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A THEOREM ON MINIMAL SURFACES

L. JONKER

1. Introduction

It is well known that x: Mk —>Rk+p is a minimal immersion into the

Euclidean space Rk+P if and only if

Δ(a, Xs) = 0 for all vectors azRk+p ,

where Δ denotes the Laplacian on Mk. This result follows immediately from

the relation

( 1 ) Δ(a,x} = - < α , f l > ,

where H is the mean curvature vector of the immersion. Osserman [3,
Theorem 2] proved the following theorem:

// x: M2 —> R* is such that for some a e R2, Δ(a, JC> = 0, then M2 is a minimal
surface, or else a locally cylindrical surface with its generators parallel to a.

The purpose of this paper is to generalize Osserman's theorem to the case
x: M2 —• Rn. We will assume as a natural generalization of Osserman's
hypothesis the existence of an n — 2 dimensional subspace A c Rn so that
Δ(a, x} — 0 for all a e A. The main theorem is the following:

Theorem. Let M2 be a connected manifold, and A an n — 2 dimensional
subspace of Euclidean space Rn. If x: M2 —• Rn is an immersion such that

( 2 ) Δ<a, JC> = 0 for all a e A ,

then there are only two possibilities:
1. M2 is minimally immersed in Rn, or

2. there is a set {mt} of isolated points in M so that each point of the
complement Mo of this set has a neighborhood U which is mapped onto a
regular curve γ in B. the orthogonal complement of A, by the orthogonal
projection π with kernel A in such a way that x\U is a minimal immersion in
the cylinder γ X A.

Conversely, if the immersion x: hi2 -> Rn is as described under 1 or 2, it
satisfies the hypothesis of the theorem.

The type of immersion described under point 2 will for convenience be
referred to as type 2. Similarly for type 1.
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It would be natural to ask whether for type 2 the immersions x \ U of U into
a piece of cylinder γ X A can be pieced together to give a factorization of the
global immersion

JC: M2->Rn

as the product of two immersions, the first a minimal immersion of M2 into a
cylinder, and the second an immersion of the cylinder into Rn. This would
give a much nicer characterization of the immersions of type 2. In particular,
the set {mj of isolated points would be empty.

However, an example at the end of this paper gives an immersion JC of a
complete manifold M2 into R* satisfying the hypothesis (2) of the theorem and
belonging to type 2, for which such a description is not possible. In fact, there
are two points mt € M2, i — 1,2, in the example so that no neighborhood U
of mi is such that JC | U can be factored in the way suggested. Thus there does
not seem to be a nicer way to characterize the immersions of type 2 than that
already given in the statement of the theorem.

It will be clear in the proofs below that in the case of codimension one the
points mi do not occur, so that in that case we have precisely Osserman's
theorem.

The theorem has the following easy corollary:
Corollary. Let M2 be a connected manifold, and A an n — 1 dimensional

subspace of Euclidean space Rn. If x: Mι —> Rn is an immersion such that

Δ(a, x} = 0 for all at A ,

then x is a minimal immersion.
The author is indebted to Professor S. S. Chern for suggesting this problem,

and to Professor M. do Carmo with whom he had many fruitful discussions
about Differential Geometry in general and about this problem in particular.

2. The function μ

We begin with some general remarks about H and J. For their definitions
we follow [4]. Suppose we are given an immersion x: Mk —* Vk+P, where Mk

and Vk+P are Riemannian manifolds. If {̂ }, i = 1, , k, is a tangent frame
to the immersion, and {ea}, a = k + 1, , k + p, a normal frame, the mean
curvature vector is

( 3 ) H= Σ Σ < P A . */>«..
a i

where V is the Riemannian connection in F* + p , and Vt denotes the covariant
derivative with respect to et. We get a simpler formula if we choose the vector
fields et with the added condition that at one fixed point m we have
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( 4 ) F,

where F is the connection induced on Mk by the immersion. This is always
possible. Then H has the following formula at the point m only:

(5 ) H{m) = -Σ Ft««(«) .
i

Using a frame field with the property (4) the Laplace operator Δ also has a
simple expression at the point m: If u is a function,

( 6 ) Δu(m) = Σ e^iUim) .
i

This formula is given in [4, Prop. 1.2.1]. It is now easy to prove (1), for

J<α, x}(m) = Σ etβiζa, x

= (a T F-e )
i

while

In the case k = 2 it is well known that isothermal coordinates may be found
in the neighborhood of any point of Mk. In such coordinates the mean curva-
ture vector has a particularly nice expression which holds throughout the
coordinate neighborhood. We give it in the following lemma, for it will be
used later.

