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ON THE COMPLEX BORDISM OF
FINITE COMPLEXES. II

P. E. CONNER & LARRY SMITH

This manuscript represents a continuation of our study begun in [6] of the
internal properties of the complex bordism functor and its external applications.
As in [6], [7] we are primarily concerned with the numerical invariant
horn, d i m ^ Ω%{X) of a topological spaced, its interpretations and applications.
Our study centers around our understanding of the annihilator ideal of a spher-
ical bordism class a e Ω%{X). As in [6] we represent a by a map

h: Sk ^X .

To study the annihilator ideal of a we introduce the cofibration

which may be extended to a cofibration

in the standard manner. The annihilator ideal A(a) of a may then be identified
with the image of the map /*: Ω%(Y) —> Ω%(Sk+1) under an βg-module iso-
morphism of degree k + 1. This leads us into a study of mapping spaces into
spheres which we undertake with the aid of the RR theorem of Atiyah-
Hirzebruch [8], characteristic numbers and cohomology operations. These pro-
vide us with several criteria for detecting elements of A (a), particularly Milnor
manifolds [10], and to a complete determination of horn, d i m ^ Ω%(X) for 3-
cell complexes. The final section contains several applications of the theory to
the construction of examples which compliment those of [6], [7], [11] and [13].

1. Preliminaries on cohomology operations and

characteristic numbers

Let M be a closed weakly complex manifold and a e H*(M, k), k = Z,ZQ

or Q. Associated to the pair {M, a} we have characteristic numbers
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<a U cω(M), [M]> <= k .

Our purposes in later sections require that we have available a procedure for
computing such numbers. Specifically the numbers

<a U svί_x(c)(M), [M]> € Zp , p a prime ,

will be of concern to us, where Sj(c) denotes the usual ^-symmetric function
of the Chern classes of M. There is a Wu-type formula for evaluating these
special types of numbers, and it is our objective in this section to establish this
formula. To this end we collect some facts about the Steenrod algebra.

Recollections and notations. Let J / * ( / ? ) denote the mod p Steenrod alge-
bra and ^*(/?) the algebra of reduced power operations, i.e.,

where (β) denotes the two sided ideal generated by β (recall that β = Sqι when
P = 2).

According to Milnor [9] the dual Hopf algebra ^ ( p ) to 0>*(p) is given by

0>*(p) ̂  Zp[{μί}] ,

where

deg/i, = 2 ( p « - 1 ) ,

and

with the convention that μQ = 1.
The "duals" to the classes {μt} are primitive elements in ^*(p) which may

be obtained inductively by the formulas

5 =
1

These formulas determine corresponding unique elements 5 4 e s/*(p) which are
primitive provided that p Φ 2. (Recall that for p = 2, P\ = Sq2.) Note that
degS i = 2 ( p i ~ 1).

The operations 5 4 may be computed on two dimensional classes by means
of the following formula. Let X be a space and y s H\X; Zp). Then
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This formula is readily established by induction. The case i = 1 is true by
inspection. For i > 1 we have

Sty =

Since ί > 1, Ppiy = 0. Therefore

by our inductive

now yields

as desired.
Proposition 1.

assumption. The Adem relation

P^ZP = (PpJ~1Z)p

Sty = {P\

1. Let

lpy)Pi-l = ypi

Φ: H*(BU; Z p ) -> 7?*(Mt7; Z p )

denote the Thorn isomorphism. Then up to a unit in Zp,

Spt_Jic) = φ-'StΦd) .

Proof. To see this recall that H*(MU; Zp) is a coalgebra over the reduced
power algebra and the action of ^*(p) on the counit

Z p ) : α -^ aΦ{\)

is a morphism of coalgebras [17]. As St e ^*(p) is a primitive element, it fol-
lows that 5*0(1) 6 H*(MU; Zp) is also. As Φ is an isomorphism of coalgebras,
φ-ιSiΦ{l)ζ:H2vί-\BU\ Zp) is primitive too. Since up to a unit in Z p ,
H2j(BU; Zp) contains the unique primitive Sj(c) we must have

for some λ Φ 0 € Zp as required.
Theorem 1.2. Lei Mm be a closed weakly complex manifold and

(spί_x{c) U

to a unit in Zp.
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Proof. Let

c: s m + r -

denote the standard collapse [17, Chap. II] of a sphere onto the stable normal
bundle of Mm.

Lemma. Let a <= ^ * ( p ) , deg a > 0, and suppose x e H*(TM; Zp). Then

Φ: H*(M; Zp) -+ H*(TM; Zp)

denotes the Thorn isomorphism.
Proof. We have, by definition,

<φ-ιax,

- <αc*Λ:, [S w + ? ]> = <0, [Sm+r]} = 0 ,

since ^*(p) acts trivially on H*(Sm+r Z p ) . q.e.d.
Applying the lemma to t = S^α U Φ(l)) we obtain

^ - Ί W β U Φ(l))], [M]> = 0 .

For odd p, 54 € ̂ *(p) is primitive and hence

St(a U Φ(l)) = Sta U Φ(l) + α U 5,

= S,α U Φ(l) + α U ̂ (c) U ΦiX)

by Prop. 1.1. Hence

φ-\Si(a U Φ(l)) = Sid + a U J,(C) .

Thus

0 = (S<a, [M]> + <a U ̂ (c), [Λf]>

yielding the result.
For p = 2 w e have

JS< = S i ® l + 1®S< + Σ<xj®oίr_j

where Δ is the coproduct in J / * ( 2 ) and <** e ί^). Thus
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St(a U Φ(Ό) = S,a U Φ(l) + a [j StΦ(l) + Σ α,β U a,_/JKl) .

But

as (β) annihilates Φ(l). Therefore

5i(fl U Φ(l)) = 5tέi U Φ(l) + β U

and we may proceed as in the case of odd primes.

2. Mapping spaces into spheres I

As noted in the introduction we will be concerned with complexes of the
form c Z U / S 2 k where cX denotes the cone on the complex X and

f:X->S2k

is a continuous map. Our objective is to obtain examples of such complexes
whose complex bordism module is of fairly high homological dimension and to
characterize certain classes of examples where this homological dimension is
not too large. Our approach to this study forces us to examine

in some detail. Let us therefore suppose that [M, g] e Ω%(X). Then

where [W] € Ω%9 and σ e ΩYk(S2k) is the canonical class. The class [W] may be
obtained as follows. Observe that

and we may homotope

f.g: M->5 2 f c

to a differentiable map which is ί-regular along a point α> € S2k without chang-
ing the class of [M,f-g] € Ω%(S2k). We let W = (/ o ̂ ( o o ) . Then W d M is
a submanifold of codimension 2k with trivial normal bundle in M. The stable
normal bundle of W may therefore be taken as

»w = e2k θ vM

w



140 P. E. CONNER & LARRY SMITH

and hence has a natural complex structure. The usual ί-regularity argument
then yields

To compute the characteristic numbers of [W] we appeal to the Atiyah-
Hirzebruch RR theorem [3]. To this end we denote by η the canonical bundle
over S2k obtained via periodicity. Let ([5], [17])i/(ΛΓ) e K2ί(N) denote the ith K-
theory Chern class of a weakly complex manifold N. Then [3] for any parti-
tion ω we have

<y»(W), [Wϊ> = <f(v - 1 M M ) , [M]> .

