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RIGIDITY OF HYPERSURFACES OF CONSTANT
SCALAR CURVATURE

CARLOS EDGARD HARLE

In [7] S. Kobayashi proved that the only compact homogeneous hypersurfaces
of a Euclidean space are the spheres. This result was extended by T. Nagano
and T. Takahashi [9] who proved that if a homogeneous Riemannian manifold
has an isometric immersion in a Euclidean space of one dimension greater
such that the rank of the second fundamental form is distinct from two at
some point, then it is isometric to the Riemannian product of a sphere by a
Euclidean space. The original purpose of this paper was to show that this fact
remains true without the restriction on the second fundamental form.

In both [7] and [9], the concept of rigidity has an important role. In fact, if
Mn is assumed to be rigid (see preliminaries), the theorem is an immediate
consequence of results of E. Cartan [3] and K. Nomizu and B. Smyth [10].

For a homogeneous hypersurface of a Euclidean space, having non-zero
constant scalar curvature, there are only two possibilities a priori it is either
rigid or contains no rigid open submanifold (see Corollary 1-8).

The main result of this paper (Theorem 3-1) is that a hypersurface of a
Euclidean space, having non-zero constant scalar curvature and containing no
open rigid submanifold, is isometric to the product of a two-dimensional sphere
and a Euclidean space. This result with the remarks made above gives a proof
of Nagano and Takahashi's theorem in the most general case.

The proofs contained in this paper rely heavily on methods developed by
E. Cartan [2] and S. Dolbeaut Lemoine [5].

Finally using very similar arguments, the following is proved.
If Mn is a hypersurface of a space form Mn+1(K),n > 4, having constant

scalar curvature and an isometric immersion with type number greater than one
at all points, then Mn is rigid.

1. All manifolds and maps considered in this work will be assumed of class
C°°. Let Mn be an ^-dimensional Riemannian manifold, and denote its tangent
space at a point p by TpM

n and the scalar product given by the Riemannian
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structure by <( , ) . Following [8], V will be the covariant derivation of Mn.
An r-dimensional C°° distribution Jf7 on Mn is said to be parallel at a point

p € Mn if for any vector field X belonging to 3tif and any tangent vector
Yp e TpM

n, we have

If this holds at all points p, then ffl is said to be parallel on Mn.
On the other hand, there is the notion of parallel translation of a vector along

a path (see [8]). The following proposition relates these two concepts.
1-1. Proposition. An r-dimensional distribution Jf7 is parallel on Mn if

and only if the parallel translate of a vector Yp € ^ p along any path still
belongs to 34?p.

For details see [1] and [8].
By means of the operator F, the curvature tensor of Mn can be expressed as

R(X, Y)Z = Vx{VγZ) - VY{VXZ) - FίXiY1Z ,

where X, Y,Z are vector fields on Mn. The sectional curvature of the sub-
space π of TpM

n, spanned by the vectors X, Y, is

S(π) =

A Riemannian manifold Mn has constant curvature K, if and only if

R(x, Y)z = κ«Y, zyx -

for all vectors X, Y, Z and at all points of Mn. If X19 , Xn form an ortho-
normal basis of TpM

n, then the scalar curvature of Mn at p is given by (see [8])

seal (Λί*) = Σ Sfrij) ,

where πυ denotes the plane in TpM
n spanned by XuXj.

1-2. Proposition. Let Q) be an (n — r)-dimensional C°° involutive distri-
bution on Mn such that each leaf has constant curvature with respect to the
Riemannian metric induced by Mn. Then for each point p € Mn it is possible to
find a coordinate system, x1, , xn, on Mn defined around p in such a way
that the vectors d/dxj,j > r, form a basis for 2 and furthermore

<1 2 1)

Indication of the proof. Around p, there are coordinates y1, ,yn such
that the vector fields d/dyr+1, -,d/dyn form a basis of 2 at each point. It
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may be assumed that yλ(p) = = yn(p) = 0. These coordinates give a dif-
feomorphism of a neighborhood of p in Mn, onto an open subset of Rn con-
taining the origin. If the first neighborhood is conveniently small, it may be
assumed that the second is of the form Ur x Un~r, where Ur and Un'r are
open neighborhoods of the origin in Rr and Rn~r respectively.

Consider the functions

(1.2.2) 8ίj(y\ .,y») = ( / p / Λ , Ui>τ9

\dyι dyJI

which define a Riemannian metric on Un~r at each point (y\ ,yr) of Ur,
and it follows from the assumption made on the leaves of Q) that this metric has
constant curvature K. On the other hand, the metric given by

(1.2.3) g4, =

has the same constant curvature. The functions defining this difϊeomorphism
are solutions of a system of first order differential equations whose coefficients
involve the giά and their derivatives. Hence this solution depends differentiably
on the y1 -yr. With this in mind, the coordinates yr+1, , yn can be replaced
by new functions xr+\ , xn such that (1.2.1) holds.

Remark. Let Et be the vector fields,

and assume that the leaves of Q> are totally geodesic submanifolds of Mn. Then
the vectors Et form an orthonormal basis and

VEiEj = ξ Σ %*2 - ^)Ek , i,j>r .
2 k>r

The next fact is the local part of a de Rham's theorem and can be found in [8].
1-3. Proposition. Let $f be a non-trivial parallel distribution on Mn and

#fι its orthogonal complement. Then any point p of Mn has an open neighbor-
hood V X V, where V and V are open submanifolds of the leaves of 2/P and
2tf" respectively, and the Riemannian metric on V X V is the direct product
of the metrics of V and V.

Isometric immersions. Let Mn and Mn+r be Riemannian manifolds of
dimensions n and n + r respectively. A differentiate map /: Mn —• Mn+r is an
isometric immersion if for each peMn, the differential /* of / is a scalar prod-
uct preserving isomorphism between TpM

n and a subspace of TfmMn+r. Con-
sider two vector fields X, Y defined in some neighborhood of a point p e Mn.
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Since / is locally a diffeomorphism, it is possible to consider the vector fields
f^X,f^Y on some submanifold of Mn+r. If F ,F denote the covariant deriva-
tions of Mn and Mn+r respectively, then

FUΣ(f*Y) = U(FzY) + «(X, Y) ,

where a(X, Y) belongs to the orthogonal complement of f*(TMn) in TMn+r

(see [1], [8]). When a vanishes at a point p, the immersion / is said to be
totally geodesic at this point. If this holds for all points, / is called totally
geodesic.

