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SOME FROBENIUS THEOREMS
IN GLOBAL ANALYSIS

J. A. LESLIE

Introduction

In [6] we introduced a notion of differentiability which permitted us to prove
that the group of C= diffeomorphisms can be given the structure of a Lie
group. This notion of differentiability as distinct from the Frechet definition
does not depend on a topological or quasi-topological structure on the vector
space of continuous linear transformations L(E, F) between topological vector
spaces E, F (see §1 below). However, in [6], to prove the fundamental ele-
mentary theorems of analysis, we used the notion of quasi-topology introduced
by A. Bastiani.

In §1 it is shown how these theorems can be established by elementary
techniques.

In §2 a version of the Frobenius theorem is proved (see Theorem 3).
Although our proof of Theorem 3 differs in several essential points from an
analogous proof in Dubinsky [4] of an analogous theorem, we found his ideas
quite useful. In Proposition 6 it is proved that under the hypotheses of
Theorem 3 a C~ differential equation admits a C* flow.

In §3 a second version of the Frobenius theorem is proved in the context
of Banach chains.

In §4 a Frobenius theorem on the integrability of finite codimensional
sub-bundles of the tangent bundle of manifolds modelled on Banach chains
is proved.

In §5 there is given an application of §§3 and 4 in the context of the group
of diffeomorphisms of a compact connected smooth manifold; there, it is
shown that finite dimensional and finite codimensional subalgebras of the Lie
algebra of the right invariant vector fields on Diff (M) are integrable.

Corollaries 1 and 2 of Theorem 5 were pointed out to us in a letter by
C. J. Earle and J. Eells. The author wishes to express his appreciation to the
referee for his valuable suggestions and numerous helpful comments.

Received June 15, 1967, and, in revised forms, October 11, 1967 and March 5, 1968.
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1. Analysis in locally convex topological vector spaces

All topological vector spaces appearing in this paper are considered to be
Hausdorff locally convex topological vector spaces over the real numbers R,
and continuous functions will be called C° functions when convenient. Let us
first recall the definition of a C* function given in [6].

Definition 1. Let U Cc E, ¥V C F be open sets in topological vector spaces
E and F, and suppose that G is a third topological vector space. A function
f:U X V —G is n times differentiable at (¢, y) € U X V in the first (resp.
second) variable, if f is n — 1 times differentiable in the first (resp. second)
variable at (£, ) and there exists a continuous symmetric n-multilinear function

of G N:EX---XE-G
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‘n!
satisfies the property that

o, v) = F(tv)/t», t =+ 0; ¢t,v) =0, t=0
(resp. 7(t,v) = Gw)/t*, t+0;  7(t,v) =0, t=0)

is continuous on R X E (resp. R X F) at (0, v), v € E (resp, v € F).

Remark 1. Setting F = {0} we find the definition of an »-times differ-
entiable function f: U— G. It is obvious how to generalize the above
definition to any finite number of variables.

Remark 2. fis said to be a C* function in the first (resp. second) variable
if fis C*%, f is n-times differentiable at each point (£, »)e U X V, and
o™f/ox™ (resp. 9™f/dy™) defines a continous function

UXVXEX---XE->G@esp. UXV XFX---XF—-G
\.———\":—_’ \-—-;n,———/

forO<m<n.
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Remark 3. When F = {0} we write f (£,0) = (D*),_.. In the case

of Banach spaces it is essentially proved in [1] that our definition of C* is
equivalent to the Frechet definition (see [5]), and that the D7 in the above
case and the Frechet case are the same up to a canonical isomorphism.

Proposition 1. Suppose E,, ---, E,, F are topological vector spaces. If
f:E, X --- X E,—F is a continuous n-linear function, then f is C", r > 0,
in all variables. Further suppose E, = =E, and ©: E — F is given by
Ola) =fla, -, ). Then @ is C", r > 0

Proof. The function given by

arf(51,“‘,$n;a1:"',ar)=0, r>1,

ox;

f (51: ] E'n; a) = f(&v M fs—l: a, E:+1, ] En)
0x

satisfies the properties of the above definition. For the second affirmation we
may suppose that f is symmetric. If f were not symmetric, we may construct
its symmetrization as follows: Let S, be the symmetric group on n ciphers
and set fa(al’ R an) = f(aa(l)’ S aa(n))' Then

aesn'.f—(al’ "'san) ="‘1_' Zf,(an ALY a-n)
n! cses

is called the symmetrization of f. Observe that f = (a, - - -, @) = 6(a).
Now set D'@(¢,a,, --+,a,) =0,r >n. For0<r < n set

DT@(&; Qs *° s ar) = f(f, * 153 Ay * 00,y a7)

(n—r)'

T

and observe that

6(a)=6(6+(a—é))=;2_,f‘o(}‘)f(5,---,E,a—é,a—E,---,a—E)

J n-j

to conclude the verification of the above proposition.
1t is trivial to verify that C", r > 0, functions f: U— G form a vector space.
Proposition 2. Suppose E, F, and G are topological vector spaces. If
UcE,VcFareopensetsandf:U—Vandg:V — GareC”,r >0, func-
tions, then gof: U— G is a C" function and D(gof)(x; a) = Dg(f(x) ; Df(x; a)).
Proof. For 1 < s < r, by definition there exist functions y,: F — G and
¢s: E — F such that

Lyt ) = @)/, o, v) =g )/, t+0,
and ry0,v) =@0,v) =0
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are continuous and such that
g(f(x + th)) — g(f(x)) = . 22;21 %D‘g(f(x); f(x + th) — f(x), - - -, f(x + th) — f(x))

+ 7. + th — 1)
= 3 3 De(iw; 3 LD th, -, )
s3x21k!

s=i21 ]!

