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SYMMETRIC SPACES WHICH ARE REAL
COHOMOLOGY SPHERES

JOSEPH A. WOLF

This is a survey in which we collate some known results using semi-standard
techniques, dropping the condition of simple connectivity in Kostant's work
[2] and proving

Theorem 1. Let M be a compact connected riemannian symmetric space.
Then M is a real cohomology (dim M)-sphere if and only if

(1) M is an odd dimensional sphere or real projective space; or
(2) M = M/Γ where (a) M = S 2 r i X •. X S2r™, rt > 0, product of

m > 1 even dimensional spheres, and (b) Γ consists of all γ = γλX X γm,
where γ{ is the identity map or the antipodal map of S 2 r ί, and the number of
yt which are antipodal maps, is even or

(3) M = SU(3)/SO(3) orM = {SU(3)/Z3}/SO(3) or
(4) M = O(5)/O(2) X O(3), non-oriented real grassmannian of 2-planes

through 0 in R5.
In (2) we note πx(M) = Γ = {Ίj^m~ι\ in particular the even dimensional

spheres are the case m — 1. In (3) we note that the first case is the universal
3-fold covering of the second case. In (4) we have πλ{M) = Z2.

Theorem 1 is based on a series of lemmas which can be pushed, with
appropriate modification, to the case of a real cohomology w-sphere of
dimension greater than n. Here we make the convention that a 0-sphere is a
single point. By using a cohomology theory which satisfies the homotopy axiom
(such as singular theory) we can also drop the requirement of compactness.
Thus we push the method of proof of Theorem 1 and obtain

Theorem 2. Let M be a connected riemannian symmetric space. Then M
is a real cohomology n-sphere, 0 < n < dim M, if and only if M = MΎ.M"
where (a) M" is a product whose I > 0 factors are euclidean spaces and
irreducible symmetric spaces of noncompact type, and (β) Mf is one of the
following spaces.

(1) W = M/Γθ, where M = S2 r i X X S2r™ is the product of m > 0
spheres of positive even dimensions 2ru Γ=(Z2)

m consists of all γλX Xγm

such that γi is the identity or antipodal map on S2 rs θ is any one of the 2m

characters on Γ, and Γθ is the kernel of θ. Express θ = θiχ - θi$9 where
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1 < h < < is < m, and θι is the nontrivial character on the Z2-factor of
Γ for S2r*. Then n = 2riχ + + 2 r % ; so either θ = 1 with n = 0 and
Γθ = Γ ^ (Z2)

TO, orθφλ with n > 0 and Γθ qJZ,)™-1.
(2a) M / - (S2 r + 1/Z2) X (Jlf/Γ), r > 1, and M and Γ as in (1), product

of an odd dimensional real projective space with m > 0 even dimensional real
protective spaces n = 2r + 1.

(2b) AT = (S 2 r + 1 X M)/Γi9 r>0, and M and Γ as in (1), where θ is
any of the 2m characters on Γ (viewed as taking values in the group Z2

consisting of 1 and the antipodal map of S2 r + 1), and Γβ consists of all θ(γ) X γ
with γ e Γ; n = 2r + 1 and Γβ ^ (Z 2 ) m .

(3) M' = ({SU(3)/SO(3)} X M)/Ψ, where M and Γ are as in (1), Z3 is
the center of SU(3), and either Ψ = {1} X Γ = (Z 2)m or Ψ = Z 3 X Γ s
Z 3 X (Z2)

m; n = 5. _ _
(4) M = ({SO(5)/SO(2) X SO(3)}/Z2) X (M/Γ), where M and Γ are as

in (1); the first factor of M' is the non-oriented grassmannian of 2-planes in
R5, expressed as quotient of the oriented grassmannian by {1, η] = Z2, where
η changes the orientation of each 2-plane; n=6.

(5) M = ({SO(6)/SO(3) X SO(3)}/Z4) X (M/Γ), where M and Γ are as
in (1); the first factor of M' is quotient of the oriented grassmannian of 3-
planes in R6 by {1, β, β\ β*} = Z4, where β is oriented orthocomplementation
of 3-planes so β2 = η orientation change, n = 5.

As an immediate consequence of Theorem 2, or of Theorem 1 in the case
n — dim M to which it applies, we have

Corollary. Let M be a connected riemannian symmetric space which is a
real cohomology n-sphere. If a prime p > 3, then M is a Zp-cohomology
n-sphere. M is an integral cohomology n-sphere if and only if M = Sn X M"
with M" acyclic as in condition {a) of Theorem 2.

