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HYPERSURFACES OF ODD-DIMENSIONAL SPHERES

DAVID E. BLAIR, GERALD D. LUDDEN & KENTARO YANO

A structure similar to an almost complex structure was shown in [2] to exist
on a hypersurface of an almost contact manifold or a submanifold of codimen-
sion 2 of an almost complex space. This structure on a manifold M has been
studied in [1], [5], [6] from two points of view, namely, that the structure ex-
ists on M because M is a submanifold of some ambient space, and also that
the structure exists intrinsically on M.

The odd-dimensional sphere $?"*! has an almost contact structure which is
naturally induced from the Kaehler structure of Euclidean space E****. The
purpose of this paper is to study complete hypersurfaces immersed in $***'. In
§ 3 it is shown that if the Weingarten map of the immersion and f commute then
the hypersurface is a sphere whose radius is determined. Here, f is a tensor field
of type (1,1) on the hypersurface, which is part of the induced structure. That
the hypersurface satisfying this condition is a sphere follows from the results in
[6], however a new proof is given here for completeness. In § 4 it is shown that
if the Weingarten map K of the immersion and f satisfy fK + Kf = 0, and the
hypersurface is of constant scalar curvature, then it is a great sphere or S x S”.

1. Hypersurfaces of a sphere

Let $*»*! be the natural sphere of dimension 2z + 1 in Euclidean (2n + 2)-
space E*"*%, Let (¢, &, 7, g) be the normal, almost contact metric structure (see
[4]) induced on $***! by the Kaehler structure on E***2, That is to say, ¢ is a
tensor field of type (1,1), £ is a vector field, 5 is a 1-form and g is a Riemannian
metric on S$***! satisfying

$#=-1+7Q¢,
=0, o =0,
(1) =1,
86X, ¢7) + (@) = eX, 1),
¢, 9] + dp®& =0,
where [g, ¢] is the Nijenhuis torsion tensor of ¢, and X and ¥ are arbitrary
vector fields on $*7*1.
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Suppose z: M*" — §*»*! is an embedding of the orientable manifold M?** in
§*»*1, The tensor G defined on M?* by

(2) G(X,Y) = g(ny X, 7,.Y)

is a Riemannian metric on M**, where r, denotes the differential of the
embedding z. If C is a field of unit normals defined on M?*, and ¥ is the
Riemannian connection of g, then the Gauss and Weingarten equations can be
written as

(3) Voxm Y = 7, (73Y) + k(X,Y)C,
V.5C = n(KX) .

Then F is the Riemannian connection of G, k is a symmetric tensor of type
(0,2) on M**, and G(KX,Y) = k(X, Y). Furthermore, if we set

o X = m fX + v(X)C , E=mnU+ 2C,

(4)
¢C = —BV , w(X) = 7z, X) ,

then f is a tensor field of type (1,1), U and V' are vector fields, 4 and v are
1-forms, and 2 is a function satisfying

f=—I+u®U+vQV,
Uof=av, vVof=—2u,
(5) fU=—av, V=2U,
ulU)=vV)=1-— 2, u(V) =vU) =0,
G{X,1Y) = GX,Y) — u(X)u(Y) — v(X)v(Y) .

It was shown in [2] that the following relations hold
FNY = GX,Y)U — u(Y)X — k(X,Y)V + v(Y)KX ,
VU= —fX — AKX ,

VPV = —2X + fKX ,
VA =vX) + k(U, X) .

(6)

2. Casel: Kf—fK=0

We will prove the following theorem.

Theorem 1. If M?" is an orientable submanifold of S**! satisfying Kf=fK,
and 1+ constant, K being the Weingarten map of the embedding, and f and
2 being defined in (4), then M*" is a sphere of radius 1/ V1 + of, where a is
some constant determined by the embedding.
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Proof. We have that 0 = G((Kf — fK)U, U), so that

0 = G(KfU,U) — G(fKU, U)
= —IG(V,KU) + G(KU, fU)
= —AG(V,KU) — 21G(KU, V) .

Therefore we see 2 = 0 or k(U, V) = 0. By continuity, since 4 is non-constant,
(7) kU, V)=0.

In a similar fashion we obtain

(8) k(U,U) = kWV,V).