4 g h); -5 5 LDH(x; th, -, th) + ¢,(th))
sek21 k!

+ Ts( 2 lD"f(x; th, ---, th) + ¢,(zh))

s2k21 k!

1 1
= _— Y =Z .. D ;
xS k! --~kl!1§5sl! oo D)

D*f(x; th, ---, th); - - - ; D¥f(x; th, - .., th))

+ Ts( P —I—D"f(x; th, ..., th) + ¢,(th)) + S (@th),

1<k<s k!

where > designates the sum over all ordered sets of ! integers 1 < &, <
{ka, =, k1)
.-+ <k; < s, the integers z, .., are the multinominal coefficients in the

expression

s
(Z a)t = 2 Zpegyenn i@y ™~ Oy »
i=1 1<k < o<kl <s

and Y (th) is the sum of all the expressions of the form D*g(f(x); ¢(th), - - -).
Now let

Dk(g°f)(x; Uy = * s ak) = 6k(g°f)(x; Q5 =00y ak)

k
=k 1 1 Ziy, ., D'8(F(X)

t=1 ka+osrtke=k £ k1. k!

th(-x; Qyy ** 0y Ay, 5 ’;Dktf(x; Ap_kpr1s °° % ak))9 k .S §.

Then we have

gl + th) — g(f() = kl\::l-,-j,-vk(gon(x; th, - - ., th)

(5 DG - ) + 4,00) + T @A),

l=

where D*(gof) is continuous, write
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1 3 1 M o o 0
Ky = { Lin(Z st - b + ) + T}, 120,
09 t=20.

Then K(t, h) is easily seen to be continuous at (0, h).

Corollary of the proof of Proposition 2. If f(resp. g) is a continuous
linear function, then D*(gof)(x, ay, - - -, az) = D*g(f(x), f(ay), - - -, f(ax:)) (zesp.
Dk(gof)(x, Qs * s ak) = g(Dk(f)(x: Uy * > ak))), k <r.

Proposition 3. Let E and F be topological vector spaces with F complete,
and suppose U C E is an open convex subset. If f: U—F is C", then D*f:
UXEX--- X E—FisCr%, s <r, in the first variable and

gxf X0y, -5 a3 ) =D f(x; 05, -+, 2, B)

The proof of Proposition 3 makes use of
Lemma.

Dsf(x + ,B; Ay = * as) —Dsf(x; Qys ° '7“3)
“D’+1f(x; Qys =ty Koy ﬁ)"

1
- ——D 1 """y Gey Iy ° " %
s D1 f(x, a. B )]

—-——————(r_s_l)‘f(l-—p)' SSID7f(x + pBiay, -, a By - o+, Pdp .

Proof. Designate the dual of F by F’. Let g be the restriction of f to the
finite dimensional subspace of E generated by x, 8, «;, ---, a,, and set
g, = Aog, 1€ F/. We then have

wsf(x + ﬁ; Ay =0y ac) - w’f(x; gy« ° as)

- ws+lf(x; Ayy 0y Ay ﬁ) -
-
r—s—1n!
= D‘gz(x + ﬁ; [ZTIRERN “s) - Dsgx(X; Qyy * vy a’s)
— D a(x; [+ STIRRAPN P71 ,B) -

-1
r—s-—-1n!

1 : o .
=_—(r—-s—1)! f(l _P)" 1Dgz(x+pﬁ,av...,a”ﬁ’ ce, )dp
o]

wf_lf(x; Oy =00y Oy ,B, Tt ﬁ)

Dr—lgz(x; Oy, + s Qs ‘B, ceey, ‘B)
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mlf (1 - p)r-‘—lDTf(x + P.B’ Ayy = *y Qs ,33 cecy ﬁ)dp .

Hence from the Hahn-Banach theorem the lemma follows.
The proposition follows from the observation that

1 fl(l r—s-1 .
—_— — O Df(x + ptBs ey, v s s, By v o, PP
(r—s—l)!0

1
r—9!

= ____._1 ! — )T DT . .
- (r_s_l)!éf(l P) [D f(x'l'Ptﬁ, 250} » sy PBs ,‘3)

fo(x;al, AN #9) .B’ "',ﬁ)

- Drf(x; Qyy *° 0y Qg .B’ . "B)]dp

is continuous in (¢, B) at (O, p) and equal to O at (O, p).
Corollary of the proof of Proposition 3.
9:Dsf
ox
=D (x5 0y, -- -, @, B < s Bt), t<r—s.

(x;al, “"as;ﬁv "',‘Bt)

Corollary 1. Iff: U—FisC", thenDf: U XE X --- XE—>F,s<,
are uniquely determined.