Lemma 1. Let (w1, u2) be isothermal coordinates on a neighborhood U of
a two-dimensional manifold, and x: U -*Vn an immersion into a Riemannίan
manifold Vn. Then the mean curvature vector of the immersion is given by

( 7 ) B = (-l/<Vi,t;1»ΣF<i;< >
i = l

where vt = d/du\ V is the connection in Vn

9 and Ft denotes the covariant
derivative with respect to vt.

Proof. Let ea be a normal frame for the immersed neighborhood. Since
ll̂ ill = IÎ IU it is e a sY t 0 s e e that by putting

) V t , i = 1 , 2 ,

in (3) we obtain the following formula:
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where ( 2 Vtv^)N denotes the component orthogonal to U. It is therefore
i

enough to show that for isothermal coordinates the component of £ ViVt
i

tangent to U vanishes. But, if F is the connection induced on I/, then

so that we must show that £ ?iVi vanishes. This is done directly. The Rie-

mannian metric on U is given by

ftl = #22 = C , gl2 = g2χ = 0 .

From this we easily see that

FjV, = {cxl2ό)vx - (c.J2c)v2,

F2u, = -(cλl2c)vx + (c.J2c)v.,,

where c? = dc/du1, i = 1,2. Thus £ Γ^v, = 0, which completes the proof.

Throughout the remainder of the paper we will assume the hypothesis (2)
of the theorem. If Γ,Λ is the plane through the origin in R" parallel to the
tangent plane of the immersion at m e M, we can define a function μ on M by

μ{m) - dim(T m D A) .

Then μ = 0, 1, or 2. It is easy to see that μ is upper semicontinuous in the
sense that each m eM has a neighborhood U such that μ(m') < μ(m) for all
m! e (7. It will be shown later that the behavior of the function μ determines
whether the immersion belongs to type 1 or type 2. The purpose of the three
propositions in this section is to show that the behavior of μ cannot be charac-
teristic of type 1 in one part of M and characteristic of type 2 in another part.
Our main tool in the proofs is the complex structure on Mι which is induced
by the Riemannian structure via the existence of isothermal coordinates. A
strong theorem of Rado on holomorphic functions enters crucially. Before we
state the next lemma it should be remarked that it follows from (1) that the
hypothesis (2) is equivalent to

( 8 ) H(m) 1_A for all m € M .

Here H(m) is the mean curvature vector at m.
Lemma 2. / / the hypothesis (2) of the theorem holds, then μ(m) = 0 im-

plies H(m) = 0.
Proof. If μ{m) = 0, Tm and A are complementary subspaces of Rn. But

we have by (8), which is equivalent to (2), H(m) J_ A. It is always true that
Him) J_ Tm. Hence Him) = 0, which completes the proof.
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Proposition 1. // (8) holds, and μ(m) >\on some open set, then μ(m) > 1
throughout M.

Proof. Let C be the interior of the subset of M given by μ(m) > 1, and
let Co = M — C. Because M is connected, if dC denotes the boudary of C,
then clearly

( 9 ) 3C = φ^C = C^>C = M or C = φ .

Let m e dC, and let U be any neighborhood of m. We claim that the inter-
sections of U with C and with M — C both have nonempty interiors. Since C
is open, one half of this claim is obvious. For the other half, suppose to the
contrary that E/ Π (M — C) = U — C has empty interior. Then U Π C is dense
in (7. By the upper semi-continuity of μ this implies that μ > 1 throughout I/,
whence U c C so that m cannot belong to 3C. This proves our claim.

The hypothesis of Proposition 1 is precisely that C ψ φ. The conclusion is
that C = M, so let us suppose the contrary, C ΦM. Then by (9), dC Φφ.
Clearly mzdC implies μ(m) > 1 by the upper semi-continuity of μ. The rest
of the proof breaks down into two cases:

(a) μ(m) = 2 for all mtdC;
(b) μ(m) = 1 for some medC.
Let us start with assuming case (a). Select some mεdC and a coordinate

neighborhood N of m with complex analytic coordinate z. By the remark
above, C Γi N Φ φ and C0C) N Φ φ. Whenever we speak of the complex struc-
ture on M we refer to that obtained from the Riemannian structure. Define the
vector fields vλ and v2 on N by

d/dz = vx — iv2, d/dz = Vj + π>2

Then <#!, v2y = 0 and H ŷ = ||v2||. Let /1? /2 be an orthonormal basis for B,
and

(10) z, = <t>i,//>-ί<iWi>, J = 1,2.

