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MINIMAL SUBMANIFOLDS OF LOW COHOMOGENEITY

WU-YI HSIANG & H. BLAINE LAWSON, JR.

Introduction

Let M be a Riemannian manifold and I(M) its full isometry group. It was
shown in [MST] that /(M) is naturally a Lie group which acts differentiably on
M. A Lie subgroup G of 1(M) is called an isometry group of M, and the co-
dimension of the maximal dimensional orbits is defined to be the cohomogeneίty
of G. The cohomogeneity of I(M) is called the cohomogeneity of M.

Many important Riemannian manifolds such as symmetric spaces, Stiefel
manifolds and flag manifolds are of cohomogeneity zero, i.e., homogeneous. The
local properties of any such space G/H are completely determined by those at
one point and can actually be computed in terms of the infinitesimal structure
of the pair H cz G. However, many aspects of the global geometry of these
spaces (in particular, many questions concerning compact totally geodesic or,
more generally, compact minimal submanifolds) are poorly understood. The
point of view here is that of using the inherent symmetries of these spaces as a
tool in dealing with global questions.

From the point of view of transformation groups the full isometry group G
on a Riemannian homogeneous space is too simple, orbit-wise, to be of interest.
However, there are many actions induced from the transitive action of G (such
as the natural actions on the orthonormal &-frame bundles or the restricted ac-
tions of the many subgroups of G) which shed light on the geometric structure
of the space. In particular the action of each subgroup gives an interesting de-
composition of the space into geodesically parallel orbits. To make proper use
of the full isometry group one should study these decompositions, particularly
for actions of low cohomogeneity.

The existence and global behavior of compact minimal submanifolds of a
homogeneous Riemannian manifold is, in full generality, a difficult area of
study. The nonlinearity of the problem makes even the construction of explicit
examples reasonably difficult and, at the same time, makes such examples in-
dispensable guidelines for research. Thus, it is natural to try to reduce the
complexities of the situation by means of some isometry group Gr of low co-
homogeneity and, in particular, to look for the existence and general behavior
of G'-invariant, minimal submanifolds. That is the purpose here.
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Let M be a Riemannian manifold and G a compact, connected group of
isometries of M. Our first observation is: a G-ίnvarίant submanijold N of M is
minimal if and only if the volume of N is stationary with respect to compactly
supported variations of N through G-invarίant submanifolds. The space of orbits
M/G of G is naturally a differentiable stratified set with several natural, smooth
metric structures. Our second observation, roughly stated, is that a G-invariant
submanifold N of M is minimal if and only if N/G is minimal in M/G with
the appropriate metric. From these two observations we proceed by elementary
techniques to explicitly construct vast numbers of compact minimal submani-
folds in nearly all homogeneous spaces. In many cases, for example Stiefel
manifolds and group spaces, the set of (non-isometric) compact, minimal hyper-
surfaces is at least countably infinite. Furthermore, we give a detailed proof of
the fact that every compact, homogeneous space can be minimally immersed
into some Euclidean sphere [HI].

These considerations lead to the discovery of certain distinguished, minimal
hyper surf aces, called "equators" in rank-one symmetric spaces, Stiefel mani-
folds and Grassmann manifolds and to conjectures concerning them, some of
which have since been affirmatively settled [L3].

The next task undertaken is to classify the compact, minimal hypersurf aces in
the sphere which have cohomogeneity-one, i.e., have self-congruence groups of
cohomogeneity-one. To do this we first classify the compact, linear groups of
cohomogeneity 2 and 3 or Rn together with their orbit spaces and the appro-
priate metrics. This classification is of interest in itself and should, moreover,
be useful in studying questions in global geometry not considered here.

We then reduce the problem to the study of the geodesic structure of certain
singular 2-manifolds. This study is carried out in detail to varying degrees.

In the case of the 3-sphere these methods give a very satisfactory result. The
only group producing codimension-2 orbits on S3 is ί/(l). However, there are
infinitely many inequivalent actions of C/(l) on S3. For every action except one
the orbit space with the appropriate metric is an ovaloid of revolution. The
geodesies on the ovaloid, which correspond explicitly to invariant minimal sub-
manifolds of S3, can be expressed explicitly in terms of elliptic functions. For
each action, including the exceptional one, the family of closed geodesies is
countably infinite. The union of these families constitutes all compact minimal
surfaces in S3 of cohomogeneity-one and contains all those with nullity < 5 .

In general the procedures established here are useful for studying the be-
havior of high dimensional minimal varieties. For example this point of view
gives geometric insight into certain counterexamples to the Bernstein conjecture
(as shown below) and has led to a new proof of the non-interior-regularity for
the Plateau Problem in dimension 8 [L4].
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CHAPTER I

GENERALITIES

1. The fundamental theorem

Let M be a Riemannian manifold and G a compact, connected group of
isometries of M. A submanifold /: N —>M is called G-invariant if there exists
a smooth action of G on N such that gf = fg for all g e G. The submanifold is
said to be minimal if its mean curvature vector field vanishes identically (cf. [S]).
The minimality of / is equivalent to the requirement that the induced volume
of N be stationary with respect to compactly supported variations of /.

By an equivariant variation of a G-invariant submanifold f:N—>M we mean
a differentiate variation ft: N —> M, — ε < t < e, /„ = /, through submanifolds
such that gft — ftg for all g e G and all t. Here the action of G on N is inde-
pendent of t. Hence, throughout the variation the orbit structure of the sub-
manifolds remains unchanged.

Our fundamental observation is the following.

Theorem 1. Let f: N—*M be a G-invariant submanifold of M. Then
f: N —> M is minimal if and only if the volume of N is stationary with respect
to all compactly supported, equivariant variations.

Proof. Let X be the mean curvature vector field on N. Since Jf depends
only on the immersion /, and / is G-invariant, we have that g^X = JΓ for all
gεG.

Without loss of generality we may assume that the volume of N is finite. Let
φ be a continuous, G-invariant, compactly supported function on N. We define
a variation ft, — ε < t < ε, of / by

(1.1) ft(x) = exp~ (tφ(x)X(x)) ,

where x = fix), and exp is the usual exponential mapping on T^(M). We
choose ε > 0 small enough that each ft is an immersion. Observe that for each

g o ft(x) = g o exp~

since gx = gf{x) = /#(*). Hence each /f is equivariant.
Let ωt be the volume element of the metric induced by ft, and set V(t) =

I ω^ Since the variation vector field is simply φJf, the first variational formula

iV

has the form
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dV

dt

Clearly X = 0 if and only if —
dt

the theorem.

= 0 for all such variations. This proves

2. Differentiable transformation groups

To make proper use of this theorem we shall need some notions from the
theory of differentiable transformation groups. For each x e M let Gx be the
isotropy (stability) subgroup of x, and G(x) « G/Gx be the orbit of x under G.
The group Gx acts naturally on the normal vectors to G(x) at x. This action φX9

called the slice representation at x, associates a vector bundle a(φx) with the
canonical G^-bundle G^ —• G —> G/Gx. One of the important facts is the fol-
lowing [MY].

Theorem (Slice). Let v(G(x)) denote the normal bundle of G(x) in M. Then

v(G(x)) = a(Ψx) ,

and the exponential map maps a small disk bundle of v(G(x)) equivariantly and
diffeomorphically onto an invariant tubular neighborhood of G(x).

G(x)

Two orbits, G(x) and G(y), are said to be of the same type if Gx and Gy are
conjugate in G. The conjugacy classes of the subgroups {Gx: x e M) are called
the orbit types of the G-space M. We partially order the orbit types as follows:

where (H) denotes the conjugacy class of H. From the theorem above we have
the following

Corollary (Lower semi-continuity of orbit types). In a small, invariant
neighborhood U of an orbit G(x) there is only a finite number of orbit types,
and for each y eU

(Pv) > (Px) .
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Another important fact we shall need is the following [MSY].
Theorem (Principal orbit type). Let M be a connected manifold with a

differentiate G-action. Then there exists a unique orbit type (H) such that
(H) > (K) for all orbit types (K) of the action. Moreover, the union of all orbits
of type (H), namely M* = {xεM: Gxe (H)}, is an open, dense, submanifold
of M.

Following [MY] we call (H) the principal orbit type of the G-space M. If
( # 0 φ (fΐ) but dim Rf — dim H, then (# ') will be called an exceptional orbit
type. All orther orbit types will be called singular,

3. The singular set

From the discussion in § 2 we see that the singular set M ~ M* is a closed,
nowhere dense set with a natural differentiable stratification. Let (H') be a non-
principal orbit type, and let M{HΊ = {xeM: Gxε(H')}. Then by the Slice
Theorem each component of MiHΊ is a submanifold of M which by Theorem 1
must be minimal. More generally, we have

Corollary 1.1. Let {(Ha)}a^A be any collection of non-principal orbit types.
Then wherever the set Mf = [xeM: Gxe (HJ for some at A) is a submani-
fold, it is a minimal submanifold.

Hence, the singular set is a minimal variety stratified by minimal varieties.
In particular, we note that any orbit having no nearby orbit of the same type

is automatically a closed minimal submanifold.
This stratification of the singular set by minimal varieties is clearly illustrated

by the following examples. We denote by ψ the action of G on M and define a
G-space formally to be the triple (M, G, ψ).