1. Cohomology invariants of deck transformations

Let M be a compact connected riemannian symmetric space. Let I(M)
denote the full group of isometries of M, and I0(Λf) its identity component.
Now M = G/K, where G = I0(M), compact connected Lie group, and K is
the isotropy subgroup at a point x <= M. Let s e I(M) denote the symmetry at x.
Then the Lie algebra of G decomposes as G = K + P into (±l)-eigensρaces
of ad(s), K being the subalgebra of G for K and P representing the tangent
space of M at x. Using de Rham's Theorem and then averaging differential
forms over G, one obtains a graded algebra isomorphism of H*(M; R) onto
the space of <zdG(/O-invariant elements of Λ*F' = ΣΛkV where ' denotes
dual space. That is E. Cartans's representation of cohomology by invariant
differential forms; an exposition is given in [4, § 8.5].

In particular, M is a real cohomology (dim M)-sphere if and only if the
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only adG(Kymvaxiants in A*V are the linear combinations of 1 € Λ°J?' and
the volume element ω € AnV, n = dim M.

M has universal riemannian covering φ\ N-^M, where N = iV0 X Mι X
X M r, iV0 is a euclidean space, and the M^ are compact simply connected
irreducible riemannian symmetric spaces. Let Δdl(N) be the group of deck
transformations, so M = N/ J. Then JQ = Δ Π l(NQ) is a translation lattice on
No, so Mo = NolΔO is a flat riemannian torus, and φ factors through π: M —>M
= M/Γ where

M = Mo X Mx X X Mr, Γ = J/ Jo .

Let G = I0(M), x e π~ι(x), and £ be the isotropy subgroup of G at x. Then

we have an identification of G with G, which matches K with K and P with P.
1.1. Lemma. Identify H*(M; R) with the αd^(K)4nvαriαnts on A*f,

and H*(M; R) with the adG(K)-invariants on Λ*Ϋ\ Then H*(M; R) consists
of the Γ-invariants on H*(M\ R).

For G = (GΓ)/Γ and K = (KΓ)/Γ, and the cohomology of M is given by
G-invariant differential forms.

Let Gt = IoίAίJ, and let Z< denote the centralizer of Gt in KM*). Then
Zo = Go, the other Zf are finite, ^ G o X ^ X XG,, and Z = ZQXZλ

X X Z r is the centralizer of G in I(M). Given a subgroup ?P*cI(M), one
knows that M —* M/¥ is a riemannian covering with symmetric quotient, if
and only if Ψ is a finite subgroup of Z. Thus Γ C Z. We write /\ for the
projection of Γ to Z<.

1.2. Lemma. Le/ M be a real cohomology n-sphere, n = dim M. TAen
we Ziαve /M sί one of the following situations.

(a) M is a circle.
(b) M is irreducible, the Γ-invariants on H*(M R) are generated by 1

and the volume element, and the Z-invariants on H*(M; R) are generated
either by 1 or by 1 and the volume element.

(c) M = M! X . X Mτ >w7Λ r > 1 /or eαcλ /, dim Mt > 0 <md f/ze?
Zrinvariants on flr*(Mi; R) are /wsί ίΛe elements l Rof degree 0.

PJW/. Suppose dimM0 > 0. As Zo acts trivially on H*(MQ; R) it follows
that H*(M; R) has nonzero elements of degree dim Mo. Thus M is the torus
Mo. Now dimM0 = 1, so M is a circle and we are in case (a).

If M is irreducible, the part of (b) on Γ-invariants is obvious and the
statement on Z-invariants follows.

Now suppose that we are neither in case (a) nor in case (b). Then dim Mo

= 0 and M is reducible, so M = M1 X . . . X Mr with r > 1 and dim Mt > 0.
If ψ is a Z^-invariant of positive degree on fl*(Mί R), then φ is Γ'-invariant,
so ψeH*(M;K) with 0 < d e g ^ < d i m M . Thus the Zrinvariants on
flr*(Mί; R) are of degree 0.
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2. Admissible factors of M

We go on to find the irreducible symmetric spaces which satisfy the conditions
imposed by (b) or (c) of Lemma 1.2.

