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EQUIVARIANT K-TΉEORY AND COMPLETION

M. F. ATIYAH & G. B. SEGAL

l Introduction

It was shown in [3] that, for any finite group G, the completed character
ring R(G)A was isomorphic to K*(BG) where BG denotes a classifying space for
G. The corresponding result for compact connected Lie groups was established
in [2], and a combination of the methods of [2] and [3] (together with certain
basic properties of R(G) given in [18]) can be used to derive the theorem for
general compact Lie groups. Such a proof however would be extremely lengthy,
the worst part being in fact the treatment for finite groups where one climbs
up via cyclic and Sylow subgroups.

The purpose of this paper is to give a new and much simpler proof of the
theorem about K*(BG) which applies directly to all compact Lie groups G. The
main feature of our new proof is that we generalize the whole problem in a
rather natural way by working with the equivariant ϋΓ-theory developed in [17].
We shall formulate and prove a general theorem about the completion K$(X)A

for any compact G-space X. The theorem about R(G) then follows by taking
X to be a point.

The proof consists of four steps. First we deal with the case when G = T
is the circle group. Because of the simple model for Bτ given by the (infinite)
complex projective space this case is easily dealt with directly. The second step
is to pass from the circle to a general torus, and this is done in an obvious way
by induction on the dimension of the torus. The third and key step shows
how to reduce the case of the unitary group U(ri) to its maximal torus this
depends on the analytical methods, using elliptic operators, developed in [6].
The fourth and final step reduces the case of a general group G to the case of a
unitary group by means of an embedding G C ί/; we replace the G-space X
by the [/-space Y = U X G X. Thus, even if we are only interested in the case
when G is finite and X is a point, we are forced at this stage to consider the
Lie group U and the t/-space U/G.

Using the spectral sequence of [17] it would in principle be possible to pass
from the case of a point to general X. However, as we have just explained,
there is nothing to be gained by this procedure because the proof we give
applies naturally to the general case.
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The real K-thtoτy of BG has been determined by D. W. Anderson [1]
starting from the result in the complex case the results are expressed in terms
of the real representations of G. Anderson's method was to use various exact
sequences relating real and complex X-theory. Our new approach however
makes such an indirect approach unnecessary. Provided we work with the
KR-iheoτy of [4] the proofs apply directly in the real case also.

There are a number of familiar technical difficulties associated with the fact
that the classifying space BG is not a compact space and is also not strictly
unique. Since BG is a limit of compact subspaces B% we can of course consider
the inverse system of rings K*(2?g), but because we need to vary the models
for BG and B% we find it convenient to go one stage further and introduce the
pro-ring associated to these inverse systems. This is formally similar to the
procedure of passing from a filtration to the associated topology and it has the
same advantages.

In § 2 we state our main Theorem (2.1) and deduce a number of corollaries.
The proof of the theorem is then given in § 3. In § 4 we consider the "genuine"
K* of BG—not just the X-groups of compact subsets—and we show how (2.1)
can be reformulated in these terms; the resulting Proposition (4.2) is perhaps
the most attractive version of the theorem. In § 5 we give another and somewhat
weaker version concerned with G-maps which are homotopy equivalences.

The remainder of the paper is devoted to the real case. Thus in § 7 we review
the equivariant form of &R-theory while in § 8 we state and prove theorem
(7.1)—the real analogue of (2.1). We also examine in some detail the special
case of (7.1) where I is a point, and show how to recover the results of
Anderson [1].

2. Statement of the theorems

We consider a compact G-space X, where G is compact Lie group. Let BG

be a classifying-space for G, and EG the corresponding universal G-space. To
X is associated a space XG = (X X EG)/G, determined up to homotopy, which
is fibred over BG with fibre X.

Because the space XG is not compact there is some choice as to the definition
of K(XG) this will be discussed in § 4. Until then all the propositions we shall
prove will involve only compact spaces, and statements concerning K of non-
compact spaces should be interpreted for the moment as suggestive rather than
precise.

Let F be a G-vector-bundle [17] on X; then (F X EG)/G is a vector-bundle
on XG. The assignment F H-> (F X EG)/G is additive, so it induces a homo-
morphism a: KG(X) —• K(XG). We propose to prove that the groups KG(X)
and K(XG) can be given topologies so that a is continuous, K(XG) is complete,
and in suitable circumstances a induces a topological isomorphism of the
completion KGiX)N with K(XG). Thus the theorem tells one how KG of a
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G-space can be approximated by K of an auxiliary space. When X is a point,
KG(X) — R(G), the representation-ring, and XG — BG, and the theorem reduces
to that of [2] and [3].

Because G acts freely onX X EG one can identify K(XG) with KG(X X EG)
[17]. Then a becomes the homomorphism of rings KG(X) -* KO(X X EG)
induced by the projection Z X £ G - > Z . In this guise it can be manipulated
more conveniently.

Two extreme cases may be worth pointing out. If G acts freely on X then
XG is fibred over X/G with fibre EG, which is contractible so XG is homotopy-
equivalent to X/G, and the theorem reduces to the elementary fact [17] that
KG(X) ^ K(X/G) when G acts freely on X. This is of course true without
completion.

On the other hand, if G acts trivially on X, then XG is just X X BG, and
KG(X) s KiX) ® #(G) [17], so the theorem is the composite of the Kiinneth
formula K(X X BG) s K(X) ® K(£G)> and the isomorphism K(BG) ^ #(G) Λ .