Example 1.2. Let M = G with the bi-invariant metric, and set ψQ(gf) —
gg'g'1. The conjugacy classes of G are the orbits of this action and have as a
fundamental domain the Cartan polyhedron P. This principal orbits correspond
to P°, and the singular orbits to the linear complex dP. By Corollary 1.1 we
have that the inverse image of any subcomplex of dP under ψ is a minimal
variety in G.

In particular, if h is the Cartan subalgebra of the Lie algebra of G, and
{<Xk}ΐ=i i s a nY collection of roots, then the union of the orbits meeting the set

{exp (ί): ί e ft and aλ(t) = = am(t) = 0}

is a closed minimal submanifold of G.

Example 1.3. Let (M, G, ψ) = (Rkl X X Rkn

9SO(kd X X SO(kn),

pki 0 . . . 0 pkn) where ρk is the standard representation of SO(k) on Rk. Let

πj denote the orthogonal projection of Rkl X X Rkn onto the j t h factor.

Then the singular set of ψ is (J πjKO). The various orbit types and their cor-

responding strata in the singular set are evident.
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Example 1.4. Let (M,G,φ) = (R\SO(3),A2p3 - θ) where θ denotes a
1-dimensional trivial representation. (This representation arises as the isotropy
representation of the symmetric space SU(3)/SO(3) (cf. Chapter II, § 3) and
also as the action O(A) = OιAO of 50(3) on the space of 3 X 3 traceless,
symmetric matrices where (A,B} = trace (AtB).) This representation gives
an action of 50(3) on Si C R5 having codimension 1 principal orbits
&SO(3)/Z2 x Z2, [H2]. The space of orbits is naturally a closed interval where
the endpoints correspond to the two singulur orbits. By the above remarks these
two orbits are automatically minimal. In fact, each orbit represents a minimal
imbedding of the projective plane with constant curvature into S\ the so-called
Veronese surface.

4. The reduction theorem

We now discuss how to use groups of invariance to reduce questions con-
cerning minimal submanifolds to a simpler form.

Let M and G be as above, and denote by M/G the orbit space and by
π: M —• M/G the canonical projection. The subset M* /G of M/G is a mani-
fold which carries a natural differentiable structure under which

G/H > M* - ^ M*/G

is a differentiate fibre bundle. (H denotes the principal isotropy subgroup.)
More generally, if we stratify M by the components of the sets M{H,} =

{xeM: Gx€ (//')}> then M/G carries a corresponding differentiable stratifica-
tion such that the stratified morphism π, when restricted to components of M(HΊ,
is a differentiable bundle.

The set M*/G carries a natural Riemannian structure as follows. Let <2)
denote the distribution of normal planes of the orbits of G in M*. Fix x e M* /G
and choose xf e TΓ"1^). Then to each tangent vector X at x there corresponds a
unique tangent vector X' in 9ιχt such that π^X' = X. We define the metric g
at x in M*/G by

g(X, Y) = £'(*', Y') ,

where gf is the metric on M. g is a well defined Riemannian metric on M*/G
which satisfies the condition that the length of a curve γ in M*/G equals the
length of an orthogonal trajectory through the orbits of π~\γ). Hence the dis-
tance between points in M*/G is simply the distance between the correspond-
ing orbits in M. (Note: With this metric, π|M* becomes a Riemannian sub-
mersion as defined by B. O'Neill [0].)

The same process will, in fact, define a "smooth" metric structure over all
of M/G under which each of the strata is a Riemannian manifold.
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We introduce on M/G a volume function V: M/G —> R as follows.

V(x) =

Vol (π'Kx)) 9 if π~\x) is a principal orbit ,

ra Vol Or"1^)) , if π~\x) is an exceptional orbit ,

0 , otherwise ,

where m = # (H'/H) for an appropriate /?' € (G^), x e TΓ^OC). Straightforward
arguments using the Slice Theorem show that the function V is continuous on
M/G and differentiable on M*/G.

In many cases the volume function is a natural and easily computable func-
tion as the following examples illustrate.

Example 1.5. Let SO(n) act on Sn by rotation about a fixed axis. This
action commutes with the antipodal map and thereby produces an action on
projective space RPn. The space RPn/SO(ri) can be (isometrically) considered
as the interval [0, π/2], the principal orbits (0, π/2) are all standard spheres Sn~\
the endpoint 0 corresponds to the unique fixed point, and the endpoint π/2
corresponds to an exceptional orbit ^RPn~ι. At the latter orbit the slice repre-
sentation is effectively Z2, and the (n — 1)-dimensional volume drops by a half.
However,

V(β) = cn_λ sin""1 θ

for θ e [0,7r/2] where cn_λ is the volume of the unit {n — l)-sphere.
Example 1.6. Let M = G, and ψ be as in Example 1.2. Let T be a maxi-

mal torus, and h the Cartan subalgebra, and let J + denote the set of positive
roots. Define

Q(t) = Π sin (τr</3, ί »

for t e h. The orbit space G/φ ~ Γ/(Weyl group) ^ Cartan polyhedron ~ the
closure of any component of {t e h: Q(t) Φ 0}, and the volume function is

Vit) = cQ\i)

for some constant c.
Example 1.67. Let G be semisimple, and denote by g the Lie algebra of G

with inner product = -(Killing form). By linearizing ψ at the identity we pro-
duce an orthogonal action on g (denoted Ad) whose orbit space is given naturally
by the Weyl chamber of g with the flat metric. The volume function is given by

V(t) = Π oi\t) .

Example 1.7. Let (Rn, G, φ) be an orthogonal representation of the compact
group G, and V the volume function, and set V = V o π where π: Rn -^ Rn/G
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is the standard projection. Then V2 is a homogeneous, G-invariant polynomial
in n-variables, and the set where V — 0 is precisely the union of all singular
orbits. Hence, by Corollary 1.1 we have that

S71'1 Π {xεRn: V(x) = 0}

is an algebraic minimal variety in Sn~1.
Let / N - ^ M b e a G-invariant submanifold of M, and for simplicity assume

that f(N) Π M* Φ 0. (There is no loss of generality in this assumption since
M may always be replaced by certain natural substrata for which the assump-
tion holds and to which all subsequent arguments apply.) Let v denote the com-
mon dimension of the principal orbits, namely dim G — dim H.

Definition. By the cohomogeneity of /: N —> M in the G-space M we mean
the integer

dim N — v .

Thus a submanifold of cohomogeneity zero is a principal orbit, and more gen-
erally a submanifold of cohomogeneity k projects to a map / : N/G —» MjG
such that (/|iV*/G): N*/G —• M* /G is a λ -dimensional submanifold.

For each integer k > 1 we define a metric

(1.2) gk = V^g

over M/G where g is the metric on M/G constructed above. Each gk is a
Riemannian metric over M* /G which goes continuously to zero at the singular
boundary.

Observe that the volume of a G-invariant submanifold f: N —> M of cohomo-
geneity k in M is equal to the volume of f:N/G^M/G in the manifold
(M/G, gk). Together with Theorem 1 this shows the following.

Theorem 2. Let f: N —> M be a G-invariant submanifold of cohomogeneity

k, and let M/G be given the metric gk defined in (1.2). Then f:N-+M is

minimal if and only if f: N*/G —> M*/G is minimal.

Remark. Theorem 2 also holds for cohomogeneity zero in which case gk is
replaced by the function V, and "minimal in M* /G" is replaced by "critical
point of V". In this simplest case we already have a non-trivial application.
Let M and G be as above.

Corollary 1.8. Suppose M is compact, and let (H) be any orbit type. Then
the homogeneous space G/H can be minimally immersed into M.

Proof. Any component Mf of M{H) = {x e M: Gxe (//)} is a difϊerenti-
able manifold, and in the above manner Mf /G is also. By the Slice Theorem
each point of WjG ~ M' /G corresponds to an orbit type (H') < (H). If
dim H' = dim H, then the orbits of type (H) pass in the limit to a finite cover-
ing of this orbit. (Up to conjugacy we have H' c H and the covering is simply
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H'/H -> G/H -> G/H'.) Let v = dim ( G / # ) , and define as above the v-dimen-
sional volume function V o n M ' / G . F is continuous as thus has a maximum
at some point p. It p ε M/ jG we are done. If not, p must correspond to one of
the exceptional orbit types, and again it is clear that π~ι(p) is minimal. This
completes the proof.

By a theorem of G. Mostow every compact, homogeneous space can be
realized as the orbit of an orthogonal action on Rn[MO]. Hence, we have the
following theorem quoted in [HI] without proof.

Theorem 3. Every compact homogeneous space can be minimally immersed
into Sn.

Note. The metric induced by this immersion will be G-invariant, but it may
not be the "nicest" metric. For instance, the manifold SO(3)/Z2 0 Z2 in Ex-
ample 1.4 does not have constant curvature.

While many special cases are treated in subsequent chapters, there is one case
of current interest which deserves mentioning here.