2.1. Proposition. Let M be a compact irreducible simply connected
riemannian symmetric space, G = I0(M), and Z be the centralizer of G in
I(M). Then the Z-invariants on H*(M; R)

(i) are all of degree 0, if and only if M is an even dimensional sphere;
(ii) are generated by 1 and the volume element, if and only if M is an odd

dimensional sphere, SU(3)/SO(3), or SO(5)/SO(2) X SO(3).
Proof. If M is a sphere the assertion is clear. If Aί is a real cohomology

sphere but not a sphere, then [2] M = SU(3)/SO(3), so [4, §9.6] Z is the
center of G and the assertion follows. Now suppose that M is not a real
cohomology sphere. Then Z acts nontrivially on H*(M; R), so Z ς£ G. It
follows [4, Chapters 8 and 9], [3, § 5] that M is one of the spaces:

(1) M = SU(2n)/S[U(π) X U(n)l, Z s Z2;
(2) M = SU(2n)/SO(2«), Z^Z2n;
(3) M = SO(2r + 2s + l)/SO(2r) X SO(2* + 1), Z = Z,;
(4) M = SO(4Λ)/U(2Λ), Z S Z2;

(5) M = SO(2r + 2s)/SO(2r) X 80(2*),
Z ^ Z2 if r φ s, Z s Z2 X Z2 if r = J ;

(6) M = SO(4r + 2)/SO(2r + 1) X SO(2r + 1), Z s Z4;
(7) M = Sp(Λ)/U(n), Z s Z2;
(8) M = Sp(2n)/Sp(n) X Sp(π), Z s Z2;
(9) M = E7/A7, Z s Z2;

(10) M = E7/EβΎ19Z^Z2.
Let M = GjKbt one of the spaces above. If rankG = rank£, i.e. if the

Euler-Poincare characteristic χ(M) φ 0, then we have χ(M) = | Ŵ G | / | Wκ \
where WL = Weyl group of L. As cohomology occurs only in even degree,
and as χ(M/Z) = χ(M)/ \ Z | , it follows that the two conditions for Z-invariants
on H*(M; R) can be phrased

(i) x(M/Z)= l , i . e . I ^ I / I ^ I I Z ^ 1;
(11) χ(M/Z) = 2, i.e. \WG\ / \WK\ . \Z\ = 2.

We run through the relevant cases.
(1) χ(M/Z) = (2n)l/nln\2 which is > 2 whenever Λ > 1; we exclude

π = 1 by the condition that M is not a sphere S2.
(3) r > 1 because dim M > 0, and s > \ because M is not a sphere.

Thus ί = min (r, *) > 1. Now

χ(Af/Z) = 2 r + 5(r + *)!/{2r-1r!}{2s*!}2 = (r + J) !/Γ!J ! > (2ί)!//!/!

with equality if and only if r = s, and (2t)\jt\t\ > 2 with equality if and only
if t = 1. Thus r = s = 1, so M = SO(5)/SO(2) X SO(3), and χ(M/Z) = 2.
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(4) χ(MjZ) == 22n'ι(2ή)\ /(2π)!2 = 22n'z which is > 2 whenever n > 1
we exclude n = 1 because M is not a product S2 X S2 of spheres.

(5) r > 1 and s > 1 because dim M > 0. We exclude the case r = s — 1
because M is not a product S2 X S2 of spheres. Now we may assume 1 < r < s
with s > 1. If r = j , then

χ(Af/Z) = 22^1(2A )!/{2^V!}{2r-1r!}4 = (2r)!/r!r!2 > 3 .

If r < 5, then

χ{MjZ) = 2^s~ι(r + s)l l{2r-ιr\}{2s-ιs\}2 = (r + J ) ! / Γ ! J ! > (2r)!/r!r! > 2.

(7) n > 1 because M is not a sphere S2. If n = 2 then M = Sp(2)/U(2)
= SO(5)/SO(2) X SO(3) was considered under (3). Now suppose n > 2;
then χ(MjZ) = 2»rc!/n!2 = 2n~ι > 2.

(8) χ(M/Z) = 22n(2ri)l/{2nn\}{2nn\}2 = (2n)l/n\nl2 which is > 2 for
π > 1 and we exclude the case n = 1 because M is not a sphere S4.

