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TWO CLASSES OF CLASSICAL
SUBGROUPS OF Diff (M)

J. LESLIE

Introduction

Sometime ago in a letter J. Eells asked us whether it was possible to give a
differential structure to the automorphisms of a G-structure similar to the one
for the group of diffeomorphisms. At this time the author does not know
whether it is possible to give a local modelling of the group of automorphisms
Dy(M) of an arbitrary G-structure on a compact manifold M, although many
of the formal properties of a manifold are satisfied for D;(M). The purpose of
this note is to give a manifold structure to D;(M) in two cases:

(i) when the Lie algebra of G is closed under matrix multiplication, and (ii)
it contains the case when G is elliptic in the sense of Spencer [11].

The author takes this occasion to thank D. C. Spencer for his encourage-
ment during the preparation of this note.

1. Analysis in topological vector spaces

All topological vector spaces appearing in this paper are Hausdorff com-
plete locally convex topological vector spaces over the real numbers R;
continuous functions will be called C° functions when convenient.

Definition 1. Let U C E, V C F be open sets in topological vector spaces
E and F, and suppose that G is a third topological vector space. A function
f:U X V — Gis n times differentiable at (§,7) e U X V in the first (resp.
second) variable, if f is n — 1 times differentiable in the first (resp. second)
variable at (§,7), and there exists a continuous symmetric n-multilinear func-
tion

@*“f/ox™) (&, pD:EX -+ X E>G
\_—7\/
n-times
(resp. @*f/ay™)(&,p) :F X -+« X F — G)

n-times
such that
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F(v) = f(§ + v,p) — f(&,9) — @f[ox)(&, D) — ---
— (1/nD)@"f/ox™)(&, (v, - - -, V)
(resp. G(v) = (&, 9 + v) — @f /AN, P@) — - --
— (1 /n)@"f/ay™)(&, P(v, - - -, V)

has the property that

o(t,v) = F) /", t#0,
=0, t=20
(resp. y(t,v) = G(tw) /1", t # 0,7(¢,v) = 0,1 = 0)

is continuous on R X E (resp. R X F) at (0,v), v ¢ E (resp. v e F).
Throughout this paper when we speak of derivative and differentiability it
will be with respect to the above definition. Setting F = {0} we find the
definition of an n times differentiable function f : U — G. It is obvious how
to generalize the above definition to any number of variables.
Definition. f is said to be C™ in the first (resp. 2nd) variable if f is n times
differentiable at each (x,y)e U X V, and

o™f/ox™ (resp. o™f/dy™)
defines a continuous function

UXVXEX - --+- XE->G
(tesp. U XV XFX --- XF—GQG) for0O<m<n.

The following four propositions are easy to prove, but useful to state.

Proposition 1. Let E and F be Banach spaces, and U an open subset of
E. If {: U — F is C" in the above sense, then f is C*~! in the Fréchet sense.

Proof. Note that C° in the above sense and C° in the Fréchet sense are the
same, namely, continuous. By definition C* in the above sense implies C° in
the Fréchet sense. Suppose it has been established that C* in the above sense
implies C*~! in the Fréchet sense for k < n, and suppose f : U — F is C" in the
above sense. As Df: U X E X --- X E — F is continuous at x, ¢ U, it follows
that there exist an open neighborhood U, of x, in U and a positive constant K
so that |[D*f(U,)| < K, where D*f(x) in L}(E, F) is the map induced by fixing
x from D*f. Thus for y in U, we have

ID"_lf()’)(al, ct an) - D"—lf(xo)(ab ) an)|
<ﬁmm+w—mw—w%ww%mn

< flanf(xo F+ 1y — x), (y — xp), ay, - ‘,an_1)|dt

<Ky = Xollaa] - -|an ] -
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Proposition 2. Let E and G be complete locally convex topological vector
spaces, and suppose that F is a closed subspace of G and that U is an open
subset of E. A functionf: U — FisC*if and only if iof is C", where i : F - G
is the canonical injection.

Our proof makes use of the following

Lemma. Let E and F be topological vector spaces, and suppose U C E be
an open convex subset. If f: U - F is C',and D'f : U X EX --- X E—F is
C* in the first variable, then f is C*.

Proof. Let A, ,(x,a;, -+, Py, -+ -, B,) be the symmetrization of

_(_"*'_S)L(aS/axs)an(x,al, s B BY) -

G+ Dir!
Now
0 =f(x + th) — f(x) — Df(x,th) — --- — (1/(r — DD f(x,th, - - -, th)
_ % f "Drf(x + tth, th, - - -, thyde
= f(x + th) — f(x) — Df(x,th) — --- — (1/(r — D)D" f(x,th, - - -, th)
_ % f IDf(x, th, - - -, th) + (3/0X)D}(x, th, - - -, th, tzh)
oo+ Y G ODrf(x th, - - - th, toh, - - -, toh)
s — D!
¥ sl_' f @ 9x)D"f(x + octh, th, - - -, th, tch, - - -, teh)daldt |
e = f(x + th) — f(x) — Df(x,th) — --- — — 1 __Dri(fx, th, . .-, th)

r—1n!
— Y GlaoDfx, thy - th) — -
rl2
— L o Drf(x, th, - - -, th)
rls!