Example 1.7. Let G = SO(n) X SO(m) acting on Rn x Rm x R as in
Example 1.3. Here the orbit space is naturally presented as B = {(x, y, z)εR3:
x > 0 and y > 0} where π: Rn X Rm X R -> B is defined by π(X, Y, Z) =
(\X\,\Y\,Z). The singular set corresponds to {(x, y, z) e B: xy = 0}. The volume
function up to a constant is V(x,y,z) = xn~ιym~ι, and the metric g is just
dx2 + dy2 + dz2. Observe that all non-parametric minimal hyper surf aces
Z = F(X9 Y) in Rn+m+1 which are G-invariant (cohomogeneity = 2) must, by
Theorem 2, be precisely the inverse images under π of the surfaces z = f(x, y)
in B which are extremals of the area integral for the metric

g2 = χn-ιy™-\dx2 + dy2 + dz2) .

This integral is A(f) = Γ Cx^y^Wl + fx + ]\dxdy for which the Euler-

Lagrange equations are

( L 3 )

It has been recently shown in a celebrated paper of Bombieri, De Giorgi, and
Giusti [BDG] that when n = m = 4, global solutions to (1.3) can be found over
the quadrant thus contradicting the long standing Bernstein conjecture in dimen-
sions greater than eight.

Remark 1.8. The statement of Theorem 2 clearly remains true when the
metric gk is replaced by a positive scalar multiple of itself.

Remark 1.9. The above cohomogeneity is defined with respect to the action
of G. However, if we define /(M, f(N)) to be the group of isometries of M,
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which leave f(N) invariant, then this group depends only on the immersion /.
When N is compact, 7(M,/(Λ0) is compact and we can define the absolute
cohomogeneity of N in M to be the cohomogeneity with respect to the action
of/(M,/(Λ0).

5. Applications to homogeneous spaces

Theorem 2 is interesting and particularly simple when all the orbits of G are

isometric. In this case MjG = M is a non-singular manifold and π: M —* M
a fibre bundle. Moreover, the volume function is constant, and thus the metrics
g> £i>£2> #3> * * a r e aU equivalent (cf. Remark 1.8). Hence, if we provide M
with the natural metric g we have that N is a minimal submanijold of M if and
only if TΓ^GY) is a minimal submanifold of M. (In this section all mention of
the immersion f: N -+ M will be suppressed.)

One particularly important class of examples of this sort arises in the follow-
ing way. Let H be a compact, connected subgroup of a connected Lie group G,
and suppose G has a left invariant metric g' which at the identity is Ad#-
invariant. Then H acts isometrically on G by multiplication from the right, and
all the orbits of this action are isometric. Furthermore, the canonical metric on
the homogeneous space G/H associated with g' (cf. [KN, p. 200]) is exactly the
orbit space metric g defined in § 4. Thus if π: G —• G/H is the canonical pro-
jection, we have

Proposition 1.10. N is a minimal submanifold of G/H if and only if π~ι(N)
is a minimal submanifold of G.

We now consider a somewhat more general situation. Let Hλ C H2 be com-
pact, connected subgroups of a connected Lie group G, g the Lie algebra of G,
and ί)1? ί)2 the subalgebras corresponding to Hx and H2. Suppose <•, •) is any
positive definite Ad^-invariant symmetric bilinear form on g. Then the restric-
tion of ^ , y to ^ and ϊ)f gives rise canonically to G-invariant Riemannian
metrics on the homogeneous spaces G/Hι and G/H2 respectively [KN, p. 200].
Given such metrics (together with the above connectedness assumptions) we
call the fibration

H2/Hλ -> G/H, -» G/H2

a regular fibration of Riemannian homogeneous spaces.

Theorem 4. Let H2jHl-^> GjHι > G/H2 be a regular fibration of
Riemannian homogeneous spaces. Then N is a minimal submanifold of G/H2

if and only if n~\N) is a minimal submanifold of G/H^
Proof. Let g' be the left invariant metric on G associated with the form

<-,•>. With this metric both of the fibrations πx: G-^G/H1 and τr2: G-*G/H2

satisfy the hypotheses of Proposition 1.10. Applying this proposition to the
commutative diagram
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G/Hi Λ > G/H:

proves the theorem.
This theorem is quite useful because most natural fibrations of Riemannian

homogeneous spaces are regular. If, say, G is compact and <( , ) is AdG-in-
variant (so the resulting metric on G is bi-invariant), then all associated fibra-
tions are regular.

Beginning with known examples in spheres, Theorem 4 produces a vast col-
lection of closed minimal submanifolds in compact homogeneous spaces. Closed
minimal varieties in spheres have been constructed in [H2] and [L2] and many
more will be found below. If we observe that the spaces SO(ή)/SO(n — 1),
SU(jn)/SU(n - 1), Sp(n)/Sp(n - l),G2/SC/(3), Spin(7)/G2, Spin (9)/Spin (7)
(non-standard Spin (7)-subgrouρ) all naturally represent Euclidean spheres, we
see how many examples can be produced. For example, let ξmΛ be a compact
minimal surface of genus mk imbedded in S3[L2], By letting S3 lie geodesically
in S4n~ι we can consider ξm>k minimally imbedded there. For each closed sub-
group G of SO(4n — 1) (resp. SU(2n — l),Sp(n — 1)) the inverse image of
ξmtk under the canonical projection is a closed, non-1-connected minimal sub-
manifold imbedded in SO(n)jG (resp. SU(ή)/G, Sp{ή)jG. In particular, we can
produce a number of interesting minimal varieties in Stiefel manifolds.

Similarly, let GjK be a Hermitian symmetric space, and suppose
K/H —> GjH —> G/K is a regular Riemannian fibration. Then for any Kahler
submanifold N C G/K (automatically minimal [5]) π'^ΛO is minimal in G/H.

Example 1.11. Let

S1 > S2n+1-^+ CPn ,

(1-4)
S3 • S4n+3 • QPn

be the standard Hopf fibrations of complex and quaternionic projective spaces.
With the usual symmetric space metrics these fibrations, which can be rewritten

C/(l) - U(n + 1)/U(n) -* U(n + 1)/£/(«) X t/(l) ,

Sp (1) -> Sp (n + 1)/Sp in) -, Sp (n + 1)/Sp (n) x Sp (1) ,

are regular. Hence, if N is any complex submanifold of CPn, then π~ι(N) is
minimal in S2n+1. This gives a number of algebraic minimal varieties in spheres.
We also note that QPι = S* with the standard metric. Hence, letting M denote
the minimal hypesurface in S4 of type SO(3)/Z2 X Z2 discussed in [H2], we
have that π~\M) is a minimal hypersurface of S7. Similarly, for each compact
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minimal surface ξm>k C S3 c S* discussed in [L2], π~Kξmtk) is a closed, 5-dimen-
sional minimal variety in S7.

Thinking in the reverse direction is equally interesting. One can ask: Are
there distinguished hypersurf aces in CPn and QPn which generalize the equators
of spheres? For n > 1 these spaces have no totally geodesic hyper surf aces.
However, the above picture provides the following natural candidates in the
class of minimal surfaces. In Sn+1 the hypersurf aces

(1.5) MPtQ = S*(Spjn) X
PtQ

for p + q = n and p — 0, , [n/2] have been variously characterized by
their common geometric properties [CDK], [LI], [S]. Note that for each pair of
integers /?, q > 0 such that p + q = n there are surfaces

71,/ <— C 2 W - 1
^»^2ί> —1,2(7 —1 '

which are invariant under the respective actions of C/(l) and Sp (1) in (1.4).
These surfaces project to minimal hypersurf aces M*^q and M*5* of CPn~ι and
Qpn-i respectively, which, when n = 2, are in fact the equatorial hyperspheres.
It has been shown in [L3] that these "generalized equators" admit strong in-
trinsic characterizations which distinguish them in the class of minimal hyper-
surfaces.

Let H and K be compact, connected subgroups of a compact connected Lie
group G. Fix a bi-invariant metric on G and assume that

H > G - ^ > G/H ,

H • G-^-> K\G

are regular fibrations of Riemannian homogeneous spaces, where K\G is the
space of right cosets. Then K acts isometrically on G/H by mutiplication from
the left, and H acts isometrically on K\G by multiplication from the right. Of
course K x H acts isometrically on G by multiplying by K from the left and
H from the right.

Following the above reasoning produces a useful observation.
Corollary 1.12. Let N be a K-invarίant minimal submanifold in G/H. Then

πϊKN) is a K x H invariant minimal submanifold in G and π2(πϊι(N)) is an
H-invariant minimal submanifold in K\G.

Hence we can take invariant minimal submanifolds in one homogeneous
space, lift them to the group and then push them into completely different
homogeneous spaces. If the original submanifold had cohomogeneity k, then
the other two will have the same cohomogeneity k. Thus each family of co-
homogeneity one minimal hypersurfaces in Sn constructed below produces
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similar families of hypersurfaces in homogeneous spaces which are not fibred
over Sn.

We note that taking this viewpoint produces good candidates for generalized
equators in Grassmann manifolds. Let Mp_liq_x be the generalized Clifford sur-
face denned by (1.5). The manifold is an extremal of the standard action of
SO(p) X SO(q) on the sphere. Let GPtQ(R) be the real Grassmannian
SO(p) X SO(q)\SO(p + q). As above we have ίibrations

SO(p + q)

and by Corollary 1.12 the manifold MPtQ = π2(πϊ\Mv_ltq_J) is a homogeneous
minimal hyper surf ace of Gp>q(R). This procedure similarly produces distinguish-
ed minimal hypersurfaces in the complex and quaternionic Grassmann mani-
folds. These surfaces should admit geometric characterizations similar to those
in [L3].