We shall prove the theorem in a somewhat different form from the one we
have been discussing. This is partly for convenience—so that we can stay in
the category of compact spaces—but also because the statement we shall obtain
is a little more precise.

We shall use Milnor's model [15] for the universal space of G. Thus EG is
the direct limit1 of the sequence of subspaces E% — G * * G, the join of n
copies of G; and B% = E%/G is the union of the n contractible subsets Ui9 Ut

being the set where the ί-th join-coordinate does not vanish. This means that
the product of any n elements of the reduced group K*(BG) is zero. Now
K*(B%) is the kernel of the augmentation ε: K*(B%) - » Z The composite

homomorphism R(G) = XJ(point) -^-> K*(E%) = £*(#2) - ^ Z, where an

is induced by EG —> (point), is the usual augmentation of R(G), whose kernel
is the augmentation-ideal IG. So it appears that the natural mapαrn:
R(G) -» K*{E%) factorizes through jR(G)//g.

For any G-space X, K%(X) is a module over R(G) = Λ^(ρoint), and by
naturality the homomorphism an: K%(X) -> K%(X X E%) induced by X X El
—> X factorizes through

( * ) ctn: K*(X)/Inσ - K*(X) -> Ki(X X El) .

Let us recall that if R is a commutative ring with an ideal /, and K is an
i?-module, then K can be given the /-adic topology, for which the submodules
ln-K form a basis of the neighbourhoods of 0. The Hausdorff completion K
of K for this topology can be identified with lim KfInK [7, Ch. X].

We propose to prove that the system of homomorphisms (*) induces an
1 Milnor gives EG a different topology. The limit topology is more convenient for our

purposes, and (G being compact) it is still true that the G-action is continuous and
that EG is contractible.
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isomorphism of the inverse-limits K%(X)A —• lim K%(X X £g). But somewhat

more than that is true, and to formulate it it is convenient to work with what
are called pro-objects [13].

If C is any category, one can form a new category Pro (C) whose objects
are inverse-systems {Aa}aeS of objects of C indexed by directed sets S. To
define a morphism from {Aa}a€S to {Bβ}βeτ one prescribes a m a p 0 : T -> S
(not necessarily order-preserving) and morphisms fβ: Aθβ —• Bβ of C for each
β € T, subject to the condition that if β < βr in T then for some a e S such
that a>θβ, a > θβ', the diagram

commutes (aaa,: Λβ —• Aa, and bββ,: Bβ —> 5^, being the structural maps of the
inverse-systems). But one identifies the morphisms (0; fβ) and {θ'\ fβ) if for
each β there is an a € 5 such that a > θβ,a > θ'β, and fβaa%9β = fβaaθβl.

A pro-group should be thought of as much the same kind of thing as a
topological group. In fact if A is a topological group one can associate naturally
to it the pro-group {A/la}, where {Ia} is the family of all open subgroups of A.
And if {Aa} is a pro-group one can associate to it the group lim Aa topologized

as a subgroup of the product ΠAa, where each Aa is given the discrete topology.
In this way we obtain two functors, P: (topological groups) —* (pro-groups),
and Q: (pro-groups) —> (topological groups); moreover Q o P{A} ^ A if and
only if A is Hausdorff and complete and has a neighbourhood-basis at its
neutral element consisting of subgroups; while P o Q{Aa} ^ {Aa} if and only
if {Aa} satisfies the Mittag-Leffler condition (see below). All the pro-objects
which occur in this paper do satisfy the Mittag-Leffler condition, but that
emerges from our proof, and is not evident a priori.

The system of homomorphisms (*) can be regarded as a morphism (id; an)
in the category of pro-rings. Our main theorem is:

Theorem 2.1. Let X be a compact G-space such that K%(X) is finite over
R(G). Then the homomorphisms

an: K*(X)I1«G.K*(X) - K*(X X Eg)

induce an isomorphism of pro-rings.
That is to say, we shall prove that for each n one can find k and a homo-

morphism βn: K*(X X Eg+*) -> Kξ(X)/l£'K*(X) such that the diagram
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( X Erk)

I A I
K*(X)I1% K*(X) • K*(X X El)

commutes.
Remark. It can be shown [17, Prop. (5.4)] that K%(X) is finite over R(G)

when X is a compact difierentiable manifold on which G acts smoothly, and,
more generally, when X is locally G-contractible and X/G has finite covering
dimension.

Theorem (2.1) has several immediate corollaries as follows:
Corollary 2.2. The homomorphisms {an} induce an isomorphism

K%(X)A —• lim K%{X X Eg), the completion being in the IG-adic topology.

Corollary 2.3. Let Kn be the kernel of an: K*(X) -> K*(X X Eg). Then
the sequence of ideals {Kn} defines the IG-adic topology on K$(X).

Proof. We know that /g K$(X) c Kn. Theorem (2.1) implies that for
each n there is a k such that Kn+k c Iζ-Kξ(X).

Let us recall [12, Chap. 0, § 13] and [3, § 3] that an inverse-system {Aa}a^s

is said to satisfy the Mittag-Leffler condition if for each a the image of the
map Aβ —> Aa is constant for large β9 i.e. for all β greater than some 9̂0. It is
easy to show that {Aa}aζS satisfies this condition if and only if it is isomorphic
as pro-object to a system {Bβ}β<zT for which Bβt —* Bβ is surjective for all β < β'.
So we have

Corollary 2 4. The inverse-system {Kξ(X X E%)} satisfies the Mittag-
Leffler condition.

