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SYMMETRIC SPACES WHICH ARE REAL
COHOMOLOGY SPHERES

JOSEPH A. WOLF

This is a survey in which we collate some known results using semi-standard
techniques, dropping the condition of simple connectivity in Kostant’s work
[2] and proving

Theorem 1. Let M be a compact connected riemannian symmetric space.
Then M is a real cohomology (dim M)-sphere if and only if

(1) M is an odd dimensional sphere or real projective space; or

Q) M=M|I" where (a) M = S X ... X 8= r, > 0, product of
m > 1 even dimensional spheres, and (b) I" consists of all y =7, X « - X 1,
where y, is the identity map or the antipodal map of S*i, and the number of
1: which are antipodal maps, is even; or

3) M =SU3)/SO3) or M = {SUQ3)/Z,}/SO(3); or

4 M= 0(5)/02) X 0(3), non-oriented real grassmannian of 2-planes
through 0 in R®,

In (2) we note n,(M) = I’ = (Z,)»"; in particular the even dimensional
spheres are the case m = 1. In (3) we note that the first case is the universal
3-fold covering of the second case. In (4) we have =,(M) = Z,.

Theorem 1 is based on a series of lemmas which can be pushed, with
appropriate modification, to the case of a real cohomology n-sphere of
dimension greater than n. Here we make the convention that a O-sphere is a
single point. By using a cohomology theory which satisfies the homotopy axiom
(such as singular theory) we can also drop the requirement of compactness.
Thus we push the method of proof of Theorem 1 and obtain

Theorem 2. Let M be a connected riemannian symmetric space. Then M
is a real cohomology n-sphere, 0 < n < dim M, if and only if M = M’ X M”’
where () M" is a product whose | > 0 factors are euclidean spaces and
irreducible symmetric spaces of noncompact type, and (B) M’ is one of the
following spaces.

(1) M =M|I°, where M = §* X ... X §¥n is the product of m > 0
spheres of positive even dimensions 2r;, I' = (Z,)™ consists of all ;X - -+ X1
such that y; is the identity or antipodal map on S*'i, 0 is any one of the 2™
characters on I', and I’ is the kernel of 6. Express 6 = 6,, - - - 6;, where
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1<i, < -.- <i; < m, and @, is the nontrivial character on the Z,-factor of
I’ for S*i. Then n=2r, + --- + 2r; ; so either § =1 with n =0 and
I"=I-= @), orf+1withn>0and "’ = (Z,)"".

(Qa) M’ = (§**'|Z,) X (M|I"),r > 1, and M and I" as in (1), product
of an odd dimensional real projective space with m > 0 even dimensional real
projective spaces,; n = 2r + 1.

2b) M’ = (§**' X M)/T",,r >0, and M and T as in (1), where 6 is
any of the 2™ characters on I' (viewed as taking values in the group Z,
consisting of 1 and the antipodal map of $*"*'), and I, consists of all 6(y) X ¢
withyel'; n=2r+ land I'y = (Z)™.

(3) M’ = ({SUQ3)/SO(3)} X M)|¥, where M and I are as in (1), Z, is
the center of SU(3), and either ¥ = {1} X ' = (Z)" or ¥ =Z, X "' =
Z, X (Z)"; n=5.

4) M = ({SO(5)/SO(2) X SO(3)}/Z,) X (M|I"), where M and I are as
in (1); the first factor of M’ is the non-oriented grassmannian of 2-planes in
R®, expressed as quotient of the oriented grassmannian by {1, y} = Z,, where
7y changes the orientation of each 2-plane; n=6.

(5) M’ = ({SO(6)/SO(3) X SO(3)}/Z,) X (M|I"), where M and T are as
in (1); the first factor of M’ is quotient of the oriented grassmannian of 3-
planes in R® by {1, B, B, B*} = Z,, where B is oriented orthocomplementation
of 3-planes so p* = y) orientation change; n = 5.

As an immediate consequence of Theorem 2, or of Theorem 1 in the case
n = dim M to which it applies, we have

Corollary. Let M be a connected riemannian symmetric space which is a
real cohomology n-sphere. If a prime p > 3, then M is a Z,-cohomology
n-sphere. M is an integral cohomology n-sphere if and only if M = S* X M"
with M'" acyclic as in condition (&) of Theorem 2.

