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SOME FROBENIUS THEOREMS
IN GLOBAL ANALYSIS

J. A. LESLIE

Introduction

In [6] we introduced a notion of differentiability which permitted us to prove
that the group of C°° diffeomorphisms can be given the structure of a Lie
group. This notion of differentiability as distinct from the Frechet definition
does not depend on a topological or quasi-topological structure on the vector
space of continuous linear transformations L(E, F) between topological vector
spaces E, F (see §1 below). However, in [6], to prove the fundamental ele-
mentary theorems of analysis, we used the notion of quasi-topology introduced
by A. Bastiani.

In § 1 it is shown how these theorems can be established by elementary
techniques.

In §2 a version of the Frobenius theorem is proved (see Theorem 3).
Although our proof of Theorem 3 differs in several essential points from an
analogous proof in Dubinsky [4] of an analogous theorem, we found his ideas
quite useful. In Proposition 6 it is proved that under the hypotheses of
Theorem 3 a C n differential equation admits a Cn flow.

In § 3 a second version of the Frobenius theorem is proved in the context
of Banach chains.

In §4 a Frobenius theorem on the integrability of finite codimensional
sub-bundles of the tangent bundle of manifolds modelled on Banach chains
is proved.

In §5 there is given an application of §§ 3 and 4 in the context of the group
of diffeomorphisms of a compact connected smooth manifold; there, it is
shown that finite dimensional and finite codimensional subalgebras of the Lie
algebra of the right invariant vector fields on Diff (M) are integrable.

Corollaries 1 and 2 of Theorem 5 were pointed out to us in a letter by
C. J. Earle and J. Eells. The author wishes to express his appreciation to the
referee for his valuable suggestions and numerous helpful comments.

Received June 15, 1967, and, in revised forms, October 11, 1967 and March 5, 1968.
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1. Analysis in locally convex topological vector spaces

All topological vector spaces appearing in this paper are considered to be
Hausdorfϊ locally convex topological vector spaces over the real numbers R,
and continuous functions will be called C° functions when convenient. Let us
first recall the definition of a O function given in [6].

Definition 1. Let ϋ c E, V c F be open sets in topological vector spaces
E and F, and suppose that G is a third topological vector space. A function
f:U χV-+G is n times differentiable at (ξ, η) € U x V in the first (resp.
second) variable, if / is n — 1 times differentiable in the first (resp. second)
variable at (ξ, η) and there exists a continuous symmetric n-multilinear function

(wsp.-|!L(f,,):Fχ ... χF-*G)
3yn

such that

F(v) = f(ξ + v,v)- f(ξ, rj) -
ox

resp. G(v) = f(ξ, η + v) - f(ξ, η) - -^-(
dy

n\ dyn

satisfies the property that

φ(t, v) = F(tv)/tn, tΦ§\ φ(t, v) = 0, t = 0

(resp. f(ί, v) = G(tv)/tn, t Φ 0; f(ί, v) = 0, ί = 0)

is continuous on R x E (resp. R x F) at (0, v), v € E (resp, t; € F).
Remark 1. Setting F = {0} we find the definition of an n-times differ-

entiable function f:U-+G. It is obvious how to generalize the above
definition to any finite number of variables.

Remark 2. / i s said to be a Cn function in the first (resp. second) variable
if / is C n - \ / is n-times differentiable at each point (£, rj) € 17 x V, and
dmfldxm (resp. dmf/dym) defines a continous function

U xV x E χ. .χE->G (resp. U xV x F x- - x F-> G)

for 0 < m < n .
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Remark 3. When F = {0} we write -^-(f, 0) = (Dnf)χsιξ. In the case
dxn

of Banach spaces it is essentially proved in [1] that our definition of Cn is
equivalent to the Frechet definition (see [5]), and that the Dr in the above
case and the Frechet case are the same up to a canonical isomorphism.

Proposition 1. Suppose E19 , En9 F are topological vector spaces. If
f:Eτχ x En —>F is a continuous nΛinear function, then f is Cr, r > 0,
in all variables. Further suppose Eλ= = En and Θ: E-+ F is given by
Θ(ά) = f(a, •--,«). Then Θ is C% r>0.

Proof. The function given by

*L(ξ1, .;ξn;a1,...,aτ) = 0, r>l,

* ( £ fr Sl\ "t( £ fr t £ \

satisfies the properties of the above definition. For the second affirmation we
may suppose that / is symmetric. If / were not symmetric, we may construct
its symmetrization as follows: Let Sn be the symmetric group on n ciphers
and set ffa, , an) = f(aσ(1), •, a,w). Then

σ 6 Sn f(a19 . ., an) = J-gJfa, - ., an)

is called the symmetrization of /. Observe that / = (α, , a) = β(α).
Now set DrΘ(ξ, α19 . , ar) = 0, r > n. For 0 < r < n set

al9 - -, ar) = —-^—-/(f, . . . , f α1?

and observe that

(α - f)) =

to conclude the verification of the above proposition.
It is trivial to verify that C r, r > 0, functions f:U-*G form a vector space.
Proposition 2. Suppose E, F, and G are topological vector spaces. If

U <zE, V <zF are open sets and f: U-+Vandg: V-+GareCr, r>0, func-
tions, then gof:U->GisaCr function and D(gof)(x; a) = Dg(f(x) Df(x; a)).