This corollary will be important in § 4.
Before beginning the proof of (2.1) we should make a remark about EG. If

EG is another universal G-space, G-homotopy-equivalent to EG, which is the
direct limit of a sequence of compact subspaces {EG}, then the G-homotopy-
equivalences EG —• EG, EG -> EG take each E^ into some E^+k, and each Eg
into some i?g+ m. This means that the inverse-systems {K%(X X Eg)} and
{K%(X X E%)} define isomorphic pro-objects. Furthermore, one need not
restrict oneself to sequences of subspaces: One can equally well use the family
of all compact subspaces of EG, or any cofinal subfamily; this will be
convenient in the proof. In fact, the family of compact G-subspaces of EG can
even be replaced by the category of all compact free G-spaces if one is prepared
to admit pro-objects indexed by directed categories instead of directed sets.

We shall return to the version of the theorem involving EG or Xo in § 4.

3. Proof of the theorem

The proof consists of four steps.
Step 1. Proof when G is the circle-group T
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For the sake of step 2 we shall prove the following slightly more general
statement.

Lemma 3.1. Let G be a compact Lie group, and X a compact G-space
such that K%(X) is finite over R(G). Let θ: G —> T be a homomorphism by
which G acts on Eτ. Then the homomorphisms

an: K$(X)ll«τ K%(X)-^Ki(X X Eg) ,

induced by the projections X X En

τ —• X, define an isomorphism of pro-rings.
(Here K%(X) is regarded as an R(T)-module by means of θ.)

Proof. We can identify En

τ — Γ * * T with S2n~\ the unit sphere in C n,
on which T acts as a subgroup of the multiplicative group of C.

Consider the exact sequence for the pair (X X D2n, X X S2n~ι). Since D2n

is contractible we have K%(X X D2n) s K%(X), and by the Thorn isomorphism
[17] we have K%(X X D2n, X X S2n~ι) s K%(X). Making these identifications
the restriction K*(X X D2n, X X &n-v)-+Kξ{X X D2n) becomes multiplication
by λ^iC71) = (1 — ρ)n = ξn

9 where p is the standard one-dimensional repre-
sentation of T. Thus one has an exact sequence

(**) 0 -+ K/ξ« K - Ϊ U K%(X X S*-1) - ξnK -> 0 ,

where K = ^ * ( Z ) , and ? n K = {xeK:ξ«x = 0}.
Because £ generates the augmentation-ideal 7Γ, to prove the lemma we must

find for each n a homomorphism βn: K*(X X S2n+2k~ι) -> K/ξnK (for some Λ)
making the diagram

o -> κ/ξn+^κ^X κs(x x 52w+2Jfc-1) -. e 7 l + f cϋ: -> o

OCn

commute. But AT is a finitely generated module over the noetherian ring R(G)
[18, (3.3)], so one can find k such that ξkK = ξk+1K = ••-. Then ξfc

annihilates ξn+kK for any n, and the existence of βn is clear.
Step 2. Prao/ when G is a torus Tm

As in step 1 we shall prove the more general statement that when G acts on
Ejm by a homomorphism θ: G-* Tm the homomorphisms an: £$(AΓ) //£» AΓ̂ (ΛΓ)
—• K^(Z X Ej») define an isomorphism of pro-rings. We proceed by induction
on m, and write Tm = T X H.

In virtue of the remark at the end of § 2 we can replace E^m. by Eτ X EH,
and can use the confinal system {Ev

τ X E%) of compact subspaces. Furtiiermore
we have l^ — a + b, where a and b are the ideals of R(Tm) generated by Iτ

and IH respectively; and for any /?(Jm)-module K there is an isomorphism of
pro-rings {K/I^-K} Ξ {J^/(αp + bq)-K] because an + bn C (α + fc)n and
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(a + b)p+Q-1 c a? + bq. Thus we have to prove that the homomorphisms
apq: K/(av + b«) K-*K*(X X Ep

τX EQ

H), where K = K$(X), define an
isomorphism of pro-rings.

Now K/(aP + b<t)-Kgϊ K®R (R/a*>) (g)Λ (R/b<i), where R = R(Tm); and
αp(? can be factorized

K ® (JR/flP) ® (Λ/&«) ϋϊ?> £ * ( Z X Eg) (g)

12+ K*(X X P Γ

For each fixed q the homomorphisms ψpq define, by step 1, an isomorphism
of the "partial" pro-objects indexed by p e N. Similarly, if one holds p constant,
ψpq induces an isomorphism of the partial pro-objects indexed by q in virtue
of the inductive hypothesis. (It follows from the exact sequence used in step 1
that K%{X X Ep

τ) is finite over R(G) if K%(X) is.) So the result we want follows
from two applications of

Lemma 3.2. // one has a homomorphism of inverse-systems
f: {Mpq}iPtQ)€NxN-^ {Npq}(Ptq)€NxN which for each q induces an isomorphism
of pro-objects fq: {Mpq}peN —> {Npq}peN, then f is itself an isomorphism of
pro-objects.