1. Cohomology invariants of deck transformations

Let M be a compact connected riemannian symmetric space. Let I(M)
denote the full group of isometries of M, and I,(M) its identity component.
Now M = G/K, where G = I (M), compact connected Lie group, and K is
the isotropy subgroup at a point x ¢ M. Let s ¢ I(M) denote the symmetry at x.
Then the Lie algebra of G decomposes as G = K + P into (4 1)-eigenspaces
of ad(s), K being the subalgebra of G for K and P representing the tangent
space of M at x. Using de Rham’s Theorem and then averaging differential
forms over G, one obtains a graded algebra isomorphism of H*(M; R) onto
the space of ad;(K)-invariant elements of A*P’ = X /A*P’ where ’ denotes
dual space. That is E. Cartans’s representation of cohomology by invariant
differential forms; an exposition is given in [4, § 8.5]. A

In particular, M is a real cohomology (dim M)-sphere if and only if the
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only ady(K)-invariants in A*P’ are the linear combinations of 1 ¢ AP’ and
the volume element w € A*P/, n = dim M.

M has universal riemannian covering ¢: N—M, where N=N, X M, X - ..
X M,, N, is a euclidean space, and the M, are compact simply connected
irreducible riemannian symmetric spaces. Let 4CI(N) be the group of deck
transformations, so M = N/4. Then 4, = 4 N I(N,) is a translation lattice on
N,, s0 My= N,/4, is a flat riemannian torus, and ¢ factors through z: MM
= M |I" where

M=MXMX...xXM, TI=4/4,.

Let G = I(M), % ¢ n~'(x), and K be the isotropy subgroup of G at %. Then
we have an identification of G with G, which matches K with K and P with P.

1.1. Lemma. Identify H*(M; R) with the adz(K)-invariants on A*P’,
and H*(M; R) with the ad (K)-invariants on A*P’. Then H*(M; R) consists
of the I'-invariants on H*(M ; R).

For G = (GIN)/TI" and K = (KI')/I", and the cohomology of M is given by
G-invariant differential forms.

Let G, = I(M,), and let Z; denote the centralizer of G, in I(M,). Then
Z, = G,, the other Z, are finite, G = G, X G, X --- X G,,and Z = Z, X Z,
X ... X Z, is the centralizer of G in I(M). Given a subgroup ¥ CI(M), one
knows that M — M /¥ is a riemannian covering with symmetric quotient, if
and only if ¥ is a finite subgroup of Z. Thus I' C Z. We write I"; for the
projection of I' to Z,.

1.2. Lemma. Let M be a real cohomology n-sphere, n = dim M. Then
we have just one of the following situations.

(@) M is a circle.

(b) M is irreducible, the I'-invariants on H*(M ; R) are generated by 1
and the volume element, and the Z-invariants on H*(M; R) are generated
either by 1 or by 1 and the volume element.

) M=M X ... X M, withr > 1; for each i, dimM, > 0 and the
Z-invariants on H*(M,; R) are just the elements 1-R of degree 0.

Proof. Suppose dim M, > 0. As Z, acts trivially on H*(M,; R) it follows
that H*(M; R) has nonzero elements of degree dim M,. Thus M is the torus
M,. Now dimM, = 1, so M is a circle and we are in case (a).

If M is irreducible, the part of (b) on [-invariants is obvious and the
statement on Z-invariants follows.

Now suppose that we are neither in case (a) nor in case (b). Then dim M,
=0 and M is reducible, so M = M, X - .- X M, with r >1 and dim M, > 0.
If ¢ is a Z;-invariant of positive degree on H*(M,; R), then ¢ is ['-invariant,
so ¢eH*M;R) with 0<deg¢ < dimM. Thus the Z;-invariants on
H*(M;; R) are of degree 0.
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2. Admissible factors of M

We go on to find the irreducible symmetric spaces which satisfy the conditions
imposed by (b) or (c) of Lemma 1.2.