Since the integral cohomology Chern numbers are special cases of the X-theory
numbers we obtain in view of the formula [17, p. 119]

<cm(W), [Wϊ> = </*i U cω(M),

where

i <= H2k(S2k Z )

is the canonical class.
Let us fix the following notations to facilitate some computations:
( 1 ) /: X —> S2k is a continuous map.
( 2 ) d is the order of the cokernel of the induced map /*: H2k(X; Z) ->

H2k(S2k;Z).
( 3 ) η is the canonical bundle over S2k obtained via periodicity, so that

η — 1 € K(S2k) ^ Z is a generator.
Theorem 2.1. With the above notations letc<zZ,cφO. Then Im {/#: Ω%(X)

-> i5^(52fe)} = cΩ%(S2k) iff Kη - 1) is divisible by c in K(X)/torsion.
Proof. The proof will make use of the relation between complex bordism

and the Z2 graded homology theory associated to the B[/-spectrum. There is a
natural epijection flj( ) —> ^ ^ ( ) preserving degrees mod 2. The fundamental
fact relating bordism to X-theory is the isomorphism [5, § 9] (see also [6, § 9])

where Z receives a Z2-graded β^-module structure from the Todd genus
Td: Ω%-+Z.

With this in mind let us suppose that

Im {/*: Ω%(X) -> Ωl{S2k)} = cβg(52Λ) .

From the diagram
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we see that

( * ) Im {/,: J * } £ *

Consider now the universal coefficient sequences:

0 -> Tor*, (Z, X*(S2fc)) -> K*(52fc) -> Hom z (Z, K^(52fc)) - , 0

I |/! JHom(Z,/!)
0 -> Tor*, (Z, £ * ( * ) ) -> ^ * ( Z ) — Hom z (Z, ̂ ( J f ) ) -> 0

Recalling that

and

Tαr£φ(Z,

is isomorphic to the Torsion subgroup of K*(X) we find that (*) implies
f(η — 1) € K*(X)/torsion is divisible by c.

Converseley let us suppose that firj — 1) is divisible by c in JΪ*(Z)/torsion.
If [W]-σeIm (/*: ΰ%(X) -> Ω%(S2k)}, then

[W]σ = t*[M,g] :[M,g]eΰKX) ,

and hence by our discussion of X-theory characteristic numbers preceeding we
obtain

= <gψ(η - IMAf], [M]> = 0 mod c ,

since f{r] —l) = cξ + t where 16 K*(X) is a torsion class. Therefore [W] e cΩ%
by the Hattori-Stong theorem [5], [17], and the result follows.

Corollary 2.2. With the above notations we have

Im {/*:

iff Td[W] = 0 modc for all [W] σzIm/*.

Proof. The hypotheses trivially implies that
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Im {/,:

and converseley. However as noted above this is equivalent to
f (η — 1) e K*(X)/torsion being divisible by c. The result is thus immediate
from (2.1). q.e.d.

As we shall see in later sections the

can be considerably more complex than indicated in (2.1) and (2.2). One ex-
ample of how this may happen is contained in the following discussion.

Let us write d = mp where p is a prime. We wish to investigate when

Im {U: Ω%{X) -> Ω%{S™)} 3 (m[F 2 ^" 2 ] + djσ ,

where [V2pί~2] e Ωfpί_2 denotes the Milnor manifold for the prime p, and
di € Ωξpi_2 is a decomposable class all of whose mod d Chern numbers vanish.
Note that we will always have

pm[V2^-2σ € Im {/#: Ω%{X) -> Ω%{S2k)} .

Recall that according to Milnor [10] a manifold [W] has the form

m [ j/^-2] + d . jfl Spii(c)[W] = mp mod mp2 .

Therefore according to our previous discussion

(rniV^-n + άiβ) € Im {/*: Q%{X) - , Ω*(S2*)}

iff there exists [M, g] e Ω%(X) such that

<g*f*i U spt_x(c)(M), [M]> = mp mod mp2 .

The following theorem is now clear.
Theorem 2.3. Let X be a finite complex and

f:X-+S2k

a map. Suppose that

f*i = da :aeH2k(X; Z) ,

and d = pm. Then

Im {/*:

z# ίλere x̂wί,y [M, g] e Ω%(X) such that
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where g*(a) denotes the mod p-reduction of g*(α).

Proof. Our preceeding discussion has shown that

Im {/*:

iff there exists [M, g] e Ω%{X) such that

<£*/** U Jpl_1(c)(Aί), [M]> = mpmodmp 2 .

As we have assumed

/*i = da = mpa ,

it is clearly equivalent to show

<f*g*(fl) U ̂ ^(cXAf), [Af]> = 1 modp

or reducing mod p

<f*g*(a) U J^ίcXΛf), [M]> = 1 € Zp .

The result is now immediate from (1.1).
Corollary 2.4. Lei X be a finite complex with H^(X; Z) torsion free and

f: X -> S2k. Let f*i = da,ae H2k(X\ Z), and d = mp, p a prime. Then

Im {/*: Ωl{X) - , βg(S2fc)} 3 (m[F 2 ^" 2 ] + djσ

iff

we Aαve written a for the mod p reduction of itself.

3. On attaching cells I

Let Y be a finite complex and

a continuous map. We may then form the mapping cylinder X = Y U h e
2k and

obtain the cofibration

Y >X—+S2k .
8 f

In [6] we studied the interplay between l5j(Y), Ώ%(X) and the annihilator
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ideal A{a)(ZΩ% of the bordism element a = [S2k~\ h] e Ω%(Y). This study led
to several interesting examples. In this section we propose to continue this study
with the aid of the results of § 2. To this end we require

Lemma 3.1. With the above notations, the annihilator ideal A(a) C Ω% of
a is isomorphic with the image of f^: Ω%(X) —> Ω%(S2k) by an Ω%-module iso-
morphism of degree 2k.

Proof. One has the exact triangle

Ω%(X)

from which one sees that the asserted isomorphism is given by

where a € Ω2k(S2k) is the fundamental class, q.e.d.
From Cor. 2.2 we now obtain:
Theorem 3.2. Let h: 52*"1 —> Y be a continuous map and a =

[S2k~\ h] e Ω%{Y). Then A(a) = cΩ% iff Td[W] = 0 mod c for all [W] e A(a).
q.e.d.

The results (2.3) and (2.4) may be applied in special cases to determine when
the annihilator ideal A(ά) contains multiples of certain Milnor manifolds. Most
such applications are a little difficult to state in terms of properties of Y alone
without the presence of additional structure. We will therefore make the follow-
ing assumptions:

( 1 ) Y is 2k — 2 connected
( 2 ) π2k_λ(Y) = Zp, p a prime with generator h: S2*"1 -> Y
( 3 ) H*(Y Z) is free abelian, * > 2k.