Now fKU + 2KV = 0, so that

0= —KU + w(KU)U + v(KU)V + iAKfV
= —KU + w(KU)U + 2KU ,

and hence

(1 — ®»KU = kU, U .
Similarly, we obtain

(1 — ®KV = kU, D)V .

At points where 1 = +1, we have KU = U for a« = k(U, U)/(1 — 2%, which
implies

VxK)U + K(—fX — 2KX) =Vya-U + a(—fX — AKX) .

The Codazzi equation for an embedding gives that (F ;K)(Y) = (FyK)(X) so
that we have

2G(KfZ,X) = Vyo)u(Z) — (V zo)w(X) + 2aG(fZ, X) .
If we set Z equal to U, then
—20u(X) = Fya)(1 — ) — Pyu(X) — 22u(X) ,
so that V yor and u(X) are proportional. Therefore Kf=af, and hence
—KX 4+ u(X)KU + v(X)KV = a(—X + u(X)U + v(X)V) .

Thus KX = aX for all X, and by the Codazzi equation « is constant. From
(6) we have that F 34 = v(X) + au(X), and therefore that
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Vel x4 — dA(VyX) = Vy(v(X) + au(X)) — (v(FyX) + au(VyX))

= —2GX,Y) + aG(X,fY) — aG(X,fY) — a2G(KY, X)
=~ + AGKX, Y) .

By the following lemma of Obata [3], M?*" is sphere of radius (1 + a?) "2

Lemma. A complete connected Riemannian manifold M admits a non-
trivial solution 2 of ViV yA — dAVyX) = —kiG(X,Y) for some real number
k > 0 if and only if M is globally isometric to a Euclidean sphere of radius
k=12,

Corollary. Let M*" be an orientable submanifold of S***! with 2 # constant.
Then Kf — fK = 0 if and only if M*® is a totally umbillical submanifold of S****.

Remark. In [5], there was introduced the idea of normality of an (f, G, u,
v, A)-structure, which is of a manifold M*" with tensors satisfying (5). This
condition is

14+ du®@U +dv®V =0.

We have the following proposition.

Proposition. Let M*™ be a hypersurface of S**' with 1 + constant. The
, G, u, v, 2)-structure on M** is normal if and only if fK — Kf = 0.

Proof. Let

SX,Y) =[£,fIX,Y) + du(X,Y)U + dv(X,Y)V .
Using (5) it can be shown that
S(X,Y) = v(Y)Kf — fK)X — v(X)(Kf — fK)Y ,

and hence the ¢“if”’ part of the proposition is proved. On the other hand, as-
sume S(X,Y)=0 for all X and Y and let PX = (Kf — fK)X. Then

v(V)PX = v(X)PV .
Also, it can be shown that
G(PX,Y) = G(X, PY)
so that
v(X)G(PV,Y) = v»(Y)G(PV, X) ,
that is to say,
G(PV,Y) = av(Y)

for some «. Thus we have that
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v(V)G(PX,Y) = v(X)G(PV,Y) = av(X)v(Y) ,

but since the trace of P is 0, we have « = 0 and thus P = O.

3. Casell: Kf+fK=0

In this section we prove the following theorem.

Theorem 2. If M*" is a complete orientable submanifold of S***! with con-
stant scalar curvature satisfying Kf + fK = 0 and 2 + constant, where K is
the Weingarten map of the embedding, and f and 2 are defined in (4), then M*"
is a natural sphere $** or M** = §™ X S".

Proof. We have that

0 = (Kf + fKDU = —AKV + KU ,
0 = (Kf + fK)V = AKU + KV ,

so that
0= —2V,V) + GGUKU,V)
= —2k(V,V) — G(KU, V)
= —k(V,V) — 2k(U,U) ,
and hence
(9) kU, U) + k(V,V) =0

by continuity. Also

0= — KV + fKU
= KU + (—KU + u(KU)U + »(KU)V) ,

that is,

10 (1 — KU = kU, 0)U + kU, V)V,
and similarly

an (1 — DKV = k(U, V)U + k(V, V)V .
At points where 2 # =+ 1, write equations (10) and (11) as

(10) KU =aU + pV ,
(11) KV = 8U — aV .

