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SOME DIFFERENTIAL INVARIANTS OF

SUBMANIFOLDS OF EUCLIDEAN SPACE

JAMES H. WHITE

1. Introduction

Let /: Ms —> En be a C°° immersion of an oriented diίϊerentiable manifold
with or without boundary into Euclidean space of dimension n, p an arbitrary
generic (in a sense which will be made clear in § 2) point of En, and N a fiber
space over M which is mapped in a C°° fashion by a function g into En. In this
paper we prove a number of differential topological and integral geometric
formulas relating the intersection number of N with p to the integrals of certain
differential invariants of M.

In § 2, we prove the main equation from which all our results follow. In
§ 3, we consider the case where /: Mn~ι —• En is an immersion of a hyper-
surface and TV is a particular submanifold of the normal bundle. Here the
intersection number is seen to relate the normal degree of the immersion to
the linking number of the immersion with the point p.'

In § 4, we consider the simple case of curves in three-space and find new
integral formulas for the total curvature and total torsion of a closed space
curve. In § 5, we present the general theory in which we introduce, for s odd,
integral formulas for new differential invariants generalizing the curvature and
torsion of a space curve. For s even we obtain differential topological results
relating the Euler classes of certain s-plane bundles to our intersection number.
In particular, in § 6 we prove that if /: Ms —> En=s+k is an immersion of an
oriented compact manifold Ms and if N is a &-plane bundle over Ms and p a
point of En, then the intersection number of N with p is the Euler class of the
complementary s-plane bundle evaluated on the fundamental class of Ms.

Finally, § 7 deal with manifolds Ms with boundary and gives a new
formulation of the Gauss-Bonnet theorem for arbitrary codimension.

In all that follows all manifolds and fiber spaces are to be assumed C°°

and oriented, and all maps are to be asumed C3.
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2. The main equation

Let Nn be a compact orientable differentiable manifold with boundary 3N,
g: N ->En a differentiable map, and p a point of En such that g(3N) does not
intersect p. We denote by p X N the usual cartesian product of p with N, i.e.,
{(p, n) I n e N}, and let / denote the intersection locus of g(N) and p, i.e.,

/ = {(p,n)ep x N\p = g(n)} .

By means of the Thorn Transversality theorem it can be shown that, under
a small deformation of g, these intersections may be made transverse. This
may be done without loss of generality since the geometric entities we shall be
discussing vary continuously. Hence, we shall assume the intersections
transverse. Because of the compactness of g(N), they will be finite in number,
say r denote them by

(p,π ( α ) ) , a= 1, - , r .

We surround each of these points of / by small disjoint discs, Da.
We next define a map

e : p x N - I -^ S n l ,

where S71'1 is the unit (π — l)-sphere in En. For each (p,n) ep X N — /, we
set

e ( p , n ) = « » \ P
- p\

Let dθn_λ be the pull-back under e* of the volume element of S71'1.
We orient p x N by means of the orientation on N this induces orientations

on the discs Da and hence on 3Da, a = 1, , r. We will take the orientation
on dDa to be that given from the "inside." Note that d(dθn_λ) = 0 (where d
denotes the exterior derivative) since dθn_x is a (n — l)-form on an (n — 1)-
dimensional manifold.

Applying Stokes' theorem, we obtain

0 = Γ do,.! - Σ Γ
pxdN

The sum is simply 0n_J(g,p) where 0n_! is the volume of the (n — l)-sphere
and I(g, p) is the algebraic number of intersections of g(N) with p, or the sum
of the indices of the intersections of g(N) with p. For details, refer to [4].
This gives us, then, our main equation

(E) Γ
3
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In what follows we apply this equation to various cases depending on our
choices for N and g.