1
rls!

f ' J' \0*0x)D"f(x + octh, th, - - -, th, tzh, - - -, tzhydadz .
0 0

If we subtract the last expression divided by #*¢ from

(£ + th) — f0) — Ag(x, th) — - — L'AO,T(x, th, - -, th)
r!

_#*I—Al,r(x,t}h"';th)_ v 1

r+ D! T gy e R Y,
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we obtain

N l[ﬁ@vaxwﬂx, th L th)

- *}T(aS/axs)fo(x + gcth, th - - -, th, tch, - - -,trh)]dadr/t’”
Sir!

— L@ e + octh by - Bty - th)]dodt
sSir!

= ¢(t, x, h) .

¢ is a continuous function so that ¢(0, x, #) = 0.

Corollary. f:U — F is C*** if and only if f is C" and D"f(x, ey, - - -, t,) 1S
C? in the first variable.

Definition. Let {B;};., be a sequence of Banach spaces so that

(i) B,, is a subspace of B, for the underlying vector space structure,

(i) the injection ki*':B;,, — B, induces a continuous function {B },<;<.

is called a Banach chain where B, = ( B, is considered to have the inverse
>0

limit topology.

Proposition 3. Let {B}} and {B%} be Banach chains. Suppose U C B, is an
open set, and f: U — B2 is a function so that for every positive integer r there
exist a strictly increasing sequence of positive integers k, a monotonically in-
creasing positive integral valued function «.(k), and a collection of open sets
Ui, C By so that U C U, N B'. If f extends to a C" function f, ,: U, , —
B, then f is a C> function.

The proof of the above proposition follows from the definitions as does

Proposition 4. Let E and G be complete locally convex topological vector
spaces and U C E be open, and suppose F is a closed subspace of G. Then
fisC*if and only if iof ..U — G is C*, where i . F — G is the canonical injec-
tion.

2. The automorphisms of two classes of G-structures

We recall that Diff (M), D(M), D,(M), and 2,(M) are respectively the
group of diffeomorphisms with the C> topology, the connected component of
the indentity in Diff (M), the group of C™ diffeomorphisms of M, and the
vector space of C"~! right invariant vactor fields on D,(M), and [5, p. 267]
that the tangent space at fe Diff (M) can be represented by 2.(M) =
{a:M — TM|zoa = f}. An admissible chart at fe Diff (M) can be given as
follows: From [5], 3¢ > O such that setting



SUBGROUPS OF DIFF(M) 431
S, ={aec2,M)||a|, <t where || isthe C' norm}

and defining e(a)(x) = exp, (a(x)) where exp, is the Riemannian exponential
we obtain a chart at f. Multiplication and inversion defiine smooth maps.

It is now useful to put some properties of the classical subgroups of Diff (M)
in our terminology. Let C=(E) be the space of sections of a locally trivial fiber
bundle n : E — M, where M is compact.

Proposition 1. C=(E) can be given the structure of a smooth C* manifold
in such a way that the tangent space of C*(E) at s ¢ C*(E) can be represented

by the nuclear space of smooth sections of TF(E) 2P M with the C= topology.

Using Palais’ notion of a bundle spray (see [9]) this proposition can be
proved by the same methods used in [5] to show that Diff(M) admits a
smooth manifold structure. Hereafter when C=(E) is considered as a manifold
it will be with respect to this structure.

Proposition 2. Suppose z,: E, — M and r,: E,— M, where M is a smooth
compact manifold, are smooth fiber bundles. If f : E, — E, is a bundle homo-
morphism over M, then f, : C*(E,) — C~(E,) is a smooth function.

The following is immediate from the definitions.

Proposition 3. Let E=M X M L, M be projection on the first factor,

and J, 2", M be the fiber space of r jets with projection on the source. Then
the jet extension map j,: C*(E) — y,(M) = C>(J,) is smooth.

Designate by p, the fiber space of invertible r-jets of smooth endomorphisms
of M. p, is an open submanifold of J, so that «, | x, is a principal fibration.

Definition. Let 7 : E — M be an arbitrary smooth locally trivial fibration.
A Lie differential operator of order r on Diff (M) is a function D = f, o j,,
where j, : Diff (M) — 7, is the canonical map, and f:y, — E, is a smooth
morphisms of fiber bundles over M; so that

(i) D Y(D(e)) = G is a subgroup of Diff (M),

(ii) D(gh) = D(h) for ge G.

