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1. Introduction

A space curve given by a C3 immersion X: Sι —• E3 of the unit circle S1

into a Euclidean 3-space E3 is said to be third order nondegenerate if it has
nonvanishing torsion, and of course nonvanishing curvature. Examples of
such curves are coiled springs which are joined into closed curves; some
telephone cords are made this way. Two such space curves are third order
nondegenerately homo topic if they are connected by a 1-parameter family of
such curves. (See Feldman [1] for the general definition of a pth order non-
degenerate map between manifolds of arbitrary dimensions.)

Theorem 1. There are four third order nondegenerate homotopy classes of
space curves.

Let eγ be the unit tangent vector of the curve X, respecting the orientation
when that is prescribed. The spherical image or tangential indicatrix is given
by the map ex\ Sι —> S2, where S2 is the unit 2-sphere in E3. It is easy to
check that because the torsion of the curve X never vanishes the geodesic
curvature of its spherical image is never zero. Furthermore, because the curve
is closed, the spherical image must cross every great circle, or what is the
same, contain the center of S2 in the interior of its convex hull; this observa-
tion about closed space curves is due to C. Loewner (see Fenchel [3]). Thus
a 1-parameter family of space curves each with nonzero torsion gives rise to
a 1-parameter family of spherical curves, each of which has nonzero geodesic
curvature and which contains the center of S2 in its convex hull.

In [5] we have classified second order nondegenerate homotopy classes of
curves on the unit 2-sphere; a second order nondegenerate curve on S2 being
one such that the geodesic curvature is not zero. Two nondegenerate curves
are nondegenerately homotopic if and only if they are regularly homotopic,
their geodesic curvatures have the same sign and they are either both simple
or both have double points. Nondegenerate simple curves must lie in a hemi-
sphere (see Fenchel [3]), but among the classes of curves with double points
it is possible to find nondegenerate curves which cross every great circle.
Representatives of the four second order nondegenerate homotopy classes of
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curves with double points are pictured in Fig. 1. The pictures show both
hemispheres as seen under parallel projection from above. All four curves
follow along on two intersecting small circles except where they make loops.
The four curves have the property that they cross every great circle as may be
verified by noting that each curve crosses its antipodal image. Curves 1 and 2
are regularly homotopic with geodesic curvature of opposite sign. Curves 3
and 4 represent the other regular homotopy class again with geodesic curva-
ture of both signs.

Fig. 1
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The remark of Loewner that the spherical image of a closed space curve
crosses every great circle has a converse due to Fenchel [3], namely, every
spherical curve which crosses every great circle is the spherical image of some
closed space curve. Thus there exist space curves whose spherical images are
the four curves in Fig. 1. These space curves have nonzero torsion because
their spherical images have nonzero geodesic curvature, and they are in dis-
tinct third order nondegenerate homotopy classes because their spherical
images are in distinct second order nondegenerate homotopy classes.

The proof of Theorem 1 relies on an integration theorem of E. Feldman [2].
Suppose Xo, Xx: S1 —> Ez are two closed space curves whose respective spherical
images are eo,eλ. If eo,eι are connected by a homotopy et, which for each t
crosses every great circle, then there exists a homotopy of closed space curves
Xt joining Xo and Xλ such that the spherical image of Xt is et. Feldman uses
this theorem to classify space curves under second order nondegerate homotopy,
and shows that two space curves with nonzero curvature are second order non-
degenerately homotopic if and only if their spherical images are regularly
homotopic. There are two regular homotopy classes of curves on S2 (see Smale
[6]), and thus there are two second order nondegenerate homotopy classes of
space curves.

Theorem 2. Two curves on S2 with nonzero geodesic curvature which cross
every great circle are homotopic through such curves if and only if they are
regularly homotopic and their geodesic curvatures have the same sign. In parti-
cular, any such curve is homotopic through such curves to one of the curves of
Fig. 1.