3 . N = Mn~ι x L,L= [a, b]

For our first example we choose for N the cartesian product of an (n — 1)-
dimensional oriented compact differentiable manifold M without boundary
with a closed interval L = [a,b] of real numbers. Let /: Mn~ι —»En be a
differentiable immersion of M into En, and suppose that v is a nonvanishing
differentiable unit vector field on M. Then, we define the map g for equation (E)
as follows:

g(n) = g(m, I) = f(m) + lvfim) ,

n = (m, I) eM x L. Equation (E) yields

7^- f dOn_1--^-C
n~l pxMb

 n ~ ι pxMa

where we have denoted M x {a} and M x {b} respectively by Ma,Mb. The
factor (— I) 7 1 " 1 comes from the induced orientation on 3N. This equation gives

L(p,Mb) - L(p,Ma) = (-ir-Ί(g,p) ,

Where L{p,M^) is the linking number of the point p with the immersed
manifold M moved a distance i along v.

A most interesting situation arises when b = oo and α = 0, i.e., when
L = [0, oo]. Note that N is still compact as we add to the half-line L the point
at oo. For a discussion of this point see [4], Let us examine the integral

" - 1 pXΛfoo

Consider a point at oo which arises from the half line L through the point f(m)
along vf{m). Then the vector e(p,m, oo) is easily seen to be the unit vector
vfim) translated to the origin, for the line joining p to a point at oo must be
parallel to the line along vf{m) from /(m) to the same point at oo. Thus, we
can write

as an integral over M in the following manner. Let f(m)eu ,en be an
orthonormal frame such that eλ is along v / ( m ) = e(p, m, oo) and such that the



210 JAMES H. WHITE

orientation agrees with that of N. If we set ωiό — d^ e ,̂ then

_ J _ I dθn_λ = J ωl2 A Λ ωln .

Thus, in the case L = [0, oo], equation (E) becomes

- 1 — J ωu Λ Λ ωln - L(p,M) = (-l)n-lI(g,p) .

The most interesting case occurs when v is the unit normal vector field on M.
Then, the first integral is simply the normal degree of the immersion, and
I(g, p) becomes the algebraic number of the intersections of the half-normal
lines with the point p. We may call these intersections normal intersections.

Theorem 1. Let f: Mn~λ —> En be an immersion of a compact orientable
diβerentiable manifold without boundary. Then for a point p eEn, the

normal degree — L(p,M) = (— l)n~Ί(g,p) ,

where L{p, M) is the linking number of p with M and I(g, p) is the algebraic
number of normal intersections.

Corollary 2. // n = 2, then

J kds — L(p, M) — — I(g, p) ,

M

where k is the curvature of M.
Corollary 3. // n is odd, then

χ(M)-2L(p,M)= +2I(g9p) .

Corollary 3 follows from the Hopf theorem that the normal degree is one-half
the Euler characteristic of M. Corollary 2 relates the linking or winding
number of the curve about a point to the index of rotation.

4. Curves in E3

We next discuss the situation in higher codimension, introducing it by
considering first the simplest case, a curve in Ez. Let /: M1 —> E3 be an
immersion of a curve in E3 such that the curvature k never vanishes, say
k > 0. An oriented two-plane bundle N over M consists of pairs (m, e) where
mεM and e is a point in the two-plane through f(m). For our purposes we
"compactify" N by adding to each two-plane the oriented circle of points at
infinity. Let vλ and v2 be unit orthonormal vector fields on M. Then we choose
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N to be the two-plane bundle (oriented so that V{V2 orients each plane) whose
fiber at each point is the two-plane spanned by the vector v1 and v2. Recall
that to use equation (E) we must have an N and a g. For N we choose a
submanifold of N with boundary. At each point raβM we choose as the
"fiber" for N the half-plane spanned by the line L along vλ and the half-line
along v2 in its positive sense. If h is the map h: N —• E3 such that h(m, e) = e,
we define the map g to be the restriction of h to N. Thus, if p is a point of
£ 3 such that g(3N) does not intersect p, equation (E) yields

— Γ dO2 =

pxdN

The diV consists of two parts, the portion at infinity, denoted LJJM), and the
rest, denoted L(M). Note that g(L(M)) is just the reuled surface swept out by
the lines L. Our equation then becomes

- — Γ
4τr J

dθ2 +

pxL(ilf)

-L
4τr

Γ = +/(g,p)

The first integral is a Gauss integral and measures in some sense the linking
of p with L(M). We must keep in mind, however, that it is not necessarily an
integer.