(9) χ(M/Z) = 210 34 5.7/8! 2 = 36 > 2.
(10) χ(M/Z) = 210.34.5 7/28.34.5 = 28 > 2.
Hence our assertions are proved in case rank G—rank K. Now we must

check the spaces listed under (2) and (6). For those spaces M = G/K we will
decompose I(M) as a union of components atG, ax = 1, such that its isotropy
subgroup is a union of components aJC. If z € Z, say z € α ^ , then z and at

have the same action on H*(M, R), the space of tfdG(K)-invariants on yl*?7.
Thus we must analyse the action of K on P r, picking out an invariant φ e ΛkF',
such that 0 < k < dim M and such that at(^) = φ whenever Z meets α fG.

(2) M = SU(2rt)/SO(2n). Here G = SU(2n)/{±I} has center Z n which
has index 2 in Z ̂  Z2 n. Note that n > 1 because M is not a sphere S2. We
have [3, p. 88] I(M) = GΌsGVaGΌ saG with isotropy subgroup KΌsK
\J aKΌ saK where s is the symmetry and ad(a)\κ = αd(α)|x for a matrix
α = diag {— 1 1, , 1} e O(2n). If Z2 denotes the subgroup of order 2 in Z,
then Z2 = {1, β} with /? e αrG. Thus we need only find a nonzero ^-invariant
ψ € ΛkV\ 0 < k < dim M, such that αr(̂ ) = φ.

The action of K = SO(2n) on the second symmetric power 52(R2n) decom-
poses as φ ®π, where φ is the (trivial) representation on the span of the
element representing the invariant inner product on R2n, and π is equivalent
to the representation of K on P'.

Let ω e A2ni+n~1(P/) denote the volume element of M. We check that a(ω)
= —ω, i.e. that a has determinant — 1 on P7. For if the matrix a of a has
form diag{— 1; 1, • , 1} in a basis {vl9 , v2n} of R2n, then its (—1)-
eigenvectors on 52(R2π) are the vX'Vu 2 < i < 2n, which are odd in number.

Borel [1] has shown that the real cohomology of M is that of {S5 X S9 X
X S4n"3} X S2n. First let n = 2. Then the product is S4 X S5 so that H*(M; R)
has basis {1, <p4, <pδ, ω}, where ψi e Hι{M\ R) and ψA Λ ψ5 — ω. Furthermore
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aiω) = — ω and χ(M/Z2) = — χ(M) = 0 imply a(φ4) = —<p4 and αr(y>5) = φ6.

Thus M/Z 2 w a real cohomology 5-sphere of dimension 9. Now let n > 2, so
that # * ( M ; R) is generated by elements ψί € iP(Af R) of degrees 5, 9, . . . ,
An - 3, and In such that fy>5 Λ <p9 Λ . Λ <p4n_2) Λ y>2n = ω. If αfy,) = φt and
α?(^) = ^ for two distinct indices /, /, then M/Z is not a real cohomology
sphere of any sort. If a(φ^) = φt for a unique index /, then a(<pj) = — ̂  for
7 :£ j . There are two indices / ^ Λ distinct from i because n > 3, and now or
preserves both φt and ^^ Λ <pk, so again M/Z is not a real cohomology sphere
of any sort.

(6) M = SO(4r + 2)/SO(2r + 1) X SO(2r + 1), grassmannian of oriented
(2r + l)-planes in an oriented R 4 r + 2 . Then Z = {l,β, β2, β3} ^ Z4, where β is
orthocomplementation, and β2 = — / reverses orientation of (2r + l)-ρlanes.
We have K = Kx X K2 with ^ s SO(2r + 1). Let aG denote the component
of I(M) containing β. Then «d(α:) has order 2 and interchanges /^ with K2.
Viewing G as the space of antisymmetric real matrices of degree Ar + 2, we
identify an element of P with its upper right hand block of degree 2r + 1, and
then K = Kλ X K2 acts on P by (kl9 k2): A -> kxAkςι. Now a acts on P by
A-^tA transpose, so the multiplicity of its (— l)-eigenvalue there is
(2r + l)(2r)/2 = 2r2 + r. Thus a acts on the volume elements by: a(ω) = ω
if r is even, a(ώ) = — ω if r is odd.

