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THE CONVEX HULL PROPERTY OF
IMMERSED MANIFOLDS

ROBERT OSSERMAN

Let Mo be an ra-dimensional difϊerentiable manifold, and let M be defined by
an immersion /: Mo —> Rn. We shall say that M has the convex hull property
if, for every domain D on Mo such that / maps D into a bounded set in Rn, the
image of D lies in the convex hull of its boundary values. It is well known that
minimal submanifolds of Rn have this property. The usual proof of this uses
the fact that the coordinate functions in Rn are harmonic functions on M if M
is minimal. (See, for example, Lemma 7.1 in [1] for the case m — 2, n arbi-
trary. We may note that the proof there is not quite correct as it stands, since
the assumption that the image lies in a bounded set is implicitly used but not
stated.)

Our purpose here is to give a simple geometric condition characterizing those
manifolds having the convex hull property.

Theorem. A manifold M has the convex hull property if and only if, at
each point of M, there does not exist any normal direction with respect to which
all normal curvatures of M are positive.

Remarks. 1. If the normal curvatures with respect to a normal N are all
negative, then those with respect to — N are all positive. Thus the condition of
the theorem is equivalent to the property that, for each normal N, the range
of values of the normal curvatures with respect to N includes zero. If we denote
the principal curvatures with respect to N in decreasing order by

*i(Λ0 > *2(Λ0 > • > km(N) ,

then another equivalent formulation is

( 1 ) kXN)km(N) < 0 for every normal N .

Thus for surfaces in R\ the condition of the theorem is simply that the Gauss

curvature be everywhere nonpositive.

2. If M is minimal, then at each point,

( 2 ) k,(N) + -" + km(N) = 0 for every normal JV .
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Since clearly (2) => (1), the result for minimal manifolds is an immediate con-
sequence of the theorem.

3. The fact that condition (1) is not only a sufficient condition for the con-
vex hull property but also a necessary one was pointed out to the author by
David Hoffman. A further remark of Hoffman's is that, for an arbitrary mani-
fold, condition (2) holds for any normal N orthogonal to the mean curvature
vector, and hence the same is true of (1).

4. If, in the definition of the convex hull property, the domain D is rela-
tively compact in Mo, then the image of D under / is automatically bounded,
and the set of boundary values is simply the image under / of the boundary of
D. However, it is often useful to have the convex hull property in a more gen-
eral setting, where D need not be relatively compact. (In fact, D may be all
of M.) In that case, we use the following definitions.

A sequence of points in D is divergent if no subsequence converges to a point
of D.

The boundary values of f(D) are all limit points of sequences f(qn) for all
divergent sequences {qn} in D.

In the case that D is relatively compact in M, divergent sequences in D are
precisely those which tend to the boundary of D, and the set of boundary values
coincides with the image of the boundary.

5. If the convex hull property holds in the form stated, then it also holds
in the following apparently stronger form: if D is any domain on Mo such that
the sequence {f(qn)} is bounded for any divergent sequence {qn} in D, then the
image of D lies in the convex hull of its boundary values namely, under these
hypotheses, it follows easily that f(D) is itself bounded.

In the proof of the theorem, we shall need the following lemma describing
the local behavior of an immersion in terms of the normal curvatures.

Lemma. Let p be a point of M, and N be a unit normal vector to M at p.
Denote the principal curvatures of M at p with respect to N by kλ(N), ,
km(N) as above. For every R > 0, denote by BR the closed ball of radius R and
center c = p + RN.

a) // some neighborhood of p on M lies in BR, then km(N) > 1/R.
b) // km(N) > 1/R, then some neighborhood of p on M lies in BR.
c) // k^N) > 1/R > km(N), then every punctured neighborhood of p on

M contains points of BR and points outside BR.
d) If 1/R > k^N), then some punctured neighborhood of p on M lies out-

side of BR.
Proof. Since the result is purely local, we may choose parameters uu ,

um such that M is given locally by a regular map F(u) with F(0) = p. If we
denote as usual

dF dF
g
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then we may further assume that g o (0) = di$. If N is any unit normal to M at
p, then the principal curvatures kx(N), , km(N) are the eigenvalues of the
matrix

Now with c — p + RN, we introduce the function

h(u) = \F(u) - c\2 .

Then

dh _ 2 dF ( F ( , _ v

a n d

But F(0) = p, Λ(0) = R\ and

-^J—(0) = - 2 Λ M W + 2^/0) = 2(3^ - Rfc4i(A0) .

Thus the matrix d^/dw^dw/O) has eigenvalues

2(1 -Rkt(N))> i= h ,m.

It follows that this matrix watrix will be

positive definite <=^> k^N) < l/R ,

negative definite <=^> km(N) > 1/R ,

negative semi-definite <—> km(N) > 1/R .

Since F(w) lies in 2?^ φ=^> /z(w) < .R2, the various cases in the lemma correspond
to the sign of the function h(ύ) — R2 near the origin. Analyzing this in the
classical way in terms of the matrix of second derivatives (using Taylor's
theorem) gives the result.

Remarks. 1. We shall actually only use parts (a) and (b) of the lemma.
2. No mention has been made of smoothness assumptions. What we need

for the lemma is that F e C2, and hence that / e C2 in the theorem.
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Proof of the theorem. I. Suppose first that, at some point p and for some
unit normal N, all normal curvatures are positive, or, equivalently, km(N) > 0.
Choose R > l/km(N), and apply case (b) of the lemma. Let p = f(q0), and let
D be a neighborhood of q0 whose image lies in the ball BR. Since / is an im-
mersion, we may assume by further restricting D, if necessary, that / is one-
to-one on the closure of D. Then / maps the boundary of D onto a compact
subset E of BR — p. On the set E, the function (f(q) — p). N has a positive
minimum η. This means that the boundary values of f(D) lie in the half-space
(x — p)-N > 7], whereas f(D) does not, since it contains p. Thus M does not
have the convex hull property.

II. Suppose, conversely, that M does not have the convex hull property.
Then there is some domain D whose image is bounded but does not lie in the
convex hull of its boundary values. Since the convex hull of a set is the inter-
section of all half-spaces in which it lies, there must exist a unit vector v such
that the half-space x-v < a contains the boundary values of f(D), but not all
of f(D). This means that, for some qQ in D, f(qQ) v = b > a.

We wish to show that, in this situation, there must be a point p in f(D)
satisfying case (a) of the lemma. We may proceed as follows.

Let Br be a closed ball of radius r and center cr, where cr v = a, such that
the closure of f{D) lies in the interior of Br. For each t > r, we denote by Bt

the closed ball of radius t and center ct — cr — W* 2 — r2. Then the following
statements are easily verified.

1. The boundary values of f{D) lie in the interior of each Bt.
2. When t is sufficiently large, the point f(q0) <£ Bt.
3. For some value of t, say t — R, f(D) lies in BB, and some point p of f(D)

lies on the boundary of BR.
4. The tangent space to M at p is a subspace of the tangent space to the

boundary of BR hence the unit vector N directed from p to cR is a normal
vector to M at p.

In view of these facts, case (a) of the lemma may be applied to conclude that
all the normal curvatures of M at p with respect to N are positive. This proves
the theorem.
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