2.1. Proposition. Let M be a compact irreducible simply connected
riemannian symmetric space, G = I (M), and Z be the centralizer of G in
I(M). Then the Z-invariants on H*(M ; R)

(i) are all of degree 0, if and only if M is an even dimensional sphere;

(ii) are generated by 1 and the volume element, if and only if M is an odd
dimensional sphere, SU(3)/SO(3), or SO(5)/S0(2) X SO(3).

Proof. 1If M is a sphere the assertion is clear. If M is a real cohomology
sphere but not a sphere, then [2] M = SU(3)/SO(3), so [4, §9.6] Z is the
center of G and the assertion follows. Now suppose that M is not a real
cohomology sphere. Then Z acts nontrivially on H*(M; R), so Z ¢ G. It
follows [4, Chapters 8 and 9], [3, § 5] that M is one of the spaces:

(1) M = SUQn)/S[UM) x UM, Z = Z,;
2) M =SU@2n)/SO0Q2n), Z = Z,,;
(3) M =S0Qr+ 2s + 1)/SOQ2r) X SOQ2s + 1), Z = Z,;
4 M=S804n/U2n), Z=1,;
(5) M = SO(2r + 25)/SO(2r) X SO(2s),
Z=Z ifr+s5,Z=2Z, XZ,ifr =s;

(6) M = SO(4r + 2)/SOQ2r + 1) X SOQ2r + 1), Z = Z,;
(7 M=S8p(n)/Un), Z = Z,;
(8) M = Sp(2n)/Sp(n) X Sp(n), Z = Z,;

(9) M = E'[/Av Z= Zz;

(10) M=E/ET,Z=1Z,

Let M = G/K be one of the spaces above. If rank G = rank KX, i.e. if the
Euler-Poincaré characteristic (M) # 0, then we have y(M) = |Wg|/|Wk]|
where W, = Weyl group of L. As cohomology occurs only in even degree,
and as y(M/Z) = y(M)/ | Z|, it follows that the two conditions for Z-invariants
on H*(M; R) can be phrased

) xM/Z) = 1,ie. |Wq|[|Wk|-|Z|=1;

() xM/Z)=2,ie. |Ws|/|Wkl|-|Z]=2.
We run through the relevant cases.

(1) x(M/Z) = 2n)!/n!n!2 which is > 2 whenever n > 1; we exclude
n = 1 by the condition that M is not a sphere S*.

(3) r>1 because dimM > 0, and s > 1 because M is not a sphere.
Thus ¢t = min (r, s) > 1. Now

(M[Z) =273(r + ) /{2771 }255112 = (r + 9! /rls! > 20! /t!e!

with equality if and only if » = s, and (21)! /¢!¢! > 2 with equality if and only
ift=1Thusr=s5=1, so M = SO(5)/SO(2) X SO(3), and y(M/Z) = 2.
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@ xM/Z) = 2»'(2n)! /(2n)!12 = 2*~% which is > 2 whenever n > 1;
we exclude » = 1 because M is not a product §* X §* of spheres.

(5) r>1ands > 1 because dim M > 0. We exclude thecase r = 5 = 1
because M is not a product $? X S of spheres. Now we may assume 1 <r <s
with s > 1. If r = s, then

y(M)Z) = 212! {27 {2714 = 2n)Y  rir!12 > 3.
If r <'s, then
YM|Z) =275 r + ) {2 {212 = (r+ ) ris! > 2! rir! > 2.

(7) n > 1 because M is not a sphere $¢. If n = 2 then M = Sp(2)/U(2)
= SO(5)/S0(2) X SO(3) was considered under (3). Now suppose n > 2;
then y(M/Z) = 2*n! [n!2 =271 > 2.

®) yM/Z) = 2»2m)! /{2"n!}{2"n!}2 = (2n)! /nln!2 which is >2 for
n > 1; and we exclude the case n = 1 because M is not a sphere S*.

9 xM)Z) =2"-3*.5.7/8!.2 =36 > 2.

(10) x(M/Z) = 21.3%.5.7/28.3".5 = 28 > 2.