The proof of the lemma is trivial: in fact the pro-object M.. = {Mpq}(p^)€NxN

is the inverse-limit in the category2 of pro-objects of the pro-objects M.q

Step 3. Proof when G is a unitary group U(m)
This step is the most important and it depends on the use of elliptic operators

in [6]. More precisely we shall need Proposition (4.9) of [6] whose statement
we now recall

Proposition. Let j : T -> U be the inclusion of the maximal torus in the
unitary group U = U(m). For any compact U-space let j*\Kυ(x) —• Kτ(x) be
the map induced by j . Then there is a functorial homomorphism of KV(X)-
modules

U: KT{X) - KV(X)

which is a left inverse o/./*.
Remarks. 1) If X is a point, /*: R(T)->R(U) is essentially "holomorphic

induction": it assigns to a positive weight λ the irreducible representation of
U with maximal weight λ. The construction of /',,, for general X given in [6]
amounts to "holomorphic induction over a parameter space AT".

2) Replacing Z b y Z X ί w e see that K in the Proposition can be replaced
b y £ * .

2 Notice that the embedding of a category in the corresponding pro-category does not
commute with inverse-limits.
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3) A routine application of this Proposition (or alternatively of the closely
related Thorn isomorphism (4.8) of [6]) gives the full structure of K%(X) over
K%(X): it is a free module of rank m!. The arguments are identical with those
in [5, (2)]-one first deals with projective space bundles as in [6, (4.9, Remark
3)] or [17, (3.9)] and then decomposes the flag manifold into projective spaces
as in the passage from (4.8) to (4.9) in [6], All we shall need in fact is that
K%(X) is a finite module over K*(X).

Because of /* we know that for any compact C/-space X, K%(X) is a natural
canonical direct summand of K%(X). Then from the diagram

^ > K*(Z X

y*jr* ί*lίί*
X

we find that {an} defines an isomorphism of pro-rings if and only if {ηn} does.
But in the diagram

^U K*{X X

n [Pn

n

T'K%{X) - 5 U K*(X X

{an} defines an isomorphism by step 2, {λn} defines an isomorphism because
the /tf-adic and 7Γ-adic topologies coincide on any /?(T)-module (i.e. lυ c lτ

and l\ c Iu RiT) for some k [18, (3.9)]), and {pn} defines an isomorphism
by the remark at the end of § 2, for Eυ is a universal space for Γ, and {E^}
is a cofinal system of compact T-subspaces. So {ηn} defines an isomorphism
as desired.

Step 4. The general case
This is now very simple. Embed G in a unitary group U. If X is a compact

G-space, then X = U XG X = (U X X)/Gisa compact C/-space, andK*(X)
is naturally isomorphic to K%(X) as jR(ί/)-module [17, § 2 Example (iii)].
K*(X) is finite over R(U) if and only if K$(X) is finite over R(G), for R(G)
is finite oveτ_R(U) [18, (3.2)]. Also X X El = (U X G X) Ξ U X G (X X £&)
so that K*(X X El) s Kξ(X X £»). Thus Theorem (2.1) for the ί/-space X
tells one that the homomorphisms Kξ(X)/I%.K$(X) -> K*(X X £ j ) define an
isomorphism of pro-rings and the proof is completed by observing that Eυ is
a universal space for G, and that the 7^-adic and 7G-adic topologies coincide
on any #(G)-module [18, (3.9)].

This completes the proof of Theorem (2.1).
To conclude this section we shall give an example to show that the finiteness-

condition in the theorem is necessary, and cannot be replaced, for example,
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by the assumption that X is finite-dimensional. Observe first that the exact
sequence (**) holds equally well when G is replaced by a finite cyclic group.
Taking inverse limits and remarking that {K/ξnK] has R1 lim = 0 we get the

exact sequence

0 -> lim K/ξnK -> lim K*(X X Eg) -> lim ξnK — 0 .

Now take G = Z/2, so that #(G) = Z[£]/(£2 - 2f). If G acts trivially on Z,
then K*(X)^K*(X)<g)R(G), and lim f W££(Z) Ξ Mm ,nK*(X). We shall

produce a two-dimensional compact space X for which the last group does not
vanish; in fact, K*(X) ^ Z θ Z [ l / 2 ] / Z , where Z[l/2] means the dyadic
rationals, so lim 2nK*(X) ^ lim Z/2n. When X is regarded as a trivial G-space

the homomorphism KG(X)A —* lim KG(X X Eg) is accordingly not surjective.

To construct X, first form the dyadic solenoid Y, the inverse-limit of the system

S1 < Sι > Sι < , where / has degree 2. Because K* is continuous,

K*(Y) ^ Z θ Z [ l / 2 ] . The desired space X is the mapping-cone of the
projection Γ —•S1.

4 The space XG

In this section we shall return to the original formulation of our theorem.
We must begin by defining K*(X) for spaces X which are not compact. We
shall use the representable definition: i.e. Kq(X) = [X; Fq], the group of
homotopy-classes of maps X -> F 9 , where Fq is a suitable //-space. This leads
to a satisfactory Z/2-graded cohomology-theory on the category of paracompact
spaces, but that does not concern us here. The only property we shall need is
the following:

Proposition 4.1 (Milnor). I] the space X is the limit of an expanding
sequence of compact subs paces Xn, then there is a natural exact sequence

0 +- R1 Urn Kq~\Xn) -> K*(X) — lim Kq(Xn) -> 0.

(R1 lim is the derived functor of lim [16].)