These functions z ,̂ as well as the functions za appearing in the next proposi-
tion, are in fact components with respect to some system of complex coordi-
nates in G n 2 of the complex conjugate of the generalized Gauss map

introduced in [1]. Here GUt2 is the Grassmann manifold of oriented planes
through the origin in i?n, which is a complex manifold of dimension n — 2. It
is proved in [1] that G is an anti-holomorphic mapping if the ίmmersiσa of M
is minimal. This will also follow from our calculations:

For dzj/dz = (v, + iv2)(zj) = <yxvx + F2v2, /,> = -<vl9 t>,><ff, /,> by Lem-
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ma 1. Hence dzj/dz is zero at all points where H(m) = 0. In particular, let
E = {m eM\H(m) φ 0} and D = M — E. Both D and E are open. Then zx

and z2 are holomorphic on N Π D. We shall need the following lemma:
Lemma 3.
(i) (Zi, z2) = (0, 0) // and only if μ(m) = 2.
(ii) // zjz2 or z2/zx is defined and real at meN, then μ{m) — 1, and con-

versely.
Proof, (i) We have (z l fz2) = (0,0) if and only if <v1,/1> = <t>f,/,> =

< î» Λ> = <̂ 2> 1*> = 0, which is true if and only if vl9 v2eA, which is equiva-
lent to μ(m) = 2. (ii) Suppose that z2 Φ 0 and that Zj/z2 is real at m. It is
easy to see that a rotation of the axes along vx and v2 through an angle Θ effects
a multiplication of (yl9 f^ — i(v2J /;> by the number eiθ. Hence zx\zτ will be
left unchanged by such a rotation. Let us rotate vx and v2 if necessary to
obtain a real value for z2. But then zx must also be real, so that <v2, /!> =
(y2, f2y — 0. This implies that v2 is orthogonal to B and thus belongs to A, so
that μ{m) — 1, since μ(m) = 2 is already excluded by (i). To get the converse
to (ii) suppose μ(m) — 1. Assume z2 Φ 0. Applying a rotation of the basis
vx, v2 if necessary we may assume v2 e A. But then (v^f^ = 0 for / = 1,2,
so that

which is real. This completes the proof.
We now return to the proof of Proposition 1. It is clear from the definitions

of C, D, Co, and E, and Lemma 2 that Co c D and E a C. Define a function

J
^ ((0,0) if ztCΠN,

Then ^(z) is continuous on N since (z15 z2) = (0,0) on 3(C Π ΛO by our assump-
tion in case (a). Also φ(z) is holomorphic where it is different from zero. Hence
by a theorem of Rado [2] φ(z) is holomorphic on N. Since C Π N is non-
empty this implies φ(z) = (0,0). Hence μ(/n) = 2 throughout Co Π N, con-
tradicting the definition of Co, and completing part (a) of the proof.

We now turn to case (b) where we assume that there exists a point medC
such that μ(m) = 1. We select a neighborhood N of m with coordinate z and
define functions zx and z2 all exactly as above. However, in this case we may
assume that μ < 1 and z2φ0 throughout N, because of the semi-continuity
of μ and the continuity of z2 respectively. Hence μ = 1 on C Π N. Let w(z)
= zx/z2 on N and define the function 0: Λf -> C by

J9w/9z on Co Π N ,

^ = { 0 o n C Π i V .
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We claim that ψ is continuous on N. In fact let w = u + iv. Then

dw/dz = (l/2)(0/3*) - i(3/3y))(κ + iv)

= (l/2)(0iι/te) + (dv/dy)) + (i/2)(0t;/3*) - (du/dy))

= (dv/dy) + Kdvjdx) on Co Π N c £> .

On the other hand,

0t>/9y) + '0V/3*) = 0 onCΠiV,

since by Lemma 3 above i; = 0 there. Therefore dw/dz —• 0 as z -> 3(C ΓΊ ΛO
so that ψ is continuous. But 0 is holomorphic on Co Π iV c /) Π N, so that by
Rado's theorem [2], ψ = 0 on N. Therefore zjz2 is constant on Co Π N. But
by Lemma 3, zjz2 is real on 3(C0ΠiV), so that zι\z1 must be real on Co Π iV.
Hence, by Lemma 3, μ = 1 throughout N, again a contradiction, and Proposi-
tion 1 is proved.