Note that by a classical limit argument first derivatives are unique in view
of Definition 1, and thus the above lemma implies the uniqueness of the higher
derivatives.

Corollary 2. Suppose F is complete and U C E is convex, and set U = E
— U. For a given closed convex subset V of F if f: U—F is C* and Df(x; @)
eV forxeU, ac U, then f(x;) — f(x,)) € V for x,, x, € U.

Proposition 4. Let E, F, and G be topological vector spaces, and U C E,
V c F be open and non-empty. Then f: U X V — G is C* if and only if f is
in both variables.

Proof. Suppose f is C*. Then 2L f T, y; W) = DA%, 3 (b, O) Gresp. 2L f

(x, y; k) = Df((x, y); (0, k))) obviously satisfies the definition of C! in the ﬁrst
(resp. second) variables.

Suppose now that f is C* in both first and second variables. Set Df((x, y);
, K) = 3f @ y; by + 2L f (x, y; k) and observed that

f((x, y) + 1, k) — f((x, ¥)) — Df((x, y); t(h, k)
= f(x + th,y + tk) — f(x + th,y) + f(x + th, y) — f(x, y)
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of of
— ——(x,y;th) — —(x,y; tk
ax(xy ) i (x, y; th)
T of . of ) ]
=t| |=—(x+ th, tk; k) — —(x,y; k)|d té(z, h) ,
_[[ay( y + ptk; k) ay( y; k) |dp + t4(t, h)

where ¢(0, 4) = 0, ¢ is continuous at (0, 4), and the integrand is clearly con-
tinuous in (¢, k) at (0, k) and is O at (0, k).

2. Elementary Frobenius’ theorems

We now recall two classical theorems which will be of use to us.

Theorem 1 [3, p. 29]. Let R be the set of real numbers, E, = [0, a,],
a, >0, and F a finite dimensional vector space over the reals. Suppose FyC F
is an open relatively compact convex neighborhood of the origin and T: E,
XFy,XxR—F is a C*, n>1, function linear in R. Then there exists
E,=1[0,4a)], 0<a,< a, and a unique C*** function f: E,— F, such that
f(0) = 0 and Df(x; 1) = T(x, f(x), 1).

Theorem 2. Let E = R X R and suppose F is a finite dimensional vector
space over the reals, and F,C F is an open relatively compact balanced
neighborhood of the origin. Let E, = [0, a] X [0, b], a, b > 0, and suppose
T:E, X Fy,x E—FisaC" n>1, function linear in E such that

oT . oT . .
a—E((x, ¥), %, ks k) + a—F((x, ¥), %, h; T((x, ¥), 2; b))

is symmetric in h, k e E. Then there exist a non-trivial interval [0, a,] =
I, [0, a] N [0, b] and a unique function f: I, X 1,— F, such that (0, 0) =0,

f(x, y) = f T((ex, ), fzx, ), (x, Y)de
[]

is C** and Df((x, y); a) = T((x, ), f(x, y); a).
Remark 4. In Theorem 1 we may take g, = max {a < a,|T(E,, F,, [0, al)
C Fj}; in Theorem 2 we may take

a, = max {min {{ M, a, b} | T(E,, F,, [0, M] X [0, M]) C F}, (see[3,p.53]).

Theorem 3. Let E be a barrelled topological vector space and F a finite
dimensional vector space. Let E, — E and F, C F be open convex neighbor-
hoods of x, e E and y, € F respectively, and let T: E, X Fy X E — F be a C*,
n > 1, function linear in the third variable such that T(E, X F, X E,) is
relatively compact and such that for all xe E,,ye Fy, h, k € E,

T oT
— b )+ —(x, 5, h; Tx, 5, k
aE(xy )+aF(xy x, y, k)
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is symmetric in h and k. Set I = [0, 1]. Then there exist an open convex
neighborhood of x,, E, C E,, and a unique C*** function f: E,— F such that
f(xo) = ¥, and Df(x; h) = T(x, f(x), h).

Proof. As in the classical case we may suppose x,= 0, y, = 0. Since
T(E, X F, x FE)) is relatively compact there exists a real number r > 0 such
that rT(E, X Fy x E,)CF,. Let E, be a barrel contained in rE, and set E,
=1E, ForxeE,letT,: I X F, X R—F be given by T,(r,a; 1) = T(zx,a; X)
where I = [0, 1]. Then by Theorem 1 and Remark 4 there exists a unique

solution g.: [0, 1] — F, of T, such that g,(0) =0, g,(t) = f sz(r, g2.(0); Ddr.
0

Now

ga) = [ "I, 2.(2); 1)de = [ 'aT (ar, g,(ac); 1)de
0 0
- f T, (ar, g.(ar); Dde .

Thus k() = g,(at) is a solution for T, such that #(0) = 0, and by uniqueness
we obtain g, (at) = h(t) = g,.(?). Now set f(x) = g.(1).

1) = g,1) = f Toe, 8.0); Ddr = f "T.(c, £:.(1); Dde
(1) ° ’
= f T (c, f(zx); 1de .

In order to show that f(x) satisfies T with f(0) = O we shall use the following
Lemma.