The second integral bears an analysis analogous to that of the first section.
Let f(m) be the image of a point of M and suppose L denotes a point of

) , say a point in the half-plane through/(m). Then, as before, it is clear

Fig. 1
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that e(p, /ro) is the same as a unit vector (translated to the origin) along the line
from f(m) to /«, in the half-plane through f(m). Thus, as /^ takes on values
from the half-circle of points at infinity in the half-plane through /(ra), e(p, / J
assumes all directions in the half-plane. Hence, the integral

J
L

can be written as an integral over a fiber space over M, the fiber F being the
half-circle of oriented directions in the half-plane. Cf. Figure 1.

To do this, we choose orthonormal frames e19 e2, e3 such that ex is along
e(p, /«,), and e2 is in the plane in which the line pl^ lies with the property that
exe2 agrees with the orientation v\f{m)

v2f{m)

 a n d such that eλe2e3 is consistent
with the orientation of N, say e3 = eλ x e2. If we set dβi-e^ = ωίp we may
write

J dθ2 = J J ωl2 A ω13 ,
M F

where F is the fiber mentioned above.

In order to integrate over the fiber, we use the techniques of [4]. We choose
local fixed fields of orthonormal frames /(m)α1α2α3 over M such that ax is along
vif(m)9 a2 i s along v2 m) and a3 = ax x a2. We may choose θ as a fiber pa-
rameter and write

eλ = aλ cos θ + a2 sin θ ,

e2 =. —aγ sin θ + a2 cos θ ,

Then we obtain, denoting ni3 — dava^

ωu = dθ + πl2 ,

ωi3 = πu c o s θ + 2̂3 s i n 0 ,

where the TΓ^'S are defined on the base manifold M, and

α)12 Λ ωl2 = dθ Λ (ττ13 cos 0 + 7τ23 sin θ) ,

as any form of degree greater than 2 in the TΓ^'S must vanish. If we choose
for the canonical orientation base coordinates first, fiber coordinates last, we
have
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f dθ2 = — L Γ Γ*(τr13cosί + 7r23sin0)<i0
4π J 4ττ J JM 0

The main interest in this analysis, of course, lies in the choices of vλ and v2.
If we choose the unit tangent T and principal normal N vector fields for vλ and
v2, then a3 is the binormal vector field B, and we obtain

- — (^ = -—(dN-B = - — (τds,
2π ί 2π ί 2π ί

where τ is the torsion of the curve M. If we choose N and B for v1 and v29

then az — T and

If we choose B and T for ^i and v2, then β3 •= N and

_ J _ f̂ 23 = - JL CdTN = - - L Γjfcώ .
27Γ ί 27Γ ί 2π ί

If we choose B and N for vλ and v2, then a3 = —T and

-f- f ̂  = - ^ - (dN (-T) = - J- f *ώ

and so on for the other possibilities.

What we obtain are integral formulas involving the ruled surfaces swept out
by the tangent, normal and binormal lines. If we denote these respectively
Γ(M), N(M), B(Λf), we have

Theorem 4.

42π

(2) - - i - Γ
pXiV(itf)

( 3) - - L Γ dθa - J - f feis = /(gs, p)
4 ? Γ iίcjo 2π i
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where I(g19 p) is the intersection number of the half-planes spanned by the full
tangent line and half-(principal normal or binormaϊ) line, I(g2,p) is the
intersection number of the half-planes spanned by the full normal line and
half-(tangent or binormaΐ) line, and /(g3, p) is the intersection number of the
half-planes spanned by the full binormal line and half-(tangent or principal
normal) line.