Proof, Milnor has proved [16] that there is an exact sequence

0 — R1 ilm Kq'\Xn) -> K*(T) -> lim Kq(Xn) — 0 ,
<— <—

where T is the telescope formed from the sequence Xo c Xλ C . So one
has only to show that the projection T -* X induces an isomorphism [X\ Fq]
—> [T; F«]. It is easy to see that this will be true providing all compact pairs
have the homotopy extension property with respect to Fq. But that is immediate,
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as one can suppose that the Fq are open subsets of a Banach space, or alterna-
tively, that they are ANR's, or have the homotopy-type of CW-complexes.

Remarks, (a) The terms of the exact sequence do not depend on the
sequence of compact subspaces Xn, for any such sequence is cofinal in any
other, in the obvious sense.

(b) The proposition is true, with the same proof, in equivariantAΓ-theory.
For K% is representable: if X is compact then KG(X) ^ [X; FG]G, the group
of G-homotopy-classes of G-maps X -> FG, where FG is the G-space of
Fredholm operators in a fixed separable G-Hilbert-space in which each simple
G-module occurs with infinite multiplicity.

Now we come to our theorem.
Proposition 4.2. Let X be a compact G-space such that K%(X) is finite

over R(G). Then the homomorphism

a:K*(X)->KHXG)

induces an isomorphism of the IG-adic completion of K%(X) with K*(XG).
Proof. The space XG is the limit of the sequence of compact subspaces

Xn = X XGEζ. From (2.1) we know that the sequence of groups K*(Xn)
= K%(X X Eg) satisfies the Mittag-Leffler condition. Hence Rι lύn K*(Xn) = 0

[12, (0.13)] and so by (4.1) we have K*(XG) ^ limK*(X X Eg). The propo-
sition now follows from (2.1).

If G acts freely on X then, as we have mentioned before, K%(X) and K*(XG)
are both isomorphic to K*(X/G). Combined with (4.2) this means that K%(X)
is isomorphic to its completion and hence complete and Hausdorff. But one
can make a stronger statement.

Proposition 4.3. For any compact Gspace X the following properties are
equivalent:

(1) K%(X) is discrete (in the IG-adic topology),
(2) K*(X) is complete and Hausdorff,
(3) K%(X) is complete*,
(4) G acts freely on Z.
Proof. (1) => (2) => (3) trivially.
(3) =£> (4). Let K%(X) be complete and suppose that G does not act freely.

Then there is a subgroup H of prime order p and a point x eX with Hx = x.
The restriction homomorphism

K$(X) -> K${x) = R(H)

makes R(H) into a ^(Z)-module, and a topological module when both rings
are given the 7G-adic topology. It is a finitely-generated module because R(H)

3 But not necessarily Hausdorff, i.e. Cauchy sequences have limits but these may not
be unique.
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is finite even over R(G) [18, (3.2)]. This implies [7, (10.13)] that R(H) is
complete in the 7G-adic topology and hence in the 7H-adic topology, since
these topologies coincide [18, (3.9)]. But, for a p-group, the 7^-adic topology
on IH c R(H) is just the p-adic topology [8, III (1.1)] and IH is certainly
not p-adically complete. This gives the required contradiction, so that Gmust
act freely.

(4) => (1). Because R(G) is noetherian the ideal lG has a finite number of
generators whose images in K%(X) generate IG K%(X) as an ideal in K%(X).
On the other hand K%(X) s K*(X/G) because G acts freely; also the images
in K*(X/G) of the generators of IG have augmentation zero, and so are
nilpotent by [5, (3.1.6)]. Thus the ideal IG K*(X) is nilpotent, and K*(X) is
discrete.

5. Another version of the theorem

Proposition (4.2) implies the following result.
Proposition 5.1. Let X and Y be compact G-spaces such that K%(X) and

K%(Y) are finite over R(G). Let f: Y —• X be a G-map which is a homotopy-
equivalence, but not necessarily a G-homotopy-equivalence. Then /*: K%(X)
—> K%{Y) induces an isomorphism of the lG-adic completions.

Proof. By (4.2) it suffices to show that the induced map fG: YG —> XG is
a homotopy-equivalence. But fG is a map of fibre-spaces over BG, and is a
homctopy-equivalence on each fibre. It follows from theorems of Dold [11,
Theorems (6.3) and (6.4)] that fG is a homotopy-equivalence.

Remark. Proposition (4.2) states that the projection X X EG —> X, which
is an example of a homotopy-equivalence but not of a G-homotopy-equivalence,
induces an isomorphism KG(X)A —• KG(X X EG)

A but because EG is not
compact we cannot quite deduce (4.2) from (5.1).

This version of the theorem should be complemented by two examples. First
of all, if X and Y are as in (5.1) and f0, fx\ Y —• X are two G-maps which are
homotopic but not G-homotopic, then it is not true that ff and ff necessarily
induce the same homomorphism K%(X)A —•K$(Y)Λ. For an example, let Y
be a point and X = M + , the one-point compactification of a complex G-module
M, and let /0, /«,: Y —>M+ take Y to 0 and oo respectively. There is a canonical
element λM in KG{M) = KG(M+, oo), defined by the exterior algebra [17, § 3].
Let λ'M be its image in KG(M+). Then /*(&) = 0, while f*(λ'M) = λ.λM
= Σ(— \)k/\kM € R(G) and the latter element is in general not in the kernel
of R(G) — R(G)A.