Under these conditions we obtain:
Theorem 3.3. Under the above hypotheses we let a denote the generator

ofH2k~\Y;Z) ^Zp. Then

W

Proof. Our hypotheses (1) and (2) readily imply that
(a) f̂ is 2Λ: — 1 connected, and
(b) H,XX; Z) is free abelian.
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From the cofibration sequence

g f

we obtain the exact sequence

0 < H2k(Y Z) ^ - H2k(X Z) <-^- H2k(S2k Z)

II II
Z*@(®Z)®Z

and thus we find /*(i) = p α, άζH2k(X; Z). From the properties of the
Bockstein homomorphism we find

According to (2.4) and (3.1)

m

where we have written a for its own Z p reduction. However deg St > 1 and

g*:H*(.X;Zp)^H*(Y;Zp)

is an isomorphism for * > 2k + 1 we have

iff

0 6fl*(Y; Zp)

as required, q.e.d.
As an application let us consider for Y a 3-cell complex

Y = S2"-1 UpS2" U α e
1: 1 > sk , p an odd prime .

Then the hypotheses of (3.3) are satisfied and we find that

iff
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Now recall that St = Pp and note that for Sφ to be non-zero we must have
1 = 2k + 2/? - 2 and hence P\a = 0 e fl*(y Zp). Therefore

] 6 ^ ( α ) ±5 β l β =̂ 0 β # * ( F Zp) ,

where βi = [β, Pp]. Thus the attaching map

must be the coextension [19,pp. 13-15] of the element aλ€πlv_z of Hopf
invariant one mod p. The resulting complex Y has been studied in some detail
in [12], [13] where the same conclusions were reached on the basis of an Adams
spectral sequence argument. As in [13] let us denote the resulting space by
7(1/2) (see [13] for a rationale of the notation). Thus

7(1/2) = S2*-1 l)pe
2k Όaie

2k+2P-2 .

(Warning: the indexing is slightly different from [13] to conform with our
discussion in §§ 1 and 2.) As in [7], [12] let us pose the question of finding the
spherical bordism classes on 7(1/2). In [13] we showed by a long involved
argument that the only such classes are the ones you can see with your naked
eye. A key step in the proof was to show [T2**"1]** could not be spherical for
Ϊ > 1. This now drops rather easily out of our previous work. For suppose to
the contrary that [V2pi~2]a is a spherical bordism class. Let

h: S2k-1+2pi-2

represent it and form the space

Y = 7(1/2) [jhe
2k+2pί-2 .

Then clearly

V^-'a = 0e Ω%{Y) ,

where by abuse of notation we have written a again for canonical generator of
Ω2k-\{Y) Therefore according to (3.3) we must have

where a e H2k~\Y; Zp) is the canonical generator. Now note that

H\Y; Zp) 9z\zp, i = 2k-l, 2k, 2k + 2p - 2,2k + 2p* - 2
' , otherwise .
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For i > 2 we have

Sφa = Pf-Έ^βa - S^Pf^a ,

but

ppί-iβa ε H^+^-v^-viY\ Zp) = 0 ,

5<_1]8αfltt+1*'-1-a(r;Zp) = 0 ,

and hence

5<ite = θ6f l*(y ;Z p ) ,

so these cases cannot occur. For i = 2 we find

Observe

PlβazH2k+2^-l)(Y\Zp) = 0 ,

and hence

52/3α = PξStβa .

But since

^ ( Y Zp) = 0 , 2Λ + 2p - 2 < / < 2Λ + 2p^ - 2 ,

it follows from [11] that

P &ita) - 0 .

Therefore

in this case also it too is ruled out.
While not as complete as the results of [13] the above computations do serve

to indicate the utility of the preceeding results.

4. Mapping spaces into spheres II

In this section we wish to specialize somewhat our work of § 3. For the sake
of avoiding too many technicalities we will therefore make the following as-
sumptions throughout the remainder of this section:

( 1 ) X is 2k — 1 connected
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( 2 ) H*(X Z) is free abelian
( 3 ) /: X —> S2k is a continuous map
( 4 ) H2k(X; Z) ^ Z with generator α and /*/ — da, d<εZ, d Φ 0.
As before we form the cofibration sequence

x — > s2k —•* y = s2* U / c Z .

Note that Y is also 2fc — 1 connected and Hj(Y;Z) is free abelian for / > 2k.
We again use the common symbol a to denote the generator of the groups

Ωti{S2k) g* ΩUS2k) S H2k(S2k; Z) s Z .

we let

Λ*(σ) = α 6 Ω&(Y) s 5 £ ( y ) = H2fe(Y Z) ^ Zd .

Since H^Y Z) is not free abelian we know [6, Cor. 3.11] that
horn, dimmer Ω%(Y) > 1. We begin with the analog of (3.1)

Lemma 4.1. Wiϊλ the above notations the annihilator ideal A(a) C Ω% of
a is isomorphic with the image of f%: Ω%(X) —> Ω%(S2k) by an Ω%~module iso-
morphism of degree 2k. Furthermore

horn. diaiQu Ω%(Y) = 1 + horn. dimΩu A(a).

Proof. The first assertion is clearly equivalent to (3.1). To obtain the second
assertion we introduce the exact triangle

Ω%(X) - ^ Ωl(S2k)

\ /

Ω%(Y)

which yields the exact sequence

(A) 0 -* coker /* -> Ω%(Y) -+ ker / * - + ( )

of β^-modules. As H*(X; Z) is free abelian it follows that Ω%(X) is a free Ω%-
module. The exact sequence

(B) 0 -» ker /* -^ Ω%(X) -> Im f* -> 0

therefore shows

(C) 1 + horn, dimmer ker f^ > horn, d i m ^ Im f^

with equality holding except when the right hand side is 0. From our first iso-
morphism and the exact sequence

(D) 0 -> Im /* -+ Ω%(S2k) -> coker /* -> 0

we obtain
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(E) horn. diniβiΓ coker f^ = 1 + horn, d i m ^ A(a).

Applying [4, Chap. VI, Prop. 2.1] and elementary considerations to (A) yields
in view of (C) and (E) that

horn. dimΩu Ω%(Y) = 1 + horn. άϊmΩu A(ά)

as desired.
Lemma 4.2. With the above notations we have:
( 1 ) the cokernal of the Thorn homomorphism

is isomorphic to

[A(a)®ΩvZ]m,

m > 0;

( 2 ) the kernel of the reduced Thorn homomorphism

μ: [Z®q,ΩΪ(Y)]2t+m+ι-*H2k+m+ι(y; Z)

is isomorphic to

m > 0.
Proof, Recall that we have a cofibration

Thus we may regard X as obtained from Y by attaching a cell by the map Λ.
In [6, Th. 11.3] we developed an exact sequence for such a situation. Recall-
ing that H^(X; Z) is free abelian yields the desired conclusion by inspection of
[6, Th. 11. 3]. q.e.d.

We are now able to obtain one characterization of the condition
horn, d i m ^ flJ(Y) = 1.

Proposition 4.3. With the above notations we have:

horn, dimxy Ω%{Y) = 1 +± A(ά) = dΩ% .

Proof. The implication <— is a consequence of (4.1) while —> is [6, Prop.
5.9].

Notations, η is the canonical line bundle over S2k obtained via periodicity,
so that η — 1 € K(S2k) ^ Z is a generator.

From (2.1) and (2.2) we now obtain:
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Theorem 4.4. The value of horn, d i m ^ Ω%(Y) is 1 // and only if the image
fiη-1) in K(X) is divisible by d.

Theorem 4.5. The value of horn, d i m ^ Ω%{Y) is 1 if and only if Td[W] = 0
mod d for all [W]εA(a).