Theorem 1 is now a consequence of Theorem 2, the integration theorem
of Feldman, and the previous discussion.

Corollary 3. Two space curves with nonzero torsion, which are second
order nondegenerately homotopic and whose torsion have the same sign, are
third order nondegenerately homotopic.

Proof. Let XQ, Xλ be the two curves, and e0, ex their spherical images. Then
e0, ex cross every great circle and have nonzero geodesic curvature. Further-
more, since XQ, Xλ are second order nondegenerately homotopic, e0, ex are reg-
ularly homotopic. Finally, since Xo, Xλ have torsion of the same sign, eQ, ex have
geodesic curvature of the same sign. By Theorem 2, e0 and eγ are each homo-
topic by a homotopy of spherical curves which cross every great circle and have
nonzero geodesic curvature. Thus by Feldman's integration theorem the curves
XQ, Xx are third order nondegenerately homotopic.

We may use the langage of screws to give representatives of the four third
order nondegenerate homotopy classes. Bend a machine screw (which does
not taper) around in a circle and join it to itself. Then the four classes are
determined by the right or left handedness of the screw and whether there are
an even or odd number of threads.
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2. Proof of Theorem 2

We begin by recalling some techniques used in [5].

Lemma 4. Let X^Xλ: [0,1] —> E2 be two oriented arcs with positive cur-
vature. Suppose that the arcs are identical in neighborhoods of their endpoints
and that the total turning of the tangent for both arcs is the same. Then the
two arcs are nondegenerately homotopic by a homotopy which leaves the arcs
fixed on neighborhoods of their endpoints.

This is contained in Theorem 5 of [5]. The basic idea is to choose para-
metrizations of Xo, Xx so that the tangents are parallel at corresponding
points, and then to use a linear homotopy.

Lemma 5. Let X: [0, 1] —> S2 be a nondegenerate arc on the unit 2-sphere.
Suppose that X(0), X(l) are in the southern hemisphere and that X meets the
equator transversally at two points. Then X is nondegenerately homotopic to
an arc Y, which agrees with X in neighborhoods of the end points and lies
entirely in the lower hemisphere. Furthermore, the neighborhoods of the end-
points of X are never moved during the homotopy.

This lemma enables us to "pull arcs out of a hemisphere". The proof is
contained in [5] in several parts. There are two cases to be considered. Either
the arc X is "troublesome" or it is not. If the arc is not troublesome, then the
proof is straightforward enough (see Lemma 8 of [5]). If the arc is trouble-
some, then the arc must first be pushed up over the top of the hemisphere
(see Lemma 9 of [5]) forming two simple arcs. These are then individually
pulled into the lower hemisphere. The main tool for doing second order non-
degenerate homotopies on the unit 2-sphere in [5] is central projection of a
hemispherical arc and then an application of Lemma 4. This tool we use here
also.

We shall need to glue together arcs in such a way that the curvature is
continuous. We may do this by using spiral arcs (see Guggenheimer [4, pp.
48-52]), and shall not spell out the details but speak merely of "turning a
corner by adding a loop" or of "flattening a curve locally" without much
ado.

To continue with the proof of Theorem 2 let X: Sι —> S2 be an immersion
with nonzero geodesic curvature which crosses every great circle. Using rather
standard arguments we may assume that X has only finitely many transversal
double points and no triple points. Let us fix an orientation of S1. Then X(t0, tλ)
will mean the image of the open arc from t0 to tx in the sense of this orientation.
By an oriented pair of points we mean the pair of points (t091^ and the arc from
t0 to tγ. We may choose a pair of double points (tQ, tj so that the arc X(t0, tj is
simple this is done by induction and the fact that there are only finitely many
double points. Since a simple arc X(t0, ίx) lies in a hemisphere (see Fenchel [3]),
it may be projected centrally to a simple nondegenerate arc in the plane, which
either bounds a convex body or else a heart shaped region. The next two para-
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graphs show that we may assume the plane arc bounds a convex body rather
than a heart shaped region.