1
16, + 00, = 9, 16, + 062 — 3005 3, — y)do
0
= o) — fO), Y, . € Ey.
Proof. For x,, x,¢€ LE, define S: I x I X F, X R X R — F by
S(Gs, 1), y, (u, v)) = T(sx, + 1x,, y, ux, + vx,) .

S satisfies the hypotheses of Theorem 2 and, by (1), A(s, ©) = f(sx, + tx,)
satisfies

s, 1) = f *Stes, o2, hzs, o), (5, D)de ,

and Dh((s, 1); &) = S((s, 8), h(s, 1); @). For V. Y2 € Eg set y, =X, ¥, — ¥, =
x, € E,. Now
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flT(y1 + 0(}’2 - }’1), f(}"l + o(y, — }’1)), Y2 — Jﬁ)dd

= f T, + ox, 1, + oxy), X)do = f 'S, o), h(1, 0), (0, D)do
0 0

2y _ f 'Dh((1, 0); (0, 1))da
0

=J"Dh(1 +0(1—=1,0+01—=0);(—1,1—0)ds

0
= h(1,1) — K1, 0) = o) — f) - g.e.d.

Now set y, = x and y, = x + 2k and apply the above lemma to obtain
LifCe + ) — ) — TG, 1), 2]
= ["1TG + ath, 15 + o), b) — T, 1), W)l
[]

To obtain the theorem it suffices to prove f to be continuous. To see this
let T: E, X Fy— L(E, F) be the mapping canonically associated with T, where
L(E, F) is the vector space of linear transformations from -E to F (i.e.
T(x, y)(@) = T(x, y, ). Since T(E, x F,) is simply bounded it follows from
the Banach-Steinhaus Theorem that T'(E, X F,) is equicontinuous. Thus

1)) — fo) = f "TO, + 00 — 3, f01 + 00 — YD), ¥ — y)do
0

shows that f is continuous since f(E,) C F, by construction.
Remark 5. Designate by C,(p) — F the cube with center p € F and side
2k. Now when F, = C4(0) we have that C;;,(0) ¢ () {C..(0) — ¥}, and
y€Cq/8(0)

therefore that there exists a barrel E,, with center at the origin, sufficiently
small so that T(E, X {C4,(0) — y} X E,) C Cyys(0) < {Cy/(0) — y} for all
y € C,(0). From the proof it follows that there exists a flow a: {x, + E,} X
C.(yo) — F, of the differential equation (i.e., a,(x) = a(x, y) is a solution of
the differential equation such that a,(x,) = ¥).

Proposition 5. Let A(x, + }E,) X S;,(00) — (x, + 3E,) X F, be defined
by A(x,y) = (x, a(x, y)). Then A is one-one and contains (x, + }E;) X S4,,(0o).

Proof. A is one-one, since the set of points, where «,,(x) = a,,(x), is open
by Theorem 3 and closed by the fact that both «,, and «,, are continuous.
For x e x, + E, and y € S,,,(») it follows from the proof of Theorem 3 that
there exists a solution f: x + E,— F, such that f(x) =y provided that
f(x)=y,. Note that x, + }E, C x + E,. By uniqueness, «, (x) = f(x), and
thus A(x> }’o) = (X, }’)-
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Proposition 6. «: E, X S.,(y;) — F, is a C* mapping under the hypotheses
of Theorem 1.

Proof. By Theorem 3, « is C**! in the first variable. B(z, y) = a(x, +
t(x = x,), y) is the flow of the differential equation S(¢, y) = T(x, + t(x — x,),
¥, (x — x,)). It is classical that g is C* in the second variable, and obvious

9B *a
1; =
e =k

be continuous since -gﬁ(x, ¥; 1) = T(x, a(x, ), ). To see that a is continu-
X

ous, consider

a(x+h,)’+ k)—a(X,)’)
=alx+ hy+ k) —alx,y+ k) + alx,y + k) — alx, y)

= f TG + th, alx + th,y + k), Bt + (a(x,y + k) — a(x, ) .

As alx, th,y + k) e F, for he E, ke F sufficiently small, T(E, X F,) c L(E, F)
is equicontinuous, and, in addition, «*(y) = a(x, y) is continuous, it follows
that « is continuous.

Proposition 7. Let U C E be an open subset of a topological vector space
E, and F a second topological vector space. Suppose that T: U X F —F isa
C», n > 0, mapping linear in the second variable such that T: U — L(F, F)
maps into the isomorphisms of F. Designate by T~*: U X F — F the map
defined by T~ (u, f) = T(w)~(f). If T-* is continuous, then T~ is C=.

Proof. Set

3T1

&, a; B) = —T- l(x T (. Tx, T-(x, a); h))

and observe that

1 [T“(x + thya) — T'(x,a) + T! (x —(x T-Y(x, a); th))]

- (x + th, _(x T-Y(x, a); h)) + T (x, T, T, ) h))
— T (x + th, %[T(x + th, T-(x, @) — T(x, T-(x, &)
— T Tx, ) th)])
ox

is continuous in (z, #) at (0, ) and equal to O at (0, A).
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3. Analysis in Banach chains

Definition 2. Let J* denote the set of nonnegative integers. A chain of
Banach spaces is a set {B*} of Banach spaces indexed by J* such that
(a) if k> 1> 0, then the underlying vector space of B* is a linear sub-
space of the underlying vector space of B’ and the inclusion map B* — B! is
continuous;
b) B~= QB" is dense in each B¥,
B~ is given the topology of the inverse limit lim B*.