We proceed now to a characterization of the condition horn, d i m ^ Ω%(Y) < 2.
This will involve the relation of complex bordism to connective ^-theory [6,
§10].

Theorem 4.6. The valuέ of horn, d i m ^ Ω%(Y) is at most 2 iff the reduced
Thorn homomorphism

is a monomorphism.
We ask the reader to refer to [6, § 7]. Also from [13 § 6] we find that there

is a complex V for which horn, d i m ^ Ω%(V) > 2 but the reduced Thorn map
μ: Z <S)QU Ω%(V) —> H*(V; Z) is a monomorphism. In view of this we might
regard (2.7) as quite unexpected.

There is a natural transformation Ω%( ) > &*( ), the homology theory
based on the connective bu-spectrum. We recall that k*(point) ^ Z[t], the
integral polynomial ring on a single 2-dimensional generator. There is the
graded 42£-module structure on Z[t] given by [M2n] -> Td [M2n]tn and obtained
by η restricted to a point. There is also the natural transformation ζ: k#( ) ->
Hχ( Z) and as established in [15] an exact triangle

**( ) >.**( )

#*( z).

Notations. I = ker {μ: Ω% -> Z}, I(t) = ker {η: Ω% -> Z[t]}.
Note that for any β^-module M,

ΩuM^ M/I M , Z[t] ®ΩuM^ M/I(t).M .

Recall that / = ([CP(1)L 7(0) and hence

Lemma 4.7. Lέtf ίΛβ notations be as before. Suppose that y <c k*(Y) with
A(y) Φ (0). Then y = nt^(a)n, i € Z.

Proof. Consider the exact sequence
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Suppose that y e k*{Y) and A(y) Φ (0). Then A(i*y) Φ (0). Since k^(ΣX) is
a free Z[ί]-module this implies i *;y=0. Therefore y=j*w for some w e k*(S21c).
But since j*[S2k] — η{σ) generates the image of /'* as a Z[t]-module the result
follows.

Proof of (4.6). Suppose that μ is monic. In view of [6, Th. 11.2] it will
suffice to show that

is an isomorphism. This we do in two parts.
( 1 ) η is epic. Suppose that y e k*(Y), According to [6, Th. 10.8] there

exists an integer i such that fy € Im {η: Ω%(Y) —> k^(Y)}, As we wish to show
Ύ] epic we may as well assume i > 0. Let

Then by naturality,

μx = ζηx = ζt*y = 0

since / > 0. Therefore

x = [CP(1)V + x"\ x"εI(t)Ω%(Y) .

Thus

ηx = η([CP(X)\x' + x") = tηxf + ψ" = tηx" .

Therefore we have

t*y = tηx' ,

and hence

t{f-ιy - ηx') = 0 .

According to Lemma 2.8 this means

and hence

ΐ-iy = η(x> + n[CP(l)Vσ) .

Repeating the above argument shows that y e Im and hence that η is epic.
Before proving that η is monic we require a lemma.
Lemma. The natural map A(σ) —> A(ησ) is on to.
Proof. Recall that

coker {μ: Ω%(Y) ->H*(Y; Z)} ^ Z ® ^ A(σ)

and for the same reason
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coker {η: *#(Y) — H*(Y; Z)} s Z ®zίtlA(ησ) .

Hence the natural map A(σ) —> ̂ 40?σ) induces an isomorphism

-> ZW

As the natural map A(σ) —> /lOyσ) is £?£ -> Z[t] sesquilinear the result follows,
q.e.d.

We are now prepared to show η is monic.
( 2 ) ή is monic. Clearly it will suffice to show that ker ή = I(t) Ω%(Y).

We will proceed by induction over degree. As ή is monic in degree 2k we pro-
ceed to the inductive step. Suppose that x <= Ω%{Y) and ηx = 0 € ^^(y). Then
of course /α = Oe H*(Y;Z), and as we have assumed /* is monic this means

and hence

JC = [CP(1)]JC ; + x": x"eI(t).Ω%(Y) .

Now either xf — 0, in which case there is nothing to show, or

0 = ηx —tψf .

Hence, by (2.8),

ηx' = nt%a) ,

n, ί e Z, and hence t β A{ntιησ), i.e., m i + ι € /4(^) . Hence there exists [V] e ,40)
with 2y[F] = /iί*+1. Thus we have

η(n[CP(l)Y+ι - [V]) = 0 ,

and hence

[W] = n[CP(l)] ί + 1 - [V] 6/(0

But observe

and hence, by our inductive hypotheses,

Hence of course

[CP(1)V - n

and finally, since [V] e A(σ),
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- n[CP(l)]ί+1σ = [CP(1)V - n[CP(l)i+1]a + [V]σ ,

and [W] = -n[CP(l)]ί+1 + [V] € /(*), we conclude

Therefore x e I(t) Ω%(Y) completing the inductive step.
Combining (1) and (2) we deduce that ή is an isomorphism and hence that

horn, d i m ^ Ω%(Y) is at most 2.
The converse implication is contained in [6, Th. 4.4]. q.e.d.
To complete our discussion of the cases where the homological dimension of

Ω%(Y) is small we have
Corollary 4.8. Let the notations be as above. Then the homological dimen-

sion of Ω%(Y) is at most 2 iff T o r $ (Z, A(σ)) = 0.
Proof. This follows immediately from (4.6), (4.1) and (4.2)(2).
Remark. Recently Dr. David Johnson has shown (University of Virginia

Thesis, 1970) that for a finite complex X

is epic implies

is an isomorphism. Thus the proof of (4.6) may be somewhat shortened by
employing his result.

More recently Dr. Johnson and the second author of the present study have
obtained a simplified proof of this result which is to appear shortly.

5. Attaching cells II

Let Y be a finite complex, and h: S2*"1 —> Y a continuous map. As before
we may attach a cell to Y along h to obtain X — Y \jhe

2k. We will continue
to study the interplay between Ω%(Y), Ω%(X) and the annihilator ideal
A(a) C Ω% of the spherical bordism element a = [S2k-\ h] e Ω%(Y). We will
place ourselves in a situation where the results of § 4 may be applied to advan-
tage. Let us therefore make the following assumptions

( 1 ) Y is 2k — 2 connected,
( 2 ) π2k_λ(Y) is finite cyclic with generator [Λ],
( 3 ) Ht(Y Z) is free abelian for i > 2k - 1.

Examples of such spaces abound. For example:
1 °. A Moore space S2k ~' {jde

2k.
2°. A space F(l/2) = S2*"1 U P e

2k Uφe
2k+2p~2, where p is an odd prime

and φ: S2k+2p~z -> S2k~ι \Jve
2k is as in [13, § 1].
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3°. Let γ: Σ2k-ιCP(n) -> S2k+1 be a map such that r*i = dΣ2k~ιc, where
c e H\CP(n) Z) is the canonical class. Let Y = C(γ) be the mapping cone
of γ.

The third example listed above is what motivated much of our work.
We obtain as previously a cofibration

Y >X > S2k .
g f

The following facts are now clear:
( 5 ) X is 2k — 1 connected
( 6 ) H%(X Z) is torsion free
( 7 ) /: X —* S2k is a continuous map

( 8 ) #2k(X; Z) ^ Z with generator α and /*i = da, d e Z, d Φ 0, where

d is the order of π2*-i(^)
From (4.3) we thus obtain:
Proposition 5.1. With the above notations we have

A(a) = dΩ% <-> horn, d i m ^ Ωl (Y) = 1 .