Proposition 2. // (8) holds and μ(m) —\on some open set, then μ(m) = 1
throughout Λί, except at isolated points where μ{m) = 2.

Note that in the case of codimension one, μ = 0 or 1 on M so that these
isolated points cannot occur,

Proof. We already know by Proposition 1 that μ(m) > 1 throughout M.
Let m1 € M be such that //(m^ = 2. We only need to show that mx has a neigh-
borhood U in which μ(m) = 1 for all m Φ mγ. Let N be a coordinate neigh-
borhood of Wi with complex coordinate z, and fa, a = 3, , π, a fixed
orthonormal basis for Λ. Define on N the functions za by

(Π) zβ = <vl9 /.> - /<i;2, /.> , or = 3, . . . , n .

By a calculation similar to that used for (10), we get, for each a,

dzjdz= -<v l,v1>

since H J_ fa by (8). In other words, the functions za are holomorphic through-
out N. But then so is λ(z) = zl+ +z2

n. We claim that

(12) λ(z) = || pd j) ||2 - || p(v2) f -

where /o is the orthogonal projection of Rn onto Λ. For

Σ {<«.» /.>2 - <v» o2} - v Σ <« i,

We now claim that
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(13) λ(z) = 0 φ=» μ(m(z)) = 2 .

For let π be the orthogonal projection onto B as usual. That μ(m) = 2 implies
Kz) = 0 is clear from (12). Conversely, if λ(z) = 0, we may write vx = πvx

+ pv1 and v2 — πv2 + pv2, and note that since μ(m) > 1, dim π(Tm) < 1 so
that πvι and πv2 are linearly dependent. But

0 = O n V2} = <7ΓV,, 7Γt;2> +

and we are given

0 = <kpυl9pviy9

since λ(z) = 0, whence

0 =

which implies that one of πv1 and πv2 vanishes. Say πvλ = 0. That is, vxeA.
But then || vλ \\ — \\ v2 \\ and || pvx \\ — \\ pv21| together imply v2 e A as well. This
proves our claim (13), but also completes the proof of Proposition 2, for λ(z)
is holomorphic on N with zeros corresponding precisely to the points where
μ(m) — 2. Hence such points are isolated; in particular, mx is.

Proposition 3. // (8) holds and μ(m) = 2 on some open set, then μ(m) = 2
throughout M.

Proof. By Proposition 1 we then have μ(m) > 1 everywhere. Suppose
there is a point m where μ(m) = 1. By the semi-continuity of μ this must
remain true in a neighborhood of m. But then by Proposition 2, μ(m) = 2 only at
isolated points. This contradicts our hypothesis, and thus completes the proof.

3 The proof of the theorem

To begin the proof of the theorem, note that by the semi-continuity of μ the
set Co of points where μ(m) = 0 is open in M. If Co is not also dense in M,
Proposition 1 shows that Co must be empty. In that case either μ = 2 or else
by Proposition 2, μ(m) = 1 except at isolated points mt for which μ{mt) = 2.
Thus there are only three possibilities:

( i ) μ(m) — 0 on an open dense subset Co of M
(ii) μ = 2 on Λf
(iii) μ(m) = 1 on Mfl = M - {wj* where {mj is a set of isolated points

at which μ{m) = 2.
If (i) holds, we see by Lemma 2 that H(m) = 0 on Co and hence, by the

continuity of H, H = 0 on M so that x: M2 —> Rn is a minimal immersion, as
in case 1 of the theorem.

If (ii) holds, the immersion x: M2 —> Rn is always tangent to a translate Af

of A, so that we may regard it as an immersion into A'. But then the hypo-
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thesis (2) says that it is a minimal immersion in A'. Since Ar is totally geodesic
in Rn, then JC: Λί2 -> Rn must itself be a minimal immersion so that we are
again in case 1 of the theorem.