6. Nullity and Jacobi fields

Let /: N —> M be a compact minimal submanifold. The second variation of
/ produces a symmetric bilinear form II defined on the space Jί of normal vector
fields on N. This bilinear form generalizes the Hessian form associated with
geodesies (cf. [M]) and relates similarly to a generalized Morse theory for mini-
mal submanifolds (see [S]). The (finite dimensional) null space JίQ of II con-
sists of the zeros of a certain elliptic partial differential operator on Jί, the
so-called Jacobi fields [£]. The dimension of Jί\ is called the nullity of the
immersion.

The space Jr

Q corresponds to the variations of / which preserve area to second
order. If ft: N —> M is a variation of / through minimal immersions, the normal
component of (fQ)*(d/dt) is a Jacobi vector field. Using Cartan-Kahler theory
D. Leung has recently proved that locally every Jacobi field on N is obtained
in this way. Suppose f:N-^Misa G-invariant minimal submanifold of co-
homogeneity k, and let /: N*/G-^M* /G be the associated minimal immersion
(with metric gk on M* jG). There is a natural one-to-one correspondence be-
tween G-invariant normal vector fields Jf on N and normal vector fields / on
N*/G (with proper extendability to the singular set.) This correspondence re-
lates Jr to J where π*Jf

x — Jπ{x) for each ^eiV*.

Let J' and J be such a pair of normal vector fields.

Proposition 1.13. /' is a Jacobi field on N if and only if J is a Jacobi field

onN*/G.
Proof. Assume / is a Jacobi field. We first observe that /' is a Jacobi field
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if //(/', V) = 0 for all invariant normal fields V, since if V is any normal

vector field, then //(/', V) = flI(g*J', g*V)dg = J w , g*V)dg =
G G

//(/ ' , fg*Vdg\ = 0. However, for any invariant field V (with corresponding

field F on N*/G) we can construct, by appropriate use of the exponential

mapping, an equivariant variation / M : N —> M, 0 < s, t < 1, of / = /0,0 such

that (/Ofo)*0/9'S) == J' and (/0,0)*(3/3*) = F ' τ h i s projects to a variation / M of

/ having the same area function s/(s,t). Hence, //(/', F') =
dsdt

//(/, F) = 0, and V is a Jacobi field. The converse is trivial.

Jacobi fields come from variations through minimal varieties. Hence a special
class of Jacobi fields is produced by the 1-parameter groups of isometries of M.
To be precise these are the normal components of the restrictions to N of the
Killing vector fields on M and are designated as Killing-Jacobi fields. The
dimension of the subspace of such fields is called the Killing nullity. (For the
special hypersurfaces MPtq,M*^q and M** discussed in §5 the nullity = the
Killing Nullity = (p + \){q + l),2/?g, and Apq respectively.)

For a compact minimal submanifold N of M it is not difficult to see that
the Killing nullity of N = dim (/(M)//(M, Λ0)(cf, Remark 1.9). In [S] J. Simons
characterized the geodesic subsphere of spheres as minimal submanifolds of
least nullity. In order to classify closed minimal submanifolds of small, but not
necessarily least, nullity it is clear that one must first classify those of small
cohomogeneίty. This program is carried out successfully for the 3-sphere in
Chapter IV.

CHAPTER II

ISOMETRY GROUPS OF LOW COHOMOGENEITY

By Theorem 2 the problem of classifying closed G-invariant cohomogeneity-
one minimal submanifolds in a manifold M is reduced to finding all "closed"
geodesies on the singular manifold (M/G, gλ) where by "closed" we mean com-
pact and without boundary relative to the singular set (M — M*)/G. As seen
below whenever a geodesic meets a "nice" part of the singular set, the geodesic
meets the part transversely and lifts to a non-singular submanifold upstairs.

From now on the purpose of this paper will be to classify, by use of the above
observation, all minimal hypersurfaces in Sn of absolute cohomogeneity one. To
do this we first classify all linear actions of compact groups on Rn, which have
low co-dimensional principal orbits, and then compute the metrics, volume
functions, etc. for the orbit spaces and analyse their geodesic structures.
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1. Classification of compact linear groups with cohomogeneity two

In the important special case that M is the euclidean /i-space Rn,ISO(Rn)
also preserves the linear structure of Rn. The action of any compact subgroup
G of ISO(Rn) necessarily has a fixed point and hence, up to conjugation, we
may assume that G cz O(n) ci ISO(Rn). The following are some useful obser-
vations of [H3,pp. 87-90] for the classification of linear groups with low co-
homogeneity.

Observation 2.1. Let ψ19 φ2 be two representations of G with (Hλ), (H2) as
their principal orbit types respectively, and set

rλ = dim φλ — dim (G/HJ ,

r2 — dim φ2 — dim (G/H2) ,

r = dim (ψ, + φ2) - dim (G/H) ,

where (H) is the principal orbit type of φγ + φ2. Then one has r > rx + r2.
Observation 2.2. Let G <Ξ G' ci O(n) be compact linear groups. Then the

cohomogeneity of G/ is smaller or equal to that of G. From the viewpoint of
geometry, one may assume that there does not exist G' such that GζLGf' cz O(n)
with the same cohomogeneity as that of G.

Observation 2.3. Suppose φ is an irreducible, real representation of a com-
pact connected Lie group G = Gx X G2. Then there exist real irreducible rep-
resentations φ19 φ2 of G1? G2 such that

φ\G = k 1 . φ 1 9 φ\G2 = k2 ψ2

respectively and dim ψ < dim ψx dim φ2 < 4 dim ψ.
Observation 2.4. Let ψ be a faithful representation of G, and # ! a principal

isotropy subgroup of φ. We define a series of subgroups and representations as
follows:

φ\H, = (AdβlH, - Ad^) + rφ = φx + rφ .

Hi+ι is a principal isotropy subgroup of φi9 which is a representation of // ί5

and φi+1 is given by

φt\Hi+1 = φi+1 + ri+1-θ .

We observe that :

(a) Ht is a principal isotropy subgroup of i ψ.

(b) Since ψ is faithful, ψt are all faithful, and hence dim φtφ 0 unless

»i = W
(c) d i m ^ = d i m 0 i + 1 + r ί + 1, and if d i m ^ Φ 0, then ri+1 > 0. Hence

Σ ?i < dim 0, and Hi = {̂ }, dim ^ = r4 = 0 for / > dim 0.



16 WU-YI HSIANG & H. BLAINE LAWSON, JR.

(d) The codimension of the principal orbits of k ψ is given by

krλ + (k - l)r2 + + rk .

Observation 2.5. If the representation (K, φ) can be realized as the isotropy
representation of K on a symmetric space G/K, then the cohomogeneity of
(K, ψ) equals rank (G/K). For example, if K = 5O(n) x S0(m) and φ = pn®ρm,
then the cohomogeneity = rank (GntΊΛ(R)) = min (ra, w).

Theorem 5. L^ί (G, ̂ ) &e β maximal compact connected linear group of
cohomogeneity two. Then there are the following possibilities:

(i) // φ is reducible, then G = SO(k), φ = pk + θ or G = SO(kλ) x SO(k2)
and φ = pkl + pk2.

(ii) // G w non-simple and irreducible, then either

or

or

or

or

G = SO(2) x SO(ik)

G = S(U(2) x

G = £7(1) x Spin(10);

G =

ψ = [ft

φ = v2

Φ = [ft

vk

(iii) // G w simple and irreducible, then the possibilities are given by the
following table.

TABLE 1. Simple irreducible linear groups of cohomogeneity 2

G

SOd)

5£/(3)

Sp(3)

5p(2)

G2

F 4

Φ

(Sfr-Θ)

Ad

( A 3 - θ)

Ad

Ad

dim^

5

8

14

10

14

26

Principal orbit type

St/(2)/T«

5p(3)/Sp(l)»

Sp(2)/T

G2/Γ2

F4/Sp/n(8)

Remark. It is a rather amusing coincidence that the above linear represen-
tations are exactly those isotropy representations of various symmetric spaces
of rank 2.

Proof of Theorem 5. Since the principal orbit types of all simple linear
groups have been classified in [HH2], it is not difficult to reduce the proof of
the above theorem to those tables of [HH2] by means of the observations (2.1)-
(2.4) we leave this to the reader.
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2. Linear groups of cohomogeneity 3

(A) Reducible compact linear groups of cohomogeneity 3
Thenrem 6. Let (G, ψ) be a reducible maximal compact linear group of

cohomogeneity 3. Then there are the following possilities;
(i) φ = ψ' -f- β, and (G, φ') is a compact linear group of cohomogeneity 2

(cf. Theorem 5).
(ii) G = SO(k) x G',ψ = pk + φf, and (G', φf) is a compact linear group

of cohomogeneity 2 (cf. Theorem 5).
(iii) G = SO(k), φ = 2pk, orG = SO{2) X SU(k), φ = p2 ® Λ [μk]R.
(iv) G is a circle group acting on RK
Proof. From Observation 1 we have that ψ = φλ + φ2 where rλ = 1 and

r2— 1 or 2. We first discount the special cases (i) and (iv). Then by a theorem
of [MS] there exists a normal subgroup GXC1G which acts transitively on the
unit sphere Sx of the representation space of ψx. If Gx acts trivially on the rep-
resentation space of φ2, then, by Observation 2, we may further assume Gx —
SO(k) and ψι — pk^φ = pk-\- ψ2, which is case (ii).