The second example is more subtle. We shall produce a G-map / : Y -> X
satisfying the conditions of (5.1) and such that /*: KG(X) —* KG(Y) is not an
isomorphism, though it becomes one on completion. Let G = {1, g} be cyclic
of order two. For any odd prime number p one can find a 5-sphere Y with a
differentiate involution whose fixed-point-set F is a lens-space S3/(Z/p) [10]
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or [14]. Let x be a point of F, T the tangent-space of Y at x, and X — T+

its one-point-compactification. The group G acts linearly on T, and one can
choose a G-isomorphism between T and a neighbourhood of x in 7. This
isomorphism induces a G-map Y -» T+ = Z which is of degree one, and
therefore a homotopy-equivalence. We have4 KG(X) s #(G) Θ KG(Γ) s
Θ KG\R2), where g acts as - 1 on fl2. So KG(X) s #(G) Θ ^ 3(point) ^
We can show that KG(Y) is not isomorphic to R(G) as follows. In R(G) let ^
be the prime ideal of characters χ such that χ(g) is divisible by p. The "support"
of 0> (in the sense of [17] or [18]) is G itself, so by the localization-theorem
of [17, § 4] the restriction KG(Y)& -> KG(F)& is an isomorphism. Now KG(F)&
^ K(F) ® R(G)&, and £(F) = KZ/P(S2), which can be calculated from the
exact sequence for the pair (D4, S3) as in § 3, and is found to be

R{Zlp)l{X_xC
2) s Z[θ]l(β* -1ΛΘ- I)2)

= Z[θ]/(p(fi - 1), (ί - I)2) = ZΦZ/P .

Now i?(G) is Z[σ]/(σ2 - 1), and the ideal 9 is (p, a + 1); so /?(G)^ ^ Z ( p )

= {Zlocalized at p}, by the map taking σ to — 1. Thus A:G(Ύ)^ Ξ Z ( P ) Θ Z/p,
which is different from R(G)&>.

6. Real equivariant iΓ-theory

In this section and the next we shall prove the theorem in real X-theory
which corresponds to Theorem (2.1). We use the term "real ^-theory" in the
sense of [4], and henceforth shall write Real with a capital to avoid confusion
with the ordinary use of the word. Thus, for a compact space X with an
involution x •-* jc, one defines KR(X) by considering complex vector-bundles
E on X with a given involution E —• E which takes the fibre Ex antilinearly
on to 2J3, for each x € X. But we need here an equivariant version of the
theory.

In conformity with the spirit of [4], a Real Lie group will mean here a Lie
group G with an involution g »-> g. As usual we shall consider only compact
Lie groups G. A Real G-space is a G-space X with an involution such that
g-x = gx. A Real G-vector-bundle on X is a complex G-vector-bundle which
is also a Real space, and such that the projection is a Real map. KRG(X) is
the abelian group associated to the semigroup of isomorphism-classes of Real
G-vector-bundles on X. As usual, it becomes a ring under tensor-product.
Beginning with KRG(X) one can define an equivariant cohomology-theory in
the usual way: one lets both G and the involution act trivially on the suspension-
coordinates. It turns out that KRG

q is periodic in q with period 8, so the
groups can be defined6 for all q [4], [6].

4 As in [17] we adopt the convention that KQ means "KG with compact supports".
Thus KG(T) means KG(T+, oo).

e But as usual KR%(X) will mean © KRG
q(x).

3 0
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We should like to emphasize that we use the generalized Real ^-theory and
consider groups with involution not just for the sake of additional generality
but because our proof can only be carried through in the wider setting.

Before proceeding to the theorem we should say something about the base-
ring KRG(poinί) of the theory KRG. This is the Real representation-ring RR(G)
of G, the free abelian group generated by the classes of simple Real G-modules,
i.e. of complex G-modules with an antilinear involution compatible with that
of G. If the involution of G is trivial, RR(G) is the usual real representation-
ring. In any case there is a "forgetful" map /: RR(G)—>R(G), a homomorphism
of rings, which one ordinarily calls "complexification", and also an additive
homomorphism p: R(G) —> RR(G) which takes the complex G-module M to
the "Real" G-module M 0 M , o n which G acts by g-(ξl9 ξ2) = (gξl9 gξ2), and
whose involution is (ξ19 ξ2) ι-> (ξ2, ξj). The homomorphism i is injective, because
pi is multiplication by 2; so one can identify RR(G) with a subring of R(G),
and we shall do this.

Let us summarize a few facts about RR(G) which correspond to properties
of R(G) established in [18].

Proposition 6.1.
(i) RR(T) — R(T) = Z[X, X'1], where T is the group of complex

numbers oj modulus 1 with the usual complex conjugation.
(ii) RR(U(n)) = R(U(ή)) s Z[λl9 , λn9 Z'1], where U(n) is the unitary

group with the usual complex conjugation.
(iii) Any Real Lie group G has a Real embedding in U(ή) for some n.
(iv) // H is a Real subgroup of G, then the restriction RR(G) —» RR(H)

makes RR(H) a finite RR(G)-module, and the IRG-adic topology on RR(H)
coincides with its IRH-adic topology. (IRG = RR(G)Γ\IG is the augmentation-
ideal of RR(G).)

(v) R(G) is a finite module over RR(G).
(vi) RR(G) is a noetherian ring.
Proof, (i) and (ii) are true because the standard one-dimensional repre-

sentation X of T and the exterior powers λ* of the standard representations
of U(ή) are Real representations in our sense.

(iii) Let M be a faithful complex G-module. Then ρ(M) = M 0 M is a
faithful Real G-module, and G is embedded in the unitary group o f M φ M .

