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TWO CLASSES OF CLASSICAL
SUBGROUPS OF Diff(M)

J. LESLIE

Introduction

Sometime ago in a letter J. Eells asked us whether it was possible to give a
differential structure to the automorphisms of a G-structure similar to the one
for the group of diffeomorphisms. At this time the author does not know
whether it is possible to give a local modelling of the group of automorphisms
DG(M) of an arbitrary G-structure on a compact manifold M, although many
of the formal properties of a manifold are satisfied for DG(M). The purpose of
this note is to give a manifold structure to DG(M) in two cases:

(i) when the Lie algebra of G is closed under matrix multiplication, and (ii)
it contains the case when G is elliptic in the sense of Spencer [11].

The author takes this occasion to thank D. C. Spencer for his encourage-
ment during the preparation of this note.

1. Analysis in topological vector spaces

All topological vector spaces appearing in this paper are Hausdorff com-
plete locally convex topological vector spaces over the real numbers R;
continuous functions will be called C° functions when convenient.

Definition 1. Let U C E, F c F b e open sets in topological vector spaces
E and F, and suppose that G is a third topological vector space. A function
/: U X F ^ G i s n times differentiate at (ξ, η) e U x V in the first (resp.
second) variable, if / is w — 1 times differentiate in the first (resp. second)
variable at (ξ,η), and there exists a continuous symmetric ^-multilinear func-
tion

(duf/dxn)(ξ,,): £ χ . . . Y^E -+ G

n-times

( r e s p . (dnf/dyn)(ξ, η): F x . . . x F - > G )

w-times

such that
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F(V) = f(ξ + V,η)- f(ξ, η) - (df/dx)(ξ, η)(v)

-ainl)(β»f/dx»

(resp. G(v) = f(ξ, η + v) - (df/dy)(ξ, η)(v) -

has the property that

φ(t,v) = F(tv)/tn , tφQ ,

=0, * = 0

(resp. r ( ί , v) = G(tv)/t\ t φ 0, r (ί , v) = 0, ί = 0)

is continuous on R x E (resp. i? x F) at (0, v), v e E (resp. veF).
Throughout this paper when we speak of derivative and differentiability it

will be with respect to the above definition. Setting F = {0} we find the
definition of an n times differentiate function / : 1/ —> G. It is obvious how
to generalize the above definition to any number of variables.

Definition. / is said to be Cn in the first (resp. 2nd) variable if / is n times
differentiable at each (x, y) e U X V, and

dmf/dxm (resp. dmf/dym)

defines a continuous function

U X V X E x . . . x E-.G

(resp. UχVχFχ--χF->G) for 0 < m < n .

The following four propositions are easy to prove, but useful to state.
Proposition 1. Let E and F be Banach spaces, and U an open subset of

E. If f : U —> F is Cn in the above sense, then f is C71'1 in the Frechet sense.
Proof. Note that C° in the above sense and C° in the Frechet sense are the

same, namely, continuous. By definition C1 in the above sense implies C° in
the Frechet sense. Suppose it has been established that Ck in the above sense
implies Ck"1 in the Frechet sense for k < n, and suppose / : U —> F is Cn in the
above sense. As Df : U X E X X E —> F is continuous at x0 e U, it follows
that there exist an open neighborhood Uo of x0 in U and a positive constant K
so that \Dnf(U0)\ < K, where Dnf(x) in Lf(E, F) is the map induced by fixing
x from Dnf. Thus for j in Uo we have

, • • - , « „ ) - D^KXoXcx,, , an)\

j)Dnf(xQ + t(y - x0), (y - xQ), al9 , an_λ)dt\
0

j)Dnf(x0 + t(y - x0), (y - x0), au , an_λ) | dt
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Proposition 2. Let E and G be complete locally convex topological vector
spaces, and suppose that F is a closed subspace of G and that U is an open
subset of E. A function f : U —> F is Cn if and only if i o / is Cn, where i:F-+G
is the canonical injection.