-
k

Definition 3. Let {B’} and {B%} be Banach chainbs.

Definition 4. Let {B*} be a Banach chain and U C B~ open, I an open
interval containing O € R, and | ||, the norm in B*. We shall say that f:I1 XU
— B= satisfies uniformly a Lipschitz condition on U uniformly with respect to
I if there exists a number L > O such that || f(z, x) — f(t, M. < L|x — ¥«
for all £ > 0. L as usual is called the Lipschitz constant.

For k > [, let n} : B* — B' be the canonical injection, and suppose

lele < | @l for ae B+,

Definition 5. Suppose {Bf} and {B}} are Banach chains, and U C By is
an open set. A mapping f : U — By is called strongly continuous when there
exist an integer N and an open set Uy such that U = (z3)~*(Uy) and further
that there exists a continuous extension f,:(x%) *(Uy) — B forall /> N. It
is obvious that any strongly continuous mapping is continuous.

Define {Bf} x {B%} = {Bf X B%}. In a canonical way every Banach space B
may be considered as the B~ of a Banach chain by setting B, = B for all !
> 0.

Proposition 8. Let {B,} be a Banach chain, U C B~ open, and I an open
interval containing 0 e R. If f:I X U — B> satisfies uniformly a Lipschitz
condition on U uniformly with respect to I, then f is strongly continuous.

The proof follows easily from the definitions.

Definition 6. Suppose {B¥} and {B}} are Banach chains and U C By is an
open set. A mapping f: U — By is called strongly C? if f is strongly continuous
with respect to some integer N (see Definition 5) and there exist an integer
M > N and an open set U, such that U = (z3%)~*(U,) and further that the
continuous extensions f, : (z%)(U,) — B are C? for [ > M. We leave this to
the reader to verify.

Proposition 9. Every strongly C? function f:U — By is C?.

Theorem 4. Let {B*} be a Banach chain, I an open interval containing
0e R, U an open subset of B>, and f:1 X U— B~ a C?, p >0, function
such that f satisfies uniformly a Lipschitz condition on U uniformly with re-
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spect to I. Suppose that for some N > O (using Proposition 8) the maps f,:1
X (#%)~"(Uy) — B, l > N, determined by f are C?, and further that x,¢ U.
Then there exist open subsets V', J of U, I containing x, and 0, respectively,
and a unique flow a:J X V — U of f (i.e., a,(j) = a(j, v) is a solution of f
so that a,(0) = V). (Uy C B¥ is an open subset of BY such that U = (z3)™*
Uy).)

To prove the above theorem it suffices to prove

Lemma. Under the hypotheses of Theorem 4 there exist an open interval
J c I containing 0 € R, an open subset V C U, containing x,, and flows of
fes o d X (@5)(V) — (z%)-2(U) such that ay,, = a-75*', N < k < oo.

Proof. Without loss of generality we may suppose x, = 0. Given S > 0,
f~ being continuous there exist a closed subinterval J of I containing 0 in its
interior and a number 0 < @ < 1 such that fy(J, X $¥(0))  S¥(0). Thus by
Newton’s method (see [5, pp. 55-62]) there exist an interval J = [— b, b]
C J, and a flow ay:J X S¥(0) — Uy, where b < inf (1, «/S). For [ > N let
M, be the set of the continuous mappings a:J — (z%)~%(S%(0)). With the uni-
form topology M, is a complete metric space. Let S,: M, — M, be the operator
defined by

5000 =x + [ 1w, atw)du,
x € (z3)7(S¥(0)), te [— b, b]. (x})-*(S¥(0)) being closed and convex we have

f £, ())du € b(ak)-H(S(O)) C () (S¥(0)) .
0

Further since f, has Lipschitz constant L it follows that S satisfies the shrink-
ing lemma and thus there exists a unique fixed point « € M,. Suppose I’ > [
> N, and «,.(¢, n) is the fixed point of S,,. Note that

(o)t x) = + &t [ fulu, e, X))
;
—x+ f 0y o, X))du
—x+ f "2, @ o)), x)du
=x+ f i, auu, x))du .

Thus 7}’ o et;.(2, x) is the fixed point of S,..
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It is classical that a,:I; X (z})~(S¥(0)) — (z%)~*(S¥.(0)) is a C? mapping.

Remark. We have proved more than we stated; indeed we have proved
that there exists a strongly C? flow a:J X V' — U. In the above theorem, V
is taken to be (z33)~'(S¥(0)).

4. Frobenius theorem for differentiable manifolds

For the elementary definitions of this section substitute our definition of
differentiability here for that used in [5]. The objective of this section is to
prove

Theorem 5. Let {E'} be a chain of Banach spaces and M a connected C?,
p > 2, differentiable manifold modelled on E>. If B is a sub-bundle of T(M)
of finite codimension with fiber F such that the C?-* sections of B are closed
under the bracket operation of T(M), then B is integrable.

