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THE TOPOLOGY OF TAUT RIEMANNIAN MANIFOLDS
WITH POSITIVE RISEC PINCHING

NATHANIEL GROSSMAN

0. Introduction

Suppose N is a smooth compact Riemannian manifold of dimension Λ.
Geometers have long known that innocuous-appearing restrictions on the set
K(N) of sectional curvatures of JV can lead to strong implications for the
topology of N. For example, if n = 2 and K(N) > 0, then the classical Gauss-
Bonnet theorem [9] leads to the conclusion that N is homeomorphic to the
2-sphere S2 or the real projective plane P2. Bishop and Goldberg [2] show how
to derive further information from the generalized Gauss-Bonnet formula in
higher dimensions. Again, if n is even, N is orientable, and K(N) > 0, then
the fundamental group π^N) is trivial [14], A most remarkable series of
advances have recently culminated in the Sphere Theorem [5]: if K(N)cz(k, 1]
where k> 1/4, and πΐ(N) is trivial, then N is homeomorphic to the w-sphere Sn.

Berger and Bott [1] have studied the sums of the Betti numbers (over an
arbitrary coefficient field) of the loop space of N, assuming that the sectional
curvatures are Λ-pinched. They show that the sum of the Betti numbers of
dimension at most λ is majorized by an exponential-polynomial expression in λ.
Under certain conditions causing the vanishing of lower-order Betti numbers
of N, it is possible to derive estimates for sums of the Betti numbers of N
itself.

We consider here the possibility that the sectional curvatures of N can take
on negative values, but with the proviso that the Ricci curvatures are always
positive. This leads us to replace the concept of pinching by two new
numerical characters of the metric, namely, the tautness and risec pinching;
these numbers are defined precisely in § 1. It is then possible to alter the
method of [1] to get new estimates for sums of Betti numbers, given below in
Theorem 5.3. We apply this estimate to examine p-holomorphically pinched
Kahler manifolds M in the case where cd<γ<2/3 (cd is some constant
depending on the complex dimension doίM). In this range for γ, M will have
positive Ricci curvatures and may have negative sectional curvatures. Known
information about f-holomorphically pinched Kahler manifolds is scarce and
typically restricted to the case when γ is closer to 1 (e.g. γ > 4/5 in [3]).
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We also consider a new situation in which a pair (M, N) is given, where N
is a closed embedded totally-geodesic hypersurface of M, both manifolds being
orientable. We study the space £?(*, N) of paths in M from a fixed point to N,
obtaining in Theorem 5.2 a majorization of the sum up to dimension λ of the
Betti numbers of i2(*, N) in terms of tautness and risec pinching. In case that
M is a homology sphere, we derive in Corollary 6.3 a majorization for the
Euler characteristic χ(N). Currently, it is not known whether the exotic sphere-
structures admit Riemannian metrics of strictly positive curvature.

1. Notation and preliminary matters

All manifolds to be considered will be smooth and connected, and all
Riemannian metrics will be smooth and complete. Let M be a compact
manifold of dimension m carrying a Riemannian metric <" , > with associated
norm || ||. Let N be a compact orientable embedded hypersurface in M with
normal bundle J_(Λ0 which carries the induced Riemannian and norm
structures, again denoted by <•, •> and || - |l. Let exp be the exponential map
of the Levi-Civita connection V of <(•, •> on Λί, and denote the restriction of
exp to ±_(N) by exp-1. Let

An element y € _|_(Λ0 is called focal for N if it is a critical point of exp x:
there is an element z in the tangent space J_(N)y such that dexp-Kz) = 0.
The point p = exp^y is also called focal for N, and there are two focal loci

Foc-KΛO and Foc"(A0

consisting of those points in J_(ΛO and Λί, respectively, which are focal for N.
There is an alternate way to describe the focal points, which we will find

indispensible. Any point peFocM(N) can be obtained as follows. Let

R(X, Y) = ψx> Vy\ - F C X f F ]

be the curvature transformation of F, and a an N-geodesic from N to p, that
is, σ: [0, s] —> M be a geodesic parametrized by arc-length with σ*(0) € J_ (ΛO
and σ(s) = p. A Jacobi field along σ is a vector field Y along σ and orthogonal
to <7 satisfying the Jacobi differential equation