Consider the tangent plane of S2 at a point of the curve X(t). The tangent
line at the point of X(t) divides the tangent plane into two half spaces. Since
the curve is nondegenerate, the projection of X" onto the tangent plane will
be independent of X'(t) and therefore determines a half plane which we call
the preferred side of the tangent. Oriented pairs of double points (t0, ίx) are then
of two kinds. If the tangent vector X\t^) lies to the preferred side of the tan-
gent line at t09 we say (t09 tλ) is a double point of the first kind, otherwise of the
second kind. The preferred side of a nondegenerate plane curve is analogously
defined, and central projection respects the preference of sides. If X(t0, tj is of
the second kind it projects into the boundary of a convex body, and if X(t0, tλ)
is of the first kind it projects into the boundary of a heart shaped region. Thus
we need only to show that we may always find a simple arc of the second kind.

Suppose the simple arc X(tQ, tx) is of the first kind. Let X(a, β), a < t0 < tx < β,
be contained in the hemisphere of projection, X(a) and X(β) lying on the
boundary. Since central projection of this hemisphere maps the simple arc
X(t0, tx) to a simple closed curve which contains X(tx + ε) for small ε, there
must be a first point t2,tι<t2< β, such that X(t2) lies on the simple arc
X(t0, tλ), and therefore there is a point t3, t0 <t3 < t19 such that X(t3) — X{t2).
If X(t3, t2) is simple, then it is a simple arc of the second kind. If X(t3, t2) is
not simple, let ί4, t3 < ί4 < t2, be a point such that X(t3, ί4) is simple and
X(h, t4 + ε) is not. Thus there is a point t2 < t5 < ί4 such that X(tδ, t4) is simple
and X(t5) = X(Q. Suppose X(t) = X(t') for tQ<t<t'< tA. Since t' < t, < t2,

we must then have tx < t, so that t3 < t < f < ί4. But X(t3, tA) is simple; so
no such t, t' exist. Hence we see that X(tQ + ε, ί4) is simple for any ε > 0. If
X(tδ, ί4) is of the first kind, then X(t5, ί4) would contain X(t5 — ε) in its interior
and X(t0 + ε) outside this would contradict the fact that X(t0 + ε, ί4) is simple.
Thus X(t5, t4) must be a simple arc of the second kind. Hence in every case we
have found a simple arc of the second kind; call this arc X{t^t^)9X{Q =

In the next several paragraphs we show that we may deform the arc X(t0, ίr)
to a simple arc, which projects to a convex curve and furthermore has the
property that for an appropriately small ε > 0, X(t0 — ε, tλ + ε) crosses every
great circle. We do this by deforming X(t0, tλ) so that it travels along on its
osculating small circles Bo, Bγ at X(tQ) = X(t^) except of course where it leaves
the small circles to turn the corner at the further end. We begin this construc-
tion in the next paragraph by "preparing" the double point, namely, we de-
form the curve X so that in a neighborhood of X(tQ) = X(t^) the osculating
circles are constant of arbitrarily small geodesic curvature.

Since X(t0, tx) projects centrally to the boundary of a convex figure, it lies to
one side of its tangent great circles. Let Co, Cλ be the tangent great circles of X
at t0, tλ respectively, and Bo, Bγ be the small circles which are translates of Co, Cγ



508 JOHN A. LITTLE

Fig. 2

a distance δ each in the preferred direction of the respective tangent lines at
X(Q == X(tλ). δ is chosen so small that the arcs of X through the double point
cross transversally Bo, Bγ as shown in Fig. 2. Define Y to be equal to X except
that on the arcs through the double point the curve follows along the small
circles Bo, Bγ as indicated by Fig. 2. Here we must use spiral arcs to make the
geodesic curvature continuous at the intersections of X and Bo, Bγ. Fig. 3 shows
the central projection of a neighborhood of the double point X (t0) = X(tλ). By
use of Lemma 4 we may nondegenerately deform X to Y by a deformation
which does not move X except near the double point. Furthermore the maxi-
mum distance any point is moved tends to 0 as δ —> 0. Thus by choosing δ
sufficiently small we may assure that at each time during the homotopy the
curves cross every great circle. Let us now rename the curve Y by the letter X.
Then we may assume that X has a simple arc X(t0, tj with double point X(t0)
= XitJ which projects to the boundary of a convex body such that at the inter-
section the curve is following on small circles of arbitrarily small geodesic
curvature.