Our proof makes use of the following
Lemma. Let E and F be topological vector spaces, and suppose U C E be

an open convex subset. If f : U —> F is Cr, and Drf :U X E X ••• X E -> F is
Cs in the first variable, then f is Cr+S.

Proof. Let As>r(x, aλ, , as, β19 , βr) be the symmetrization of

{S -f- ϊ) IΠ

Now

0 = fix + th) - f(x) - Df(x, th) - -" - (I/O - 1) \)Dr~ιf(x, th, - , th)

1 Γ1

— Drf(x + τth, th,'", th)dτ
r\ J

0

= / ( * + th) - f{x) - Dfix, th) - . . . - ( I / O - 1) D D - 1 / ^ , ί/*, , th)

Prfix, th,'", th) + id/dx)Drfix, th,'", th, tτh)

+ + ids'ιldxs-ι)Drfix, th,'", th, tτh, - -, tτh)
is - 1)!

+ - 1 - [\dsjdxs)Drfix + στth, th, - -, th, tτh, •-, tτh)dσ]dt ,
s\ J

0

th) - fix) - Dfix, th)- . . . - _ — l — ~ D r ~ \ f x , th,"', th)
0 - 1 ) !

id/dx)Drfix,th,'-,th)

o

r!2

1
r\s\

- — — f 1 Γ 1 (3 ί /3Λ')β r /(JC + στth, th, - -, th, tτh, --, tτh)dσdτ .
rlsl J J

0 0

If we subtract the last expression divided by tr+s from

{£(JC + th) - fix) - AQΛix, th) - . . . - \AQtrix, th, - -, th)
r\

-Ahrix, th, - ,th) — . . — As>rix, th, - -, th)}/tr+s,
( r + Ό !
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we obtain

1

- -^—(ds/dxs)Drf(x + στth, th, •, th, tτh, , tτh)\dσdτ/tr+s

s\r\ J

s\r\

φ(t,x,h) .

+ στth, h, - ,h,th, , thλ
J

dσdτ

ψ is a continuous function so that 0(0, x, h) = 0.
Corollary. / : U -> F is Cr+S if and only if f is Cr and Drf(x, a19 , <xr) is

Cs in the first variable.

Definition. Let {B^t^ be a sequence of Banach spaces so that
(i) Bί+ι is a" subspace of Bt for the underlying vector space structure,
(ii) the injection k\+1: Bί+ί —• Bt induces a continuous function {Bi}0<i<oo

is called a Banach chain where B^ = f] Bt is considered to have the inverse
i>0

limit topology.

Proposition 3. Let [B]} and {Bl} be Banach chains. Suppose U C B\, is an
open set, and f : U —> Bt is a function so that for every positive integer r there
exist a strictly increasing sequence of positive integers k, a monotonically in-
creasing positive integral valued function ar(k), and a collection of open sets
E/fc./C B\ so that U C UktT Π B\ If f extends to a Cr function fk>r: Ukt7. ->
B2

a(k), then f is a C°° function.
The proof of the above proposition follows from the definitions as does
Proposition 4. Let E and G be complete locally convex topological vector

spaces and U C E be open, and suppose F is a closed subspace of G. Then
f is Cn if and only if iof:tU-+G is Cn, where i: F —> G is the canonical injec-
tion.

2. The automorphisms of two classes of G-structures

We necall that Diff (M), D{M), Dn(M), and Qjn(M) are respectively the
group of diffeomorphisms with the C°° topology, the connected component of
the indentity in Diff(M), the group of Cn diffeomorphisms of M, and the
vector space of Cn~ι right invariant vactor fields on Dn(M), and [5, p. 267]
that the tangent space at / β Diff (M) can be represented by 2f(JM) =
{a : M —• TM\τ°a — /}. An admissible chart at /e Diff (M) can be given as
follows: From [5], 3/ > 0 such that setting
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St = {ae Qtjitf)\\a\x<t where lα^ is the O norm}

and defining e{q)(x) = exp r (a(x)) where exρ r is the Riemannian exponential
we obtain a chart at /. Multiplication and inversion defiine smooth maps.