If r = 1, then M = SO(6)/SO(3) X SO(3) = Sϋ(4)/SO(4), and, as seen
above, the 9-dimensional manifold M/Z is a real cohomology 5-sphere. Now
suppose r > 2, so that dim M > 25. Then the inclusion of M into the grass-
mannian of oriented (2r + l)-ρlanes in R°° is an isomorphism on cohomology
of degrees 4 and 8, so the Pontrjagin classes px and p2 of M are nonzero.
Recall pt = (— iyc 2 i (τ c ), and c2i(^) = c2i(η) for any complex vector bundle η,
where c j is the j-th Chern class, and τ is the tangent bundle. As a(τc) is τc or
τc, now αίPi) = /?! and a(p2) = p 2. Thus M/Z is not a real cohomology sphere.

3. Products of even spheres

We now work out the last ingredient of our main result, proving
3.1. Proposition. Let M = S 2 r i X X S2r% product of m > 1 even

dimensional spheres, and Γ C I(M) be a finite subgroup such that M — M/Γ
is a riemannian symmetric space.

1. # * ( M ; R) = H°(M; R) // and only if Γ consists of all γ = γx X . . .
X Trn> where Ti w either the identity map or the antipodal map of the i-th
factor S 2 r i of M.

2. M is a real cohomology (dim My sphere if and only if Γ consists of all
γ = γx x . . . X γm as above such that the number of γi which are antipodal
maps, is even.

Proof. Let vt e I(M) act on the factors of M by the identity on S2 r s for
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i Φ s, and by the antipodal map on S2r<. Let Δ denote the group generated by
the vi9 Δ' the subgroup of index 2 consisting of products of an even number
of vi9 and θι denote the character on Δ such that θi(vg) = 1 for i Φ s, and
0.(v.) = _. l. Then the 2m characters θiχθu θit, 1 < h < <is<m,
are all the characters of Δ, and θxθ2 θm is the only nontrivial one which
annihilates Δf. _

Let ω̂  € H*(M; R) be the I0(M)-invariant differential form of degree 2ri9

which annihilates the tangent space to the factors S2r , s Φ i, of M, and
restricts to the volume element of S2rί. Then vfωs = θsb>i)-ωs. If δ e J, then
δ acts on ωix Λ Λ ωis by scalar multiplication with (ffil θis)(δ). But
the 2m elements ω^ Λ Λ ωis, 1 < ix < < is < m, are a basis of
of #*(M; R). Hence * _

3.2. Lemma. / / i ί c J , ί/ieπ ί/ie ψ-invariants on H*(M; R) are /wsί the
span of the ωt l Λ Λ ωί5 5MC/I ί/iaί ^ f l . • θig annihilates Ψ.

Now let Γ b e a subgroup of J, i.e. suppose that M/Γ is symmetric. Then
H*(M/Γ; R) = H°(M/Γ; R) if and only if none of the ωiχ Λ Λ ω is are
jΓ-invariant for s > 0. By Lemma 3.2 this latter condition is that no nontrivial
character on Δ can annihilate Γ, i.e. Δ/Γ has no nontrivial character, i.e.
Γ — Δ. Thus the first assertion of the proposition is proved. M/Γ is a real
cohomology sphere if and only if 1 and ωx Λ Λ ωm generate the Γ-
invariants on H*(M; R). Lemma 3.2 formulates the latter as the condition that
0i#2 θm is Λe only nontrivial character on Δ, which annihilates Γ, i.e. that
Γ = Δ'. Thus the second assertion of the proposition is proved.

4. Proof of Theorem 1

We prove Theorem 1, stated at the beginning of this note.
M is a compact connected riemannian symmetric space, and M = M/Γ

as in the notation of § 1.
If Mis an odd sphere S2^1, then Z = {±7} c G = SO(2«) acts trivially

on the real cohomology of M; so M and its associated projective space M/Z
— S2n-7{±/} are real cohomology spheres. If Mis a product of even spheres,
and Γ is the group described in case (2) of the theorem, then M/Γ is a real
cohomology sphere by Proposition 3.1. If Mis SU(3)/SO(3), then dim M = 5,
and

H\M; R) = 0, because M is simply connected,

H\M\ R) = 0, because M is not hermitian symmetric,

H\M\ R) = R\M\ R) = 0 by Poincare duality,

so M is a real cohomology sphere; further Z = Z3, center of G — SU(3), so
M/Z = {SU(3)/Z3}/SO(3) is a real cohomology sphere. Finally if
M= SO(5)/SO(2) X SO(3) (oriented real grassmannian), then M/Z
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= M/{±1} = O(5)/O(2) X O(3) (nonoriented real grassmannian) is a real
cohomology sphere by Proposition 2.1. Thus the spaces M listed in Theorem
1 are real cohomology (dim Λf)-spheres.