Y" + *(**, YK = 0 ,

the primes denoting two successive covariant differentiations along σ. Let Sβ,(0)

represent the second fundamental form of N in the direction (7*(0), operating
as a symmetric linear endomorphism on the tangent space Nβ#(0). Then p e M
is focal for N if and only if there is an iV-geodesic σ: [0, s] —> M from N to p
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and a Jacobi field Y along a satisfying the initial condition

- Y'(0) = 0

and the terminal condition Y(s) = 0.
If M is an orientable manifold, it bears a distinguished exterior m-form v

called the Riemannian volume element (with respect to a chosen fixed orien-
tation). In fact v may be uniquely determined as follows: if y^ , yw € Λfp
are orthonormal and form a positively-oriented frame, then v(yl9 , ym) = 1.
Trivially,

\v(ylf •• ,y«)l

for any m-tuple (y,, , yTO). We set w = (expx)*t>, the pullback of v to
_L(N) by the map expx.

The sectional curvature K is defined by the equation

for each linearly independent pair *, y e Mp. If * and y are linearly dependent,
define X(JC, y) = 0. The value of K(x, y) depends only upon the two-dimensional
subspace of Mp determined by x and y. The symbol K(M) will denote the set
of values taken by K in R as its argument runs through all two-planes tangent
to M. Suppose that -a2 < K(M) < b\ Then the ratio p2 = a2/b2 will be called
the tautness of the metric, and M will be said to be p2-taut.

For each x € Mp with ||;r|| = 1, there is a linear endomorphism Lx of Mp

defined by Lx{y) = R(x, y)x. The Ricci curvature in the direction x is the
number Ri(x) = (trace Lx)/(m — 1). It may be simply expressed in terms of
sectional curvatures. Extend JC to an orthonormal basis (*, x2y x,, , jtm) of
Mp. Then

Ri(x) = L_^ f; K(x, Xj) .

The symbol /?/(Λί) will denote the set of values taken by Ri in R as its
argument runs through the set of unit vectors tangent to M. It is clear that
A < K{M) < B implies that A < Ri(M) < B. We shall be interested in the
case that - α 2 < K{M) < b2 and Ri(M) > δ2 > 0. In this case, we define the
risec pinching of M to be the number k2 = δ2/b2.

2. Morse Theory for totally-geodesic hypersurfaces

We now specialize to the case where N is a compact totally-geodesic
hypersurface of M. (For typographical convenience, let n = dimension N. It is
to be understood always that n = m — 1.) The second fundamental forms of
N vanish identically. Let σ: [0, s] —• Λf be an N-geodesic with CΓ(.Ϊ) = p e M,
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and J£? the linear space of continuous piecewise-smooth vector fields along a
and orthogonal to it and satisfying the end conditions Y'(0) = 0 and Y(s) = 0.
The index form I on σ is the quadratic form whose value on Y e £? is

= fS{\\Y'\\2 - <R(σ» Y)σ» y>}|, du

The mdejc of a is the dimension of a maximal subspace of S£ on which / is
negative definite.

Notice that if y moves in J_(ΛO without encountering the focal locus
Foc-KΛO, the index of the geodesic exp ([0, y]) does not change.

Let iL(p X) be the number of N-geodesics terminating at p and having index
λ. Denote by Ω(p, N) the space of paths in M originating at p and terminating
on N, topologizing Ω(p, N) by the Frechet topology (which is equivalent to
the compact-open topology). Let bμ(Ω(p, N)) be the μth Betti number of
Ω(p, N) over a fixed (commutative) field. It will follow from the results of § 3
that each bμ(Ω(p, N)) is finite. Then we have the following Morse inequalities
[11] valid if ptFocM(N):

(2.1) iHp',λ)>bz(Ω(p,N))

for every integer λ > 0. Set

(2.2) cλ = Σ bμ{Ω(p,.N)) ,

(2.3) gHp;V = Σ iL(P',X)

Then gλ(p X) will be the number of Λf-geodesics of index < λ terminating at p.
From the Morse inequalities (2.1), we have immediately

for each integer λ > 0, so long as p <£ FocM(N).
Proposition 2.1. Let M be a Riemannian manifold of dimension m = n -f 1

such that Ri(M) > δ2 > 0, N a compact totally-geodesic embedded hypersurface
of M, and σ: [0, s] -» M an N-geodesic of M of length s terminating at p e M,
where pi FocM(N). If

then the index of a > h + 1.
Proof. It is enough to construct a subspace Jf of j£? of dimension h + 1