If we apply V' » to equation (10"), use equation (6) for V,U and F,V, and use
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the fact that (FxK)Y = (FyK)X because of the Codazzi equation, then we find
that

Vxa)u(Y) — Pya)u(X) + (7 xfv(Y)

(12)
- (VY‘B)v(X) - 2C(F(X, Y) = 0 >

where F(X,Y) = G(fX, Y). Setting X = U and Y = V and using the fact that
A # constant we see that

From equations (12) and (13) we obtain
(14) A = 2Wya = Vya)u(Y) + Vye)v(Y) ,

1s) A = 2Wyp=Fypu) + Typu¥) ,
16) 21 — DFX,Y) = w)v(X) — vNuX)NVya — Vyp) .

However, since the rank of f is >2n — 2, equation (16) implies that « = 0 and
VyB = 0if n # 1. Thus equation (12) becomes

(12)) T xHo(Y) = FrPo(X) ,
or
(12) (1 — BB = TrproX) .

Applying V' y to equation (11’), and using the fact that « = 0 and the Codazzi
equation, we find that

A7) TxpuX) — Fypu(X) — 28F(X,Y) — 2F(KX,KY) =0 .

Setting Y = U and using (12”) we have that 232 = 221 — VB so that 8 =
constant implies that 3 = O or § = 1.
Replace Y by fY in equation (17) and use equation (12”) to obtain
2(1 — BHF(KX, KfY)
= Ty Xu(fY) —v(fVu(X)) — 28(1 — HFX,fY) ,

that is,

—2(1 — ®D[G(KX,KY) — u(KX)u(KY) — v(KX)v(KY)]
= 7y plavX)u(Y) + uX)u(Y)]
— 281 — DIGX, Y) — uX)u(¥) — vX ()],

from which follows
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(18) Q-—DK=F—-pPpuR®U +v®V) + (1 — DI .

From (18) and a previous remark we see that if 8 = constant then K? = 0
or K? = I. If K* = 0, then K = 0 since K is symmetric. In this case, M?" is a
totally geodisic submanifold of $°"*! and hence M** = §?». In the case where
K? = I, K gives an almost product structure on M?**.

We have

k(X, 1Y) = G(KfX, fY) = G(Kf’X, Y)
= —GKX,Y) + u(X)G(KU,Y) + v(X)G(KV,Y)
= —k(X,Y) + puX)v(Y) + v(Xu(Y)) .

Now since k(U, U) + k(V, V) = 0 and G(U, V) = 0, the last equation can be
used to show that the trace of K is O, that is,. M*" is a minimal hypersurface
(note that this last conclusion holds whether or not 8 = constant). In the case
where K? = I, tr K = O implies that the global distributions on M?** given by
3K + D) and $(I — K) are both of dimension 7.

Now to find the scalar curvature of M>* by the Gauss equation, let R and
R denote the curvature tensors of g and G respectively. Then the Gauss equa-
tion is

R(n'*X, Y, w2, W)

1
1 =R(X,Y,Z, W) — (k(Y, Dk(X, W) — k(Y, Wk(X, 2)) .

Using (18) and the fact that $***' is of constant curvature equal to 1, for
1 — 22 #= 0 we have
R(X,Y) = (2n — Dg(X,Y)

— e, v + E=Laucou) + vawmy]

where R is the Ricci tensor of G. From this it follows that the scalar curvature
of M* is equal to 2n(2n — 1) — p(2n — 2) — 2/, and therefore that g =
constant. ,

If we apply V; to equation (19) and use the second Bianchi identity and
tr K = 0, then we obtain that

VKY + VvK)X =0,

and thus ;K = 0 by the Codazzi equation.
Therefore, if = 1, the almost product structure K is decomposable. Hence
by completeness, M** is a product M* X M*. Now we have, by equation

(17)’
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G({f(K = DX, (K + DY)

(20) = F(KX,KY) + F(X,Y) + (F(KX,Y) + F(X,KY)) =0,

and, by equation (6),

Vil x2 — dAV y(X)) = Vy(v(X) + k(U, X)) — Wy X) + k(U,VyX))
= V)X + k(PyU,X) = -22G(X,Y) — 2G({fY,KX) .

From equation (20) we see that if X and Y are both in the distribution I + K
or I — K, then g(fY, KX) = 0 so that

ViV x2 — dilyX) = —2iG(X,Y) .
Thus, M” and M" are both spheres of radius 1/4/ 2 by the lemma of Obata.
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