If (iii) holds, we shall show that we get case 2. In this case each point m e Mo

has a neighborhood U on which we can define a C°° vector field XA such that
XA € Tm Π A and 11X̂ 11 = 1. XA is of course unique up to sign. Using the
trajectories of XA as lines ξ = a constant and the orthogonal trajectories as
lines η = a constant we obtain a local coordinate system (ξ, η) so that
<3/9£,3/d^> = 0, 3/dj?€Λ and d/dζ$A. But then any curve ξ = constant is
everywhere tangent to A so that π maps such a curve into a single point in B.
On the other hand, the curves (-,9,) and (•,%) a r e mapped into the same
curve γ(ξ) = ;r(f, â ) = ;r(f, η2) on 5 , and f(f) has a nonvanishing tangent
everywhere since djdξξA. Hence, by changing the parameter ξ if necessary
we may assume that || (d/dξ)(γ(ξ)) || = 1 always, that is, || π*(dfdξ) || = 1. Thus
the neighborhood U projects onto the curve γ(ξ) in B. Hence U (Z γ X A. In
fact, U C p X A as a minimal surface, for we already know that H _\_A, and
clearly # _|_ (d/dξ). Together they imply H±_γ X A so that U is a minimal
surface in p X A. As it is easy to show that immersions of type 1 or 2 satisfy
(2), the proof of the theorem is now complete.

Proof of the corollary. Embed Rn as a linear subspace of Rnn. Then x: M2—+
Rn + ι satisfies the hypothesis of the theorem with n + 1 in place of n. Let B be
the orthogonal complement of A in Rn + \ and π: /?7i+1 —• B the orthogonal
projection. If x is of type 1 and thus minimal into i?w + l, it is also minimal into
Rn since it already maps into the latter space. It remains to show that under
the hypothesis an immersion of type 2 is also minimal. Suppose JC: M2 —• R1ι + ι

is of type 2. Then except for isolated points {mf}, each m<zM has a neighbor-
hood U for which π(x(U)) is a regular curve γ in B. Let Bλ be the orthogonal
complement of Rn in Rn+\ and B2 the orthogonal complement of A in i?".
Then B = BXX B2. But *(£/) c Rn implies that - c B2. Since B2 is one-
dimensional, and γ regular, γ must be an open interval / in B2. Hence JC| U is
minimal into I X A, and thus into Rn. Hence the mean curvature vector H
vanishes on t/. It follows by the continuity of H that x: M2 —> Λw is minimal.

4. Example

In the introduction we promised an example of an immersion JC : M2 —> R*
of type 2 for which the description given in the theorem is the best possible.
In particular, there will be two points mι and m2 on M which have no neigh-
borhood U which π projects onto a regular curve in B, and hence no neigh-
borhood on which JC is minimal immersion into a piece of cylinder γ X A.

To get such an example rotate the curve

x> = (l/2)(exp(x2) + exp(-x2))
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about the x2 — axis to get the catenoid M2 c R\ Put

W = R = {xι = x2 = 0}

and identify Λ3 with W X R2. Also let /I and B be orthogonal 2-spaces in R\
so that Λ4 = ^ X δ . Let γ\ξ) and ?-2(£) be two C°° curves in £ , - oo < ξ < oo,
parametrized by the arc length, such that

γ\ξ) = f(ξ) for - 1 <ξ < 1 .

γι o χ3 and f2 o JC3 are then immersions of W into /?. Let / be any isometric
isomorphism from R2 to A. Then (p1 o JC3) X / and (γ2 o JC3) X i are both immer-
sions of R2 = W X fl2 into £ X Λ — R\ which when restricted to M2 c W X /?2

would give immersions of type 2 in Λ1. To get our example we assume in
addition that γ\ξ) and γ\ξ) do not agree when | ? | > 1, and then define an
immersion x: Mι —> /?' as follows:

( ( r U ( w ) ) , /(m)) on the half-space xι > 0 ,
(14) jιr(w) = j

\{γ\x\m)), i(m)) on the half-space JC2 < 0 .

To show that this defines a smooth immersion, let m] — (0, 0, — 1) and
m2 = (0, 0, 1) € M, and let m e MQ = Af — {/?zt, m,}. Then either jc2(m) ^ 0 so
that only one half of the definition (14) applies in a neighborhood of m, whence
JC is smooth at m, or else \x\m)\ < 1 so that the two halves of (14) agree com-
pletely on a neighborhood of m, so that x is smooth here also. That x is smooth
at mλ and m2 as well is not difficult to see.

By its definition, JC: M2 —> Rι clearly belongs to type 2 in the theorem. In
particular, it satisfies the hypothesis (2). Any neighborhood U of mι is mapped
by 7r, the projection with kernel A> onto a subset of B containing the set

{ r ! ( £ ) | - l — e < f < —1 + ε } U { r ( ? ) | - l - ε<ξ < - 1 + e} ,

which is not a regular curve, as γ] and f were chosen so as to differ outside
{If I < 1} The same holds true for the point m,. Thus, for no neighborhood
U of mi, i = 1,2, does JC| U map into a piece of cylinder γ X A.
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