The second integral equation is interesting in a special way since

pxN(M)

is an integer, whereas

— f dθ2 and — Γ
4π J 4π J

dθ2

pXT(M) pXB(M)

assume a continuum of values.

5. The general theory

Let f:Ms-+En be an immersion of an ^-dimensional oriented compact
manifold without boundary into Euclidean π-space. Let v be a unit non-
vanishing differentiate vector field on M (not necessarily a tangent vector
field), and N an oriented λ-plane bundle on M, where k = n — s, such that
each fiber contains the line generated by v, i.e., such that at each point /(ra)
the &-plane contains the line generated by vf{m). As before, we include in N
for each &-plane the oriented (k — l)-sphere of points at infinity.

In order to apply equation (E) we need to choose our N and g. We do this
as follows. In each fiber of N9 let Wfim) be the (k — l)-ρlane orthogonal to
vf{m) at /(ra). N, then, will be the fiber space over M such that at each point
/(ra), the fiber is the half &-ρlane spanned by Wf{m) and the positive or forward
half-line along vf{m). N is thus an n-dimensional submanifold of N whose
boundary is the (k — l)-plane bundle with W as fiber plus the portion of 3N
at infinity; we denote the former by W(M) and the latter by WJM)- As in
the case of curves in three-space, the image of W(M) in En may be thought
of as the manifold swept out by the (k — l)-planes Wfim)9 meM.

Now any point of N is of the form (ra, e) where m e M and e is a point of
the &-ρlane through /(ra). If h is the map defined by h: N —> En such that
h(m, e) — e, we define our map g to be the restriction of h to N. Equation
(E) now yields

- J - Γ dθn^ + -λ- Γ
n~λ pXW(M) n~1 pxWpXW(M)

where p is a point of En such that g(dN) does not intersect p.
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The first integral is again a kind of Gauss integral. The analysis of the
second is similar to the previous sections. Let f(m) be the image of a point of
M and suppose w^ denotes a point of W^M), say a point in the half-£-plane
through f(m). Then it is clear that the e(p, wTO) is the same as a unit vector
(translated to the origin) along the line from f(m) to w^. Thus, as w^ takes
on values from the half-(A; — l)-sphere of points at infinity in the half λ -plane
through f(m), e(p, wM) assumes all directions in the half λ -plane. Thus the
integral

J
is an integral over the fiber space of oriented directions in the half &-plane,
the fiber F being the half (k — l)-sphere.

More explicitly, let us choose orthonormal frames e19 , en such that eλ is
along the map e(p, w j , e29 , ek lie in the &-ρlane in which the line pwZ or
Km)Woo lies such that el9 , ek agrees with the orientation given the fiber of
N, and such that ek+l9 , en are normal to the / -plane with the property that
e19 - - , en agrees with the orientation of N. Then, if we write de^βj = ωij9

we have

-7^— Γ dθn_x = J— Γ \ωl2 A Λ ωln ,

where F is the fiber mentioned above.
In order to integrate over the fiber we choose local fixed fields of orthonormal

frames /(m)α1? , an such that a19 , ak span the &-plane with ak along vf{m)

and agree with the orientation, and such that ak+19 , an are normal to the
&-plane, with ax an agreeing with the orientation of N. Then we may write

eλ = uιxaλ + + ulkak ,

ek = ukιax + + ukkak , (ui3) orthogonal ,

et = at , t = 1 + k, , n .