on which / is negative semi-definite. The restriction that p $ FocM(N) will then
imply that / is negative definite on Jf.
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By a well-known theorem of Myers [12], every segment of a of length >π\δ
contains a pair of mutually conjugate points. Also, by an obvious modification
of the proof of Myers' theorem, the segment σ((0, π/2δ]) contains a point focal
to N. Therefore, we may find Jacobi fields Zo, Z,, . -, Z n in S£ with Z0(t) = 0
for t i [0, π/2δ] and Zt(t) = 0 for t * [πjlδ + (i - l)π/δ, π/2δ + iπ/δ] and
1 < i < A, and we will have I(Zj) < 0 for 0 < / < A. The desired subspace
X is generated by Zo, Zl9 , Z Λ .

3. Two integrals

From this point on, we assume that M and N are oriented. The Riemannian
volume element v of M induces a measure on M. Since M is compact its total
measure will be a finite number to be denoted by | M | . Moreover, the induced
Riemannian structure on the hypersurface N leads to a measure on N. Since
N is compact, the measure of N will be a finite number to be denoted by \N\.
The symbol | | applied to various sets will always denote the appropriate
measure. Each ray in J_(ΛO (properly, in a fiber of ±_(N}) meets the focal
locus Foc-KΛO in isolated points only, so that [Foc-KΛOt = 0 in J_(N). Since
expx is smooth and dim J_(N) = dim M, the image Foc^ίW) = exp-L[Foc1(Λr)]
again has zero measure as a subset of M.

We now give two propositions whose proofs are mutatis mutandis the same
as the proofs of Propositions (4.1) and (4.2) of [1]. Therefore the proofs are
omitted.

Suppose N8 = exp^l/ΛO], Qi = JL/JV) - CL/ΛOΠFoc-1- (ΛO), and
β f = exp Qi. Finally, let exps

x denote the restriction of expx to Q1.
Proposition 3.1. The set Qϊ(resp. Q*) is open in ±S(N) (resp. in M), and

|β/Ί = |ΛU-
Proposition 3.2. The mapping exp^ -> Q* is a covering having everywhere

a finite number of sheets.
Now we can define the first of the two integrals. Since Q* is open in M, it

is measurable, as is each of its connected components. On each of its
components Uβ (where Q* = U β Uβ is the decomposition of Q* into connected
components) the number of sheets of the covering exp^: Q^ —• Q* is finite
and constant. Denote the number of sheets above p by fλ(p; s). It is important
to notice that fΣ(p;s) is just the number of N-geodesics of length < s
terminating at p. Therefore the integral

exists. Moreover, Q± is open in JL(ΛO, so measurable, and the integral f \w\

exists (where w = (expx)*v). Q±
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Proposition 3.3. IHs) = Γ | w |.

/. Each connected component Vβ of β f is measurable and the number
of sheets q(β) above ί/̂  is finite and equal to fHpi s) for any p 6 Uβ. Therefore

and

I fHp s) v = )

On the other hand, {Qj- Π (exp^-)"1^)} defines a partition of Q^ by open,
therefore measurable, sets. Further, exp̂ - restricted to a connected component
Uβ and to (exp^-)"1^) is a covering with q(β) sheets. Since w = (exp1)*^, we
have

J
t^^) Uβ

whence

= I fHp I s)'V = IHs) . q.e.d.

Now define the second of our integrals by

Proposition 3.4. Let M be an oriented Riemannian manifold of dimension
m = n + 1 such that Ri(M) > δ2 > 0, and N a compact totally-geodesic
oriented embedded hyper surf ace of M. For each integer λ>0> let cλ be
defined by (2.2), and suppose

S== 2δ + ΊΓ "

Then
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Proof. By Proposition 2.1, each N-geodesic of length > s = π/2δ + λπ/δ
has index > λ + 1 > λ, whence any N-geodesic of index < λ has length < s.
Therefore, the definition (2.3) of gL(p\ X) leads immediately to

(3.1) gHp X) < fHp s) for all p € Q* .

We have already remarked that gHp; λ) is constant on each connected
component Uβ of Qf, so the integral

exists. As a direct consequence of the Morse inequalities, JHX) > cλ\Q?\.
From Proposition 3.1, JHX) > c J N , | .