In case r = l,Mn is usually called a hypersurface of Mn+1. Denote by ξ a
local unit normal field of Mn in Mn+1. Then

a(X, Y) = (AX, Y>ξ ,

where A is the symmetric operator of TMn given by

AX = -UKFf^xξ) .

From now on the operator A will be called the second fundamental form of /
with respect to ξ. The rank of A at a point p is called the type number of / at
this point and is commonly denoted by t(p).

1-4. Proposition. // the type number of f is greater than one at a point
p, then the kernel of Ap is given by

ker Ap = {Xε TpM
n \ R(X, Y) = R(X, Y), for all Y e TpM

n} ,

R and Ά denoting the curvature tensors of Mn and Mn+ί respectively.
For a proof of this fact see [12].
The following equations are basic in the study of hypersurfaces:

R(X, Y)Z = vvo)TMp (&(X, Y)Z) + (AY, Z}AX - (AX, Z)AY ,

, Y)ξ) = VxiAY) - FY(AX) - A[X, Y] ,

where R, R denote the curvature tensors of Mn and Mn+1 respectively, ξ being
a local unit normal field and A the second fundamental form of / with respect
to ξ. These relations are known as Gauss and Codazzi equations respectively.
If Mn+1 has constant curvature, the Codazzi equation becomes

FX(AY)-FY(AX) = A[X,Y].

For details, see [1], [7], [10].
1-5. Proposition. Let f be an isometric immersion of Mn in Mn+1 such

that its type number is constant and greater than one. If Mn+1 has constant
curvature, then the nullity distribution Jί of f is integrable and its leaves are
totally geodesic both in Mn and Mn+ι.
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Proof. The integrability of Jί follows from Proposition 1-4 and [6]. Next
it will be shown that the restriction of / to each leaf of Jί is a totally geodesic
immersion.

Let k be the dimension of Jf', and consider an orthonormal frame field
?i> * J ζn-k > Sn-k+i in such a way that the first n — k vectors are orthogonal
to a given leaf Jί v in Mn and ξn_k+1 is orthogonal to Mn in Mn+1.

The bilinear form a(X, Y) defined by the immersion /: Wp —> Mn+1 can be
written as

where

H t ( X ) = - f ϊ ι ( p u

for any X e ΊJί v. From the choice of the normal frame it follows that

(Vxξd , 1 < i < n - k ,

= 0 .

On the other hand, the vector fields Aζ19 , Aξn_k form a basis for (JJ/')L

(in M n ). Let Y e Γ^ΓP «=Φ^4 Y = 0), then from the Codazzi equation it follows

which gives

projr,^ Fx^fi = 0 , 1 < / < n —

and from this it follows that

Vxξi = 0 .

These relations prove that all the Hi vanish, or in other words, that / restricted
to Jί'p is totally geodesic.

Rigidity. A Riemannian manifold M is said to be homogeneous if for any
pair of points p, g there is an isometry φ of M such that φ(p) = q. A simply
connected Riemannian manifold of constant curvature K is called a space
form and will be denoted by M(K). It is well known that the space forms
are homogeneous.

Let Mn+1(K) denote an (n+ l)-dimensional space form. A Riemannian mani-
fold Mn is said to be rigid in Mn+1(K) if for any pair of isometric immersions
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/, / of Mn into Mn+1(K), there is an isometry φ of Mn+\K) such that / = φ o /.
The following result is basic:
1-6. Proposition. // the type number of an isometric immersion f of Mn

in Mn+1(K)(n > 3) is > 3 at all points, then Mn is rigid.
A simple proof is given in [12].
1-7. Proposition. Let f be an isometric immersion of Mn in Mn+1(K) such

that Mn contains no open subset on which f is totally geodesic. If there are open
submanifolds Ua which are rigid and form a covering of Mn, then Mn is rigid.

Proof. Consider another isometric immersion / of Mn in Mn+1(K) and
denote by fa9 fa the ristrictions of /, / to Ua respectively. Since Ua is assumed
to be rigid, there is an isometry φa of Mn+ι(K) such that fa = φaofa; thus if
a, β are such that Ua Π Uβ is non-void, then φa o fa — φβ o fβ at all points of
£/α(Ί Uβ. This means that f(ϋa ΓΊ Uβ) is kept pointwise fixed by the isometry

Now it is easy to show that if φa Φ φβ9 then f(Ua Π Uβ) is contained in a
totally geodesic submanifold of Mn+1, which is a contradiction. By the con-
nectedness of Mn it follows that all φa must coincide with an isometry φ, which
gives / = φ o /, thus proving the proposition.

1-8. Corollary. // Mn is a homogeneous hypersurface of Mn+ι(K), with
scalar curvature distinct from n(n — 1)K, then it is either rigid or contains no
rigid open submanifold.

Proof. The assumption on the scalar curvature excludes the existence of
points at which the given immersion is totally geodesic.

Complexification. The complex tangent space T%M of a manifold M is the
complexification of the tangent space TXM. A complex vector field (resp.
complex differential form) is defined by assigning to each point x of M an ele-
ment of T%M (resp. TC*M). Any complex vector field Z can be written uniquely
as Z = Zf + iZ" where Z' and Z" are real vector fields. By duality it follows
that a complex differential form w can be expressed uniquely as w = wr + iw",
wf and w" being real differential forms.

1-9. Proposition. Let j f be an (n — 2)-dimensional integrable distribu-
tion on an n-dίmensional manifold Mn, n>3, and Z, W be two linearly inde-
pendent complex vector fields satisfying:

i) Z, W and tfc span T%Mn at each point x.
ϋ) [z, jec] c (z) Θ f̂c, [w, jec] c (w) e jec.

Then there are locally defined, non-zero complex valued functions p, q such
that:

[pz, jec] c JPC , [qw, jec] c jec.

The proof is straightforward and therefore omitted.
If Mn is a Riemannian manifold, then the scalar product <( , ) and the

Riemannian connection can be extended to complex vector fields by linearity.
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The same notations will be used for these extensions. Let Px denote a two-
dimensional subspace of TxM

n, and Z, W be a basis for P%. The sectional
curvature of Px is given by

s ( p ) =
x (

as it can be easily verified. For an isometric immersion / of Mn in Mn+1 with
second fundamental form A, the Gauss and Codazzi equations are valid for
complex vector fields, provided A is extended to T°Mn by linearity.