Hence our assertions are proved in case rank G=rank K. Now we must
check the spaces listed under (2) and (6). For those spaces M = G/K we will
decompose I(M) as a union of components «;G, a, = 1, such that its isotropy
subgroup is a union of components ;K. If z € Z, say z ¢ a;G, then z and «;
have the same action on H*(M, R), the space of ad;(K)-invariants on A*P’.
Thus we must analyse the action of K on P, picking out an invariant ¢ ¢ 4*P’,
such that 0 < k < dim M and such that «a;(¢) = ¢ whenever Z meets o;G.

(2) M = SU(2n)/SO(2n). Here G = SU(2n)/{+1} has center Z, which
has index 2 in Z = Z,,. Note that n > 1 because M is not a sphere S*. We
have [3, p. 88] I(M) = G U sG U aG U saG with isotropy subgroup K U sK
U aK U saK where s is the symmetry and ad(a)|x = ad(a)|; for a matrix
a = diag{—1; 1, --., 1} ¢ O(2n). If Z, denotes the subgroup of order 2 in Z,
then Z, = {1, g} with § ¢ «G. Thus we need only find a nonzero K-invariant
pe AP, 0 < k < dim M, such that a(p) = ¢.

The action of K = SO(2n) on the second symmetric power S%R?**) decom-
poses as ¢ @, where ¢ is the (trivial) representation on the span of the
element representing the invariant inner product on R**, and r is equivalent
to the representation of K on P’.

Let w e A*»**»~(P") denote the volume element of M. We check that a(w)
= —w, i.e. that « has determinant —1 on P’. For if the matrix a of « has
form diag{—1;1,..-,1} in a basis {v,, ---, v,,} of R%*, then its (—1)-
eigenvectors on S*(R?*") are the v,-v,, 2 < i < 2n, which are odd in number.

Borel [1] has shown that the real cohomology of M is that of {S* X §* X ...
X 8%} X 8, First let n = 2. Then the product is §* X $° so that H*(M; R)
has basis {1, ¢,, ¢5, 0}, Where ¢; ¢ H(M; R) and ¢, N\ ¢, = 0. Furthermore
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a(w) = —w and X(M/Zz) = %X(M) =0 lmply (X(§04) = — @ and a((P.r;) = @s.

Thus M|Z, is a real cohomology 5-sphere of dimension 9. Now let n > 2, so
that H*(M; R) is generated by elements ¢, € Hi((M; R) of degrees 5,9, - - -,
4n — 3, and 2n such that (o; Ay A+« A 9pn_) N 030 = 0. If alp,) = ¢; and
alp;) = ¢, for two distinct indices i, j, then M/Z is not a real cohomology
sphere of any sort. If a(p,) = ¢, for a unique index i, then a(p,) = —g, for
j # i. There are two indices j # k distinct from i because » > 3, and now «
preserves both ¢, and ¢; N\ ¢, so again M/Z is not a real cohomology sphere
of any sort.

(6) M = SO(4r +2)/SO2r + 1) X SO2r + 1), grassmannian of oriented
(2r + 1)-planes in an oriented R*"*2. Then Z = {1, g, 7, f°} = Z,, where B is
orthocomplementation, and 3* = —1 reverses orientation of (2r + 1)-planes.
We have K = K, X K, with K; = SOQ2r + 1). Let «G denote the component
of I(M) containing 5. Then ad(e) has order 2 and interchanges K, with K,.
Viewing G as the space of antisymmetric real matrices of degree 4r + 2, we
identify an element of P with its upper right hand block of degree 2r 4 1, and
then K = K, X K, acts on P by (k,, k,): A — k,Ak;'. Now « acts on P by
A —'A transpose, so the multiplicity of its (—1)-eigenvalue there is
(2r + 1)(2r)/2 = 2r* + r. Thus « acts on the volume element w by: a(w) = @
if r is even, a(w) = —w if r is odd.