It is now useful to put some properties of the classical subgroups of Diff (M)
in our terminology. Let C°°(E) be the space of sections of a locally trivial fiber
bundle π : E —» M, where M is compact.

Proposition 1. C°°(E) can be given the structure of a smooth C°° manifold
in such a way that the tangent space of C°°(E) at s e C°°(E) can be represented

7ΓoT)

by the nuclear space of smooth sections of TF(E) > M with the C°° topology.
Using Palais' notion of a bundle spray (see [9]) this proposition can be

proved by the same methods used in [5] to show that Difϊ(M) admits a
smooth manifold structure. Hereafter when C°°(E) is considered as a manifold
it will be with respect to this structure.

Proposition 2. Suppose πλ: £χ —> M and π2: E2 —> M, where M is a smooth
compact manifold, are smooth fiber bundles. If f : E1 —» E2 is a bundle homo-
morphism over M, then f^ : C°°(Ej) —> C°°(E2) is a smooth function.

The following is immediate from the definitions.

Proposition 3. Let E — M x M — ^ M be projection on the first factor,

and Jr —r-+ M be the fiber space of r jets with projection on the source. Then
the jet extension map j r : C^iE) —• γr{M) = C°°(/r) is smooth.

Designate by μr the fiber space of invertible r-jets of smooth endomorphisms
of M. μr is an open submanifold of Jr so that ar \ μr is a principal fibration.

Definition. Let π : E —> M be an arbitrary smooth locally trivial fibration.
A Lie differential operator of order r on Diff (M) is a function D = f^ o j r 9

where j r : Difϊ (M) —> γr is the canonical map, and / : γr —> E2 is a smooth
morphisms of fiber bundles over M so that

(i) D-\D{e)) = G is a subgroup of Diff(M),
(ii) D(gh) = D(h) for geG.
When D : Diff (M) -> C°°(E) is a Lie differential operator, D"\D(e)) is

called a classical subgroup of Difϊ(M). Note that a Lie differential operator
defines a smooth function D : Diff (M) —* C°°(E).

Proposition 4. Let D~\D(e)) = G be a classical subgroup of Diff (M),
suppose exp : Sf(M) —> Diff (M) is the Lie exponential, and let g —
{gε@(M) I ThD(Rh(g)) = 0 /or α// h € Diff (M), where Rh is induced by right
multiplication by h). Then exp (tX) e G for every t if and only if X e g.

Proof. Suppose exp (tX) e G for all /. Then

ThD(RhX) = ( A ) D(exp (tX)h) = 0 ,
\ d t / ί = o

since D is constant on Gh.
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Now for X € g set /(*) = D(eχp (tX)), so that

fif) = T e x p ( ί X ) D(Z(exp(ίZ)) = Texp(tX)D(Re^tX)X) = 0 .

Thus fit) = /(0) = D(e) and /(*) e G.
Proposition 5. Under the hypotheses of Proposition 9, g is a Lie subalgebra

of 2(M).
Proof. Since g is obviously a vector space, we need only to show that g is

closed under the bracket operation for vector fields. Let X, Y € g, and suppose
φt generates X (i.e., Tt=oφt = X) and ψt generates Y. Then we have

ThD(Rh[X, Y]) = ThD (\im -(RhX - Rh(ad ψtX))j

= Urn λ{TMφ(φt o h)) - Tt=,φ{ψtφ^h))}

= lim l{Γ ί = 0D(/ι) - Γί=0D(/ι)}

= 0 .

Hence [X, Y] e #. q.e.d.
<7 is called the Lie algebra of G.
A subgroup of the full linear group GL(ή) will be called locally convex when

it is locally convex for the canonical vector space structure on M(n).
Proposition 6. Let G be a Lie subgroup of GL(n). If its Lie algebra g C

M(ri) is closed under matrix multiplication, then G is a locally convex open
subset of I + g.