2. An ^-dimensional Riemannian manifold Mn, isometrically immersed in
the (n + 1)-dimensional space form Mn+ί(K) is said to be deformable in Mn+ι(K)
if it contains no open rigid submanifold. If each point x € Mn has a deformable
neighborhood, then Mn is said to be locally deformable in Mn+1(K). It should
be noticed that deformability implies local deformability but the converse is not
true in general. The following fact is basic and will be used without further
mention.

/ / Mn is locally deformable in Mn+1(K) with n>3, and the scalar curvature
of Mn is distinct from n(n — 1)K at each point, then the type number of any
isometric immersion of Mn in Mn+1(K) equals two at all points.

In fact, since Mn contains no rigid submanifold, in view of Proposition 1-6
the type number of any isometric immersion of Mn in Mn+1(K) is at most two
at all points. Let λu , λn denote the eigenvalues (not necessarily distinct) of
the second fundamental form of a given isometric immersion. From the Gauss
equation and the definition of the scalar curvature it follows that

seal (Mn) = Kn(n - 1) + Σ hh ,

which shows that the type number has to be exactly 2.
The main objective in this section is to prove the following results.
2-1. Theorem. Let Mn be an n-dimensional Riemannian manifold with

n > 3, having non-zero constant scalar curvature and being deformable in the
Euclidean space En+1, and f be an isometric immersion of Mn in the Euclidean
space En+1. Then the relative nullity distribution Λr of f is parallel on Mn.

2-2. Theorem. Let Mn be an n-dimensional Riemannian manifold with
n>4, and f an isometric immersion of Mn in the space form Mn+\K), K Φ 0.
Assume further that the scalar curvature of Mn is constant and distinct from
n(n — l)K. Then Mn is not deformable in Mn+1(K), i.e., Mn contains an open
rigid submanifold.

The proofs of these theorems will depend on several lemmas. In order to
simplify the statements of these lemmas the following definition is useful.

Throughout this section it will be assumed that n > 3.
2-3. Let Mn be a Riemannian manifold. A local isometric immersion of
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Mn in Mn+ί(K) is a triple (h, H, U), where £/ is an open orientable submanifold,
h is an isometric immersion of U in Mn+1(K), and H is the second fundamental
form operator of h.

2-4. Lemma. Let Mf be an n-dimensional orientable Riemannian mani-
fold, and f an isometric immersion of M' in the space form Mn+ί(K), with
second fundamental form Af and nullity distribution 3fr. Assume that there is
an orthonormal frame X, Y, E3, , En defined on Mr in such a way that the
Ei, - , En, i > 3, form a basis for Jίf, and that for any local isometric im-
mersion (h',Hf, U) of Mf in Mn+1(K) (see Definition 2-3) the equation

(2.4.1) <H'(X),X> = 0

holds at all points of U. Assume further that Mf is deformable in Mn+1(K).
Then the following equations hold on Mf:

(2.4.2) <yEiX, Y> = 0 , for all i > 3 .

(2.4.3) <FxEt, y> = 0 , for all i > 3 .

(2.4.4) <yxX, y> = 0 , for all i > 3 .

Proof. The proofs of (2.4.2), (2.4.3), (2.4.4) follow the same pattern. They
consist in showing that if some of these equations are not verified at a point of
M', then this point is contained in an open rigid submanifold this contradicts
the deformability of Mf.

Assume (FE.X, y> to be non-zero at a point p of M' for some index i.
Thus it will be non-zero at all points of an open orientable submanifold JJ'.
Let h! be an isometric immersion of JJf in Mn+1(K), and denote by H' its
second fundamental form. Then

\ t ί i , v E i x y = v E i \ t i i , X / — \ V E i J t i x , x y .

Since (H;X,Xy and HfEt are zero at all points, the above relation can be
written as

(2.4.5) <HΎ9 VE.Xy = VE.<HΎ,X} - <[£,, Y], y><Γ, HfXy .

A similar relation holds for the restriction of Ar to V'.
From the Gauss equation it follows that

Ύ, y> - <^z, y>2 = <A'x,xχAΎ, y> - <^7z, y>2,

which together with (2.4.1) gives

(2.4.6) <# 'z , y> = e<4'x, y> ,

where e is a constant, either + 1 or— 1. From (2.4.5) and (2.4.6), we thus have
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or

<(#' - eAW, γχr9 vEixy = o,

or

(2.4.7) <fl'Y, Y} = e<AΎ9 Y> .

Now (2.4.1), (2.4.6) and (2.4.7) show that H' = eAf and therefore that £/'
is rigid. Since M' is assumed to be deformable, this is a contradiction. Thus
(2.4.7) is proved.

By (2.4.1) it results that

0 = VEiiA
fX,Ty = <J?EiA'X,X> + <A'X9FEtX> .

Using (2.4.1), (2.4.2) and noting that AΈt vanishes, this relation becomes

0 = <A'[Ei9X]9X> = <XEi9X]9A'X>

= <yEix9 Y><J9A'X> - <yxEu γχγ,Afx> .

Using (2.4.2) again it follows that

<yxE^ Y><A'X9 Γ> = 0 , for all i > 3 .

By assumption, yP is an (n — 2)-dimensional distribution which means that
(A'X, Y} is never zero. Thus,

<yxE^ Y> = 0 , for all i > 3 ,

and (2.4.3) is proved.
The relation (2.4.4) is proved in a way similar to the proof of (2.4.2) by

replacing Et by X. It is sufficient to start with

(AΎ,FxXy = FX(AΎ,X} - <yxA'X9 Γ> ,

and to show that

' - eAOY,

If the term (FXX, Y) does not vanish, JJf must be rigid which again is a con-
tradiction, q.e.d.

Relations (2.4.2), (2.4.3) and (2.4.4) have a geometrical interpretation which
will be stated next.

2-5. Corollary. Let Mf and f be as in Lemma 2-4. Then the (n — 1)-
dimensional distribution Jί' 0 X is integrable, its leaves are totally geodesic
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submanijolds of Mf and they are mapped by f into totally geodesic submani-
folds of Mn+\K).

Proof, Relations (2.4.2) and (2.4.3) show that

* ] , Y> = 0 , /== l , . . . , / i ,

on M', which mean that [Ei9 X] belongs to Jί1 0 X. Since [Eiy Ej] belongs to
Jί\ it also belongs to Jί' 0 X, thus showing the integrability.