Choose ε > 0 so that the spherical triangle Δ bounded by C09 Cx and the
shorter arc of the great circle from X(tQ — ε) to X(tx + ε) has the property that
any great circle meeting an interior point meets either the arc X(t0 — ε,t0) or
the arc X(t19 tx + ε). Choose p* e J , and let p be the antipodal point of p*.

Let W be the wedge bounded by Co, CΊ which contains X(t09 tλ), and V be
the portion of W bounded by Bo, Bl9 the osculating circles at the double point.
Now p € W. Thus using the previously described flattening process we may
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Fig. 3

assume that Bo, Bλ are arbitrarily near Co, Cλ and hence that p € V. Let Y be
the curve equal to X outside the arc X(tQ, tλ) and from t0 to tx it traverses BQ

and returns along Bx making a turn at the farther end where Bo, Bx meet. The
arc Y(tQ9 tx) lies in W and therefore in a hemisphere. When projected centrally
Y(t0, tλ) contains X(t0, tλ) and also p in its convex hull. This is because Y(tQ, tλ)
traverses the boundary of V except where it makes a small turn, and V con-
tains X(t0, tλ) and p.

Now Y(t0, tx), X(t0, tj and p are all contained in a hemisphere H. Let h: H
—> R2 be central projection, and define a homotopy Ys from X to Y as follows:
Ys(t) = X(t) if t is not on the oriented arc (ί0, O YM = Y.CO = ^( ί 0 ) , and
Yβ(ί) = h~\ψs(t)) for ί on the oriented arc (ί0, ίx), where ?̂s is a homotopy from
ho X to ho Y given by Lemma 4, and is the linear homotopy between ho X
and ho Y when they are parametrized to make the tangents parallel at corre-
sponding points.

Ys is a homotopy from X to Y through curves whose geodesic curvature
never vanishes. Since h o Z(ί0, ^) is inside the convex hull of φs(tQ, tλ) for any s,
any line which crosses h o Z(ί0, ίt) must cross φs(t0, tj, and therefore any great
circle which crosses X(t0, tx) must cross Ys(t0, tλ) for any s. In order to see that
Ys crosses every great circle for each s suppose that for some s0, YSo failed to
cross some great circle C. Since X crosses C, and X(t) = YSo(t) for ί $ (*„, t\),
X must cross C at points in (t0, tλ). Thus C crosses the arc X(t0, tj this implies
that C crosses YS00, ίx) and hence Ys.
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Let K be the great circle through X(t0), p, p*, and C be any other great circle.
C meets K say at a point y on the half circle of K joining p to p* containing
X(t0). If y is on the shorter arc of K from X(tQ) to p, then y is inside of the
simple loop Y(tQ, tj and so C crosses the arc Y(tQ, tj. If y is on the shorter arc
of K from p* to X(t0), then y is in the spherical triangle Δ. Hence C must cross
either the arc Y(tQ — ε, Q or the arc Y(t19 tλ + ε), so that every great circle
crosses the arc Y(t0 — ε, tx + ε).

Rename the curve Y by the letter X.
The remainder of the proof in outline is as follows. We choose hemispheres

H19 H2 with 3Hί = 3H2 and pull all the arcs cut from X by H2 into H19 except
we do not move the arc X(t0 — ε, tx + ε). This requires Lemma 5. The curve
crosses every great circle at each time because X(t0 — ε,t1 + ε) was not moved
and that arc itself crosses every great circle. The curve is now in the position
of Fig. 4a), and the remaining deformations are illustrated in Figs. 4b), 5 and 6.