Then

o)u Λ Λ ωιn — ω12 A Λ ωιk A ωlk+1 A A ωιn

= (dθ f c_! + terms in ^ / s ) Λ uHl uHs πilk+ι A Λ πίs7l ,

where we have used the Einstein smmation convention for repeated indices,
the range of the ir being from 1 to k. Since the π </s are defined on the base
manifold M, we have that any form of degree >s is identically zero. Hence,
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ω12 A Λ ωln = dθk_1 A uUl ulίs πill+k A Λ πUn ,

J dO,^ = J J dθk_λ A uHl uιis πίll+k A Λ π M .
Wi F

J J
M F

Integrating, we obtain, for s odd,

7 1 - 1 p x T F ( W )

where dV is the volume element of M and kv(N)dV is defined as follows. Let

Φι = ββl...βt*»βl Λ Λ ^fcαs_2, Λ Λ,-«+1«,_ l ι+1 Λ Λ Λas_ias ,

where

αi αg

1 if ax - - as is an even permutation of 1 + k,

1 if ax as is an even permutation of 1 + k,

0 otherwise.

v ( — l ) z

-,n

Define

Then

(The (— l) fc is due to our choice of canonical orientation of base coordinates
first.) We call kv(N)dV the curvature form with respect to the vector field v
and k-plane N, for it depends on the choice of /:-plane and vector field.

The situation for s even is much simpler. In this case, we obtain

i a o n l = ! J

where J o = εαi...αsi2αiα2 Λ Λ Ωas_ias, where Ωaβ = Λ TΓ^. But the

integral on the right-hand side is jχ(Nc), the Euler class of the complementary
(to N) .y-plane bundle evaluated on the fundamental class of M. We note that
this integral is independent of the choice for v as long as v is contained in N.
That the integral on the righthand side is the Euler class may be found in [2]
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and [3].
Thus we have proven:
Theorem 5. For s odd

1 Γ 1 Γ
— I dθn, — I kv(N)dV = (— \)n~ιl(g. Ό) ,

0 ? 2 - 1 XW(M) ®s M

for s even

1 Γ 1
— d θ n _ ! + —χ(Nc) = (— l) 7 1 " 1 /^,p) .

Let us look at some specific examples. The first will be an immersion /: Ms

—> Es+2 of an s dimensional manifold into (s + 2)-sρace where s is odd. Here
k = 2, so we must look for a two-plane bundle, the most natural choice being
the normal bundle. Thus, suppose there exists a normal vector field v on M.
Then our result gives us

J _ Γ
S + 1

d θ , + 1 -
S M

where WiM) is the (s + l)-manifold swept out by the lines orthogonal to v,
and kυ(N)dV is the curvature form with respect to this vector field v and 2-
plane normal bundle. I(g, p) is the algebraic number of intersections of the
normal half-planes with p.

In a very real sense kΌ(N) may be thought of as a generalization of the
curvature of a space curve in £ 3 , if we choose for v the mean curvature vector
of M (which we must assume now never vanishes), for we recall that kds arose
in § 4 from considering the case s = 1 and v along the principal normal.

As the next example we choose to look at an imbedding f:Ms-+E2s+1.
Here, k = s + 1, so we must look for an (s + l)-plane bundle. As in our
prior example the most obvious is the normal bundle, but in this case we
choose another. Let t b e a normal vector field on M (which always exists).
For N we choose the (s + l)-plane bundle spanned by the tangent plane and
the normal vector field.

Then our result gives us

dO2s

pxW(M) s

where W(M) is the tangent bundle of M, and τvdV is the torsion form of the
imbedded manifold with respect to the vector field v [4].

What this equation gives us is a new geometric interpretation of the torsion
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forms introduced in [4]. We observe again that this form generalizes the torsion
of a space curve if we choose v along the mean curvature vector.

6. An extension

We return now to our main theory for the following simple extension. Let
us choose for N in our main equation (E) the entire N of § 5, i.e., the entire
"compactified" λ -plane bundle. For g we choose the map h mentioned above.
Observe now that 3N is simply the portion at infinity which we denote W^M)
again. Equation (E) yields

1 Γ
_ J _ dθn, = (— l)w~1/(g, p) ,

where p is a point of En. Proceeding as before, we find

— dQn_λ = —— I ω12 Λ Λ ωίn ,
1 pxWoo(M) n~ι M F

where now F is the full (k — l)-sphere of points at infinity. Integration yields
for s odd

and for s even,

Λ Λ ω l n = χiNc) ,
l r r

I I o
0 n ! J J

n ~ ι
 TUT ΊP

where χ(Nc) is the Euler class of the s-plane bundle complementary (to N)
evaluated on the fundamental class of M.