Next consider a leaf J%. It will be shown that the inclusion map /: SF* —> M',
considered as an isometric immersion is totally geodesic. The vector field Y
may be viewed as a unit normal vector field of J% in M'. Thus it suffices to
show that the covariant derivatives of Y with respect to tangent vectors of SF*
are orthogonal to ^ 0 . In fact, <FZY, Et} and <VXY, X} vanish by (2.4.3) and
(2.4.4) respectively. On the other hand, (FEjY9Ety vanishes because Jff is
totally geodesic (see Proposition 1-5) and <(FE.Y,X} is zero by (2.4.2). To
show the last part it has to be proved that the product of the isometric immer-
sions f and / is totally geodesic.

Let ξ be a unit normal field of Mf with respect to the immersion f. After
suitable identifications, Y and ξ may be viewed as normal vectors of J% with
respect to the immersion f o /. With this in mind, the fact that f o i is totally
geodesic is equivalent to the fact that the covariant derivatives of Y and ξ with
respect to the tangent vectors of J% are orthogonal to Ĵ Ό i n Mn+ι(K).

In fact,

<Fx,ξ}= -(A'X,Xy = 0,

by using (2.4.1). On the other hand,

(Vxξ,E^ = - ( / ! % £ , ) - -<AΈi9X> = 0 ,

because A'Et = 0. Furthermore, by (2.4.4),

From (2.4.3) it follows that

<FzY9Eiy = <FzY9Eiy = 0.

Since Jί1 is totally geodesic (see Proposition 1-5), we have

< Γ ^ , E , > = -<i4 / E i ,E < > = 0 ,

γEjξ,xy= -<kAΈj,xy = o,

<yE.Y,E^ = {FEjY,Ety = -iY,FEύEΐ> = 0

FinaUy, by (2.4.2),
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<FΣjγ,xy = <,FEJY,xy = o,

and the proof of Corollary 2-5 is complete.
2-6. Corollary. Let Mr and f verify the conditions of Lemma 2-4 for

K = 0 (i.e., Mr is assumed to be deformable in the (n + l)-dimensional
Euclidean space). Then the scalar curvature of M' is not constant.

Proof. Since the dimension of Jίf is assumed to be n — 2, the scalar cur-
vature of M' has to be nonzero at each point. It will be shown that the assump-
tion of constancy of the scalar curvature contradicts this fact.

By (2.4.1) it follows that

scalM" = -2(A'X,Yγ ,

which shows that if seal Mn is constant, so is ζA'X, Y>. Hence

(2.6.1) 0 = FEί(AΎ,X} = <FE(A'Y,X> + {AfY,VEX} ,

By (2.4.2),

(2.6.2) <AΎ, VEίXy = (AΎ, Y>(FEiX, Y} = 0 .

On the other hand,

<FEtAΎ,X> = <yγ(AΈτ) + A[Ei9Y],X>

= <[£„ Y], A'X> = <[

since ζA'X,X} vanishes by (2.4.1). Therefore

(2.6.3) <VBA'Y> X> = -<FγE

Relations (2.6.1), (2.6.2), (2.6.3) give

(2.6.4) <TFE,,Y> = 0 , i = 3 , . . , n .

Since ( ^ X , Y> is constant, it follows that

(2.6.5) 0 = FX(AΎ,X> = ^ ^ ' Y , Z > + <AΎ,FZX> .

Making use of (2.4.4) one obtains

<^'Y, ΓXZ> - <AΎ9 Y><Y9 FXX} = 0 ,

hence (2.6.5) gives

(2.6.6) <yzAΎ9X> = 0.

On the other hand,
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<FxAΎ,Xy = (FyA'X + A'[X, Y],X>

= (VγA'X,Xy + <XX,Y],A'X>

= (FyA'x, xy - <yγx,A'xy + <FXY,A'X> .

Since (A'X,Xy vanishes, the above relation can be written as

<VχAΎ, xy = - 2<Frz, A'xy + <yxγ, A'xy
(2.0.7)

Equations (2.6.6) and (2.6.7) give

(2.6.8) <rr-ar,γ> = o .

The parallelism of the distribution Jίr 0 X is a consequence of Lemma 2-4
and relations (2.6.4) and (2.6.8). Now, it follows from Proposition 1-3 and
Corollary 2-5 that Mf is locally flat hence its scalar curvature is zero, which
is the desired contradiction. This ends the proof of Corollary 2-6.

Remark. The proof of this corollary shows also that relations (2.6.4) and
(2.6.8) hold whether K is zero or not, thus the following is true.

2-7. Corollary. Let M',f verify the conditions of Lemma (2-4) for
K Φ 0. In addition, assume the scalar curvature of Mf to be constant. Then
the distribution Jίr 0 X is parallel on Mf.

Proof. See remark above.
2-8. Corollary. Let M\ f verify the assumptions of Lemma 2-4 for

K Φ 0, and assume further that the relations

(2.8.1) <VxEuXy = < Γ F E , , y > , / = 3, . . , n ,

hold at all points of M'. Then the scalar curvature of M' is not constant.
Proof. Assume the scalar curvature of Mf to be constant. Using Corollary

2-7 one obtains

<yγEu y> = o ,

and from (2.8.1) it follows that

(2.8.2) <FxEi,Xy = 0, i = 3, . . , / i .

The Gauss equation gives

<#(X,EJE i9X} = K + <AΈi9EtyX - (A'XtEiyEi ,

which yields, since AfEi vanishes,

(2.8.3)
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On the other hand,

(2 8 4) < Λ < * > E * > £ < ' * >

= <yxFEiE^xy - <yEivxEt,xy - <FίX§Eiβi9xy .

The distributions Jίr and Jf' © Z are totally geodesic (see Proposition 1-5
and Corollary 2-5, respectively). This fact together with (2.8.3) and (2.8.4)
gives

which by (2.8.3) implies K = 0. This is a contradiction since K is assumed to
be non-zero, and therefore the scalar curvature of M' is not constant.

2-9. Lemma. Let M" be an n-dimensional orientable Rίemannian mani-
fold, and f" an isometric immersion of M" in the space form Mn+\K) with
second fundamental form A" and relative nullity distribution Jf". Assume that
E19 ',En form an orthonormal frame defined on M" such that the vector
fields E3, - ,En form a basis for Jf". Suppose that there are two complex
vector fields Z and W belonging to the complexification of the vector space
spanned by Eλ,E2 such that for any load isometric immersion (hn\Hn', U) of
M" in Mn+1(K) (see §2-3), the equation

(2.9.1) <H"Z,W> = 0

holds at all points of JJh'. Finally assume M" to be deformable in Mn+ί(K).
Then the complex vector fields FEiZ, FzEt (respectively FE.W, FwEt) have no
W-component (respectively Z-component) for all i > 3.