If Gλ acts non-trivially on the representation space of ψ, then it follows from
the classification of linear groups of cohomogeneity 1 and case by case check-
ing that the only possible cases are

G = SO(k) or G2 or Spin(7) φ = 2>pk or 2 φλ

(dim φλ = 7) or φ = 2 J7(dim ΔΊ = 8)

G - SO{2) X 5£/(Λ) , ψ = p2®R [μk]Λ .

However, the cases G = G2 or Spin(J) are not maximal linear groups of co-
homogeneity 3. Hence, if Gλ acts non-trivially on the representation space of
02, then it is exactly the case (iii).

(B) Irreducible, non-simple compact linear groups of cohomogeneity 3
Theorem 7. Let (G, φ) be an irreducible non-simple maximal compact

linear group of cohomogeneity 3. Then there are the following possibilities',
(i) // G is semi-simple, then either

G = SO(3) x SO{n) , n > 3 , φ = p p

or G = 5p(3) X 5p(n) , π > 3 , φ = v3®Qv*.

(ii) // G w λzoί semi-simple, then either

G = S(U(3) X U(n)) , n > 3 , φ = [μ3 ®cμn]R

or G = SO(2) X Spm(9) , φ = p2®RA9 , dim J 9 = 16

or G = E/(l) X £ 6 , 0 = ti"i ® C 9 I 1 Λ ' d i m c (pi)

or G = C/(3) , 0 = [ ^ 3 ] Λ

or G = t/(6), t/(7), φ = [Λ2μ6]R, [Λ2μ7]R .
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Proof. If G is semi-simple and non-simple, then G consists of exactly two
simple normal factors, say G = G X G". For otherwise one can show that
φiG) QpnΘ ρm(SO(n) x SO(m)) c; SO(n m) where min(m, w) > 4, and thus
by Observation 2.5 the cohomogeneity of G must be > 4 . Hence either φ =
^' ®JI 0" where 0' and 0" are real representations of G' and G" or 0 = φ' ®Q φ"
where φf and φ" are irreducible quaternionic representations of Gf and G"
respectively. In the former case, it follows easily from Observation 2.2 that
G = SO(3) X SO(n), n>3,φ = p3®Rpn. In the later case, it is not difficult to
check through Table A of [HH2] to show that the only possibility is G = Sp(3)
X Sp(n),n> 3,φ = vz®Qv*.

If G is not semi-simple, then it follows easily from the Schur lemma and the
irreducibility of G that the connected center of G is a circle group S^i.e.,
G ~ Sι X G and G is semi-simple. It is easy to show that if G is non-simple,
then G = S(C/(3) X U(n)),n > 3 and φ == [μ3<8>cj"n]jι The remaining case
that G is simple follows easily from Table A of [HH2].

(C) Irreducible, simple, compact linear groups of cohomogeneity 3

It follows directly from Table A of [HH2] that they are as follows:

(i) G = SOiβ), SOO) or Sp(3), φ = AάG,
(ii) G = Sp(4), φ = (Λ2v4 - Θ), ά\mR (φ) = 27.

Remark. Again, it is interesting to notice that most maximal compact linear
groups of cohomogeneity 3 are given by the ίsotropy representations of various
symmetric spaces of rank 3. The following four cases are the only exceptions:

(1) G = SO(n),φ=2.Pn.
(2) G = SO(2) X SU{k), ψ = p2 ®R [μk]R.
(3) G - SO(2) x Spin(9), φ = p2®R zf9.
(4) G is a circle group acting on j?4.

The above fact is rather useful in the later discussion of the "orbit structure"
of linear groups of cohomogeneity 2 and 3.

3. Orbit structures and the induced metrics of the orbit

spaces of linear groups of low cohomogeneity

Let M be a diίϊerentiable manifold with a given difϊerentiable action of a com-
pact Lie group G. The given G-action provides a decomposition of M into orbits
which are homogeneous spaces of G of certain types. Such a decomposition is
usually called the orbit structure of the given G-action and the decomposition
space is called the orbit space M/G. As mentioned in Chapter I, the orbits of
a given type forms a regular invariant submanifold and there is a natural "dif-
ferentiable stratification" of M by such invariant submanifolds. Furthermore,
the orbit space M/G is a difϊerentiable stratified set endowed naturally with a
smooth metric structure under which each stratum is a Riemannian manifold.
Our purpose here is to compute those orbit spaces Rn/Gas such "Riemannian"
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stratified sets where G is one of the linear groups of cohomogeneity 2 or 3 that
we classified in § 1 and § 2.

Since most compact linear groups of cohomogeneity < 3 are given by the
isotropy representations of symmetric spaces of rank < 3 , it seems proper to
recall here some known results on the orbit structure of isotropy representations
of symmetric spaces (cf. [HE, Chapter VII]).

(A) Let G/K be a compact symmetric space, © and ® be the Lie algebra
of G and K respectively, and © = $ + g be the usual decomposition. Then
the isotropy representation of G/K is conveniently given by Adκ($). Let A be a
principal isotropy subgroup of the A>action on g, and ή g = F{A g) be the fixed
point set of A in g. Then ζ g is a maximal abelian subalgebra of g which is usual-
ly called the Cartan subalgebra of the above symmetric pair. Let N(A) be the
normalizor of A in K, and let W(G, K) = N(A)/A. Then W(G, K) is called the
Weyl group of the above symmetric pair, and W(G, K) acts naturally on ϊjg.
Let ζ be a Cartan subalgebra of © containing E)g, Δ be the root system of ©,
and J g be the set of roots with non-zero restriction on ϊ)g. Then W(G, K) is gen-
erated by reflections {sa a e J g } where sa is the reflection with respect to the
perpendicular hyperplane of a in f)g. These hyperplanes divide the space IL into
finitely many connected components, called the Weyl chambers. It is well
known that W(G, K) acts simply transitively on the set of Weyl chambers, and
the closure of each Weyl chamber is a fundamental domain of the W(G, K)-
action on ή g . The importance of the closed Weyl chamber for our purpose is
that it is also the fundamental domain of the X-action on g, which we are
interested in. Hence

Proposition 2.1. Let ψ = Adκa> be the isotropy representation of the sym-
metric space G/K. Then the orbit space q/φ(K) of the linear K-action ψ on g
is given by the Weyl chamber as a Riemannian stratified set. In particular, the
natural induced metric is fiat and its stratification is given by the walls and
their intersections.

Examples.
(i) K = SO(n)(χesp. SU(n),Sp(n)),ψ = (S2pn-θ)(χesp. AdSUm,(Λ2vn-θ)),

G/K = SU(n)/SO(n) (resp. SU(n) X SU(n)/SU(n)9SU(2ή)/Sp(n)). Then the
principal isotropy subgroups A form the conjugacy class of

ZΓ 1 (resp. Tn-\Sp{\γ-1) ,

and the Cartan subalgebra ϊjg = F(A, g) « R n l is an (n — 1)-dimensional vector

space. With suitable coordinates,

^ = Rn-ι = {(aιa2, . . . , an) I Σat = 0} .

The Weyl group W(G,K) acts as permutations of ai9 and the hyperplanes are
given by {at = aj9 i Φ /}. Hence the following domain
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Do = {«! > a2 > > an Iat = 0}

is a closed Weyl chamber.
(ii) K = SO(w) X SO(m)(resp. S(E/(w) X U(m)),Sp(n) X Sp(m)),n < m,

ψ=pn®Rpm (resp. [ ^ Θ c μ J * , *»®gi£) and G/£=SO(n + m)/SO(rc)χSO(m)
(resp. 5ϋ(π + m)/S(U(n) X U(m)),Sp(n + m)/Sp(n) X Sp(m)). Then the
principal isotropy subgroups are of the form A = Z " " 1 X 5O(m — n) (resp.
.S(ί/(l)n X U(m - ή)),Splϊ)n X 5/?(m - ή)) and the Cartan subalgebra =
F(A ,g) & Rn is an n-dimensional vector space

Rn — {(a19 a2, , an) α* e J?} .

The Weyl group JF(G, Ĉ) acts as permutations of the at with arbitrary
changing of signs. The hyperplanes are given by ±at ± aύ = 0 and at = 0.
Hence the following domain

Do = K > a2 > > an > 0}

is a closed Weyl chamber.
(B) The exceptional cases
(1) G = SO(n),ψ = 2 ^ : The principal orbit type is the second Stiefel

manifold SO(ή)/SO(n — 2), the singular orbit types are SO(ή)/SO(n — 1) and
point (the origin), and the orbit space R2n/SO(n) with the natural metric is a
solid circular cone of angle τr/4.