Let CLHN) be the cut-locus of JV in J_(N), that is, CLHN) be the set of
points y 6 J_(Λ0 such that the N-geodesic σ(t) = exp-Kry) does not absolutely
minimize distance to N for t > 1, but does absolutely minimize for 0 < t < 1.
Let CLM(N) = exp-LtCL-KN)]. Since CL-HΛO intersects each ray of JL(ΛO at
most once, \CLHN)\ = 0 in ±(N). Since exp-1 is smooth and dim J_(ΛO
= dim M, I CLM(N) \ = 0. But each point of M is joined to N by a minimal
N-geodesic, which must have index 0. Therefore,

so we have

JHλ)>cλ\M\ .

But (3.1) implies that V-(s) > JHλ), and Proposition 3.3 shows that

Further, β^ c J_,(N) so that

/

4. Estimation of Jacobi fields

We now suppose that - α 2 < K(M) < b\ and let p2 = α2/62 be the tautness
of M (we do not assume that p2 has the best possible value for the given
metrization of M). Let D = ar/2&. The proof of the first of the following two
theorems may be found in [5] and the proof of the second is similar.
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Rauch comparison theorem. Let Y be a Jacobi field with Y(0) = 0. Then
forO <t < ID,

(4.1) -EL*L||y/(0)|| < ||r(0|| < ^SL\\Y\0)\\ .
b a

Berger comparison theorem. Let Y be a Jacobi field with Y'(0) = 0.
Then for 0 < t < Z),

(4.2) cos bt ||y(0)|| < | |y(0| | < cosh at. \\Y(β)\\ .

Lemma 4 1. For any Jacobi field Y, we have

(4.3) | |r(D)| | < coshaD \\Y(0)\\ + s h ί h a D \\Y'(0)\\ ,
a

(4.4) || Y(D)|| > 1 1 | y'(0)II - cosh aD || Y(0)|| ,
b

and, for any t 6 [0, D],

(4.5) ||Y(0||<coshα£>. | |r(0) | | + s i n h f l P

Proof. Given Y, define Jacobi fields Yx and F 2 by y,(0) = 0, Y[φ) = Y'(β)
and F2(0) = y(0), Y&0) = 0. Then Y = Yλ + Y,. For 0 < / < D, (4.1) yields

and (4.2) yields

Since | |y(0| | < 11̂ (011 + l|^2(0||, and cosh at and ύnh at/a are monotone in
r, (4.5) and (4.3) follow from putting t = D in (4.5).

From (4.1),

sinfcP-l|r(0)|| = \\Y'(0)\\
b b

From (4.2),

| |y 2 (D) | |< cosh aD || Y(0)|| .

Since || y(f) || ̂ | | 7,(011-1| y,«) II,

l | | y ' ( 0 ) | | - cosh αD.
ϋ

which is (4.4).
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Lemma 4.2. Suppose Y,(0) — 0. Then

\\YιΦ)\\ <, — cosh aD sinh άD || Yί(0)|| .
a

Suppose Y2(0) = 0. Then

m(D)\\ < b(l + cosh2αD)||Y2(0)|| .

Proof. Define Y by Y{x) = Y,{D - x) for all x. From (4.4),

- coshαD.| |y(0)| | .
b

But 11 (̂0)11 = 0 by hypothesis, so

From (4.1),

so

\\Y[φ)\\ < A
a

which is the first inequality.
Next, define Y by Y{x) = Y2(£> - x) for all x. From (4.4),

l | |Y '(0) | | -coshαD. | |Y(0) | |
o

Therefore,

\\Y'*Φ)\\ <> b\\Yjm\\ + b cosh aD. \\ Y2φ)\\ .

From (4.2), ||Y2(D)|| < coshα£> ||Y2(0)||, whence

||Y2Φ)|| ^ Kl + cosh2aZ))||Y2(0)|| ,

which is the second inequality.
Let us note that for any Jacobi field Y,

(4.6)



402 NATHANIEL GROSSMAN

Using Lemma 4.2,

Kl +cosh2flD)||y(0)||
(4.7) ,

+ — cosh aD sinh aD \\Y'(0)\\ .
a

Lemma 4.3. Let aU9 al29 a21, a22 be non-negative real numbers, and xk9 yk

be defined recursively by

(4.8) xk+1 = anxk + al2yk9 yk+ι = a2lxk + a22yk ,

with initial values x09 y0 both non-negative real numbers. Suppose that
A = max (an + al2, a2l + a22). Then

(4.9) max {xk, yk) < Ak max (JC0, y0) .