If r =1, then M = SO(6)/SO(3) X SO(3) = SU(4)/SO(4), and, as seen
above, the 9-dimensional manifold M/Z is a real cohomology 5-sphere. Now
suppose r > 2, so that dim M > 25. Then the inclusion of M into the grass-
mannian of oriented (2r + 1)-planes in R* is an isomorphism on cohomology
of degrees 4 and 8, so the Pontrjagin classes p, and p, of M are nonzero.
Recall p; = (—1)ic,(z¢), and c,,(p) = c,(7) for any complex vector bundle 7,
where c; is the j-th Chern class, and  is the tangent bundle. As a(z¢) is ¢ or
7, Dow a(p,) = p, and a(p,) = p,. Thus M/Z is not a real cohomology sphere.

3. Products of even spheres

We now work out the last ingredient of our main result, proving

3.1. Proposition. Let M = §** X ... X S¥=, product of m > 1 even
dimensional spheres, and I' C (M) be a finite subgroup such that M = M|I"
is a riemannian symmetric space.

1. H*(M;R) = H'(M; R) if and only if I" consists of all y =y, X - -
X rm» Where 1, is either the identity map or the antipodal map of the i-th
factor S§*"i of M.

2. M is a real cohomology (dim M)-sphere if and only if I" consists of all
7 =1 X -+ X yn as above such that the number of 7, which are antipodal
maps, is even.

Proof. Let v, € I(M) act on the factors of M by the identity on $*s for
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i #+ 5, and by the antipodal map on $*"i. Let 4 denote the group generated by
the y,, 4’ the subgroup of index 2 consisting of products of an even number
of v;, and ¢, denote the character on 4 such that 6,(v,) = 1 for i # s, and
6;(v) = —1. Then the 2™ characters 6,60, --- 6,, 1 < i, < --- <i; <m,
are all the characters of 4, and 6,6, - - - 6, is the only nontrivial one which
annihilates 4.

Let o, € H*(M ; R) be the I,(M)-invariant differential form of degree 2r,,
which annihilates the tangent space to the factors §%s, s + i, of M, and
restricts to the volume element of $*i. Then v¥w, = 6,(v;)-w,. If 6 € 4, then
d acts on w;, N\ -+ /A w;, by scalar multiplication with (@;, - - - 6,)(8). But
the 2™ elements o, N\ --- N, 1 < i < ... <i,<m, are a basis of
of H*(M; R). Hence

3.2. Lemma. If ¥ C A, then the ¥-invariants on H*(M; R) are just the
span of the w;, /\ - - N oy, such that 6, - - - 6, annihilates V.

Now let I" be a subgroup of 4, i.e. suppose that M/I" is symmetric. Then
H*(M|T'; R) = H(M/T; R) if and only if none of the w;, N\ --- N\ o, are
I'-invariant for s > 0. By Lemma 3.2 this latter condition is that no nontrivial
character on 4 can annihilate I', i.e. 4/I" has no nontrivial character, i.e.
I' = A. Thus the first assertion of the proposition is proved. M/I" is a real
cohomology sphere if and only if 1 and o, A --- A w, generate the I'-
invariants on H*(M; R). Lemma 3.2 formulates the latter as the condition that
6.6, - - - 6,, is the only nontrivial character on 4, which annihilates I, i.e. that
I’ = 4. Thus the second assertion of the proposition is proved.

4. Proof of Theorem 1

We prove Theorem 1, stated at the beginning of this note.

M is a compact connected riemannian symmetric space, and M = M/I"
as in the notation of § 1.

If M is an odd sphere $**7!, then Z = {+I} C G = SO(2n) acts trivially
on the real cohomology of M; so M and its associated projective space M/Z
= §?»~1/{+1} are real cohomology spheres. If M is a product of even spheres,
and [ is the group described in case (2) of the theorem, then M/I" is a real
cohomology sphere by Proposition 3.1. If M is SU(3)/SO(3), then dim M =5,
and

H'(M; R) = 0, because M is simply connected,
H*(M; R) = 0, because M is not hermitian symmetric,
H(M; R) = H(M; R) = 0 by Poincaré duality,
so M is a real cohomology sphere; further Z = Z,, center of G = SU(3), so

A:l/Z = {SU(3)/Z,}/SO(3) is a real cohomology sphere. Finally if
M = SO(5)/SO(2) X SO(3) (oriented real grassmannian), then M/Z
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= M/ {1} = 0(5)/0(2) X O(3) (nonoriented real grassmannian) is a real
cohomology sphere by Proposition 2.1. Thus the spaces M listed in Theorem
1 are real cohomology (dim M)-spheres.