When D : Diff (M) — C=(E) is a Lie differential operator, D '(D(e)) is
called a classical subgroup of Dift (M). Note that a Lie differential operator
defines a smooth function D : Diff (M) — C=(E).

Proposition 4. Let D '(D(e)) = G be a classical subgroup of Dift (M),
suppose exp : 2(M) — Dift (M) is the Lie exponential, and let g =
(g D(M)| T,D(R,(8)) = O for all h e Diff (M), where R, is induced by right
multiplication by h}. Then exp (tX) € G for every t if and only if X e g.

Proof. Suppose exp (¢X) € G for all ¢. Then

T,D(R,X) — (%)t=OD(exp tX)h) =0,

since D is constant on Gh.
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Now for X ¢ g set f(£) = D(exp (tX)), so that
f,(t) == Texp(tX)D(X(exp (tX)) = Texp(tX)D(Rexp(tX)X) = 0 .

Thus f() = f(0) = D(e) and f(¢) € G.

Proposition 5. Under the hypotheses of Proposition 9, g is a Lie subalgebra
of 9(M).

Proof. Since g is obviously a vector space, we need only to show that g is
closed under the bracket operation for vector fields. Let X, Y ¢ g, and suppose
¢, generates X (i.e., T,_op, = X) and ¢, generates Y. Then we have

T,D(R[X. Y]) = T,Dlim - (R,X — Ry(ad $,)))
= lim T, D0 o 1) — Too kDG )}

_lim %{TH,D(h) — T,_,D(h)}
~0.

Hence [X,Y]eg. q.e.d.

¢ is called the Lie algebra of G.

A subgroup of the full linear group GL(n) will be called locally convex when
it is locally convex for the canonical vector space structure on M(n).

Proposition 6. Let G be a Lie subgroup of GL(n). If its Lie algebra g C
M(n) is closed under matrix multiplication, then G is a locally convex open
subset of 1 + g.

Theorem. Let M be a compact smooth manifold, without boundary, of
dimension n, and let G be a subgroup of GL(n) whose Lie algebra is closed
under matrix multiplication. Suppose the group of the tangent bundle of M
can be reduced to G (i.e., M admits a G-structure). Then the automorphisms
of the G-structure Dz(M) admits a manifold structure locally diffeomorphic to
its tangent space at a point, and f : U— Dy(M) is smooth if and only if iof: U
— Dift (M) is smooth, where i:Dy,M) — Diff (M) is the canonical homo-
morphism.

Proof. Choose a G connection on M, and let exp; : TM — M be the ex-
ponential map associated with this G-structure. &xp, : 2(M) — F(M, M) given
by €XPg (a)(x) = €XPg o a(x) is such that there exists a real number ¢ >0 so
that €Xp |S,(0) is a diffeomorphism onto an open neighborhood of the identity
in Diff (M).

Cover M by normal coordinate neighborhoods {U,} with respect to the given
G-connection, and consider X in the Lie algebra ¢ of D;(M). We shall prove
that €xpg (X) € Do(M) for |X|, < t. Locally with respect to the normal co-
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ordinate €Xp, (X)(x) can be written as x + X, for ¢ sufficiently small. Suppose
8; = exp, (tX). Then we have

D, &P (X)(x, ) = D expg o DD, _g(x, &)
= Dexpg o D,_D,g,(x,) = D exp o g(x, a)

where g(x, a) = (x, @, X, y(@)), 7 being in the Lie algebra of G. Thus

D.t (é-}?f)G (X))(xs CY) = (x + X:ua + gz(a)) s

where g, is in the Lie algebra of G. For X sufficiently C! small, g, is small
and thus « — « + g,(a) € G.

Now suppose (D,g)(x,a) = (g(x), h(e)) where he G and ge Diff (M);
h e GL(n) is given by the connection on M. Now €xp;* (g)(x) = (x, g(x) — x).

Consider h,(x) = x + #(g(x) — x) so that D h,(x,ax) = (h,(x), @ + tr(a))
where 7 is in the Lie algebra of G. Thus Dk, (x, «) = (h,(x), g(«)) where g € G,
and H(¢) = h, is a smooth arc in Diff (M) so that H(—1, 1) C D;(M). Hence
D, H = {x — (x,8x)) — x}e T.Do(M).

Similarly, expg:{X-g|lgeDs;M), Xeg, and |X| <1} - Ds(M) maps
diffeomorphically onto a neighborhood of g. By the same procedure as in [5]
one obtains that D;(M) is a manifold where multiplication defines a smooth
function and g — g ! is smooth.

The final statement of the theorem follows from Proposition 2, § 1.

Corollary (see [12]). The automorphisms of a multifoliate structure on a
compact manifold satisfy the conclusions of the above theorem.