Conversely, let M be a real cohomology (dim M)-sphere. We run through
the alternatives of Lemma 1.2. If M is a circle, it is an odd sphere, listed
under (1) in Theorem 1. If M is irreducible, then it is a sphere, SU(3)/SO(3),
or SO(5)/SO(2) X SO(3), by Proposition 2.1, and then M is a sphere or real
projective space, SU(3)/SO(3) or {SU(3)/Z3}/SO(3), or SO(5)/SO(2) X SO(3)
or O(5)/O(2) X O(3) even projective spaces are eliminated both by nonorient-
ability and by χ = 1, and SO(5)/SO(2) X SO(3) is eliminated by χ = 4; thus
M is listed under (1), (2), (3) or (4) of Theorem 1. If Mis reducible, then it
is a product of even dimensional spheres by Lemma 1.2 and Proposition 2.1,
and then M is listed under (2) of Theorem 1, by Proposition 3.1.

5. Extension to Theorem 2

We modify the proof of Theorem 1 in such a way as to obtain Theorem 2.
Let M be a connected riemannian symmetric space. Then we have the

universal riemannian covering φ: N —> M = N/Δ, and decompose N = No

X N' X iV", where No is a euclidean space, N' a product of compact simply
connected irreducible symmetric spaces, and N" a product of noncompact
irreducible symmetric spaces. Δ has trivial projection on I(N"), so Δ c 1(NO)
X IC/VO; Δ has finite projection on I(W)5 so ΔQ = ΔΠ1(NO) is a subgroup of
finite index; in particular Δo has finite index in the projection of Δ to 1(NO).
The projection of Δ to I(N0) is a group of euclidean translations, and this
decomposes No = N'0X N'o', where Δ acts trivially on N"9 and N'o has compact
quotient by the projection of Δ to I(Λf0). Now define

M= M X M", M = (K X NO/4), M" = N'i X N" ,

so that

M = Mf X M", where M; = M'/Γ, M" = M", Γ = J/J o >

and φ: N-+M factors through the covering π: M-+ M = M/Γ. Mf is a
compact connected riemannian symmetric space M" is contractible because
it is the product of a euclidean space N" and a product N" of noncom-
pact irreducible symmetric spaces under the inclusion t: M' —> M, now
c*: H*(M; A) ^ //*(M/; /I) for any coefficient ring A. This reduces the proof
of Theorem 2 to the case dim M" = 0 where M is compact.

Now let M be a compact connected riemannian symmetric space which is
a real cohomology ^-sphere, where 0 < n < dim M. Recall our convention
that a 0-sphere means a single point. As in § 1 we decompose M = M/Γ,
M = Mo X Λf! X X Λf r, where Mo is a flat riemannian torus and the
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other Mt are compact simply connected irreducible symmetric spaces. Lemma
1.1 holds but Lemma 1.2 must be modified.

If dim Mo > 0, then, as before, n — 1 and Mo is a circle. For i > 0, now
Mt contributes nothing to # * ( M ; R), so Mt is an even dimensional sphere S2r*
by Proposition 2.1. Let Γf denote the projection of Γ to I(M1 X X M r ) .
Then Γ —> Γ' is an isomorphism by construction of Mo, and Γf = (Z 2) r

consisting of all γ' — yx x . . . x fr where γt is 1 or the antipodal map on
Mt — S2rS by Proposition 3.1. Thus Γ consists of all γ = γ0 X / , where
/ € Γ" as just described, and γ0 = θ(γ') for some arbitrary fixed character θ
on Γ'. Since there are 2 r choices of θ, our assertions of Theorem 2 are now
proved for the case dim Mo > 0.

Now we assume dim Mo = 0, so M = M t X X M r .
Suppose that Af/Z is a real cohomology 0-sphere, i.e. that H*(M/Z; R)

= H°(M/Z; R). Then Proposition 2.1 tells us that Aft = S2 r i even sphere. If
n = 0, then Proposition 3.1 says Γ = Z. If n > 0, then Lemma 3.2 says
that H*(M; R) is spanned by 1 and by some ωiχ Λ Λ ωis, where ωt is the
volume element of Mt, 1 < iλ < < is < r, s > 0, n = 2r ί χ + . + 2ris,
and Γ ^ (Z2)

r~1 is the kernel of the character θiχ 0 V Thus there are 2 r —'l
possibilities for T7, and the assertions of Theorem 2 is proved for the case
where M/Z is a real cohomology 0-sphere.