Definition 7. Suppose {E!} and {E%} are chains of Banach spaces. A linear
function f:Ey — E7 will be called a morphism if there exist an integer N and
continuous linear extensions of f, f,:E! — E: for [ > N. Chains of Banach
spaces clearly form an additive category with this definition of morphisms;
designate this category by CB. Given a Banach space B we shall designate by
{B} the trivial chain {B'}, where B' = B for all | and #!:B‘'— B™ is the
identity for all I > m.

Proposition 10. Let {E'} be a Banach chain and G a subspace of E> of
finite codimension having H as a complementary subspace. Then there exists
a Banach chain {G'} characterized by the property that G* is the closure of G
in E' such that {E'} =~ {G'} + {H}.

To prove Proposition 10 it suffices to prove

Lemma. Under the hypotheses of Proposition 10 there exists an integer
N, such that G' + H =~ E' for l > N,,.

Proof. Let n:E~ — H be the canonical projection onto H. We shall show
that # is a morphism {E‘} — {H}. Let U be a compact neighborhood of the
origin in H. Then by continuity there exists a neighborhood of the origin V
C E* such that z(V) C U. By definition of the topology in E~ there exist an
integer N, and a bounded neighborhood of the origin V', C E" such that
(z5,)"*(Vy,) C V. Thus n: E~ — H is continuous for the topology on E in-
duced by the Banachable topology on E™°, and z:E~ — H is extendable to
aNe:ENe ., H. Hence « is a morphism in CB. It is easy to see that Ker (z)
=Im(I — ) =G', I > N,.

Proof of Theorem 5. As in [4, p. 92] one may express the subbundle B
locally in the form of an exact sequence

0-UXVXF oUXVXFXG=UXVXE>,

where UC F, U C G are open neighborhoods of x, and y, respectively.
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Furthermore we may suppose that 7 is of the form

f((x’ y), a) = ((x! y)’ (a, f(x’ y’ a))) 2

where f is a C?~! function linear in the third variable such that f((x,, ¥,), @)
=O0forallaeF.

Let us recall that the bracket of the two given sections { and 5 of T(M) is
given locally by

[§, 9)(x) = DE&(x; 9(x)) — Dy(x, £(x)) .

For given C*~* maps &,, ,: U X V — F note that the C?~! maps given by
&(x,y) = (&,(x, ), f((x, ), &(x, ) and 5(x, y) = (p(x, ¥), f((x, ), 7(x, ¥)))
determine the sections of B. The closure of the sections of B under the
bracket operation implies that

of

O (x, ), 723, )3 66 ) + 2L (x, y, 74, )3 1, 3, E4x, 9))
ox oy

is symmetric in &,(x, ), 7,(x, ).

It follows from Theorem 3 and Proposition 6 that there exist open sets U,
cU,V,cV,and aCr*flow of f,a:U, X V,— V. That there exist open
neighborhoods of the origin U C H, V < E= so that f(U X V X U) is rela-
tively compact follows from the continuity of f and the local compactness of
G.

There exist open sets 0 C U, and W C V such that $(x,y) = (x,¥)
= (x, a(x, y)) is a C?~* diffeomorphism for (x,y) € 0 X W.

In fact, from Proposition 5 we have that ¢: U, X ¥V, — F X G is an injective
mapping containing in its image a neighborhood U, X V, of (x,, y,).

Since %a_(xo, Yo; B) = B for all B¢ G there exists an open set U, X V,
y
C ¢ %(U, X V) containing (x,, y,) such that %"—- (x,y;p) is an isomorphism
y
for (x,y) e U, X V,. Thus

Dg((x, y);(a, B))
= (a, Da(x, y3(a, ) = (a, f(x, a(x, );a), (o,g;ﬁ @, ; ﬂ))

is a continuous isomorphism of F X G onto F X G for (x, y) € U, X V,. Since
f:U, X V, X F — G is continuous there exist neighborhoods U,c U,, V,C V,
of x, and y,, respectively, and a neighborhood U of the origin in F such that
f(U; X Vs, U) is relatively compact in G. It now follows from the Banach-
Steinhaus theorem that the linear functions f, ,,(¢) = f(x, ¥, @) are equicon-
tinuous for (x, y) e U, X V,.
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Let S be the unit ball in G, and suppose that B is an open set in F such
that £, ,,(a) € S for (x,y) € U, X V, and « € B. Further let B¥ C F* (see Pro-
position 10) be an open set such that (z5)~*(B*) = B; designate the continuous
extension of f by f,:U; X ¥V X F* - G, | > k. Thus D¢ determines continu-
ous maps ¢;:U; X V3 X F* X G — F' X G in such a way that

¢l,(1,y)(a: ﬁ) = ¢l((xs )’), (a’ ,B)) = (a, fl((xy J’), Cf) + g_f, (x, Y ﬁ))

is a continuous automorphism of F* X G for (x,y) e U, X V,. Note that
Bi-1, .y © Tio1 = Py, (z.p- 1t is Classical that ¢, determines a continuous map

$:U, X V,— Aut(F* X G).

Let p: Aut(F* X G) — Aut(F* X G) be the continuous map which associates
its inverse with every automorphism. Designate the map fo @, by ¢;*: U,
X V,— Aut(F* X G). Since ¢;! is continuous it follows that Dg~(x, y, a, p)
is continuous and therefore C?~* for (x, y) € U; X V¥, by Proposition 7.