S O U

7 \

7 \ S0(n)/S0(n-2)

(2) G = 5O(2) X SU(ή),ψ = p2®R [μk]R: The orbit space with the
induced metric is a half of the above solid circular cone as in the following
figure (i).

(3) G = SO(2) x Spίn(9), ψ = p2 <g)Λ J 9 : The orbit structure is as in the
following figure (ii). Since we will not need the Riemannian structure of this
orbit space, we leave its derivation to the reader.

(4) G is a circle group acting on R4: (cf. Chapter IV).



MINIMAL SUBMANIFOLDS 21

G/SO(2)xSU(n-l)

G/Z2xSU(n-l)

0 SU(4)XZ;

(ϋ)

Spin(7)xZ2

4. Volume functions

In order to consider the equivariant variational problems of low cohomo-
geneity on Euclidean spaces and spheres we need to compute the volume func-
tions of those linear groups of cohomogeneity < 3 which we classified in § 1
and § 2. The following observations are useful in such computations:

(A) If (Rm, G) is a compact linear transformation group, then Rm —ί->
V2

RmjG > R+ is clearly an invariant polynomial function and hence can be
expressed in terms of the basic invariant functions.

(B) By definition the volume function V must vanish on the singular set of
the Riemannian G-space. In the linear case, V2 is an element of the ideal cor-
responding to the singular set. We shall delete the detailed calculations and
simply list the results in Tables 2 and in the appendix.
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CHAPTER III

CLOSED COHOMOGENEITY-ONE HYPERSURFACES OF Sn

The problem of classifying and understanding the behavior of closed co-
homogeneity-one minimal hypersurfaces of Sn has been reduced to studying
"closed" geodesies on the orbit spaces, with metric g19 given in Chapter II.
(If X C R3 is an orbit space of a cohomogeneity 3 action, the space S71'1^ is
represented by X Π S2.) By "closed" we mean compact with possible boundary
at regular points of the singular set.

The orbit spaces in Table 3 fall into two distinct catagories: 1) The orbit
space is a disk with rotationally invariant metric. 2) The orbit space is a region
of the Euclidean 2-sphere bounded by two or three great circular arcs, and the
volume function is the restriction to the sphere of a homogeneous polynomial
inR\

Examples of type 1) will be treated uniformly and completely. For those of
type 2) we shall discuss generic cases.

There is one type of action which does not fit into these catagories, namely,
circle actions on S3. These will be treated in Chapter IV.

1. The cases ρn (x) 2Θ and pn® pn: Otsuki manifolds

In this section we shall investigate the structure of geodesies on a class of
orbit spaces arising from actions of SO(ή) on spheres. There are two distinct
cases.

Case 1. SO(n) acts on Sn+ι by pn 0 20.
Case 2. SO(ή) acts on S2n~ι by pn@ pn.
In both cases the orbit space with the natural metric g is a closed circular disk

on the constant curvature 2-sρhere. There are only two orbit types: the princi-
pal orbits (&Sn in Case 1 and ^SO(ή)/SO(n — 2) in Case 2) which corre-
spond to the interior of the disk, and the singular orbits («points in Case 1
and ^S71'1 in Case 2) which correspond to the boundary circle.

We can choose parameters (φ, θ) 0 < φ < τr/2 and 0 < θ < 2π, for these
orbit spaces so that the metric g (cf. Chapter I, § 4) has the form cos2 φdθ2

+ dφ2 and so that the volums function has the form smn-ιφ for Case 1 and
sinn~2 φ for Case 2.

Hence minimal submanifolds invariant under the above actions are represent-
ed naturally by geodesies on the disk with metric

(3.1) ds2 = sin2* p(cos2 φdθ2 + dφ2) .

Here θ is the rotational parameter, and φ the radial parameter with φ = 0 cor-
responding to the boundary.

Observe that the metric is invariant under rotations in θ. These rotations
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correspond to the normalizer of the action in the full isometry group (namely,
ρn@p2(SO(n) X SO(2)) in Case 1 and pn® p2(SO(n) x SO(2)) in Case 2).
Geodesies congruent under these rotations correspond to congruent submani-
folds in the sphere.

We note also that the metric (3.1) is invariant under the reflection

yό.2*) OQ ~\~ o —* On — θ

for any θ0. Hence the diameters θ — constant are all geodesies. In Case 1 they
correspond to geodesic hyperspheres and in Case 2 to the manifolds Mn_ltn_x

given by (1.5).
By uniqueness for geodesies no other geodesic can be tangent to a diameter,

and in particular no other geodesic can pass through the center of the disk.
Hence all other geodesies can be expressed as φ = φ(θ) where θ is now allowed
to vary over all real numbers.

If φ = φ(θ) corresponds to a closed geodesic, then there is some point, which
we may assume is θ = 0, at which φ assumes a maximum. Hence we may as-
sume that ψ satisfies the initial conditions

(3.3) φ(0) = a foraε(0,π/2) ,

(3.4) φ'®) = 0 ,

(3.5) ^"(O) < 0 .

Using procedures discussed in [C] the general equation for φ is found to be

aφ

Thus

, α ~x dφ , I sin2* φ cos2 φ 1

(3.7) —— = +cos^\/ 1- L- — 1 ,
dθ ~ y ύn2kacos2a

and

(3.8) ψ (0) = ctn a((k + 1) cos2 a - 1) .
dθ2

From (3.5) and (3.8) we see that a > cos-^l/VA; + 1) = a0. When a = aQ

we have φ(θ) = a0. This geodesic is the extremal orbit of the rotation
group acting on the disk, and the inverse image of this geodesic is the
extremal orbit of the normalizer actions mentioned above. In Case 1 this
is the generalized Clifford surface M l t n_ 1 and in Case 2 it is the surface

x SO(2)/SO(n - 2) x Z2 discussed in [H2].
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Suppose a > aQ, and let d e (0, aQ) be the number such that sin2fe d cos2 d =
sin2fc α cos2 a. As 0 increases from 0, φ{0) will strictly decrease until θ = Ωa

where φ(Ωa) = α'. (The existence of β α is guaranteed by the convergence of
the integral (3.6) for φ = d.) Then, using the symmetries (3.2), we can con-
tinue ψ{θ) as a geodesic by reflection at the points { β }

- 2 Ω α

Note that the geodesic φ =

Ω - Γ

0 Ωα 2Ωα 3Ωα

is closed on the disk if and only if the period

1 dφ

lsm21c φ cos2 φ _ , cos φ

a

is a rational multiple of π. Since β α is a non-constant, continuous function of a,
we have that there exist countably many such closed geodesies. Thus, letting
An = {a e (a0, τr/2): (l/π)Ωa is rational} (j {aQ} a letting Ca denote the inverse
image in the sphere of the closed geodesic satisfying (3.3) and (3.4) (and given
locally by (3.6) if a Φ a0), we have

Theorem 8. The closed, minimal hypersurfaces in Sn+1 (resp. S2n~ι) of co-
homogeneίty-one with respect to the action pn 0 2Θ {resp. ρn 0 pn) of SO(ή)
are the totally geodesic hypersphere and the countably infinite family {Ca}a€An.

Geodesic
hypersphere

inCase 1

inCase2
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Note. The examples of Case 1 were first discussed in detail by T. Otsuki
[OTl

Observe that the question of whether the submanifold Ca is imbedded reduces
to the question of whether the period Ωa ever assumes the value π/m for some
integer m > 1.

When k = 1 (the case of ρ2 0 2Θ acting on S3 or p3 0 p3 acting on S5) we
have

Ω•=Γ"
Ω i s in 2 θ c o s 2 θ Λ

cos θ\l-^-2 2— — 1
in2 a cos2 a

for a e (0,7r/2). (Here <z corresponds to a minimum point.) In terms of the com-
plete elliptic integrals K and Π (see [BF, pp. 9-10]) we find that

Ωa = sin a[K(k) + tan2 aU{a\ k)] ,

where

j o c o s 2 <z — sin 2 a , 2A: 2 = = a2 cos2 a .
cos2 α

Calculations from tables indicate that in this case all Ca,aΦ a0, have self-
intersections.

2. The case ψ = ψf 0 θ

Let (RN, G, 0 be an (orthogonal) representation, where ψ = p' 0 <9 and ̂ 7

has cohomogeneity 2. Then the orbit space Rn/G can, after an appropriate
transformation, be represented either by H = {(x, y, z) e R3: x > 0} with metric
g1 = xn{(x2 + y2)a(dx2 + dy2) -\- dz2} for some integer n > 0 and some α < 0,
or by Q = {(x, y, z) e R3: x > 0 and y > 0} with metric g1 = xpyp{(x2 + yψ
• (Λ 2 + dy2) + dz2} for integers /?, <? > 0 and β = 0 or —1/2.

The corresponding orbit space 5iV""1/G can be represented as either # Π *S2

or β Π 52 with the induced metric. Choosing coordinates (φ, θ) for these spaces
so that x = sin θ sin ̂ , y = cos 0 sin p, z = coŝ ?, for — π/2 < φ < π/2 and
0 < φ < π (or the same with 0 replaced by 0/2), we then represent SN~ί/G
by a square in the (0,0-plane.