(iv) Because G can be embedded in U{ή) it is sufficient to consider the
case G = U(ή). Then RR(G) = R(G), and is noetherian. The ring RΛ(H) is
a subring of R(H), which is finite over R(G) [18, (3.2)], so RR(H) is finite
over R(G). Furthermore R(H) is finite over RR(H), so by the Artin-Rees
lemma [7, (10.11)] RR(H) is a topological submodule of R(H) when both are
given the IRH-adic topology. But the IRH-adic topology on R(H) lies between
the /H-adic and 7^-adic topologies; and these last two coincide by [18, (3.9)].
So the IRH-adic and 7i?G-adic topologies coincide on R(H), and hence on
RR(H).
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(v) has appeared in the course of the proof of (iv).
(vi) follows from (iv) because RR(G) is finite over R(U(ri)), which is

noetherian.
Note. The groups T and U(ri) will henceforth always be regarded as Real

groups with the involutions described above.

7. The theorem in the real case

Let G be a compact Real Lie group. The involution of G induces an
involution of the universal space EG and of the classifying space BG, making
them Real spaces. Then we have

Theorem 7.1. Let X be a compact Real G-space such that KR%(X) is
finite over RR(G). Then the natural maps

an: KR*(X)/IR%KR*(X) -> KR*{X X E®

induce an isomorphism of pro-rings.
Remarks, (i) The theorem has a family of corollaries corresponding to

those of (2.1), e.g. KR*(X)A ^ KR*(XG)> where the completion is IR^-adic.
We shall not list them here.

(ii) In the next section we shall see that KR£(point) is finite over RR(G).
So KR%(X) is finite over RR(G) if and only if it is finite over KR£(point).

The proof of (7.1) is the same as that of (2.1). Let us recapitulate briefly
the steps.

Step 1. The proof when G = T. Then El is S2n~\ the unit sphere in Cn,
and its involution is complex conjugation. To determine KR%(X X Sln~ι) we
use the Thorn isomorphism KR%{X) -+ KR*(X X Cn), which is defined by
the exterior algebra in the usual way, and is an isomorphism in accordance
with the equivariant version of the real periodicity-theorem [6].

Step 2. The proof for a torus Tn presents nothing new.
Step 3. The passage from Tn to U(ri) depends on Proposition (5.2) of [6]

asserting the existence of a homomorphism /*: KR*n(X) —» KR%in)(X) such
that /'*/* = id. As remarked in [6] this depends essentially on the fact that we
are using ϋuR-theory (and that U(ri) is given its natural Real structure). The
fact that the corresponding result for KO* is false was one of the difficulties
encountered in trying to imitate the proof of [2] for ϋCO-theory.

The remarks made in discussing Step 3 in the complex case all apply here
also.

Step 4. One treats a general Real group G by embedding it as a Real
subgroup of U(ri), using (6.1 (iii)).

8. The case when X is a point

When X is a point, Theorem (7.1) tells one that £#g(point)Λ ^ KR*(BQ).
We know of course that KR%(^oιm) — RR(G). The object of this section is to
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describe explicitly the other groups KRάq(ρoint). But before doing so we must
discuss one of the few significant departures of KRG-thtoτy from XG-theory.

Recall that if G acts trivially on the space X then KG(X) ^ R(G) (g) K(X),
because any G-vector-bundle £ on I can be decomposed canonically as
0 M <S>ΆomG (M; £), where G is the set of classes of simple G-modules,

and Horn0 (M; E) is a vector-bundle on X on which G acts trivially. In the
real or Real theory the situation is more complicated. If M is a simple Real
G-module its commuting-field, i.e. the set of complex linear endomorphisms
which commute with both G and the involution, is R, C, or H. (The three
cases arise according as the underlying complex G-module is (i) simple (ii)
sum of two non-isomorphic conjugate simple modules (iii) sum of two copies
of a self-conjugate simple module.) If £ is a Real G-vector-bundle on a Real
space X on which G acts trivially, the vector-bundle HomG (M; E), whose
fibre at x e X consists of the C-linear homomorphisms M—>EX which commute
with G (but not necessarily with the involution, which takes Ex into Ex), is
Real, Complex, or Quaternionic, according to the type of M. (A Complex
(resp. Quaternionic)6 vector-bundle on a Real space is a Real vector-bundle
together with an additional C-linear action of C (resp. H) in each fibre which
commutes with both G and the involution.) If we break up the free abelian
group RR(G) as AG 0 BG 0 CG, where the parts correspond to the commuting-
fields jR, C, H, respectively, then KRG(X) can be decomposed as follows.

Proposition 8.1. // G acts trivially on the Real space X, then

KRG(X) s AG <g> KR(X) 0 BG (x) KC(X) 0 CG <g> KH(X) .

In this statement KCiX) and KH(X) are the Grothendieck groups formed
from the Complex and Quaternionic vector-bundles on X. The proof is just
as in the complex case [17, (2.2)]: For a (complex) G-module, Ex can be
decomposed naturally by the isomorphism

© M ®FM Horn0 (M Ex) -Ξ-+ Ex ,
M

where M runs through the simple Real G-modules, and FM is the com-
plexification of the commuting-field of M.

Remark. In fact, KC{X) is naturally isomorphic to K(X), and so does not
depend on the involution θ of X. For a Complex vector-bundle decomposes
canonically as Eo 0 Θ*EQ, where Eo is the sub-bundle of E on which its two
complex-structures coincide.