Theorem. Let M be a compact smooth manifold, without boundary, of
dimension n, and let G be a subgroup of GL(ri) whose Lie algebra is closed
under matrix multiplication. Suppose the group of the tangent bundle of M
can be reduced to G {i.e., M admits a G-structure). Then the automorphisms
of the G-structure DG(M) admits a manifold structure locally diffeomorphic to
its tangent space at a point, and f : U-*DG(M) is smooth if and only if iof : JJ
—» Difϊ (M) is smooth, where i: DG{M) —> Diίϊ (M) is the canonical homo-
morphism.

Proof. Choose a G connection on M, and let expG : TM —> M be the ex-
ponential map associated with this G-structure. exρG : <2f(M) —• F(M, M) given
by expG (a)(x) — expG o a(x) is such that there exists a real number t > 0 so
that exρG | SXO) is a diffeomorphism onto an open neighborhood of the identity
inDiίf(M).

Cover M by normal coordinate neighborhoods {[/$} with respect to the given
G-connection, and consider X in the Lie algebra ^ of DG(M). We shall prove
that eχρG (X) e DG(M) for \X\X < t. Locally with respect to the normal co-
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ordinate expG (X)(x) can be written as x + Xx for t sufficiently small. Suppose
gt = expΣ (tX). Then we have

(X)(x, a) = D expG o DxDt=Qgt(x, a)

= D exps o Dt=oDxgt(x, a) = D exp o g(x, a)

where g(x, a) = (x,a,Xx, γ(a)), γ being in the Lie algebra of G. Thus

Dx (expG (X))(x9 a) = (x + Xx, a + gx(a)) ,

where gx is in the Lie algebra of G. For X sufficiently C1 small, gx is small
and thus a —> a + g^G*) € G.

Now suppose (D^)(x , α) = (g(x), h(a)) where heG and geDif f (M);
/z e GL(ri) is given by the connection on M. Now exp^1 (g)(x) = (x, g(x) — x).

Consider ht(x) = x + t(g(x) — x) so that Dxht(x,a) = (ήί(jc),α + ^(α))
where f is in the Lie algebra of G. Thus Dxht(x, a) = (ht(x), g(a)) where g € G,
and //(*) = ΛΛ is a smooth arc in Diff (M) so that //(— 1,1) c DG(M). Hence

Similarly, expG : {X ^ | ^ e D G ( M ) , l e g , and |Z | X < /} -> DG(M) maps
diίϊeomorphically onto a neighborhood of g. By the same procedure as in [5]
one obtains that DG{M) is a manifold where multiplication defines a smooth
function and g —> g"1 is smooth.

The final statement of the theorem follows from Proposition 2, § 1.
Corollary (see [12]). The automorphisms of a multijoliate structure on a

compact manifold satisfy the conclusions of the above theorem.
Definition 1. A chain of Hubert spaces {//J0<ί<oo is a chain of Banach

spaces where the Hi are Hilbertable spaces.
It is classical that a nuclear space can be given as the H^ in a chain of

Hubert spaces.
In the category of chains of Hubert spaces as in the category of chains of

Banach spaces (see [6]), a mapping / : U —> HI,, U c HI, being open, is said
to be Cr when there exists a sequence of integers k —> oo such that / extends
to Cr mappings fk:Uk-> H\{k) where Uk C H\ is open and U = Hi (Ί Uk.
Proposition 3 of § 1 states that C r in the category of Banach or Hubert chains
is a stronger notion than C r in the category of nuclear spaces in terms of
Definition 1, § 1.

We shall now review the Ebin-Omori notion of inverse limit Hubert mani-
folds as applied to the group of difϊeomorphisms.

Definition 2. A sequence of C°° Hubert manifolds {Xr} is called an inverse
limit Hubert system (or an I.L.H. system) when

(i) Xr+ιcXr,
(ii) there is a Hubert chain {Hr} such that for x e X^ there exist charts

at x:
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φr: Ur —> X , Ur C Hr being open.