Proof. Denote by (FzEi)(W) (resp. (FwEi)iZ}) the ̂ -component (resp. Z-
component) of FzEt (resp. FwEi). Let p be a point of M", and assume

(FzEτ){W) Φ 0 , for some / > 3 ,

at all points of an open orientable manifold M"(p) containing p.
Consider a local isometric immersion (λ",JΪ",M"(p)) of M" in Mn+ι(K)

(see Definition 2-3). Since #"(£<) vanish for all i > 3, it follows that

By covariant derivation with respect to Z, this relation yields

(2.9.2) <yzEi9 H"W} + <βu FzH"Wy = 0 .

In view of (2.9.1) the first term of the left-hand side of (2.9.2) can be written

as

(2.9.3) <yzEuH"Wy = (FzEτ){W)<W,H"W} ,
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while the second term as

<Ei9FzH"W> = (Ei9FwH"Z + R"\Z9 W]}

= <£i9VwE"Z) = -<ywE»E"Z> .

Again by (2.9.1) this equation becomes

(2.9.4) <Ei9 VzH"Wy = -(FWEJ{Z)<Z, H"Ty .

From equations (2.9.2), (2.9.3), and (2.9.4) follows immediately

(2.9.5) {VzEdwiW, H"W> = (FwEhZ)<Z, H"Zy .

On the other hand, the extension of the Gauss equation to complex vector
fields gives

" JF, W} - <Z,H"wy = (A"Z,Zy(A"W, W> - (Z9A"Wy ,

which implies, due to (2.9.1),

(2.9.6) <#"z,zy<H"w9 wy = <A!rz9zy(Arrw, wy .

From (2.9.5) we obtain

9 7 ) (TzEλπ><w> H"w>2 = (TzEλW)<z9 H"zy^w, H"wy ,

(FzEdm<w9A"wy = iVzEdw<z9A"z><yr9A"wy,

which together with (6) yields

(2.9.8) (FzEJlW)«W9R"Wy - <W9 A"Wy) = 0 .

Since (FzEi)iW) is assumed to be non-zero, it follows from (2.9.8) that

<w9 H"wγ - <w9 A
Πwy = o

at all points of M"(p), which means that

(2.9.9) <H"W9 Wy = e<A"W9 Wy ,

where e is a constant either + 1 or — 1. From (2.9.6) and (2.9.9) we obtain

(2.9.10) <#"Z, Z> = e(A"Z9 Z> .

FinaUy, from (2.9.1), (2.9.9) and (2.9.10) it follows that

(2.9.11) Ή" = eA" .

Since (11) holds for any local immersion, it follows that M"(p) is rigid in
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Mn+1(K), which contradicts the deformability of M". Thus (dzEi)(kW) vanishes
at p. Since the above proof is symmetric in Z, W it results that (FwEi){Z) also
vanishes on M".

Next, denote by (FEiZ)iW) (Resp. (FE.W){Z)) the ^-component (resp. Z-
component) of FE.Z (resp. FE.W). Let p be a point of M" and suppose
(FE.Z)(W) Φ 0 for some / > 3 and at all points of an open orientable submani-
fold M"(p) containing p.

Consider a local isometric immersion (h",H",M"(p)). By covariant deriva-
tion, with respect to Et, of both sides of the relation (2.9.1), we have

(2.9.12) <FE.Z,H"Wy + <Z, VBfl"W> = 0 .

In view of (2.9.1), the first term of the left-hand side of (2.9.12) becomes

(2.9.13) <yEiz,H"wy = (yEiz)i

By (2.9.1) and the fact that H"(EJ is zero, the second term of (2.9.12) takes
the form

(2 9 14) < Z ? F ^ p F > =

<H"Z, [Ei9 W\) =

Since (FwEi)(Z) vanishes as it was shown above, the relation (2.9.14) is
simplified to

(2.9.15) <Z, VEfl"Wy = (FEiW)iZ)<H"Z9 Z> ,

which, together with (2.9.12) and (2.9.13), implies

(2.9.16) (FEiZ)iw><H"W9 W} + (VEίW){Z)<H"Z, Z> = 0 ,

and of course

(2.9.17) (FE&WWW, Wy + (FEW)(Z)<A"Z,Z> = 0 .

By the same argument used before, it can be concluded from (2.9.17) that
M"(p) is rigid, which contradicts the deformability of M". Hence the proof of
Lemma 2-9 is complete.

2-10. Corollary. Assume the manifold M", the immersion /" and the
vector fields Z, W satisfy the conditions of Lemma 2-9. Then the following
conclusions hold:

(a) forKφO and n > 4, the scalar curvature of M" cannot be constant,
(b) for K = 0 and Mff with constant scalar curvature, the relative nullity

distribution Jf" of f" is parallel on M".
Proof. From Lemma 2-9 it follows that
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(2.10.1) [Z,Et]{W) = [^JBJcz, = 0 , / = 3, . . ,n .

Consider a point peM". From (2.10.1) and Proposition 1-9 there are two
non-vanishing complex valued functions a, β defined in a neighborhood of p in
such a way that the new complex vector fields Z', W defined by

(2.10.2) Z' = aZ, W = βW ,

have the propriety

[Z',EJ= Σ^iEk,

(2.10.3) fc^3

W\E]ΣbkE

where a\, b\ are complex valued functions defined in a neighborhood of p.
Furthermore, by Propositions 1-5 and 1-9 the frame Eλ, - ,En may be

assumed to verify

(2.10.4) FEiEj = ^Σ %*k ~ «?**)£* >
2 & = 3

where the functions xk are part of suitable coordinate system of M " at p.
Finally, it is possible to assume the existence of an open orientable sub-
manifold M"(p) containing p such that (2.10.3) and (2.10.4) hold at all of its
points.

It follows from (2.10.2) that M"(p) and the vector field Z', W verify the
assumption of Lemma (2-9). Hence

( 2 1 0 5 ) (Fz>Eύ<w>) = (FB&IW*) = 0 ,

(Fw.EjlZt) = (VEiW
f){Zf) = 0 .