Immediate from (l)-(8) above and (4.3). q.e.d.
Note that (5.1) is really quite surprising as it says that if horn, d i m ^ Ω%(X)

exceeds 1, then it is possible to detect this fact simply from the study of A(a).
Of course this "explains" why this was the case in the examples of the above
type we have previously constructed. From (4.6) and (4.1) we now obtain:

Theorem 5.2. The value of horn, d i m ^ A(a) is at most 1 iff the reduced
Thorn homomorphism

is a monomorphism.
Finally from (4.8) we obtain:
Corollary 5.3. With the above notations we have that the homological

dimension of A(a) is at most 1 iff Tor^f (Z, A(a)) = 0.
This is strikingly similar to the condition [6, Cor. 3.11] that Ω%(W) have

projective dimension at most 1, where W is a finite complex. There is also the
following closely related result which generalizes this.

Theorem 5.4. With the above notations we have that the following condi-
tions are equivalent:

( 1) horn, d i m ^ Ω%(Y) < t + 1,
( 2 ) horn. άimΩu A(a) < t,
( 3 ) T α r # (Z, A(a)) = 0 for all j > t,

( 4 ) TOT#(Z,Λ(α)) = 0,
for all positive integers t.
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Proof. The equivalence of (1) and (2) is a consequence of (4.1). For t = 1
the result then follows from (5.3). However we will not rely on this as we have
a simple argument for the general case.

As usual our basic tool is the cofibration

Y > X > S2k

g f

and the associated t/-bordism exact triangle

Ω%{Y) >

Ω%{S2k)

from which we obtain the exact sequence

0 -> Σ2kA(a) -> Ω%(S2k) -> M(a) -> 0 ,

0 -> M(a) —+ Ω%{Y) -* C(α) -> 0 ,

0 -H. C(α) ^ βg(Z) -—> Σ2kA{a) -» 0 ,

which define the β^-modules M(α) and C(a). As β^(52fe) is a free β^-module
the long exact sequence for Tor^f (Z, —) applied to the top exact sequence
gives an isomorphism

l f φ (Z, M(«)) ^ > T o r ^ (Z,

for all / > 0.

Now supporse that horn, d i m ^ Ω%(Y) < t. Then according to [6, Cor. 3.11]
we have

Tor£* (Z, βg(Y)) = 0 for all ί > t + 1 .

Let now / > t. Then the middle exact sequence above provides an isomorphism

* ? v (Z, C(α)) - ^ > TorJ?lf# (Z, M(a)) .

Finally we note that condition (6) above and [6, Prop. 3.3] imply that Ω%(X)
is a free β^-module. Therefore the last exact sequence above provides in a
similar way an isomorphism

# M (Z, Λ(α)) — Tor?fv (Z,
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Thus, to summarize, we have for any integer / > t — 1 an isomorphism

Tor# (Z, A(a)) s Tαr& t, (Z, Λ(α))

and hence an isomorphism

Tαr# (Z, A(a)) s Tor*f3s,* (Z, Λ(α))

for any nonnegative integer s . But recall that A(a) has finite projective dimen-
sion as an 42£-module [6, Prop. 5.1] and hence

for s large. Therefore

as desired, showing (1) —• (3).
To obtain the reverse implication note (3) —• (4) trivially, and we reason as

follows. From the first and last sequences above we have isomorphisms

ffM (Z, M(a)) gz Tαr# (Z, A(a)) ,

Tor^f (Z, C(α)) s Torf^,, (Z, ̂ ( α )) .

for all r, 5- > 0. Therefore the long exact sequence derived from the middle
exact sequence

> Tor£C (Z, MW) -> Tαrg (Z, βJ(y)) - , Torf5 (Z, C(α)

may be written

TαrJ?lf. (Z, ̂ (α)) -> Tor^ (Z, βj(Y)) - TαrJ?lf, (Z, ̂ ( α )) -

Put now j = t + 1 above and we find

and hence

Tor?ίM (Z, £fj(y» = 0 .

Therefore according to [6, Cor. 3.11] horn, dim^ Ω%(Y) < t + 1 as required.
Thus (4) —> (1) and the theorem is established.

Thus for the special complexes Y the homological dimension of Ω^{Y) may
be completely determined from studying properties of A(ά) akin to ones we
have already investigated for spaces.
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6. A relation to connective ^-theory

In the previous two section we have studied in some detail the homological
dimension of the complex bordism module of a restricted class of spaces, name-
ly, those spaces Y such that

( 1 ) Y is 2k — 2 connected,
( 2 ) π2k_x(Y) is finite cyclic,
( 3 ) Hi(Y; Z) is free abelian for i > 2k - 1.

We have found in (4.6) and (5.4) a satisfactory criteria for horn, d i m ^ Ω%(Y)
= 2. Just as these conditions are related (4.6), (5.2) to the monomorphy of
the Thorn map

η: Z®Ωu Ω%{Y) -* H*(J\ Z) ,

so is the condition horn. dimβ£ Ω%(Y) = 3 related to the monomorphy of the
reduced Thorn map

The demonstration of this fact will require some preliminary results on annihila-
tor ideals of spherical bordism classes.

We therefore suppose given a finite complex A and a spherical bordism class
γ € Ωξ(A). Represent γ by a map g: Sn —• A by passing to a suitable suspen-
sion of A if necessary. Thus [Sn, g] — γ€ Ω%(A).

Theorem 6.1. With the preceeding notations we have for each positive inte-
ger m that

is nilpotent, where mt denotes multiplication by t e Z\t\.
Proof. We refer the reader to the second proof of [6, Prop. 10.4] for a

detailed discussion of a very similar situation. As noted there it will clearly
suffice to show that

0 , m > 0 .

As usual we introduce the cofibration

Sn >A-^+B = A [Jge
n+1 ,

from which we obtain the exact sequences:

0 -> ΣnA(γ) -* Ω%(Sn) -> M(γ) -> 0 ,

0 -+ M(γ) -> Ω%{A) -* C(γ) -> 0 ,

0 _ C(γ) -> 5J(B) -> ΣnA(γ) -> 0 .



158 P. E. CONNER & LARRY SMITH

Recall that the Z graded version of the relation between Ω%( ) and K*( ) is
equivalent to [6, Prop. 10.4]

Tor«(Z[/,r 1 ], i?J(O) = 0 , m > 0

for any finite complex C. From the bottom exact sequence preceeding and the
long exact sequence for Tor (—, —) we therefore learn that for m > 0

Tor* (Z[ί, r*] , ΣnA(γ)) * Tor*,,. (Z[t, Γ1], C(r)) .

A similar argument applied to the middle exact sequence gives

T o r 5 M (Z[ί, r 1 ] , C(r)) ^ T o r ^ v (Z[ί, r 1 ] , M(r)) ,

and finally appealing to the top exact sequence we find

T o r 5 v (Z[/, r 1 ] , M(r)) s Tor^8 f φ (Z[ί, r 1 ] , J?M

Stringing these isomorphisms together then gives

Tαr& (Z[ί, r 1 ] , I M ( r ) ) ^ Tor^8 > # (Z[ί, r 1 ] , ί M

for any m > 0, and hence for any m > 0

r& (Z[ί, r% Σ»A(r)) s Tor^3y,* (Z[ί, r 1 ] , I M ( r »

for any / > 0. But by [6, Prop. 5.1] ΣnA(γ) has finite projective dimension and
hence

for large /', which yields the result.
Corollary 6.2. With the preceeding notations we have that the conditions
( 1 ) τor%ΛZ[t],A(γ)) = 0,m>q,

(2) Ύoτ%ΛZ,A(r)) = 0,m>q+ l ,
are equivalent for any q > 0.