Theorem 6. Let f: Ms —> En=s+lc be an immersion of an oriented compact
manifold Ms into Euclidean n-space. Let N be a k-plane bundle over M and
p be a point of Es+k. Then the algebraic number of intersections of the k-planes
of N with p is

(1) 0 // s is odd,
(2) χ(Nc) if s is even.
Corollary 7. If k — s, the Euler characteristic of the normal bundle is the

algebraic number of cross tangent planes. The Euler characteristic of Ms is
the algebraic number of cross normal planes.

Corollary 8 If s = 2 and k = 1, the algebraic number of cross-normals
is the Euler characteristic of M2. Hence, the number of cross-normals must be
even.
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(Alan Weinstein has pointed out that Corollary 8 follows from elementary
Morse theory.)

7. The Gauss-Bonnet Theorem

In this section we extend the ideas of § 5 to manifolds with boundary. As
might be expected, one result is a different manner of formulating the Gauss-
Bonnet theorem. Let /: M2 —> E3 be an immersion of a surface with boundary
C. As in § 1, we set N = M2 x L, L = [— oo, oo]. Let v be the unit normal
vector field on M. Then we define

gin) = g(m, I) = f(m) + lvf(m) .

Equation (E) yields

- L f dO2 = I(g,p).
pXdN

But 3N = C x L U M x {- oo, + oo}. Hence

- J - Γ do2 - A - f do2 + J - Γ do2 = /(g,p).

Reasoning as in the above sections, we obtain

(A) - - L f dθ2 + J - ΓχΛ4 = /(g,p) ,

where K is the Gauss curvature of M.
If we choose two different points px and p2, we have that

- - L Γ ^02 + A - Γxd^ = /fe, Λ ) , i = 1,2 ,
4τr J 2π J4τr

PiX(CxL)

and

- - L Γ ^o2 + - L Γ ^o2 = i(g,Pι) - i(gίp2)
Aπ J 4π J

X(CxL) X(CxL)

is an integer.
Let us next look at this problem with the methods of § 4. Let f\c: C —> E3

be the restriction of / to C. For vx and v2 in § 2 we choose the normal to the
surface M along the curve C and the outward pointing tangent normal along
C. Then the results of § 4 yield
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(B) - - L Γ dθ2 - J - f Λfώ = 7(g', p) ,
pxL(C) C

where kg is the geodesic curvature of C, gf(L(C)) is the surface swept out by the
normal lines, and /(#', p) is the algebraic number of cross-half planes at p (the
half-planes being spanned by the full surface normal at C and the half outward
pointing tangent normal).

But j dθ2 is the same as j dθ2, since C X L and L(C) map to the
pxL(C) px(CxL)

same image, i.e., they are the same surface. Subtracting equation (B) from
equation (A), we obtain that

J - (KdA + J - Ckgds = 7(g,p) - /(g',p)

is an integer. This gives us then a new way of approaching the Gauss-Bonnet
formula.

The general theorem

Let /: Ms —> En=s+k be an immersion of an ^-dimensional oriented compact
manifold with smooth boundary Bs~ι. We divide (as for the case s = 2, n = 3)
the problem into two parts. Let N be the "compactified" normal /:-plane bundle
over Ms. Then dN will consist of two parts, the portion at infinity denoted, as
before, by WJM) pl u s the restriction of the normal bundle of M to B, which
we shall denote NB. This latter part is seen to be the generalization of C X L
for the case s = 2, k = 1. For the map g we take the usual map defined in
previous sections. So we consider a point pεEn such that g(dN) does not
intersect p and we apply equation (E) to obtain

so that /(g, p) is the sum of the indices of the intersections of the normal
bundle of M with p.

