(AΛ)

is well-defined.
39 Cf. §4(e) for the definitions. What we are asking is whether: "/ order Λ^>Vq(E)

order A"l We shall see below that problems A (§4(e)) and B are special cases of the
same problem.
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(c) Coherent sheaves with Λ-growth conditions

In the preceding section we have discussed a problem whose solution would
say that the analytic subvarieties arising from a holomorphic bundle of order
A would themselves have order A, We shall now discuss the converse question.

(6.14) Definition. Let S on A be a sheaf of ΘΛ(A)-modvle&. Then S is
said to be a coherent Asheaf if, locally on A, we have a resolution by free
<9Λ(A)-modules

i) > 5 > 0

where the maps τa have order Λ.
Problem C. Let V (ZA be an analytic subvariety of order A. Then is there

a coherent Λ-sheaf JA c 0/4) such that

Support (0/4)/./,) = F ?

Problem D. Let 5 be a coherent Λ-sheaf on A. Then is there a global
resolution

(6.16) 0 -* ΘA(Ed ̂ > ΘA{E2) - ^ > > ΘA{Et) >S > 0

where the Ea —> A are holomorphic vector bundles of order AΊ
Remarks. In problem C we are not requiring that the sections of J> A should

generate the ideal of V at every point, as this is probably impossible to achieve
(cf. footnote 21).

Next, we observe that the proof of (§) => © in Theorem I also yields a proof
of Problem C in case codim (F) = 1. Futhermore, the proof of the implication
© :φ @ in Theorem I leads to a proof of the last step in Problem D, also in
the case of divisors.

As somewhat scant evidence that these problems might be possible in higher
codimension, we remark that the recent paper of Pan [20] gives us a sheaf
mapping

ΘA(A){n+l) τ > ΘA(A)

such that

<ΰΛ(AYn+1>]\ = F

in the case where dimc V = 0 (i.e. V is a discrete set of points with order A).
The resolution of Problems B, C, and D are essentially what is necessary in

order that the mapping "ch" in (6.3) be defined and be an isomorphism.
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(d) Transition junctions for bundles of order A

We have given a definition of what it means for a holomorphic vector bundle
E ^ A to have order Λ.i0 For line bundles, there are three equivalent defini-
tions which, in the case of vector bundles, may be informally stated as follows:

® «-> {E is induced from a holomorphic mapping /: A —> Grass (m, N) which
has order A}

(g) <-> {the Chern cycles of E are analytic subvarieties of order A in A};
© <-> {relative to finite covering of A by punctured polycylinders, E has

transition functions of order A}.
Actually, we have not formally defined © , so let us give the

(6.17) Definition. Let P* be a punctured polycylinder. Then GL(m,ΘΛ(P*))
is the group of holomorphic mappings g: P* —> GL(m, C) which have order Λ
in the sense that

Remarks. It follows that GL(m, ΘA(P*)) is just the group of matrices whose
entries are in the ring ΘΛ(P*). For the Λ-rings under consideration, we shall
denote GL(m, @A(P*)) respectively by

GL(m, tfalg(P*)) , GL(m, 0 f.o.(P*)) , GL(m, 0h o l(P*)) .

Under © above, we mean that the transition functions at infinity of E —> A are

in GL(m,ΘΛ(E)) 41

Problem. Are the above three definitions of a holomorphic vector bundle
of order A all equivalent?

Remarks. The implication ® => (g) would follow from Problem B in § 6(b).
The implication (g) => © would most likely be a consequence of Problem C,
also in § 6(b).42 Finally, the implication © => @ can probably be proved by
the same methods used to demonstrate this result in the case of line bundles
(cf. § 5(b)). Consequently, this problem does not appear to go much beyond
those stated previously, and so we have not given it a separate letter.

Our final problem concerns the Lie algebra of the group GL(m,ΘΛ{P*)).
Given a holomorphic mapping /: P* -> GL(m, C), we let

40 In this section we shall assume that A is one of the three brings in §2(b).
41 Referring to definition C in § 5 (a), we are here restricted to the case A — A — D

where D is smooth (cf. footnote 29).
42 In discussing the implication (g) => ©, we are tacitly assuming that E is determined

by its Chern cycles. To be precise then, this implication should be interpreted as say-
ing that the holomorphic vector bundle £ 0 ® £ 0 / has transition functions of order A.
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Then dlog/ e βp* (gl(ra)), the space of matrix-valued holomorphic 1-forms on
P*. Moreover, dlogf satisfies the obvious integrability condition

(6.18) dθ + ΘAΘ = 0 .

Conversely, given 0ββp*(gl(ra)) which satisfies (6.18), then we can find

/ e GL(m, 0(P*)) such that θ = rflog/.

Problem E. What is the image of

dlog: GL(m, ΦΛ(P*)) -> Ω)» (gl (ra))?

Remarks. If / <= GL(m, 0 a l g(P*)), then

/(z, w) = zιh(z, w) ,

where P* = {(z, w ) e C X C7 1" 1: 0 < |z| < 1, | wβ | < 1}, and h is a holomorphic
mapping of P into GL(m, C). It follows that

(6.19) dlog/ = lΊm(dz/z) + dlogh .

From this we may characterize the Lie algebra of GL(m, ^aig(P*)) as consisting
of those θ 6 βp* (gl (ra)) which are of the form (6.19).

Consequently, Problem E boils down to the question of giving the Lie glgebra
of GL(m, 0f.o.(P*)). In the abelian case, we have

(6.20) Lemma.43 A holomorphic mapping f:P*-+C* is of finite order {=}
d log / has only a finite pole along P — P*.

In the nonabelian case, matters are somewhat more complicated. For ex-
ample, the matrix

isinGL(2,0 f . o .(P*)), but

Ό (dz/z2)e^

0

does not have a finite pole along P — P*.

(6.21) Question. If f19 . . . , / , e GL(m, 0 f.o.(P*)), and P(Λ, •• , Λ )
(̂ 4̂  e gl (ra)) is an invariant symmetric form of degree q, then does the holo-
morphic g-form P(dlog/j, , dlogfq) have a finite pole along P — p*?** if
so, this would be a convincing clue that (?) in (3.19) should be KfmOm(A).

43 This lemma may be compared with (3.20). It is essentially this simple fact which
provides our best clue as to the (?) in (3.19).

44 Cf. the discussion in § 3 (c).
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Added in proof. M. Cornalba and B. Shiffman have found a counter-

example to the transcendental Bezout problem (their paper will appear in Ann.

of Math.), while W. Stoll has proved that it is true "on the average" (his

paper will also appear in Ann. of Math.). This is the first instance known to

this author when the analogue of a general result in algebraic geometry fails

to hold in analytic geometry. Also, could reference to this remark be made

after each of questions (6.12) and (6.13), as these both have a negative answer

now.
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