Let L be the axis of the great circle K, and H be the hemisphere containing
the wedge W such that dH contains X(t0) and the poles of K. Since L lies in
the plane of 3H, rotate H about L through a small amount to obtain a new
hemisphere H19 which contains X(t0) and p* in the interior and cuts off a simple
arc A of X(t0, t^ near p. We may even assume that the spherical triangle A
lies in Hλ.

Now by a slight homotopy of X we may assume that X meets dHι only finite-
ly many times. Let H2 be the other hemisphere with dH2 = dHλ. Recall A =
H2 Π X(tQ, tj, so X meets //2 in finitely many arcs A,A19 ,An. Suppose
the arc At = X(ti9 ti+1). Because X(t0 — ε, t. + ε) Π # 2 = A Φ Ai9 note first that
(tί9 ti+1) is disjoint from (t0 — ε,tλ + ε). Furthermore, we may choose ε1 > 0
so that (ti — e19 ti+1 + εx) is disjoint from (ί0 — ε, tx + ε). Let Λt be the homo-
topy given by Lemma 5, which pulls the arc At out of H2 and into Hλ. Since
ht is a second order nondegenerate homotopy which is constant outside of
(ft — e19 ti+ί + 6i), Aί does not move X(tQ — e9t1 + ε) and hence has the property
that for each t it crosses every great circle. In this way by finitely many applica-
tions of Lemma 5 we may assume that only the arc A lies in the hemisphere
H2.

The arc X(tQ — ε, tx + ε) meets Hι along two intersecting small circles BQ

and B19 and the point p* lies in the spherical triangle A Let B2 be a small
circle through X(t0 — ε) and X(tλ + ε) whose plane is parallel to the line of
intersection of the planes of Bo and Bλ. Thus B0,BuB2 possess a common
parallel line /, and B2 is not a great circle because it may be checked that p and
p* lie to one side of B2. Fig. 4a) is the projection of Hλ centrally onto the
plane. Fig. 4b) is an arc which is identical with X along BQ and Bx and then
goes along B2 as indicated. The corners are turned as indicated, and a little
loop is attached and turned enough times so that the total turning of the
tangent in 4a) and 4b) is the same. By Lemma 4 there is a nondegenerate
homotopy, leaving portions of the arc along BQ and Bλ fixed, which moves the
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Fig. 4

one arc to the other. On the sphere we therefore have a homotopy which leaves
X(t0 — ε, tλ + ε) fixed, and hence each intermediate curve crosses every great
circle. The curve now looks like γ1 of Fig. 5. We have added in the figure a
small circle B3, whose plane is perpendicular to the common parallel line to
B09B19B29 as shown in Fig. 5.

Construct curves γ29 γZ9 γA of Fig. 5 by following along the small circles Bo,
Bί9B2,Bz as indicated. The arrow indicates that the loop is traversed many
times. We construct γ2 so that the indicated loop is traversed as many times as
γλ. In γ3 and γA the indicated loop is traversed one more time than for γλ. The
view of S2 is the same for each of the curves γi9 namely, we view S2 along the
line / parallel to the planes of B0,Bί,B2 under parallel projection. Let Z/έ be
the great circles parallel to the small circles Bi9 H£ the hemisphere bounded
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Northern
Hemisphere

Fig. 5

by Hi which contains Bt, and Hϊ the other hemisphere, / = 0, 1, 2, 3. To de-
form from γ1 to γA we successively centrally project from the hemispheres //2

+,
# 3

+ , H% and use Lemma 4. Note that going from γλ to γ3 the arc X(t0 — e, tλ + e)
never moves. But this arc itself crosses every great circle so that the homotopy
from γ1 to γ2 and γ2 to yz are of the required type. In going from γ3 to γ4 note
that the complimentary arc to X(t0, tj, which we may call X(t1910), is never
moved. But this arc also crosses every great circle as may be seen by checking
that the convex hull of X(t1910) contains the center of S2. Consequently any
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spherical curve which crosses every great circle and has nonzero geodesic cur-
vature may be deformed through such curves to a curve lying on two small
circles with loops attached, as in γA of Fig. 5.