Set

T(X, Y, a) = 7E°D¢—1(X, ¥y, a, O) s

where z:F X G — G is the canonical projection. T is obviously a C?~! func-
tion linear in «. We shall now show that there exist open neighborhoods U;,
V, of x, and y,, respectively, such that for all (x, y) e U; X V;

(3) T iy, b3 0 + 9L (x, 3, b Tx, y; K)
ox oy
is symmetric in & and k.
Let Y be the subspace of F generated by x, h, and &, and

t:(U; NY)XV, XY -G,
gI(Us NnY)x Vs_’(Us NY)XG

the restrictions of T and ¢ respectively. It follows from the inverse function
theorem that g is a diffeomorphism such that

D(g™)(x,y, a, B) = (D=, ), @, f)
= (D¢)-1(¢-1(X, u)9 a, ﬁ) ’
where (2, ) e Y X G, (x,»)e(U,NY)X V,and U,C F, V, C G are open

sets such that U, X V, C ¢(U, X V;). Thus (zo¢™) | (U, N Y) X V, is a flow
for ¢, and

(4)
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az(ﬂ:a;?—l) (x’ y; CZ; ﬁ) = _g_g_(x, ﬂ0¢_1(x3 y); a; IB)
(5)
+ % (x, Tog™(x, ¥), a; T(x, w0 $74(x, %), B))

is symmetric in «, g for (x,y) e (U; N Y) X V..

Since x € U,, h, k € F were arbitrarily chosen, (3) is time for all xe U,, A,
ke F. ¢ being continuous ¢~%(U, X V,) contains an open set U, X V. (5)
now implies (3).

By Theorem 3, T has a C?=! flow ¢:U, X V,— G since from
Xl U;NY)XVy;=¢"1(Us NY) X Vit follows that ¢~* is C?~ on
U; XV, 0cC U, U|C V, be open sets such that 0 X W C ¢%(U; X V;). To
prove Theorem 5 it now suffices to show that ¢:0 X W — ¢(0 X W) is such
that (ipxw X 6¢/0x): (0 X W) X F— (0 X W) X (F X G) is a C?~! isomor-

phism onto f(0 X W X F) which follows immediately from g—z(x, y; a)

= (a, f(x, ¥), @)).

Corollary 1. Let M satisfy the hypotheses of Theorem 5. Suppose that N
is a C? finite dimensional connected manifold, and let f:M — N be a C? onto
mapping. If {*:TM — TN is onto, then Ker(f*) is an integrable sub-bundle
of TM, and f~*(x), x € N, is a closed sub-manifold of M.

Corollary 2. Under the hypotheses of Corollary 1, each leaf of the folia-
tion is an ANR.

5. Frobenius theorems for the group Diff (M)

In this section by manifold we shall mean a compact connected smooth
manifold.

Let M be a manifold, and Diff(M) the group of diffcomorphisms of M.
The author has shown in [5] that Diff(M) admits a differentiable structure
which is locally Frechet (indeed locally nuclear) such that the multiplication
and the operation of taking the inverse define smooth differentiable functions
of Diff(M) X Diff(M) to Diff(M) and of Diff(M) to Diff(M) respectively.

Now let us recall the following local definition of the differential structure
of Diff(M): Let f € Diff(M) and [ (M, TM) be the vector space of all liftings
of f (i.e. the vector space of all functions g:M — TM such that 7og = f
where # = TM — M is the canonical projection). In order to give I (M, TM)
a Frechet topology cover M by two finite collections of trivializing (for TM)
normal (for some fixed Riemannian structure) open charts {U;};., ..., and
{V3};-1,-...,n so that diam(f(U;)) < 2/3 where 2 is the Lebesgue number of {V;}.
Let k;:U;, —» U;C R* and #;:V,; — ¥V} C R' be homeomorphisms determin-
ing the local structure on M, and suppose f(U,) S V. Let ¢, :x7(V,,)
— V4 X R be a smooth diffeomorphism with ¢,,|z"*(x), x€ V,, linear.
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It is convenient to suppose that k; extends to a homeomorphism k,:U; — U..
Now let #(U:, RY) be the Frechet space (indeed nuclear) space of smooth

maps with the C~ topology. Set &, = % (U, RY. Define 7:1(M, TM) - F,
i=1
by 7(g) = &(+) - - - (+)gn, where g, ¢ FZ({U!, R is the composite

kit g ]

U, —U,— zY(V,u) —> Vs, X R— R'.

Let & = 2(;(M, TM)) C &%,. & is a closed subspace and 7 is injective. By
means of y we transport the induced Frechet structure of & to [, (M, TM).

To fix ideas we shall suppose that the {U;} and {V,;} are normal open spheres
for a smooth Riemannian metric and that ¢, :(V;,) — V. X R! is given
by ¢, () = (exp;X(a), z.,(a)), where x, is the center of V;,,, and z,, is the
parallel translation along the unique geodesic from z(a) to x,.

Designate by Diff,(M), D,(M), and 2,(M) the group of C diffecomorphisms
of M, the connected component of the identity of Diff,(M), and the vector
space of right invariant C»-* vector fields on D,(M), respectively. It is well
known that Diff,, is dense in Diff,. We shall suppose n > 3.