Now we can describe KRG

Q(point). The result can be stated in a number of
ways, of which the following is probably the most systematic. Let Cq be the

6 Such bundles (with a slightly different definition) are considered in a paper by
J. L. Dupont to appear in Math. Scand.
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Clifford algebra of the vector-space Rq with the standard negative-definite7

quadratic form. It is a (Z/2)-graded algebra. A Real graded C^fGJ-module is
a (Z/2)-graded complex vector-space with

(i) a C-linear action of Cq making it a graded C^-module,
(ii) an antilinear involution ξ H-» ξ of degree zero commuting with Cq,

(iii) a C-linear action of G commuting with Cq and such that g^? = g f.
Let Mf(G) be the Grothendieck group formed from such modules. One

defines Mξ(G) and Mf(G) similarly, replacing Cq by Cq ® Λ C (resp. Cq ® Λ H)
in the definition.

There is a natural homomorphism a: Mζ(G)—>KFG(Dq, S9"1), where
F = R, C or H9 defined as follows (cf. [9]). If M = (M°, M1) represents an
element of Mζ(G), then the pair 15* = Dq X Λf* (i = 0, 1) of Real vector-
bundles on Dq, together with the isomorphism φ: E°\Sq~ι —> E1159"1 given by
£>(*, $) = (Λ:, xξ), where x e D 9 c Rq is regarded as an element of Cq9 repre-
sents an element of KFG(Dq, S*-1).

Our description of KRG

q(point) is
Proposition 8.2. There is an exact sequence

Mf+1 (G) - U Λ#f(G) - ^ U ^Λί^(point) - , 0 .

Proof. KRG

q(point) is KRG(Dq, Sq~ι), and α has just been defined; r is
restriction. The composition ar is zero, for if an element M of M*(G) comes
from M£+1(G), then the isomorphism ^ above extends over Sq

9 and hence over
Dq, and so (£°, £ x , 9) defines the zero-element of KRG(Dq, Sq~ι).

Now

KRG(Dq, So-1) ^AG® KR(Dq, Sq~ι) 0 ^ (

by (8.1); and in exactly the same way

The maps r and α respect the decomposition into isotypical parts, so in fact it
suffices to prove that

MF

q+ι -> Aff -> ̂ ( Z > ^ , 5^-0 - 0

is exact for F = R, C, and # . This is done in [9] when F = R and C. The
case F — H can be reduced to the case F = Λ as follows. We define an
isomorphism β: Mf-> M*+i and a homomorphism γ\ KH(Dq, Sq~ι)
-> KR(Dq+\ Sq+Z) such that the diagram

7 A positive-definite form will do equally well.
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Mf+1

I '
fRM* - U Λ#* -JU KR(Dq+\ Sq+*) -> 0

commutes. If we show that γ is an isomorphism the exactness of the top line
will follow from that of the bottom. But it is known that KH{Dq,Sq~ι)
S KR(Dq+\ Sq+3), and is Z, Z/2, or 0. So it suffices to show that γ is surjec-
tive; and that is clear from the diagram.

The isomorphism β is defined as follows. If M is a graded (Cq ® JH
Γ)-module,

then β(M) is M φ M , where M is obtained from M by interchanging the

grading. An element (*, h) oί Rq ® H ^ Rq+< acts on M φ M as / J g _ M ,

where x and Λ are regarded as elements of Cq ® H. The inverse of β associates
to a Cg+4-module N the sub-Cς-module N0~{ξeN:ωξ = ξ], where ω is the
product of the elements of a basis of R4 c JR9+4 C C^+4.

We define r: KH(X, A) -> JfίΛ(Z X D\ (X X 53) U (A X Z)4)) for any pair
of Real spaces (X, A). If (J5°, F , ψ) represents an element of KH(X, A),

where φ: E° \ A - ϊ ^ E11 ̂ , then r(£°, E\ φ) is φ 4 X (JS° Θ E1), D4

X {Eι ®E°),ψ), where 0 ( Λ) = ( ψxτ h \ . The commutativity of the above

diagram is trivial.
Proposition (8.2) gives a systematic description of the groups ICRj9(point),

but it is useful also to have the following more explicit descriptions (For more
details cf. [9].)

For q = 1,2, , 8 the even components of the algebras Cq are respectively:
R, C,H,H® H, JSΓ(2), C(4), R(S), J?(8) φ J?(8). Accordingly, the groups
Mf(G) can be identified with

RR(G), R(G), RH(G), RH(G)®RH(G), R^G), R(G), RR(G), RR(G)®RR(G) .

Then the successive restriction-maps become p, j , id 0 id, id 0 id, η, i, id 0 id,
where ί: RR(G) c R(G) and p: R(G)-+RR(G) have already been defined,
and /: RH(G) c i^(G) and 97: Λ(G) -» Λ^(G) are analogous. (All these maps
are homomorphisms of JRΛ(G)-modules.)

This means that JO^«(point), for 0 < q < 7, is RR(G), RR(G)/pR(G),
R(G)/RH(G), 0, RH(G), RH(G)/ηR(G), R(G)/RH(G), 0. Observe that all these
are finite JRΛ(G)-modules. It may be worth pointing out also that the 7/?G-adic
and 7G-adic topologies coincide on R(G) this appeared in the course of the
proof of (5.1).

On completing the above groups 72^-adically, we have a complete
description of KR-q(BG).
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