Proof. Suppose that the second condition holds. Introduce the exact se-
quence of βg-modules

0 — z[t] • Z[t] _* Z -* 0 .
mt

Applying the functor Tor^f (—,A(γ)) then leads to the long exact sequence

ffM (Z, A{γ)) - ^ Tor^ (Z[t], A(γ)) - ^ > Tor^ (Z[t], A{γ))

from which we obtain
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mt: Tor* (Z[t]A(γ)) ^ | i s i s o f o r ^ > m + 1 ,
(is monic for r — m .

In view of (6.1) this yields (1). The reverse implication follows by reversing
the steps in the above argument.

We now arrive at the promised result relating the condition horn, d i m ^ Ω%(Y)
— 3 to the monomorphy of

We therefore revert to the situation described at the beginning of § 5 with
h\ S2k~ι —• Y a map representing a generator of the finite cyclic group π2k_ι{Y)
of the 2k — 2 connected finite complex Y whose integral homology groups are
free abelian in dimensions greater than 2k — 1.

Theorem 6.3. The value of horn, d i m ^ Ω%.(Y) is at most 3 // and if the
reduced Thorn homomorphism

is monic.
Proof. Suppose that horn, d i m ^ Ω%(Y) < 3. Then according to (4.1)

horn, dimmer A(a) < 2 and hence by (5.4)

#(,i4(α)) = 0, / > 2 .

Therefore by (6.2) we obtain

and the result follows from the k^-theoretic analog of [6, Th. 11.3](see the
remarks preceding [6, Th. 11.4]).

Conversely, if

η: Z[i\®Ωu Ω%(Y)

is monic, then as just noted

From the cofibration

Y—> x
8

We obtain as usual
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The first and last of these sequences yield isomorphisms 

and thus the middle exact sequence gives 

and hence 

and the result follows from [6, Prop. 10.51. 
Finally by analogy with (5.4) we obtain the following result whose proof is 

left the reader. 
Theorem. 6.4. With the above notations we have that the following condi- 

tions are equivalent : 
( 1 )  hom. dimQrO$(Y) 5 t + 2, 
( 2 )  hom. dimQyA(a) < t + 1, 
( 3 ) T o r 3  (Z[t], A(a)) = 0 for all j 2 t ,  
( 4 Tor? W I ,  A(a)) = 0 ,  

for all positive integers t .  
While it may seem surprising that a complex of the form Y can have a 

hom. dimQy O$(Y) = 3, this is indeed the case as is shown in Examples 1 and 
2 of $ 7 .  

7. A relation to e,, and the Todd character 

To illustrate the relation of hom. dimQr Q$( ) to more familiar invariants 
of algebraic topology let us consider the Adams [2]-Toda [20] invariant e,. 

Suppose that y E i~;,,-, is an element of the stable 2n - 1 stem with my = 0. 
Represent y by a map 

Let 

represent the map of degree m. Then the composite 
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52fe + 2 T O - l > S2k y S2k

g m

is null homotopic and so we may extend m to a map

f:S2k \Jge
2k+2n->S2k .

Let us write Y for S2k U g e
2k+2n and put X = C(f) = S2k Ό f cY. There is then

the cofibration

Y > s2k • X .
/ h

We see that X is a 3-cell complex and

H2k(X; Z) = Zm; H2k+2n+ι(X; Z) = Z, H^X; Z) = 0, otherwise .

If a e Ω2k(X) ^ Z m ^ H2k{X\ Z) is the generator, then A(a) may be identified
with the image of /*: Ώ%(Y) —> β^(52fc) by an isomorphism of degree 2&
(Lemma 4.1).

Now Ω%.(Y) has two generators, and one may be selected to be the inclusion
i: S2k -> Y while the other [M2(n+k), φ] e Ω%n+2k(Y) is characterized by the require-
ment that

be the generator1. Denote these generators by γ2k^ Ωξk(Y), γ2k+2n £ Ωξn

(note some choice had to be made for the second one). If f2k+2n & a n y other
choice of a generator for Ωξn+2k(Y), then

Since H*(Y Z) is free abelian, the reduced Thorn map

is a monomorphism [6, Lemma 3.1]. Therefore γ2k+2n — ϊf2k+2n must be decom-
posable, i.e.,

Ϊ2k+2n — ϊ 2k + 2n — \W U\Ϊ2k

Returning now to our cofibration we note that

f*hk = rnσ2k'' Ωξk(S2lc) ^ Z-σ2k ,

and that
1 We assume that a choice of orientation has been made for the cells of Y, which

imposes one on X, so we may speak of " t h e " generator.
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for unique elements [V2n], [V/2n] eA(a). Our previous discussion now shows
that

= ([V2n] - [V'2n])σ2k ,

and hence

[K2*] - [V'2n] 6 (m) .

Thus the class

is independent of the choice of generator for Ωξk+2n(Y) and is a cobordism e-
invariant of γ β π8

2n_λ. More precisely we have:
Theorem 7.1. WiίA ίΛ^ notations above we have

m

Proof. Let

aeH2k(Y; Z) ^ Z , beH2k+2n(Y; Z) ^ Z

be generators for the indicated cohomology groups. There is an f e /?(Γ) with

ch(ξ) = a + ec(g)b .

We also have

ch(f*(v - 1)) = ma ,

where 27 e K(S2k) is the canonical class. Let

r2w+2* = [ M 2 - 2 f e ^ ] 6 β f n + 2 , ( Γ )

be a generator. Then by the Riemann Roch theorem [3]

is a X-theory characteristic number of [M, ] and hence is an integer. By natu-
rality of ch

chφ'ξ = φ*chξ = φ*a + ec(g)φ*(b) .
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Therefore

<^*(a) Td" 1 [M], [Λf]> + <ec(g)φ*(b) Td" 1 [Ml [M]> € Z .

Now observe

deg b = 2n + 2k = dim M .

Thus

<ec(g)φ*{b) Td" 1 [M], [M]> = ^(g)<^*(6), [M]>

and by choice of [M, 0]

<^*(6), [M]> - 1 .

Thus

<0*(α) Td" 1 [M], [M]> = - ^ ( g ) 6 Q/Z .

But according to our discussion of characteristic numbers preceding (2.1) we
have

Td [V2n] = m(φ*(a) Td" 1 [M], [M]>

and therefore

Td [V2n]

m
= (φ*{ά) Td" 1 [M], [M]> = -ec{g) e Q/Z ,

which is the desired conclusion.
Theorem 7.2. With the notations preceding we have that horn, d i m ^ Ω%{X)

= 2 iff ec(g) Φ 0.
Proof. First note that

A(a) = (m, [V2n]) .