Diff, (M) is a topological group whose underlying topology is compatible
with a C~ differentiable manifold structure modelled on the Banach space
I',(M) of C* vector fields on M with the C* topology [7]. Moreover the map-
ping R, :Diff, (M) — Diff ,(M) defined by R,(z) = z¢ is a C* mapping for this
differentiable structure [7]. It follows that the right invariant vector fields on
Diff,(M) are C»~! sections of the tangent bundle T(Diff,(M)) — Diff,(M).
Set T(Diff,(M)) = z,(M).

Lemma. Let G be a topological group whose underlying topology is com-
patible with a C™ differentiable manifold structure modelled on a Banach
space B such that multiplication from the right R,:G — G, ¢ € G, defines a
C™ function, and let K be a finite dimensional subspace of the vector space
of C*~! right invariant vector fields on G. If K is closed under the bracket
operation, then K is integrable, that is, there exists a C*~' submanifold of
G, H, which is, in addition, a subgroup in such a way that T ,(H) is canon-
iccally isomorphic to K.

Proof. Now suppose % the finite dimensional subalgebra of L(G) and
designate by S(x) the subspace of T.(G) spanned by the vectors £(x) for £ e &,
We may write T,(G) = S(x) + R(x) where R(x) is a complementary subspace
of S(x) in T.(G). Put £ = U S(x) and let z’: 3 — G be the natural projection.

z€G
We now make =’ a subbundle of z. Let (U, ¢) be a symmetric chart of G at
the identity with ¢(U) C E and put U, = Ua and let ¢,:7""*(U) = S(U) - U
X S(e) be the C*~! map induced by multiplication on the right.
Define o, :2’-*(U,) = 2(U,) — U, X S(¢) by s, = (R, X I,,))00.0dR,-1-a,
such that the following diagram
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' U,)——s U, X S(e)

Ue

is commutative where P, :U, X S(e) — U, is the canonical projection.
Now set

¢a =¢°Ra'1:Ua.—’¢(U):
¢ab = ¢a°¢b—l:¢b(Ua n Un)""¢a.(Ua n Ub) .

Since multiplication from the right is C», one obtains a C*~! mapping
oo 9a(Ue N Up) X S(€) — $,(U, N Us) X S(e) given by zp,(x, ¥) = (pa(®),
Dg,.(x; v)); under these conditions there exists a unique structure of a C*~*
manifold on 3 such that z’ is a C*~* mapping and ¢,, a € G, is a C*~! diffeo-
morphism making 7': 3 — G into a vector bundle with {(U,, 0,)}sc¢ as a trivi-
alizing covering.

The injection of S(x) into T(x) shows that 3 is a subbundle of T(x). As K
is closed for the bracket operation in L(G) it follows that 3 is closed under
the bracket operation in T(G) and therefore K is integrable (see [5, p. 92]).
Let H be a maximal integral manifold of G containing the identity. As in the
classical case, R, permutes with the maximal integral manifolds of K, and
thus H is a subgroup of G. It is immediate that the Lie algebra of H is K.

Lemma [7]. D,(M) X D,(M) =, D, (M) given by n(f, g) = fog is C™ for
m > 2n.

Corollary. a < T/(D,(M)) C T(D,(M)) generates a C" right invariant
vector field on D,(M) for m > 2n.

Theorem. Finite dimensional and finite codimensional subalgebras of .
2..(M) are integrable.

Proof. The canonical injections i7:D,,,(M) — D,,(M), o > m >n>0,
are obviously C* homorphisms. Set

j;’:———D(l’:): ggm(M)—"g_on(M): °°2m2n22'

It is not difficult to see that if > is a finite dimensional subalgebra of D,,,(M),
m < oo, and H is the subgroup corresponding to it, then i7(H) is the subgroup
corresponding to S 7(F).

Now suppose 5 is a finite dimensional subalgebra of 2.(M), and let
H,, n < o, be the subgroup of D,,(M) corresponding to 5, = S =(s¢). Then
we have

H,=in(H,), #n=IUHn), w>2m>n>2.
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Since

lim 9,,(M) = 9.(M), D.(M) = lim D,(M) .

n

and further 4™ and i7 are injective, we obtain that hmH = H is the integral
subgroup of s in 2.(M). S

That finite codimensional subalgebras are integrable follows from Theorem
5 immediately.

Bibliography

[1] R. Abraham, Lectures on mechanics, Mimeographed notes, Princeton University,
1966.

[2]1 A. Bastiani, Applications différentiables et variétés différentiables de dimension
infinie, J. Analyse Math. 13 (1964) 1-114.

[3]1 E. A. Coddington & N. Levinson, Theory of ordinary differential equations,
McGraw-Hill, New York, 1955.

[4] E. Dubinsky, Differential equations and differential calculus in Montel spaces,
Trans. Amer. Math. Soc. 110 (1964) 1-21.

[51 S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.

[61 J. Leslie, On a differential structure for the group of diffeomorphisms, Topology,
to appear.

[7]1 S. Smale, Lectures on differential topology, Mimeographed notes by R. Abraham,
Columbia University, 1962-63.

UNIVERSITY OF IBADAN, NIGERIA