The second integral is computed in precisely the same manner as in § 6 to
be zero when s is odd, for the fiber F is the full sphere at infinity and thus the
integration over the fiber yields zero. Hence, we obtained that

(Al) - 7 ^ f dθn_1 = (-l)n-1/fe,p)
On-* V^NB

is an integer.
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However, for s even

where KdV denotes the Gauss-Kronecker form of §§ 5 and 6, i.e.,

\dV =
0s Js

2sπs/2(s/2)l

where J o is the form defined in § 5. Note that since we are integrating over the
full sphere F the expression in § 5 is multiplied by a factor of 2.

Thus, we have

(A2) - _ ί _ I dOn_, + 4- \KdV = {-- J - Γ do^ + J_ (

The second part proceeds as follows. We consider just the restriction of / to
Bsl and use the methods of § 5.

For the vector field v we choose the uniquely defined tangent normal pointing
outward (tangent to Ms and normal to Bs~ι). Next we determine the half-
(k + l)-plane bundle N'. Let N' denote the normal bundle of Bsl. Then each
half-plane, say at f(b), will be that determined by the full λ -plane orthogonal
to vf{h) and the positive or outward pointing vf{b). Then 3N consists of the
portion at infinity which we denote W^ίβ) plus the λ-plane bundle to Bs~\
which is easily seen to be the NB of the first part. The map g' will again be
the usual map. We apply equation (E) and obtain

where we use, of course, the same point as before.
We integrate the second integral as before to obtain for s odd

l r dOn i = 1

where χ(N/c) is the Euler class of the (s — l)-plane bundle complementary

(to N') evaluated on the fundamental class of B. But this (s — l)-ρlane bundle

is just the tangent bundle of Bsί. Hence

where χ(5 s - 1 ) is the Euler characteristic of Bs
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For s even, we obtain

J _ Γ dO^ = - J - Γ*,(ΛWa ,

where the expressions for kυ(N')dVB are given in §5. Then subscript B
distinguishes dVB from dV above in JMF. Summing up, we have for s odd

(Bl) - - 1 — ΓrfOn.x + — χ(B) = (_l)--7(/,/7) ,
0 n _ i *J 2

and for π even

(B2) - - 1 — CdOn_λ - -J— Γifc^iVOd^ = (-l)*- 1/^',?)

If we subtract (Bl) and (B2) from (Al) and (A2) respectively, we obtain for
s odd

-\x(Bs~l) = (-l)n-ιU(g,p) - I(g',p)] ,

and for s even

- 1 - Γ /:,(N0^F

The result for s odd gives the well known theorem that the Euler characteristic
of an even dimensional manifold which bounds is even.

The result for s even gives the new approach to the generalized Gauss-Bonnet
theorem. We observe that the forms kv(N')dVB are, of course, the forms
introduced by Chern to prove the Gauss-Bonnet formula for closed manifolds
in [1].

8. On the genericity of p

In closing, we mention a manner in which p need not be assumed generic.
For example, suppose p e N (perhaps even e dN), say in § 3, p e M. This case
may be dealt with using the techniques of this paper together with those of
[4], i.e., we use the space of secants S(p, N) of N relative to the point p. For
details refer to [4].

Added in proof. Professor Carl B. Allendoerfer has pointed out that the
curvature form invariants of § 5 have previously been used for purposes other
than this paper by C. B. Allendoerfer (Characteristic cohomology classes in
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a Riemann manifold, Ann. of Math. 51 (1950) 551-570), by A. Aragnol
{Classes caractέristiques et formes diβέrentielles, C. R. Acad. Sci. Paris 238
(1954) 2387-2389), and by J. Eells, Jr. (A generalization of the Gauss-Bonnet
theorem, Trans. Amer. Math. Soc. 92 (1959) 142-153). What this present
paper gives is entirely new interpretations for these invariants. The author
wishes to thank Professor Allendoerfer for many helpful criticisms of this
paper.
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