Proof. Introduce a norm in R2 by ||(JC, y)\\ = max (\x\9 \y\). Equations
(4.8) come from a linear endomorphism T: R2 -> JR2 which is easily seen to
have operator norm ||Γ|| < A. The inequality (4.9) is just a translation of the
inequality

\\Tk(x9y)\\<Ak\\(x09y0)\\ .

Lemma 4.4. Let Y be a Jacobi field such that Y'(0) = 0. Then, for any
t> 0,

TOH < ITOII (cosh^^ + I sinh |

f 1 + cosh21-p + 1 cosh JL 9 sinh *-p) WD\
\ 2 p 2 2 /

where [w] stands for the greatest integer < w.
Proof. For any integer k > 0, put fk = ||F(*D)|| and gk = \\Y'(kD)\\/b.

Apply (4.3) to the Jacobi field Z defined by Z(x) = Y(x + kD) for all x.
Then

||Z(D)|| < coshflD.||Z(0)|| + ύ t ί h a D \\Z'(0)\\ .
a

But Z(D) = Y((k + DD), Z(0) = y(ΛD), and Z'(0) = Y'(kD)9 so

(4.10) /Λ+1 < cosh aDfk + A sinh aDgk .
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Next, apply (4.7) to Z, using Z\D) = Y'((k + 1)D):

\\Z'Φ)\\£b(l + cosh2αD)||Z(0)||

+ A cosh aD sinh aD. \\Z'(0)\\ ,
a

so

(4.11) gk+ι < (1 + cosh2 aD)fk + A cosh aD sinh αZ> £Λ .
a

Now we can apply Lemma 4.3 with

A = 1 + cosh2 αD + — cosh aD sinh αD

and/0 =

(4.12) fk9 gk < || y(0) || ί 1 + cosh2 αD + A cosh aD sinh α£>j * .

For any t, t = [t/D]D + x, 0 < x < D. Apply (4.5) to Z defined by
Z(v) = Y(v + [ί/D]D) for all v. Then Z(x) = Y{t), so

Therefore, we find

, sinh aD
u

Using (4.12),

sinh aD

/ b \ ίt/Di

• 1 + cosh2 aD H sinh αD cosh αD
\ Λ /

The substitutions p = a/b and D =-π/2b yield the claimed inequality.

5. Majorization of Betti numbers of Ω(p, N)

In this section, we will assume that M is a compact oriented Riemannian
manifold of dimension m = n + 1 with - α 2 < K(M) < b2 and Λ/(M) > δ2 > 0.
We will let the tautness of M be denoted by p2 = a2/b2 and the risec pinching
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of M by k2 = δ2/b2. As in the previous section D = π/2b. For brevity, we
will set

Ao = cosh —p + — sinh —p ,

£ , = 1 + cosh2—/? + i_ cosh —psinh —p .
' 2 p 2 2

Proposition 5.1. Lei N be a compact orientable smoothly-embedded
totally-geodesic hypersurface of Λί. Then, for every s > 0,

f
n log B#

Proof. Let x be any vector of J_(N) and complete x to a positively-oriented
orthonormal frame [xj ||JC||, yl9 , yn} in the tangent space J_(N)X (which has
a Euclidean metric). By the definition of H>,

rtχ/\\χ\\,yι, •••,>!.)

= t dμil"1 Jexpx(jc), d e x p 1 ^ ) , . - , dexpx(^n)) .

But

llίίexpJ ίyi)!! = 11̂ (11*11)11,

where Yt is the Jacobi field along σ(t) = exp ί̂Jc/HjcH) such that Y^O) = yit

and jί(0) = 0. From Lemma 4.4, we can obtain an estimate for || 1̂ (11*11)11 and
so give an estimate for \wx\ :

Let vvx be the Euclidean volume in fibers of J_(N). Then

Now let v be the volume element induced on N by the embedding. Since N
is totally-geodesic we may write

f I w I < Γ AΐB^w. IΛ Λ v I .

By Fubini's theorem and the inequality [«] < u,

J |w |<2 |τvμ; J8B;<">dt
T) 0

2|ΛHZλW d
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It is convenient to use the notation

Ωn = Γsinnθdθ .
0

It is easy to get an asymptotic estimate for Ωn by expressing it in terms of the
Euler Γ-function:

r(n + M
~ ^1 __ as n -» oo .

n

Theorem 5.2. Let N be a compact orientable smoothly-embedded totally-
geodesic hypersurface of M, and c2 be defined by (2.2). Then

(5.1) Cι £-*'"*"*"*"'
nΩnlogBp

Proof. Apply Proposition 3.4 with δ = kb. We w3I have

\w\

with s = π/2δ + λπ/δ. Then ns/D = (2λ + \)njk and this is the smallest
exponent we may use in applying Proposition 5.1, obtaining

(5.2) cλ <

From the calculations on p. 261 of [8], we have 2\N\D\\M\ < π/Ωn, which
and (5.2) hence imply (5.1). q.e.d.