Thus according to (2.2) and (4.3) we learn that the homological dimension of
Ω%(X) is 1 iff Td [V2n]= 0 mod m. From (6.1) we have equivalence

Td [V2n] = 0 mod m ^ ec(g) = 0 e Q/Z .

Therefore we learn that

ec(g) = 0 -> horn, d i m ^ Ω%{X) = 1 ,

and

^(g) ^ 0 -> horn, dimxy flJ(X) > 1 .
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It therefore remains to show that the homological dimension of Ω%(X) cannot
exceed 2. To observe that X has a cell structure

X = S2k Όme2k+1 (Jge
2k+2n+1 ,

that is, the space X may be made as follows. Consider

g m

Since this composition is null homotopic we may choose a co-extension [19,

p. 13]

G:S2k+2n-^S2k Ume2k+ι

of g. The space X is then the same homotopy type as the mapping cone of G,
i.e.,

X = S2k Όme2k+ι UGe
2k+2n+1 .

Now clearly the homological dimension of Ω%{S2k U m e2k+1) is exactly 1. There-
fore according to [6, Th. 5.4] the homological dimensian of Ω%(X) cannot ex-
ceed 2. Combining this with our previous discussion we obtain the equivalences

ec(g) = 0 Ξ± horn, d i m ^ Ω%(X) = 1 ,

and

gc(g) Φθ<± horn, d i m ^ Ω%(X) = 2

as desired.
The preceding discussions of the invariant ec and the Todd genus can be put

more in the style of [20], [2, § 7] by introducing a natural transformation

th:Ω%{ )->#*( Q)

of Z2-graded homology theories which we will call the Todd character. Its defini-
tion depends on the duality between

H^A Q) and Horn (H*(A β ) , Q)

whenever A is a finite complex, and runs as follows. Let A be a finite complex
and identify H*(A Q) with Horn (H*(A Q), Q) by the natural map

p: H*(A Q) -> Horn (H*{A β ) , β )

given by
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pθc)(y) = <y,χ>: y € H*(A β ) , X € H # U 5 β )

Define

by

<^*(j) Td" 1 [M], [M]> 6 β .

(Note that if y = ch(ξ) for some ξ <= K(A), then the right hand side will actual-
ly be an integer by the RR theorem.)

The relation between the Todd character and the invariant ec may be seen
to be as follows. Suppose that γ € n*2n_x. Represent γ by a map

and form the cofibration

S** > A • S2n+2k :A = S2kUg e2n+2k .
f h

Then Ω%(A) is a free β^-module with two generators, one of which, γ2k, may
be chosen to be [52fc,/]. The other, γ2n+2k, may be taken to be any class with
Khn+zk = σ2n+2k, where σ2n+2k ε H2n+2k(S2n+2k) is the canonical generator. Let
aeH2n(A; Z) and b eH2n+2k(A; Z) be corresponding homology generators.
Then

The generator γ2n+2k is not unique of course, but may be altered by adding a
factor of the form [M2k]γ2n. Thus λ e Q is not an invariant of γ. But observe

th[M2k]γ2n = Td [M2fc]a .

Since Td [M2k] € Z, the residue class λεQ/Z becomes well defined (for a more
detailed discussion of the "same" phenomena for ec and ch, see [2, § 7]). We
leave to the reader to check that λ = ec(γ) € QjZ. The proof of (6.1) is now
readily obtained directly from (2.1), etc.

For a further study in the use and application of the Todd character we refer
the reader to [8].

8. Examples

Our objective in this section is to show how certain results from the preced-
ing discussions may be applied to construct some examples of a somewhat new
and different type than those we have considered previously [6], [7], [13].
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Example 1. Let ηεπ8^ Z2 and v € π% ̂  Z2 4 be elements of the stable stem
of Hopf invariant 1. (These then generate the indicated cyclic groups.) The
composition η o v lies in the 4-stem which is zero [19]. Thus we may choose
representative maps

such that the composition

is null homotopic. Hence we may obtain a coextension [19, p. 13]

of v and hence a space

X = S2k (Jve
2k+2 Ό-ve

2k+° .

Note that

X/S2k = S2k+2 ϋΣve
2k+6 .

Thus we see that

ίZ , i = 2Λ, 2k + 2, 2k + 6 ,

and that

, z ; —
10 , otherwise ,

H2k(X\ Z2) ^ > ffλ+2(Z; Z2) ^ > fffc+4(Z; Z2)

are isomorphisms. Now as 2η = 0 we may obtain a map

r : S 2 * U ^ 2 f c + 2 - > 5 2 f c

of degree 2 on the bottom sphere. The composition

then represents the Toda bracket {2, η, v} which lies in the 5-stem and hence
must be null homotopic as π% = 0 [19]. Thus we may extend τ to a map

τ: Z - » S 2 A :

of degree 2 on the bottom sphere.
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Let Y be the mapping cone of f. Then there is the cofibration

Note that

and

X > s t k • Y .
τ θ

Z 2 , i = 2k ,

Z , ί = 2k + 3, 2k + 7 ,

0 , otherwise ,

H2k(Y\ Z2) - ^ H2k+\Y; Z2) ^ > H2k+\Y Z2) ^ > fffc+7(Γ; Z2)

are isomorphisms.
Let r - [S2k, θ] 6 flS (Y), and b Φ 0 € #2fe(Y Z2). Then

5^6 = Sq2Sqλb φ 0 , S2βb = SqASq2Sqιb φ 0 .

Therefore according to (3.8)

where d2, d6 are decomposable elements of degree 2 and 6 respectively, all of
whose mod 2 Chern numbers vanish. From Milnor's work [10] it follows that

d2e(Z), J 6 €(2 , [F 2 ] ) .

Therefore

and hence the girth of A(γ) is at least 3. Inspection shows that

horn. dimΩu A(γ) > 2

and hence by (4.1) we learn

horn, d i m ^ flg(Y) > 3 .

The space Y is interesting because

despite the fact that the space V(2) (see [13]) does not exist for the prime 2, that
is, the attaching map
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χ: s2k+«->S2k (J2e
2k+ι \J-e2k+2

representing the top cell satisfies

[S2k+\λ] = [V«]γ.

This is in striking contrast (as perhaps it should be) with the odd primary situ-
ation where [V2p2~2]γ is not a spherical bordism class on the space F(l/2)
[6, §6].

The space Y seems to be the "simplest" example of a space whose complex
bordism module has projective dimension at least 3. Note that the Thorn map

is onto in dimension 2k and hits twice the generator in dimension 2k + 2 and
eight times the generator in dimension 2k + 6.

Example 2. The process which we employed in the previous example may be
continued one more time. We let σ € πs

7 = Z16 + Z3 + Zδ be the element of
order 16 with Hopf invariant one [19]. As before we may choose representa-
tive maps

such that the composite

C2fc + 4 V

 ) C2fc + 1 ^ > C2k

is null homotopic. Thus we may consider the composite

ff2fc + 12 ° > ^2fc + 5 V

 > £2k M ^2fc + 2

Assertion. π2k+u(S2k U, e2k+2) ^ Z 3 for k large.
Proo/. For k large enough we are in the stable range and we have that the

sequence

> π2k+12(S2k) - π2k+u(S2k U, e2k+2) - ^2fc+12(52fc+2) - τr2fc+u(52fc)

is exact and isomorphic to the exact sequence

π\2 -> π2k+12(S2k U ? e2fc+2) -> π s

1 0 - U π s

π .