Conversely, let M be a real cohomology (dim M)-sphere. We run through
the alternatives of Lemma 1.2. If M is a circle, it is an odd sphere, listed
under (1) in Theorem 1. If M is irreducible, then it is a sphere, SU(3)/SO(3),
or SO(5)/S0(2) X SO(3), by Proposition 2.1, and then M is a sphere or real
projective space, SU(3)/SO(3) or {SU(3)/Z,}/SO(3), or SO(5)/SO(2) X SO(3)
or 0(5)/0(2) X O(3); even projective spaces are eliminated both by nonorient-
ability and by y = 1, and SO(5)/SO(2) X SO(3) is eliminated by y = 4; thus
M is listed under (1), (2), (3) or (4) of Theorem 1. If M is reducible, then it
is a product of even dimensional spheres by Lemma 1.2 and Proposition 2.1,
and then M is listed under (2) of Theorem 1, by Proposition 3.1.

5. Extension to Theorem 2

We modify the proof of Theorem 1 in such a way as to obtain Theorem 2.

Let M be a connected riemannian symmetric space. Then we have the
universal riemannian covering ¢: N - M = N/4, and decompose N = N,
X N’ X N”, where N, is a euclidean space, N’ a product of compact simply
connected irreducible symmetric spaces, and N’/ a product of noncompact
irreducible symmetric spaces. 4 has trivial projection on I(N”), so 4 C I(N,)
X I(N’); 4 has finite projection on I(N’), so 4, = 4NIN,) is a subgroup of
finite index; in particular 4, has finite index in the projection of 4 to I(NV,).
The projection of 4 to I(N,) is a group of euclidean translations, and this
decomposes N, = Ny X Ny’, where 4 acts trivially on Ny, and N; has compact
quotient by the projection of 4 to I(N,). Now define

M=M X M', M = N)xN)/4y, M’ =N/XN",
so that
M=M XM’ where M'=M|I', M"=M', I =4/4,,

and ¢: N — M factors through the covering =: M > M = M/I". M’ is a
compact connected riemannian symmetric space; M’ is contractible because
it is the product of a euclidean space N; and a product N”/ of noncom-
pact irreducible symmetric spaces; under the inclusion ¢: M’ — M, now
*: H*(M; A) = H*(M’; A) for any coefficient ring 4. This reduces the proof
of Theorem 2 to the case dim M” = O where M is compact.

Now let M be a compact connected riemannian symmetric space which is
a real cohomology n-sphere, where 0 < n < dim M. Recall our convention
that a O-sphere means a single point. As in §1 we decompose M = M/T,
M=M;, X M, X -.. X M,, where M, is a flat riemannian torus and the
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other M, are compact simply connected irreducible symmetric spaces. Lemma
1.1 holds but Lemma 1.2 must be modified.

If dim M, > O, then, as before, n = 1 and M, is a circle. For i > 0, now
M, contributes nothing to H*(M; R), so M, is an even dimensional sphere $*
by Proposition 2.1. Let I denote the projection of " to I(M, X --- X M,).
Then ' — I is an isomorphism by construction of M,, and I” = (Z,)"
consisting of all y/ =y, X -.- X r, where 7, is 1 or the antipodal map on
M; = §7i, by Proposition 3.1. Thus I" consists of all y =y, X 7, where
v’ € I'" as just described, and 7, = 6(;") for some arbitrary fixed character ¢
on . Since there are 27 choices of §, our assertions of Theorem 2 are now
proved for the case dim M, > 0.

Now we assume dimM; = 0,so M = M, X --. XM,.

Suppose that M/Z is a real cohomology O-sphere, i.e. that H*(M/Z; R)
= HY(M/Z; R). Then Proposition 2.1 tells us that M; = $*": even sphere. If
n = 0, then Proposition 3.1 says ' = Z. If n > 0, then Lemma 3.2 says
that H*(M; R) is spanned by 1 and by some w;, A - -+ /A w;,, where w; is the
volume element of M;, 1 < i, < ... < i, <r,s>0,n=2r, 4 ... 4+ 2r,
and I" = (Z,)" " is the kernel of the character 6,, - - - 6,,. Thus there are 2" — 1
possibilities for /°, and the assertions of Theorem 2 is proved for the case
where M/Z is a real cohomology 0-sphere.