On the other hand, since VEiEό belong to Jf" and (Z1', E3^) vanish, it follows
that

(2.10.6) V = (VW,
VEiW = {VEiW'){WΊW> , i = 3, , n ,

at each point of M"(P).
Recalling that A" denotes the second fundamental form of f", it may be

written:

(2.10.7) VEi<A"Z'9 Z'> = <FEiA"Z'9 Z'> + <Λ"Z', VEZfy ,

for all i > 3 on M"(p). Next it will be shown that the first term of the right-
hand side of (2.10.7) vanishes. In fact,
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(VEiA"Z',Z'y = <yz,A"Eι + A"[Ei,Z
f],Zf> = 0 ,

as a consequence of (2.10.3). For the second term, relations (2.10.6) yield

(2.10.8) <A"Z', FEiZ'} = (?BtZ')ιz.,<A"Z', Z'} .

Combining (2.10.7) and (2.10.8) we obtain

(2.10.9) VEi(A"Z', Z'} = (FElZ'\z,){A"Z/, Z'> ,

and, similarly for W,

(2.10.10) vEt<A"W, wy = (FEiw)(W,χA"w, wy .

Furthermore, the relations below are also a consequence of (2.10.6):

FEi{Z',Z'y =

(2.10.11) FEi<W', W'y = 2{FEiW')iWI)(W', W'y ,

FEi<z', wy = ((F^Oczo + (PBtw\w.χz', wy ,

for all i > 3 at all points of M"(p).
The scalar curvature of M"{p) at each point is given by

seal (Λί"(p))

(2.10.12) = ( _ ) κ 2 (A"Z\Z>yjA"W,Wy

<z', z'y<w', wy - <z', wy '

Since seal (M"(p)) is constant, it follows, from (2.10.12),

',z'χτr, wy - <zr, wy)FEi((A"z',z'y(A"w, wy)

" ' = FEI{<Z', z'y<w, wy - <z', wy)«A"z', z'y(A"w, wy).

From (2.10.9), (2.10.10), (2.10.11), (2.10.13), we obtain

{{FEiZ'){Z>) + {VBiW')σrJ(.(Z',ZW,W'>

- <z', wy)<A"Z', z'y(A"w, wy
(2.10.14) = 2

• «z/, z'y<w', wy - <zr, wyχA"zf, zfy(A"w, wy

which gives

(2.10.15) (FEιZ')iZI) + (F£iW"V<, = 0 ,

for all i > 3 at all points of M"(p).
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On the other hand, since A"Et vanishes for all i > 3, the Gauss equation
implies

(2.10.16) R(Z', E^Ei = R(Z', Ez)Et = KZf .

By the definition of curvature we have

(2.10.17) RίZ'iEύEi = VZ,{VEΈZ) - VEί{VZ,E%) - F^([Z',£J) ,

which may be written, in consequence of (2.10.4),

(2.10.18) VEiEι=

and the covariant differentiation of (2.10.18) with respect to Zf gives

(2 10 19) FAFE*Ei) = 5

From (2.10.3), (2.10.6) and (2.10.19) it follows that

(2.10.20) WZWBF^Z-, = Σ

and also

(2.10.21) WwiVEiEd\w, = Σ J

The Z'-component of VEi{VzΈ^ is given by

(2.10.22) [(FEi(Fz.EJ]{Z.) = £,[(Γί4Z0(z',] + WE^M*

In fact, covariantly differentiating

(2.10.23) Fz,Ei = VE.Zr + [Zf

9Et] ,

and using (2,10.3) we obtain

(2.10.24) (yEi(VZ'Ed\z', = (FEi{VEiZ
f))iZΊ ,

the right-hand side of which may be written, in consequence^of (2.10.6),

(2 10 25) F* ( F*«Z ' )<*'> = VBWBP)^?)^

= EIWBiZ')(Z.,) + ((FEiZ')ιZΊy ,

proving (2.10.22).

The same relation holds for the ϊF'-components.
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Taking the Z'-components in (2.10.16) and using (2.10.17), (2.10.20) and
(2.10.22) we have

(2.10.26) ΣWBJZOIZ*) ~ ElWEZf){Zf)) - {(VEiZ
f){Zf)γ = K.

Adding (2.10.26) to its analog for W, and using (2.10.15), we obtain

(2.10.27) (FE<ZΎIZ>> + (VEiW)\wt) = -2K ,

and, again by (2.10.15),

(2.10.28) (VEiZ')\Zf) = (FEίWΎiWΊ = -K , i = 3, . . . , n .

From (2.10.26) and (2.10.28) it follows

(2.10.29) Σ λKVEjZ
f){Zt) = 0 , i, / > 3 ,

and from (2.10.4), (2.10.18) and (2.10.28) we get, respectively,

(2.10.30) V = ~χJ , (FEJZ^Z*) = V^1^ , / > 3 .

The relations (2.10.29) and (2.10.30) show that if n > 4, then K = 0, hence
proving the statement (a) by contradiction. In the case K = 0, (2.10.3) and
(2.10.28) prove (b).

2-11. Proof of Theorem 2-1. Let p0 be a given point in Mn, and consider
an open neighborhood Uo of p0, on which there is an orthonormal frame E19

E2, , £ n , in such a way that E3, , En is a basis for ^P and

(2.11.1) Γ ^ = 0 , ; , / > 3 .

This is possible in view of Propositions 1-2,1-5 and the fact that Mn is iso-
metrically immersed in the Euclidean space En+1.

For any local isometric immersion (h, H, Uo) of UQ, we have

(2.11.2) HIEvE&Et = 0, / = 3, , n ,

on Uo. This relation and the Codazzi equations yield

(2 11 3) <V*E«

<yfi Ey\<HE E> <yβ E^HE Eλy = o,
for all / > 3 at all points of Uo. Equation (2.11.2) will be used to define locally
vector fields satisfying either the conditions of Lemma 2-4 or 2-9. Since this
involves several discussions, it is convenient to consider the following subset of
U09 P: set of the points q of Uo, such that
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(2 114) <F'βi9 E2>q = <FEβi'El>q = ° '
<yEβi9 Eλyq = <yE£i9 E2\ , ι = 3, . . , n .

This set P has the following propriety:

(2.11.5) The relative nullity distribution Jf is parallel at any point of the
interior of P.

In fact, consider a point q e Int P. Locally it is possible to replace E19 E2 by
unit vector fields X, Y such that

(2.11.6) <x, y> = o, (AX, γy = o,

in a neighborhood of q, provided the non-zero eigenvalues of Aq are distinct.
A direct computation gives:

( 2 Π 7 ) <FχJBί,Y> = <FF£ i,Z> = 0 ,

for all i > 3 and at all points of a neighborhood of q0.
From the constancy of the scalar curvature it follows

(2.11.8) VEi[<AX, X}(AY, Y>] = 0 , i = 3, • , n ,

or

WEi(AX,X>KAY, Y> + (AX,XyWEi<AY, Y>] = 0 .