Now we assume that M/Z is not a real cohomology 0-sphere. Then n > 0,
and M/Z is a real cohomology π-sphere. We re-order the M f now, so that
M1/Zι is a real cohomology n-sphere and the other MijZi are real cohomology
0-spheres. Proposition 2.1 tells us

(i) if i > 1, then Mx is an even dimensional sphere
(ii) if rc = dimM1, then Mλ is an odd sphere, is SU(3)/SO(3) or is

SO(5)/SO(2) X SO(3).
5.1. Lemma. Let Mx be a compact simply connected irreducible

riemannian symmetric space, and Zx the centralizer of IQCMJ in ICMj), and
suppose that M1/Zι is a real cohomology n-sphere where 0 < n < dimMj.
Then n = 5, dim Mx = 9 and Mλ = SU(4)/SO(4) = SO(6)/SO(3) X SO(3).

Proof. Let m = ώmM^ Then ί/m(Aί1/Z1; R) = 0 says that ^ acts
nontrivially on //*(M1; R), so Λ^ is one of the ten (types of) spaces listed at
the beginning of the proof of Proposition 2.1.

If χ(Mλ) ψ 0, then H^M,; R) = 0 for k odd, so Hk{MxjZλ\ R) = 0 for k
odd; thus n is even and χ(M1/Z1) — 2. Following the proof of Proposition 2.1
for that case, we see Mι = SO(5)/SO(2) X SO(3), so n = m = 6, contradicting
n < m. Thus χCMj) = 0. Following the proof of Proposition 2.1 for that case
we see that Mx is the 9-dimensional SU(4)/SO(4) = SO(6)/SO(3) X SO(3)
with Zλ ^ Z4 and n — 5. q.e.d.

Returning to the proof of Theorem 2, let / = r — 1 then we need only
examine the cases

(1) M = S2TO+1 X S2 r i X X S2rS m > 0, ί > 0;
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(2) M = {SU(3)/SO(3)} X S2'1 X X S 2 r ί;
(3) M = {SO(5)/SO(2) X SO(3)} X S2'1 X . . . X S2^;
(4) M = {SO(6)/SO(3) X SO(3)} X S2 r i X X S2r'.
In each case let Γ' be the projection of Γ to I(S 2 r i X X S2 r ί). Then

Proposition 3.1 says that Γf ^ (Z2)' consists of all γ' = yx X X γt where
Yi is 1 or the antipodal map on S 2 r i. And in each case let Γ° = Γ Π I(MX),
kernel of Γ -> Γ'.

In cases (1) and (2), where Zx acts trivially on H^iM^ R), the symmetric
space M/W is a real cohomology (dim M^-sphere if and only if Ψ projects
onto Γ = Z 2 X Z 3 X . . . X Z ί + 1 ^_CZ2y. For the action of γ = °̂ X / e Z
= ZXX Γ' on real cohomology of M is just that of 1 X γ'. In case (1) this
means that Γ can be Z ^ (Z 2)£ + 1 if Γ° Φ {1}; if Γ° = {1} then Γ can be any
of the 2ι groups

where 0 is a character on Γ'. In case (2) it means either that Γ° Φ {1} and
Γ = Z Ξ Z 3 X (Z2)S or that Γ° = {1} and Γ = Γ'^ (Z2) ί.

In cases (3) and (4), where Mx is not a real cohomology sphere because of
a nonzero element ω0 € H\MX\ R), that element ω0 is sent to its negative by a
generator z0 of Z x . Let ω̂  denote the volume element of S 2 r i ; now we require
that no form ωίχ Λ « Λ ωu Φ 1, 0 < ix < « < is < t, can be Γ-invariant.
As for Proposition 3.1, it follows that Γ separately contains the generator of
each Zt. Thus Γ = Z, so Γ ^ (Z 2 ) ί + 1 in case (3) and Γ ^ Z4 X (Z2)

ί in case
(4). Conversely, Γ = Z implies M = {MxjZx) X (S2rVZ2) X . - X (S2r*/Z2),
R-cohomologically equivalent to the real cohomology sphere M1/Zι. Hence
the proof of Theorem 2 is complete.
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