It remains now to show how to cancel the extra loops as indicated by the
arrow in Fig. 5. To describe the remaining homotopies we will construct curves
Yi as shown in Fig. 6, / = 1, , 6. For this purpose let C3 be a great circle,
C3

+ and C3~ its hemispheres. Let Co, C19 C2 be three great circles which meet at
the poles of C3 in equal angles, and BQ, B19 B2 be three small circles parallel to
CQ,C19 C2 chosen to form equilateral spherical triangles in both CJ and C3"~ with
the poles of C3 as center. Let C\ be the hemisphere bounded by Ct which con-
tains Bi9 i = 0, 1, 2, and B3, B, be small circles parallel to C3, B3 C Q , B4 C C3",
chosen so that B3, BA pass through the vertices of the equilateral triangles. The
curves yi are constructed by following along the small circles2?i? z = 0, ,4,
turning corners as indicated in Fig. 6. To pass from γA of Fig. 5 to γι of Fig. 6
we may have to open the planes of the small circles Bo, Bλ of Fig. 5, but this
is surely a homotopy of the required type. Let us next assume that the loop
indicated by the arrow in γA of Fig. 5 is traversed twice. We may therefore show
the loop as two distinct loops each traversed once as in γ1 of Fig. 6. If the loop
indicated by the arrow in γA of Fig. 5 is traversed more than twice, we may
attach an extra loop to γx of Fig. 6 and allow it to be carried along through out
the homotopy from γλ to γ6. Each of the curves γt has nonzero geodesic cur-
vature, and they all intersect their antipodal image transversally and hence
cross every great circle. To perform the homotopies we project centrally from
a hemisphere and apply Lemma 4. In going from yi to γi+ι, i — 1, , 5, we
use respectively hemispheres C3

+, C-[, C2

+, C%, C3~. It is possible to go from γA

to γ6 by a simple application of Lemma 4. We have included γ5 just to make it
easier to show that all the intermediate curves cross every great circle. To
show that each intermediate curve of the homotopy from yi to γi+1 crosses every
great circle we will display a point *, which is unmoved during the homotopy
and such that the intermediate curves cross their antipodal images at that point.
For the homotopies from γx to γi we may let * be the midpoint of the arc
Bx (Ί C3~, for the homotopy from γ4 to γ5 let * be the midpoint of the arc
B2 Π C3~, and for the homotopy from γ5 to γQ let * be the midpoint of the arc
J54 Π C2

+. Then one verifies that in each case * has the above properties so that
all the intermediate curves cross every great circle. We see that γ6 follows along
on 2-small circles turning corners with small loops traversed once. By opening
the planes of the small circles Bλ and B4 so that they make an angle of 60° and
then rotating S2 we may deform γ6 into γλ without the two loops. Thus we have
cancelled two of the loops of γx.

By continuing the circuit of going from γ1 to γ6 and back to γλ we kill off
two loops at a time achieving eventually one of four curves, namely, curves,
like 7Ί of Fig. 6, which follow along on two intersecting small circles with either
no loop or one loop attached and with either orientation. One checks that these
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Fig. 6



NONDEGENERATE HOMOTOPIES 515

four curves may be distinguished by the sign of their geodsic curvature and

their regular homotopy class. Thus two curves, which cross every great circle,

have geodesic curvature of the same sign and lie in the same regular homotopy

class, may be brought to the same curve by a nondegenerate homotopy with

intermediate curves crossing every great circle. Consequently, the two curves

themselves are homotopic by such a homotopy. This completes the proof of

Theorem 2.
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