On the other hand, we have

y + <Άx,vEixy
(2.H.9) = <A[Et, x], xy + <AX, vEιxy

Similarly,

The relations (2.11.8), (2.11.9) and (2.11.10) give

(2.11.H) KFxEi, xy + <yτEit γyi<Ax, xy<Aγ, Yy = o,

which implies, in cosequence of (2.11.7),

(2.11.12) <FxEf,Xy = <yγEt, Yy = 0, for all / > 3 .



RIGIDITY OF HYPERSURFACES 105

Next assume that the non-zero eigenvalues of Aq coincide. If they coincide
in a neighborhood of q, it is possible to find vector fields X, Y satisfying (2.11.6)
and therefore to show that Jί is parallel at q.

Finally assume that the non-zero eigenvalues of Aq coincide at q, but each
neighborhood of q contains a point at which they are distinct. A simple conti-
nuity argument shows that in this case Jί is also parallel at q.

On the other hand,

(2.11.13) The distribution Jί is parallel at any point of Uo — P.

To show this, consider a point qeU — F o this means that for some index
iQ > 3 the numbers

(9 11 14Λ /\7 F. F\ /F F. F\ /F F F\ /F F F\

are not simultaneously zoro. For any i > 3, let Δι denote the function on Uo:

(2.H.15) Δι = [<yExEi,Eύ - <yEβuE2y? + ̂ <yExEi9E^<yEfii9E^ .

The distinct cases to be discussed can be indicated in the following way:

a)

<FElEio, E2}q Φ 0 i ° <? =£ ^ i 0 = o in a neighborhood of q.

(or <yEβ^E^q Φ 0) \Δu(q) = 0 JAny neighborhood of q has a point
vat which Δίo is non-zero.

b)
. Mo _ Γ)

^ E\)q =

The functions <PElEio9 E2}, <PEΛEio, £ x >
both vanish on a neighborhood of q.
Any neighborhood of q contains a point
at which either one of (FElEio,E2y,
,ζFEiEio, Eλy is non-zero at this point.

The proof of (2.11.13) consists in showing the parallelism of Jί in each of
the above cases.

a) Assume (FEίEio, E2>, Δu to be non-zero at all points of a neighborhood
Vq of q.

In view of the assumption made above, the quadratic equation

(2 1116) < F A ' ^ [ < F s β i ° ' E i > < F ^

-<yEβia,Eϊ = o

defines two complex valued C~-functions a, β such that
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(2.11.17) aβ = -<Γ*«E«o'£i> ,
<FElEίQ,E2}

(2.11.18) a + β - ^F^E^E^> - <VEβ
p <yEEy

Consider the complex vector fields Z, W on Vq defined by

Z = άEι + E2 ,

W = βE, + E2,

which are linearly independent at each point since a and β are distinct (at each
point). Let (h,H, U) be any local isometric immersion of Vq in En+1. Then

Eλy + (a + βKHE19E2>

which is zero due to (2.11.3). Thus Z, W satisfy the conditions of Lemma 2-9,
and therefore by part b) of Corollary (2-10) the distribution Jί is parallel in
the neighborhood Vq.

The next case to be analyzed is that of

(2.11.19) < 7 ^ 0 , £ 2 > ^ 0 ,

in a neighborhood Vq of q and Δu vanishing at all points of Vq. In this case
the functions a, β coincide at each point, and the vector field

WotE, +E2\\

satisfies the conditions of Lemma 2-4. Therefore Corollary 2-6 shows that this
case cannot occur.

The parallelsim of Jί in the last subcase of a) is proved by using the reason-
ing of the proof of the first subcase and a simple continuity argument.

b) The first subcase cannot occur, for otherwise all functions listed in
(2.11.14) would vanish at q. Hence to study the next case it may be assumed
that in a neighborhood Vq of q, the functions (FElEio, E2y, (FE2Eio, E^) vanish,
while Δu is never zero. Using again (2.11.3) we obtain

[<yBxEU9Exy - <yEfiu,E%y\<flEl9E%y = o ,

which shows that the vector fields E19 E2 satisfy the conditions of Lemma 2-9,
and again, by Corollary 2-10, the parallelsim of Jί is established in Vq.
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Finally, the last case of b) can be related to the first case of a), and as before,
a continuity argument proves the parallelsim of Jί at q, in this case.

From (2.11.5) and (2.11.13) it follows that Jf is parallel at all points of Uo

and particularly at p0. Since this point can be arbitrarily chosen, Jf is parallel
everywhere. Thus Theorem 2-1 is proved.

2-12. Proof of Theorem 2-2. This proof presents a great analogy with
the one given in § 2-11. As before, let p0 be an arbitrarily chosen point of Mn,
and Uo be a neighborhood of p0 in which there are

(2.12.1) a coordinate system x\ , xn,

and

(2.12.2) an orthonormal frame E19 , En, such that the vectors E3, , En,
form a basis of the relative nullity distribution Jί, and the relation

(2.12.3) FEiEj = ξ- Σ (δ)*k - Φ9E*

holds.
Again, Proposition 1-2 allows us to make these assumptions.
Since the space Mn+ι(K) has constant curvature, equation (2.10.3) holds in

the present situation. Further, the set P is defined exactly in the same way, but
its proprieties are drastically different in face of the assumption K Φ 0. In this
case the following holds :

(2.12.4) The set P has no interior points.

First it should be noted that by the same argument used to prove (2.11.5), it
turns out that Jί is parallel and

(2.12.5)

where X is a unit vector field orthogonal to the Et. On the other hand, the
parallelsim of Jί and the fact that its leaves are totally geodesic imply that

(2.12.6) < JR(Z,E,)E ί,Z> = 0 ,

which contradicts (2.12.5). Hence (2.12.4) is proved.
Next it will be shown that:

(2.12.7) UQ — P has no interior points.

(2.12.7) can be proved by a series of discussions; we follow the same pat-
tern of a) and b) of § 2-11, and use the first part of the conclusions of CoroJ-
lary 2-10.
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In order to eliminate the case where

(2.12.8) <VEPU,E2\ΦQ,

and Δu = 0 in a neighborhood of q, we need some further information. As
in (2.11.19), there is an orthonormal frame X, Y defined in a neighborhood
V q of q, which is orthogonal to the distribution Jί and satisfies

(2.12.9) <HX,Xy = 0 ,

for any local isometric immersion (h,H9 U) of Vq in Mn+ι(K). From (2.12.9)
and

it follows

(2 12 10)

, y> + KPxEio,xy - <yγEίQ, Y>KHX, Y>

- <FτEi0, Y>KHX, Y> = 0 .