We remark that our hypotheses lead to an estimate for the sum of Betti
numbers of dimension at most λ of the loop space of M. Following Berger
and Bott [1], we define

«a = Σ bμ(Ω(M)) ,
μ = 0

where Ω(M) is the loop space of M, and the Betti numbers are taken over a
fixed, but arbitrary, field of coefficients. Our assumptions are that M is p2-taut
and Λ2-risec pinched. Since Ri(M) is strictly positive, the fundamental group
of M has order I Γ^AOI < oo by a theorem of Myers [12]. Denote by a>j the
volume of the unit sphere S* in Jt>+1. Then we note the relation

ω m . ! _ mΩn
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The following estimate is derived in a fashion similar to the derivation of
Theorem (6.2) of [1].

Theorem 5.3. Under the hypothesis that M is complete, p2-taut, k2-risec
pinched, and of dimension m,

a - 2k\πι(M)\ P '

The preceding estimates of this section remain valid when K(M) is to be
non-negative. This is the same as setting a = 0, whence p = 0. We have

lim/L = l + £. ,
,-o 2

and

lim Bp = 2 + — .
P-o 2

The following estimates now follow.
Corollary 5.4. Suppose that K(M) c [0, b] and Ri(M) > δ2 > 0, so that

the risec pinching of M is k2 = δ2/b2, and let N be a totally-geodesic hyper-
surface of M, as before. Then

mil

2A:|τr1(M)|
1 + JL) 2 + ^-

I 2/ \ 2

2 / ^ 2 /

We close this section by explaining why we have replaced the condition of
pinched sectional curvatures used in [1] and in common use in current
investigations into the relation between curvature and topology by the condition
of taut sectional curvatures. It was, in fact, the sectional pinching condition,
which we had in mind when first considering the case of totally-geodesic
hypersurfaces and bounds for cλ, which can be obtained under this assumption.
But more can be said in this case. If K(M) is strictly positive, and N is a
totally-geodesic hypersurface of Ni separating M — N into two components
Uι and C/2, then each pair (t/* U N, N) is diffeomorphic with the disc-sphere
pair (Dm, Sm~ι) in all dimensions where the Λ-cobordism theorem is valid.
The method of proof is implicit in [7] and has been developed independently
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and explicitly by Gromoll and Meyer [6]. Thus, the pair (Λf, N) is
homeomorphic with the pair (Sm, Sm~ι) for m > 5. So, in particular, for
n > 5, χ(N) = 0 or 2.

6. Application: hypersurfaces of spheres

We again assume that M is a compact orientable Riemannian mannifold of
dimension m = n + 1, leaving the curvature unrestricted for the present. We
consider a compact orientable manifold N of dimension n and seek topological
consequences of the assumption that N can be embedded into M as a totally-
geodesic hypersurface. The basic topological framework is a certain fibration
whose structure we now describe.

We have already described in § 2 the space Ω(p, N) of paths in M starting
at p t FocM(N) and terminating in N. There is a natural projection Ω(p, N) -> N
taking each path to its terminus. Therefore, we get a Serre Fibration

Ω(p, *) > Ω(p, N)

(6.1)

N

where Ω(p, *) is the space of paths from p to a fixed point in M. The homotopy
type of Ω(p, *) is independent of the choice of the fixed point and, in fact, is
the same as that of Ω(M)9 the loop space of M.

We have the following lemma, in which the homology groups and Betti
numbers are taken over a fixed field.

Lemma 6.1. Let the homology of M be that of an m-sphere: H+(jM)
« H+(Sm), and N be any compact hypersurface of M. Then

bμ(Ω(*, Λ0) = bμ(N) , / i < ι i - l .

Proof. It is well-known (cf. [13]) that bμ(Ω(M)) = 0 for 1 < μ < n. By
the Hurewicz isomorphism, πμ(Ω(M)) = 0 for μ < n — 1. The homotopy
sequence of (6.1) yields

πμ(Ω(*> ΛO) « *μ(N) , μ < n - 1 .