Now we assume that M/Z is not a real cohomology O-sphere. Then n > 0,
and M/Z is a real cohomology n-sphere. We re-order the M; now, so that
M,/Z, is a real cohomology n-sphere and the other M, /Z; are real cohomology
O-spheres. Proposition 2.1 tells us

(i) ifi > 1, then M, is an even dimensional sphere;

(ii)) if n=dimM,, then M, is an odd sphere, is SU(3)/SO(3) or is
SO(5)/S0(2) X SO(3).

5.1. Lemma. Let M, be a compact simply connected irreducible
riemannian symmetric space, and Z, the centralizer of 1(M,) in X(M,), and
suppose that M,/Z, is a real cohomology n-sphere where 0 < n < dim M,.
Thenn =15, dimM, = 9 and M, = SU(4)/SO(4) = SO(6)/S0(3) X SO(3).

Proof. Let m = dim M,. Then H™(M,/Z,; R) = 0 says that Z, acts
nontrivially on H*(M,; R), so M, is one of the ten (types of) spaces listed at
the beginning of the proof of Proposition 2.1.

If y(M)) # 0, then H*(M,; R) = O for k odd, so H*(M,/Z,; R) = 0 for k
odd; thus n is even and y(M,/Z,) = 2. Following the proof of Proposition 2.1
for that case, we see M, = SO(5)/SO(2) X SO(3), so n=m = 6, contradicting
n < m. Thus y(M,) = 0. Following the proof of Proposition 2.1 for that case
we see that M, is the 9-dimensional SU(4)/SO(4) = SO(6)/SO(3) X SO(3)
with Z, = Z, and n = 5. q.e.d.

Returning to the proof of Theorem 2, let t = r — 1; then we need only
examine the cases

1) M=§m1XxX§1X ...xX8, m>0, t>0;
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(2) M = {SU(3)/SO(3)} X 871 X ... X §%;

(3) M = {SO(5)/SO(2) X SO3)} X $: X ... X §7¢;

4) M = {S0(6)/SO(3) X SO(3)} X $§1 X ... X 8§,

In each case let I/ be the projection of I' to I(S** X ... X §%t), Then
Proposition 3.1 says that [/ = (Z,)* consists of all y’ = y; X -.. X y, where
7: is 1 or the antipodal map on $*i. And in each case let I = I' N I(M,),
kernel of I' — I".

In cases (1) and (2), where Z, acts trivially on H*(M,; R), the symmetric
space M/V is a real cohomology (dim M,)-sphere if and only if ¥ projects
onto ["=2Z,XZ, X ..- XZ,,, = (Z)'. For the actionof y =y X ¢y e Z
= Z, X I" on real cohomology of M is just that of 1 X 7. In case (1) this
means that I" can be Z = (Z,)!*' if I'® # {1}; if I'° = {1} then I" can be any
of the 2¢ groups

Iy={G)X7:7el}=(Z),

where ¢ is a character on /”. In case (2) it means either that I = {1} and
I'=Z=1Z, X (Z),orthat [*= {1} and ' = [V = (Z,)".

In cases (3) and (4), where M, is not a real cohomology sphere because of
a nonzero element w, € H'(M,; R), that element o, is sent to its negative by a
generator z, of Z,. Let v, denote the volume element of $*7¢; now we require
that no form w;,, \ --- N ey, # 1, 0 < i, < ... <i; <t can be [-invariant.
As for Proposition 3.1, it follows that I" separately contains the generator of
eachZ,. Thus I' = Z, so I' = (Z,)**' in case (3) and I' = Z, X (Z,)" in case
(4). Conversely, I' = Z implies M = (M,/Z,) X (§*i|Z,)) X --- X (§8*¢|Z,),
R-cohomologically equivalent to the real cohomology sphere M,/Z,. Hence
the proof of Theorem 2 is complete.
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