Straightforward computations show the following:
(a) Any geodesic, which meets the singular boundary θ — 0 or θ — π, meets

it orthogonally. For any point on this boundary, there is exactly one geodesic
which emanates from p.

(b) If φ = ψ{0) is a geodesic such that φ\θ^ = 0 and φ(θQ) > 0 (resp. <0) ,
"(0o) < 0 ( r e s p .



26 WU-YI HSIANG & H. BLAINE LAWSON, JR.

(c) If θ = θ(φ) is a geodesic such that θ'(φQ) — 0 and θ(ψo) is close to θ = 0
(resp. 0 = π), then 0"(^o) < 0 (resp. > 0 ) .

Thus geodesies either meet the boundary orthogonally or are constantly re-
pelled by the boundary. Again one can show that there exist countably many
closed geodesies, examples of which are shown in the figures:

geodesic
SN-2

3. The other cases

The orbit spaces of the remaining representations (with the exception treated
in Chapter IV) are all given isometrically by the cone in R3 over a geodesic
triangle T on S2. The volume function V is a homogeneous polynomial which
vanishes on the planes determining this cone. T and V \ T represent the orbit
space and volume function of the action on the sphere.

Typical of the general case is the following simple example. Let G =
SO(p + 1) X SO(q + 1) X SO(r + 1) acting on « ' + ' + ' + 3 by pp+1 Θ pq+1 Θ pr+ι.
The orbit space X = {(x,y,z) e R3: x > 09y > 0,z > 0} and V = xpyqzr.
The orbit types represented by points oίT = X f] S2 are as shown in Figure (a).

spxs*xsr

sτ

SPXS*

Σp+ι(SqXSf)

(b)
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Each simplex of 3T corresponds to a geodesic sphere of the appropriate
dimension. Each solid line in Figure (b) (representing a geodesic on S2)
corresponds to a minimal variety homeomorphic to a A -fold suspension of a
product of spheres, and these lines meet at a point corresponding to the
minimal surface Sp(?J~pJn) X Sq(VqJn) X Sr(*J7Jn) where n = p + q + r.
The dotted lines (also geodesies on S2) represent minimal surfaces of type

+ 1)) X S*+r+1(V(4 + r + l)/(n + 1)), etc.
General geodesies on T again have property (a) of the previous section. More-

over, any geodesic which does not meet the boundary orthogonally is eventual-
ly turned away from the boundary, and the closer it manages to come the more
sharply it is turned.

To analyse the general geodesic behavior in detail we shall consider the spe-
cial case above where p = q — r. In this case each of the distinguished three
geodesies which meet in the center is a line of reflection symmetry for the orbit
space T. We choose parameters (φ, θ) for T by setting x = cos θ cos φ,y =
cos θ sin φ, z = sin φ for 0 < θ, φ < π/2. The metric gλ can then be written

ds2 = sin** 20 cos2ίϊ φ sin^ y?(cos2 φ dθ2 + dψ2) .

Any geodesic can be locally expressed as either φ = φ(θ) or θ = θ(φ) where
these functions satisfy the appropriate Euler-Lagrange equations for the arc-
length integral. These equations show:

(i) If φ = φ(θ) and φf(θ«) = 0, then

φ"(θ0) = —(3/7 + 1) sin φ cos φ + p tan φ .

Hence φ" > 0 <=φ sin2 φ < p/Qp + 1).
(ii) If 0 = θ(φ) and θ\ψ,) = 0, then θ"(φ,) = 2p ctn (20)/cos2 <p0.

Hence θ" > 0 φ==> θ < π/4.
(iii) φ — φ(θ) and ψ{0) is close to zero, then

^ + (pO2!2 - 2/7 ctn2 0[i + (φγy .
sin

Using the symmetries of the space together with these three facts allows us
to draw strong conclusions about the global behavior of geodesies. We note
first that the geodesic sin2 φ = p/(3p + 1) corresponds to the dotted lines of
Figure (b). Moreover, each of the six geodesies in Figure (b) divides T into two
regions to which either above Observation (i) or (ii) applies (by the rotational
symmetry of T). Thus in the small triangle bounded by dotted lines the geodesies
behave very regularly. Near the boundary they will obey the equation in (iii).

To find closed geodesies we consider curves which are initially of the type
φ = φ(θ) where φ(π/4) = a,φ'(π/4) — 0. To show that any such geodesic is
closed it is sufficient to show that it eventually msets one of the lines of reflec-
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tion symmetry (e.g., θ = τr/4) orthogonally. The geodesic is then closed by a
finite number of successive reflections. Due to the smooth dependence of
geodesies on their initial values and our our knowledge of the general behavior
of geodesies on T it is straightforward to conclude that there are countably many
distinct closed geodesies on T. Moreover, there exists a closed geodesic on T
without self-intersections. General descriptions of these appear in Figures (c),
(d) and (e). By considering the family of geodesies which meets one of the boun-
dary arcs (orthogonally) we similarly conclude that there are countably many
such closed geodesies (see Figures (f) and (g)).

For general orbit spaces of the type considered in this section the geodesic
behavior will be a distorted version of the one studied here in detail.

CHAPTER IV

CLASSIFICATION FOR S3

In the case of S3 the above procedures give a complete and very pretty clas-
sification of low cohomogeneity minimal surfaces.

Let S3 = {(z, w) e C2: \z\2 + \w\2 = 1}. For each pair of integers m > k where
(m,k) = 1 we define an effective unitary representation of the circle group on
C2 by the mapping

(z, w) -* (eίmθz, eίkθw)
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for θ e [0,2π), and denote the corresponding subgroup of SO(4) by GmΛ. Each
Gmtk represents a distinct action of S1 on S3.

In fact, up to conjugation the only closed, connected subgroups of SO(4) are:
50(3), the maximal torus T2 and the groups Gm>k. Both 5Ό(3) and Γ2 produce
codimension 1 orbits on S3 where the extremal orbits are the geodesic 2-sphere
and the Clifford torus

(4.1) T = {(z,w)eS3:\z\2 = \w\2 = 1 / 2 } .

These are the only minimal surfaces of cohomogeneity zero on S3. There are,
however, a remarkable number of minimal surfaces of cohomogeneity-one with
respect to each Gm>k. To understand them it is sufficient to study the closed
geodesies on the orbit spaces Xmfk = S3/Gmfk with the metric gλ.

The space Xuo is topologically a disk and corresponds to one of the cases
treated in detail in Chapter III, § 1.

The spaces Xm>k for ra, k > 1 are all homeomorphic to S2. All but two points
of Xm>k correspond to principal orbits having trivial isotropy subgroups. The
exceptional points correspond to the exceptional orbits

c1 = {(z,0)€C2: | 2 | = 1} ,

c2 = {(0,w)eC2: \w\ = 1} ,

which have isotropy groups Zm and Zk respectively. For these cases the map
TΓ: S3 -» Xm>k « S2 is a Seifert fibration.

The normalizer N(Gm,k) of GmΛ in SO(4) is the torus acting on S3 by

(z, w) -> (eίu2, eίvw)

for (w, v) e R2. The group N(Gmik)/Gm>k acts isometrically on Xm>k with metric
gx (and geodesies on Xm>k which are congruent under this group lift to con-
gruent minimal surfaces in S3), Hence Xm>k can be thought of as an ovaloid of
revolution with cλ and c2 corresponding to axis points.

Note also that in the special case m = k = 1 there are, in fact, no exceptional
orbits. The map π: S3 —• XlΛ is the Hopf fibration, and as discussed in Chapter
I, § 5 the metric gλ has constant curvature. The closed geodesies on the orbit
space are just great circles, and each of them lifts to a congruent image of the
Clifford torus.

To understand the geodesic structure of Xm>k for mk > 1 we will need to
compute the metric. We begin by choosing natural parameters as follows. Let

P = {(0,φ) e R2: 0 < θ < 2π and 0 < φ < π] ,

and define ψ: I2 —» S3 by

ψ(θ, φ) = (cos φ/2, eiθ sin φ/2) .
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Observe that ψ maps the lines φ = 0 and φ = π respectively into the exceptional
orbits cx and c2. Each of the remaining points is mapped into exactly one of
each of the principal orbits. Thus, following ψ by projection onto Xm,k gives a
coordinate chart for Xmtk (in int (72)).

The metric g (cf. Chapter I, § 4) in these coordinates is computed as follows.
Let X and Y be tangent vectors at p e P, and let g denote the metric on S\
Then

where ( ) N denotes the component of the vector normal to the orbit through
ψ(p). Following this prescription we get that up to a constant multiple

/ m2 sin2 φ \ Jn9 , j o

g = s- \dθ2 + dφ2 .
\m2 cos2 φ/2 + k2 sin2 φ/21 Ψ

The volume function V(θ, φ) is easily seen to be proportional to (m2 cos2 φ/2
+ k2 sin2 φ/2)y2, and thus, up to a constant multiple, the orbit space metric
£i = V2g is given by

gγ = m2 sin2 ψdθ2 + (m2 cos2 + k2 sin2 φ/2)dφ2 .