An argument based on the mapping cylinder of β(p, N) —• N and the relative
Hurewicz theorem [10, prob. V.D.] show that

#„(£(*, ΛO) « Hμ(N) for μ < n - 1 ,

whence the lemma.
Theorem 6.2. Let M be a complete orientable Riemannian manifold of

dimension m = n + 1, which is pz-taut and k2-risec pinched. Suppose the
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homology of M over a fixed field is that of an m-sphere: H+(M) « H+(Sm),
and let N be a compact orientable totally-geodesic hypersurface of M. Then

n-l -Jn-inn(2n-l)/k

(6.2) Σ b(N) π A "
- (Λ-Dfl^logB,

Proof. Lemma 6.1 and Theorem 5.2.
Corollary 6.3. Let C be the bound obtained in (6.2), and n be even. Then

the Euler characteristic of N has the same bound: \χ(N)\ < C.
It is interesting to compare the results of this and the preceding section with

results obtained by Flaherty. We have considered a manifold-hypersurface pair
(M, N) in which M is relatively loosely restricted while N is tightly restricted,
being totally geodesic. We obtain information about the Betti numbers of
β(*, N) and subsequently (in Theorem 6.2) about the Betti numbers of N
itself in dimensions less than that of N. It would be pleasing to be able to
conclude that some of those Betti numbers vanish, as we could if the bound
in (6.2) were less than n — 1. But within the limits set for the parameters p
and k, there seems to be no way to force this conclusion.

Flaherty [4] deals with assumptions which are in a sense dual to our
assumptions. He allows N to bend in M, but not too severely, requiring that
N be locally convex and that its principal curvatures lie in some fixed interval
[0, b]. To balance the freedom of N, M is required to have Riemannian
pinching at least δ2 > 1/4, so that it is a sphere [5]. If b < cot τr/45, Flaherty
concludes that

n- l

Σ bμ(N) = 1 ,

so that N is a homotopy sphere (a standard sphere if dim N Φ 3, 4).
It is tempting to try to blend our assumptions on (M, N) with assumptions

resembling those used by Flaherty, and it is easy to visualize the forms of
theorems one might hope to derive from such assumptions. But there are
difficulties of a technical nature between the hope and the realization. We shall
develop this situation further in a subsequent paper.

7. Application: holomorphically-pinched Kahler manifolds

Let M be a compact Kahler manifold of complex dimension d, so m = Id
is the real dimension. Suppose that M is f-holomorphically pinched (cf. [2] for
the relevant definitions.) We may normalize the metric and assume that
Γ < H(x) < 1 ί°Γ all tangent vectors x. We will determine restrictions on γ so
that M is taut and risec pinched. The basic inequalities we use are given on
p. 519 of [2], where we note that the definition of Ricci curvature differs
from ours by a constant divisor. There are two cases to be distinguished,
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according as d < 5 or not. We have
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(6.1)

Therefore,

Ri(M)

(M + υ r - α - i ) , i f d < 5
4(2d - 1)

2(2d - l)r - (2d - 3)
2(2d - 1)

> 0 if γ >

d- 1
3d+ 1 '

2 J - 3

- 1)

for d ^ 5

, for d > 6

We know from [2] that

3r-2 K(M)

Being interested only in the case where negative sectional curvatures can occur,
we may as well assume γ < 2/3. Since K(M) < 1, we find that M is λ2-risec
pinched, where k2 is given in each case by the right-hand side of the inequality
(6.1):

(6.2)

+ Ifr - (d - 1)
4(2d - 1)

2 C M - " » - ? -
-

2(2d - 1) . •

Next we calculate the tautness, which is at most (2 — 3/0/ 4, finding that
M is p2-taut, where

(6.3)

3d
4(3d

2d
8(2d

+
4

+
—

5

5

1)

, if

, if

We are now in a position to apply Theorem 5.3 to estimate for the loop
space Ω(M) the quantity

a, = F 6 (

Theorem 7.1. Lei M be a compact Kάhler manifold of complex dimension
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d whose curvatures are γ-holomorphically pinched with

d- 1

3 d + 1

Id - 3
2{2d - 1) '

Then

, if d<5,

if d>6.

£ and p are given by (6.2) and (6.3), twd Λ, and Bp are defined at the
beginning of §5.

The proof follows by substitution in Theorem 5.3 with the additional remark
that πx(M) is trivial ([2, p. 528]).
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