If (VXEU, y> is non-zero at all points of some open subset V" C Vq, the rela-
tions (2.12.9) and (2.12.10), together with the Gauss equation, imply the
rigidity of Vh', which is a contradiction. Thus

(2.12.11) <Γ^< 0,Y> = 0 ,

at all points of Vq.

In order to complete the discussion, Corollary 2-8 will be applied, but it
requires that

(2.12.12) (VXEU X} - (FrEi9 Y> = 0

for all indices i > 3 and all points of Vq. The last relations are a consequence
of

(2.12.13) {FxEi,Yy = 0, J ' = 0 ,

for all / > 3 on Vq. In fact, consider the linear system

(2.12.14) (VXEU Yyax + [<Fr

zEt,X> - <FrEi9 Yy]a2 = 0 .

For any local isometric immersion (h,H, U), it is known that

β, = <HY, y> , α2 =

is a solution of (2.12.14) (see §2-11).
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If at some point of Vq the matrix of (2.12.14) had rank greater than one,
this system together with (2.12.9) and the Gauss equation would imply the
existence of an open rigid submanifold of Vq9 therefore contradicting the de-
formability of Mn. Thus the rank of the matrix of (2.12.14) is less than 2 at
every point, and (2.12.13) follows from this fact and (2.12.8), (2.12.11).
Therefore Corollary 2-8 leads to another contradiction, showing that this case
cannot occur. Hence (7) is proved.

The conclusions (2.12.4) and (2.12.7) are obviously incompatible, and hence
Mn is not deformable Mn+1(K).

3. Theorem 2-1 in spite of being local, has an interesting global conse-
quence.

3-1. Theorem. Let Mn, n > 3, be a complete Rίemannian manifold with
non-zero constant scalar curvature and being locally deformable in En+\ Then
Mn is isometric to the Riemannian product S2 X En~2 of a two-dimensional
sphere by an (n — 2)-dimensional Euclidean space.

Proof. Let / be an isometric immersion of Mn in En+1. From the local de-
formability of Mn and the fact that the scalar curvature of Mn is non-zero, it
follows that the type number of / is two everywhere. Let Jf be the relative
nullity distribution of /. Then by Theorem 2-1, Jί is parallel on Mn (since it
is parallel on a neighborhood of each point), and therefore the universal cover-
ing Mn of Mn has the decomposition

(3.1.1) Mn = M2 X En~2

by de Rham's theorem. Since Mn is non-flat, M2 is necessarily irreducible.
Under these circumstances, a result of S. Alexander [1] shows that Mn itself is
isometric to a Riemannian product

(3.1.2) Mn = M2 x En~2 ,

and / immerses M2 isometrically in a 3-dimensional Euclidean space. Thus from
(3.1.2) it follows that the curvature of M2 equals the scalar curvature of Mn

and is therefore constant, and that M2 is complete. By a well-known theorem
of Hubert, the curvature of M2 is positive, and therefore isometric to a sphere
(see [7]).

3-2. Theorem. Let Mn be a homogeneous Riemannian manifold, having
an isometric immersion f in the Euclidean space En+ί, such that its type num-
ber is two everywhere. Then Mn is isometric to the Riemannian product of a
2-sphere by an (n — 2)-plane.

Proof. For n = 2, Mn is compact and the proof for this case is given in [7].
Next assume n > 3. Since Mn is homogeneous, by Proposition 1-7 the only
possibilities to be discussed are
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(3.2.1) Mn is locally deformable,

(3.2.2) Mn is rigid.
From Theorem 3-1 it follows that in case (3.2.1), Mn is isometric to

S2 X En~\ To prove (3.2.2) the following result of K. Nomizu and B. Smyth
[10] is used:

Let M be a complete Riemannian manifold of dimension n with nonnegative
sectional curvature, and φ: M —> En+1 be an isometric immersion with constant
mean curvature. If the trace of A2 is constant, then Mn is isometric to
S2 x En~2

Next it will be shown that Mn and / satisfy the conditions of this theorem.
Let U be an open orientable submanifold of Mn, and denote by A a second
fundamental form of / on U. It is well-known (see [12]) that there are n con-
tinuous functions on U:

λ1 > λ2 > . > λn ,

such that at each point p e U, λλ(p), , λn(p) are the eigenvalues of Ap.
Since Mn is rigid, these functions are constant, and by a theorem of E. Cartan

[3] at most two of them can be distinct at each point. On the other hand, these
functions are two non-zero eigenvalues λ19 λ2 and n — 2 ( > 1) zero ones. Thus
λγ and λ2 must coincide at each point. This means that

tr A2 = 2λ{ = constant ,

tr A = 2λx = constant ,

and it is also clear that all sectional curvatures are nonnegative. Thus the above
mentioned result gives the proof for case (3.2.2). q.e.d.

Regarding hypersurf aces of spaces of constant curvature, Theorem 2-2 gives
3-3. Theorem. A hypersurjace of Mn+1(K), KφO, having constant scalar

curvature distinct from n(n — 1)K, is rigid, provided that n > 4.
Proof. Let Mn be such a hypersurface, and consider two isometric immer-

sions /, / with second fundamental forms A, A defined on some orientable open
submanifold of Mn. Then the assumption on the scalar curvature implies that
A and A have rank > 2 everywhere.

Let U be the subset of Mn consisting of those points which are contained in
some rigid open neighborhood (this neighborhood may depend on the point).
It follows from Theorem 2-2 that Mn — U has no interior points, i.e., that U
isMense in Mn. Since U is covered by open rigid submanifolds, each connected
component of U is rigid. Let p be a point of Mn, and V an orientable neigh-
borhood of p. It will be shown that there is a function e(q) defined on V, as-
suming only the values + 1 or — 1, and such that

(3.3.1) Aq = e(q)Aq , ioτ^qeV .
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In fact, if q e U, this follows from the rigidity of each component. On the

other hand, if q$ U, it can be approximated by points at which (3.3.1) holds,

and by cotinuity (3.3.1) holds at q. Again the continuity of A and A gives the

continuity of e. Since V is assumed connected, e must be constant, and there-

fore V is rigid. This argument shows that Mn can be covered by rigid neighbor-

hoods, and hence is rigid.
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