An I.L.H. system {Xr} is called an inverse limit Hubert system of groups
(or an I.L.H.G. system) when Xr+ι is a subgroup of Xr and multiplication and
inversion define smooth maps in the category of Banach chains.

Now let M be a compact smooth (C°°) manifold, and π : E -> M be a Rie-
mannian vector bundle over M. For an integer s > 0, let HS(E) be the com-
pletion of j8(C°°(E)) in the norm involving the integral of the inner product in
J8(E), and set Ck(E) equal to the space of sections of E of class C*. Then by
the Sobolev theorems one has canonically

Hn/2+k+1(E) C Ck{E) c Hk(E) ,

where n = dim (M). Similarly, when M and TV are manifolds and s > w/2 + 1,
it makes sense to talk of an Hs map from M to iV by looking at the mapping
locally. So let HS(M, N) be the space of Hs maps from M to N for s >
dimM/2 + 1, and set DS(M) = {HS(M,M) Π Dλ(M)} for 5 > n/2 + 1.

By the same construction as on p. 433 one may show that DS(M) is a
smooth Hubert manifold modelled on HS(TM). Since D^iM) is an inverse
limit Banach group (see [10]), it follows from the Sobolev theorems that D^iM)
is an inverse limit Hubert group.

In [8] Omori proved
Theorem 2. Let M be a compact manifold, and D : C°°(TM) —> C°°(E) be

a linear differential operator of order I. Then there exists a vector bundle over
DS(M), εs -> DS(M) with fiber at ge DS(M)HS(E) o g so that D defines a vector
bundle morphism

D s + ι 6 > D s

with D(a o g) = D(ά) o g, where a <= Hs+ι(TM) and g € Ds+ι(M).
Definition. A linear differential operator of order /, D : C°°(E^ -• C°°(E2),

is called closed when D extends to maps Ds: Hs+ι(E^) —> HS(E2) with closed
range.

Theorem 3. Let G be a classical subgroup of Diff (M). // its Lie algebra g
is the kernel of a closed linear differential operator d : C°°(TM) -> C°°(E)9 then
G contains a closed normal subgroup H^ and exp (g) e H^, where {Hi} is a sub-
I.L.H.G. of {DS(M)} with Hs a closed submanifold of {DS(M)}.

Proof. Let Ks be the complement of ds+1(Hs+ι(TM)) in HS(E). By means
of Theorem 2 and Proposition 6 [4, p. 45] we obtain that Ker(ί/S+Z) =
Ker(<?,+1 Θ i d J : U X Hs+ι(TM 0 K -* U X #•(£)) is a closed sub-bundle
of TDs+ι(M), so there exists a connected subgroup // s + z, which is also a C°°
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manifold, with tangent space at the identity = gs+ι = the closure of g in

Hs+ι(TM) (see [6]). From the construction it hence follows that g = ΓΊ gs>
s

Now let D : Diff (M) —> C°°(ξ) be the non-linear differential operator of order

k which defines G = D-\D(e)). Then D extends to smooth Ds+Jc: D s + f e(M) -•

Hs(ξ) (see [9, p. 67]). It is easy to see that Hs+k c Djlk(D(e)) and that the

arc component of D~+k(D(e)) c H s + f c ; thus H s + f c is normal in D~+k(D(e)).

Hs+kis locally closed in Ds+k(M) and hence closed being a topological subgroup

of Ds+k(M).

Remark 1. When TDs+k: TDs+k(M)-> THs(ξ) are surjective, the Ds+k

are submersions, D-^k(D(e)) are submanifolds of Ds+k(M), and G itself may

be regarded as an I.L.H.G. In this case a mapping / : U -• G, £/ being open

in some vector space, is Cn if and only if / : U -> Hs is O for all s.

Remark 2. The differential structures of H^ and G are locally the same

in some sense due to the fact that if U is a convex open set of a topological

vector space, and / : U —> G is continuous with x0 e [/, then /([/) /(^o)"1 e ^oo
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