This is the metric of an ovaloid of revolution where φ parameterizes the longi-
tudes. The curvature of the metric is

K =
(l/2)(m2

(m2 cos2 φ/2 + k2sm2φ/2)2

It is immediate that the longitudes θ = constant are closed geodesies on Xmtk

whose inverse images are congruent in Sz. This congruence class corresponds
to the minimal surface

first discussed in [L2]. This represents an immersed surface of Euler character-
istic zero which is non-orientable if and only if 2\(mk). It is furthermore a
ruled surface and is algebraic of degree m -f k.

Let γ be a geodesic not of the form θ = constant. Then by the uniqueness of
geodesies, γ is never tangent to the longitudes and, in particular, never passes
through the (exceptional) axis points. Hence γ may be expressed as a function
φ = φ(θ) where θ now varies over all real numbers.

If ψ — φ{0) represents a closed geodesic, then φ takes a minimum value at
some point which we may assume to be θ — 0. Assume ψ Φ constant, and let
θ = Ω be the first critical point of φ(θ) after θ = 0. Then ψ{0) is increasing on
[0, Ω] and satisfies ^/(O) = φ'(Ω) = 0. Since the reflections
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θ0 + θ -> β0 - θ for θ0 e R

all represent isometries of Xm,k, the curve φ(θ) can be continued as a geodesic
by successively reflecting the arc φ([0, Ω]) at the points nΩ neZ. Hence φ(θ)
is closed on Xmtlc if and only if Ω/π is rational.

The congruence classes of closed geodesies on Xm>k therefore correspond to
the geodesies φ = φ(θ) for which

(4.2) ĉ (0) = a , for some a e (0, π) ,

(4.3) φ'(0) = 0 ,

(4.4) φ"(0) < 0 ,

and for which Ω — Ωa is a rational multiple of π. Denote these geodesies by γa.
Using Hamilton-Jacobi theory (cf. [C]) we find that φ(θ) is given by the equa-

tion

5 ) θ = + J _ p w / m2 cos2 ^/2 + £2 sin2

~ m J \ sin2 to 1

V . J — 1
sin ψ

sίn'α

Hence

(4 6) ^- = + msinc^ ίsϊn2φ _ Λ1/2

dθ " Vm2 cos2 φ/2 + k2 sin2 φ/2 \ s i n 2 β / '

sin(0)
dθ2 2 m2 cos2 a/2 + k2 sin2 α/2

Note that cp"(0) > 0 if and only if a < π/2, and equality holds only when

a = π/2. When a — τr/2, we have φ = π/2. This geodesic represents the Clifford

torus.

When a < π/2 we see from (4.6) that ψ has critical values a and π — a.

Hence φ(θ) oscillates between the curves ψ ~ a and ψ = π — a with period 2Ωa

where

__ 1 Γ*-" j__ 1 Γ - " jm2 cos2 9/2 + £2 sin2 φ/2 dψ
a ~~ s i n 2 ^ _ 1 s i n ψ

sin2α
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Ύ
•*• m,k,a

Clifford Torus

Xm,k

Since Ωa is a non-constant continuous function of a, we have that there exist
countably many non-congruent closed geodesies on Xm>k. In particular, let
Am>k = {a e (0, π/2): Ωa/π is rational}, and denote by Tm, fc>α the minimal sub-
manifold of S3, which is the inverse image under π of the geodesic γa. Then,
letting {Ca}a€A2 denote the family discussed in Chapter III, § 1 and setting
Tm>k = Tm>k>0 for convenience, we have

Theorem 9. The closed minimal surfaces in S3 of absolute cohomogeneity-
one are exactly, up to congruences, the surfaces, of the family &> =
{Ca]aeA2 U {Tm,k,a a 6 Am>k [j {0}, and m > k > 1 αr^ integers such that
(m,k) = 1}. Eαc/i o/ ί/ie subfamilies {Tmtk,a}azAm,k ύ countably infinite.

Referring to the discussion of Chapter I, § 6 we now have the following.
Theorem 10. Let M be a closed minimal surfacce in S3 of Killing nullity v.

Then

= 3 M = a totally geodesic 2-sphere,

Otherwise v = 6. In the first two cases v is the full nullity.
Note. It is an open question whether the manifolds TmΛ>a, a Φ 0, are

algebraic. We conjecture that in general they are not.
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TABLE II. Linear actions with

K

SO(n) X SO(m)

SO(2) X SO(m)

S(U(2) X Urn))

Sp(2) X Sp(m)

SO(3)

SU(3)

Sp(3)

Sp(2)

G2

£7(1) X Spm(lO)

F 4

U(5)

Φ

Pn + /0m

P2®pm

[μ2(g}cμm]R

s v 3 - <?

J ^ 3 - ^

[Aii®cA+olΛ

•— =o—o

[Λ*μι\R

άimφ

n + m ,
(n > m > 1)

2m ,

( m > 3 )

4m ,

( m > 2 )

8m ,

( m > 2 )

5

8

14

10

14

32

26

20

Prin. isotropy

subgp. type, H

SO(n - 1) X 5O(m - 1)

Z2 X SO(m - 2)

T2 X SU(m - 2)

5p(l)2 X Sp(m - 2)

Z 2 + Z 2

T2

Spur

T2

J2

T1 X SU(4)

Spin(S)

SU(2) X SC/(2) X Γ1
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codimension 2 principal orbit type

Orbit Space X

(As a linear cone

in F(H))

x > 0* y > 0

y > 0, (x - y) > 0

y > 0 , ( * - ; y ) > 0

y > 0,(χ — y) > 0

Λl > Λ2 > ^3}

y > 0, (x - y) > 0

{<iiΛ,a.);Σ*i = o

1̂ > ̂ 2 > 0}

\ v^l > ^2 > ^ 3 j 5 Z J ̂ Ϊ ^~ '•'

Λ-[ ^ Λ2 ^ ^ 3 /

{(J.,J.Λ);Σi* = 0

volume function

c (xj)n-2(x2 — y

c.(W3)
2^-^)

.(i,-J,)»(*-J

/

2)

. ,

2 ) 4

1 - h)2

1 ) 2

Associated Sym.

space G/K

SO(n + 1) X 5O(m + 1)
SO(n) X 5O(m)

5O(m + 2)
50(2) x SO(m)

SU(m + 2)
5((7(2) X U(m))

Sp(m + 2)

5(7(3)

5(7(3) X 5(7(3)
5(7(3)

5(7(6)
5/7(3)

5p(2) X 5/7(2)

* ( 2 )

G 2 X G2

G 2

E6

(7(1) X Spin(lO)

E6

F 4

50(10)
(7(5)
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TABLE III. Irreducible linear actions with

K

SO{3) X SO(n)

S(U(3) X U(n))

Sp(3) X Sp(n)

SU(4)

Sp(3)

SO{1)

Sp(4)

U(6)

U{1)

U{\) X E6

C/(3)

SO(2) X Spin(9)

Φ

Pi ®R Pn

lμz®cμn\R

ϋ3 ® Q W *

Ad

Ad

Ad

Λ2υA - θ

[Λ2μ6]R

[Λ2μ7]R

[μi®CψUR

dim ̂ >

3 Λ ,

(«>3)

6w ,

(n>3)

Yin ,

( n > 3 )

15

21

21

27

30

42

54

12

32

Prin. isotropy

subgp. type, H.

Z\ X SO(n - 2)

T*χSU(n-3)

5p(l)3 X Sp(n - 3)

J 3

J 3

J 3

^P(l)4

(5ί/(2))3

(5l/(2))»X t/(l)

Spin(S)

7 3

SU(3) X Z 2
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codimension 3 principal orbit type

37

Orbit Space X,

(As a linear cone

in F(H))

Xl > *2 > *3 > 0

X\ > Xl > *3 > 0

Xi > x2 > x3 > 0

h + λ2 + λΆ + λ± = 0 ,

λ1>λ2>λ5> Λ4

xj > x2 > x3 > 0

Xi > x2 > x3 > 0

1̂ + ̂ 2 + 4 + ̂ 0 ,
Λl > λ2 > λs > λ±

Xi > x2 > x3 > 0

Xi > x2 > x3 > 0

Xi > x2 > x3 > 0

*1 > *2 > -̂ 3 > 0

volume function /

C.(XlX2*3)
("-2)(*2l-*2)

(xl-xlXxl-x*)

c (xiX2.v3)
2-5(/7(χ2-χp)2

c(x ix 2 x 3 ) 4 w - 9 ( i7(x 2 x 2 ) ) 4

c Πiλi-λjY

oCx^Xa) 2 ^ 2 λ))2

c Πiλi-λjY
ί<3

c-x^xsί^x^-x2)}4

c-(xlX2x2y{n(xi-x))Y

c(xix 2x 3){i7(x?-x 2)} 8

C (X1^2^3)^(X^-XP

Associated Sym.

space G/K

SO(n + 3)
SO{3) X SO(n)

SU(n + 3)
S(U(3) X U(n))

Sp(n + 3)
Sp(3) X 5/?(«)

SU(4) X 5t/(4)
5t/(4)

^p(3) x 5/7(3)

Sp(3)

5O(7) X SO(Ί)
SO{1)

SU($)
5/7(4)

5O(12)
U(6)

50(14)

ί/(7)

t/(l) X E6

5/7(3)

ί/(3)

None
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