According to [19, p. 189] we have

τrs

12 = 0 , πs

10 = Z2ημ + Z3βlιZ , πs

n = Z 8 ζ + Z9a'3t3 + Z7ah7
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and [19, Th. 14.1]

τfoμ = 4ζφO, ηo βlt3 = 0

and the result follows.
Thus for suitably large k the 2-component of π2k+u(S2k U v e2k+2) is zero. As

the composite

£2fc + 12 _ £ _ ^ £2*+ 5 _ J \ > S2k U ^ e2fc + 2

is an element of this 2-component we may conclude that this composite is null
homotopic. Hence we obtain a coextension

and we may form the complex

A = S2k U , e2k+2 U e2k+6 U 7 e2k + u ,

note that

Λ 4 U; Z) s | Z ' Z = 2 / : '

and that

4 U ; Z) s |
~~ lθ , otherwise ,

H2k(A Z2) i ff fe+2U Z2) Λ H2k+\A Z2) - ^ > ff fc+%4 Z2)

are iomorphisms.
Let now

be the map constructed in the previous example. Observe that the composite

lies in πs

13 = Z3 (for /: large) and has order a power of 2. Therefore this com-
posite is null homotopic and hence we may extend τ to a map

f: A-+S2k

of degree 2 on the bottom cell. Let now B be the cofibre of £ so we have the
coflbration
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A _ • 52A —^ B .
* θ

Note that

(Z2 , / = 2Λ ,

#*(#; Z) ̂  JZ , / = 2Λ + 3, 2Λ + 7, 2* + 15
lθ , otherwise ,

and

τj2kfτ>. Ύ \ ^ v t/2fc + i / D . ^ Λ ^ v τj2k + 3fτ>. y \
i 3 ^/J , Z/2^ > " l,A> , Z/2>; >• /7 ^i5 > -^2/

H2k+1%B; Z 2) <^- H2k+7(B; Z 2 )

are all isomorphisms.
Let λ = [S2k, θ] € Ωg(B) and a Φ 0 e H2k(Y; Z2). Then

Sφa = S^ί?1^ ^ 0 ,

S2&* = Sq'Sq2Sqιa φ 0 ,

53i8β = Sq'Sq'Sq'Sq'a φ 0 .

Therefore according to (3.3),

A(λ) 3 2, [F2] + d29 [F6] + d6, [F14] + d14 ,

where d2, d6, du are decomposable elements of degree 2, 6, and 14 respectively,
all of whose mod 2 Chern numbers vanish. From Milnor's work it follows that

d2 e (2), d6 e (2, [F2]), d14 e (2, [F 2], [F6]) .

Therefore

^ U ) = (2, [ 0 ] , [F 6], [F14])

and hence the girth of A(λ) is at least 3. Inspection shows that

horn. d i m ^ ^ U ) > 3 ,

and hence from (4.1) we learn

horn, d i m ^ Ω%(B) > 4 .
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We believe that the space B is by far the simplest space whose bordism module
has projective dimension at least 4.

Note that according to (6.3) the reduced Thorn map

cannot be a monomorphism. Therefore the spectral sequence [6, Th. 10.2]

E* -> k*(B) , E\tS = T α r # (ZW,

must be non-trivial, providing an example promised in the paragraph preceding
[6, §12].

As these examples exhaust the list of elements of Hopf invariant 1 in the
stable stems [1], [11] we will be unable to proceed further along these lines.

Example 3. Let p be a prime integer and denote by aί>p e πs

2p_3 an element
of the stable p-component whose mod p Hopf invariant is 1 [11], [18]. Fix a
finite set of distinct primes {p19 , pn} and let q — p1 pn. Represent each
ahPί by a map

φ t : S*k+i**-*-+ff* , i= 1, - ,n .

Observe that by choosing k large enough each of the compositions

may be assumed null homotopic. Let X be the mapping cone of

i.e.,

X = S2k U φl e2k+2^-2 U φ2 - \JΦn e2k+2^-2 .

Note that

; Z) = \Z > i = 2k> 2k + 2pi ~ 3 ' * * ' ' 2 k + 2Pn ~ 3 '; Z) = \Z > i

lO , ootherwise ,

and that

St = P1^. H2k(X', ZPi) -> IPW-XX; ZPt)

is an isomorphism for / = 1, , n.

Since as noted previously q annihilates each of the φt we may obtain an ex-
tension
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ψ:X^S2k

of the map

q:S2k-*S2k

of degree q. Let Y be the mapping cone of ψ so that we have a cofibration
sequence

X > £2* > Y

Denote by γzΩζk(Y) the bordism class [S2k, θ]. Then from (2.4) we obtain

A(γ) = (q, - i [ F 2 ^ " 2 ] + dl9 , - i [F2*"2] + dn) ,
^ Pi P* /

where di^Ω2li_2 is a decomposable class all of whose Chern numbers are
divisible by q/Pi, i = 1, , n. We may assume that {p1? , pn} is arranged
so that Pι<L p2< - < Pn Then assuming « > 1 we have p1 < #/px < #.
Therefore in order for all the mod q Chern numbers of dx to vanish we must
have according to [10] that d^iq). More generally we find that

d, e f ^ , [ ^ - 2 L •, [V**-*-2]) , i > 1 ,

and thus inductively that

A(γ) = (q, - i [F 2 ^" 2 ] , , - i
^ Pi Pn

We note also that

/Zβ , i = 2k ,

HiiY; Z) = \z, i = 2k + 2pό - 1 / = 1, . , n ,

lθ , otherwise .

The space Y is closely related to and slightly generalizes the spaces 7(1/2) of

[13].

Example 4. Let a e H2(CP(n) Z) be the canonical class. Then for a suita-

ble integer d(ή) there exists a map

of degree d(ή) on the bottom cell, i.e., with
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U*i = d{ή)a

for large k. For small values of n one may compute with the aid of [19] that

d{\) = 1, d(2) = 2, dθ) = 24, d{4) = 24 , etc.

Note that according to our computations in § 1 of the value of St on a 2-dimen-
sional class we will have for any prime p

Sia = a*ieIPi(eP(n);Zp)9

and hence

whenever pι < n.
Let now D(n) be the mapping cone of fn so that we have a cofibration se-

quence

Σ21c+2CP(n) • S2k —-> D(ή) .
in h

Let γn = [S2k, h] € Ωg(D(ή)). Then according to (2.4) we find

] + d2M_2 , 2* - 2 < 2n ,

4] + dM, , ̂ -[^(3^-i)] + d3,2(3y_υ , 3̂  - 1 < n ,

+ dP i l p.2 > ., ^ . [ F 2 ^ ] + </Pfl(pl_υ , p' - 1 < n ,

where p is the largest prime no greater than n, and the d's are decomposables
with all Chern numbers divisible by din).

For example:

A(γ2) = (2, [V2]),A(h) = (24,12[F2], 6[F4], 12[F6] + d2t%) , etc.

(The arguments needed to eliminate the decomposable tails are similar to that
in Example 3 and left to the reader.)

The computation of d(ή) and of a lower bound for the projective dimension
of A(γn) would be of considerable interest. Note that from (4.3) we learn that
we certainly have horn, dim^ Ω%(D(ή)) > 1.
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