Definition 1. A chain of Hilbert spaces {H},.;c., is a chain of Banach
spaces where the H; are Hilbertable spaces.

It is classical that a nuclear space can be given as the H_ in a chain of
Hilbert spaces.

In the category of chains of Hilbert spaces as in the category of chains of
Banach spaces (see [6]), a mapping f: U — H%, U C H% being open, is said
to be C” when there exists a sequence of integers k — oo such that f extends
to C” mappings f, : U, — H3;, where U, C H}, is open and U = H., N U,.
Proposition 3 of § 1 states that C” in the category of Banach or Hilbert chains
is a stronger notion than C7 in the category of nuclear spaces in terms of
Definition 1, § 1.

We shall now review the Ebin-Omori notion of inverse limit Hilbert mani-
folds as applied to the group of diffeomorphisms.

Definition 2. A sequence of C~ Hilbert manifolds {X,} is called an inverse
limit Hilbert system (or an I.L.H. system) when

(i) X,..CX,

(ii) there is a Hilbert chain {H,} such that for x ¢ X, there exist charts
at x:
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o,:U, - X, U, C H, being open.

An I.L.H. system {X,} is called an inverse limit Hilbert system of groups
(or an I.L.H.G. system) when X, is a subgroup of X, and multiplication and
inversion define smooth maps in the category of Banach chains.

Now let M be a compact smooth (C~) manifold, and #: E — M be a Rie-
mannian vector bundle over M. For an integer s > 0, let H*(E) be the com-
pletion of j(C=(E)) in the norm involving the integral of the inner product in
J¥(E), and set C*(E) equal to the space of sections of E of class C*. Then by
the Sobolev theorems one has canonically

H*¢+\(E) C C*E) C H¥E) ,

where n = dim (M). Similarly, when M and N are manifolds and s >n/2 + 1,
it makes sense to talk of an H® map from M to N by looking at the mapping
locally. So let H'(M,N) be the space of H*® maps from M to N for s >
dimM/2 + 1, and set DS(M) = {H*(M,M) N D,(M)} for S$ > n/2 + 1.

By the same construction as on p. 433 one may show that D*(M) is a
smooth Hilbert manifold modelled on H*(TM). Since D_(M) is an inverse
limit Banach group (see [10]), it follows from the Sobolev theorems that D_ (M)
is an inverse limit Hilbert group.

In [8] Omori proved

Theorem 2. Let M be a compact manifold, and D : C*(TM) — C>(E) be
a linear differential operator of order l. Then there exists a vector bundle over
D3(M), & — D3(M) with fiber at g e DS(M)H?*(E) o g so that D defines a vector
bundle morphism

D
TD'!' ——

l”sﬂ l’rs
is+l

Ds+t $ Ds

with D(aog) = D(a) o g, where a ¢ H**'(TM) and g e D**Y(M).

Definition. A linear differential operator of order I, D : C*(E,) — C=(E,),
is called closed when D extends to maps D*: H**(E)) — H*(E,) with closed
range.

Theorem 3. Let G be a classical subgroup of Diff (M). If its Lie algebra g
is the kernel of a closed linear differential operator d : C*(TM) — C=(E), then
G contains a closed normal subgroup H., and exp (g) € H..,, where {H_} is a sub-
L.L.H.G. of {Ds(M)} with H; a closed submanifold of {D(M)}.

Proof. Let K be the complement of d,,,(H**'(TM)) in H*(E). By means
of Theorem 2 and Proposition 6 [4, p. 45] we obtain that Ker d,,) =
Ker(d,,, ®idg): U X H*'(TM @ K — U X H(E)) is a closed sub-bundle
of TD**'(M), so there exists a connected subgroup H,,,, which is also a C*
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manifold, with tangent space at the identity = g,,, = the closure of g in
Hs*Y(TM) (see [6]). From the construction it hence follows that g = N g,.

Now let D : Dift (M) — C=(&) be the non-linear differential operator of order
k which defines G = D~'(D(e)). Then D extends to smooth D, : D***(M) —
Hs(§) (see [9, p. 67]). It is easy to see that H,,, C D;!(D(e)) and that the
arc component of D;',(D(e)) C H,,,; thus H,, , is normal in D;}.(D(e)).
H,,, is locally closed in D***(M) and hence closed being a topological subgroup
of D***¥(M).

Remark 1. When TD,,,: TD***(M) — TH*(§) are surjective, the D, 4
are submersions, D;},(D(e)) are submanifolds of D**¥(M), and G itself may
be regarded as an I.L.H.G. In this case a mapping f: U — G, U being open
in some vector space, is C* if and only if f: U — H, is C™ for all s.

Remark 2. The differential structures of H., and G are locally the same
in some sense due to the fact that if U is a convex open set of a topological
vector space, and f: U — G is continuous with x, e U, then f(U) - f(x,) '€ H...
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