Proof. For 1 < s < r, by definition there exist functions γs: F-+G and
φs:E->F such that

Γ9(t, v) =

and Γ/0, v) = 0(0, v) = 0
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are continuous and such that

g(f(x + th)) - g(f(x)) = Σ ^gifix) f(x + th) - fix), , /(* + th) - f(x))

+ γ,(Kχ + th) - fix))

= Σ ir&gkxY, Σ ±-D*ίix;th,...,th)

+ ΦsOh); •••; Σ ^"fix; t h , . . . , th) + φ,(th))

+ r*I Σ A ^ Λ'ί th,. , th) + φsith)\

= Σ , , l , t Σ
Λ} k\ kl 1*1*ί*i,—Λi} kx\ - kLl

+ r*[ Σ π D * Λ * ; ίΛ> ••>'*> + Λ(Λ)) + Σ WO,

where T. designates the sum over all ordered sets of / integers 1 < kx <

• <kt < s, the integers zku...ikι are the multinominal coefficients in the
expression

( Σ ociY = Σ

and 2 (ίΛ) is the sum of all the expressions of the form Dsg(f(x)-, φ(th), . •)•
N o w let

Dk(gof)(x; « ! , - . . , α Λ ) = δk(g°f)(x; al9 , α*)

= *i Σ Σ ^ - T T ^ - T T ^ *

D*»/(Λ; «!,-•-, akl) /> f c ί/(^; α*.» £ + 1 , , α*)), * < J

Then we have

+ th)) - g(/W) = ±^JLD«(gof)(χ; th, , th)

+ Ts ( έ -jϊ-I>ιKx; Λ, -, Λ) + ^f(Λ)) +

where Dk(gof) is continuous, write
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h) = j F H S Ϊ Γ 0 1 * * 5 t K '"'th) + φs(th))+ Σ ( t h ) ] ' tψ0'
' o, t = o.

Then K(t, h) is easily seen to be continuous at (0, h).

Corollary of the proof of Proposition 2. // /(resp. g) is a continuous
linear junction, then Dk(gof)(χ, a19 - , ak) = Dkg(f(x), /fo), , f(ak)) (resp.
Dk(gof)(x, a19 , ak) = g(Dk(f)(x, al9 - , cck))\ k<r.

Proposition 3. Let E and F be topological vector spaces with F complete,
and suppose U c E is an open convex subset. If f:U-+F is Cr, then Dsf:
U X E x ••• x E^F is Cr~s, s <r, in the first variable and

C; al9 , a9; β) = D'+if(x; al9 , α#, β) .
dx

The proof of Proposition 3 makes use of

Lemma.

D*f(x + β; a19 - -, as) - Z>5/(^; αx, - ., α f)

= 7 — r r r - Γ'd ~ p)r—ιDrKx + pβ; a19 , at9 β, - -,
(r — $ — 1)! g'

Proo/. Designate the dual of F by F'. Let ^ be the restriction of / to the
finite dimensional subspace of E generated by x, β9 a19 , ccs, and set
gx=z Xog, Xe F'. We then have

; al9 •

Kx ,

'-ifix; al9 9a,9β9. 9β)

j : + i8; flx, , α,) - £>sg;(Λ:; al9 , α,)

Dr-%(x; al9 - , α t , β9 - ,
(r — J — 1)!

7 ^ - Γ d - pY—WgJLx + pβ;al9 .9at9β9 . 9 β)dp
[r — s — i)l J
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= -, X—τrrl f '(I ~ pY—Φftx + pβ; a19 , a,9 ft -, β)dp
(r — s— 1)! J

Hence from the Hahn-Banach theorem the lemma follows.
The proposition follows from the observation that

- pY—WKx + (*β;al9- -,«,,β, , β)dp
( r - j - 1)!

- , l ., DrKx; al9 -9a9,β,- 9β)

( _ 1 )

-D'/(Λ; α i , ..-,α t,j8, -- ,β)]dp

is continuous in (/, jS) at (O, jS) and equal to O at (O, β).
Corollary of the proof of Proposition 3.

— - 2 - (*; αx, , as; β19 - , ft)

= D s + ί(^; Λ l , - - -, αt, ft, -., ft), * < r - s .

Corollary 1. // /: U -> F fa C r , ίΛen D s /: l / χ £ χ . . . χ £ - * F , i ^ r ,
αr^ uniquely determined.

Note that by a classical limit argument first derivatives are unique in view
of Definition 1, and thus the above lemma implies the uniqueness of the higher
derivatives.

Corollary 2. Suppose F is complete and U dE is convex, and set Ό = E
— U. For a given closed convex subset V of F if f: U—*F is C1 and Df(x;ά)
zV for xeU, α € £/, then f(xτ) — /(JC0) € V for JC0, xτ e U.

Proposition 4. Let E, F, and G be topological vector spaces, and U aE,
V c. F be open and non-empty. Then f: U X V —*G is C1 if and only if f is
in both variables.

Proof. Suppose / is C1. Then K(x,y,h) = Df((x, y); (A, 0)) (resp. HL
dx dy

(x, y\k) = Df((x, y) (0, k))) obviously satisfies the definition of C1 in the first
(resp. second) variables.

Suppose now that / is C1 in both first and second variables. Set Df((x, y);

(h, k)) = J?L(x9y;h)+-?L(x,y;k) and observed that
dx dy

/((*, y) + Kh, k)) - /((JC, y)) - Df((x, y); t(h, *))
= f(x + th,y+ tk) - f(x + th9 y) + /(* + th9 y) - f(x9 y)
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-JL{χ,y;th)-3L(x,y;tk)
dx By

= / Γ T i L (JC + th, y + ptk; k) - JL(x, y, k)]dp + tφ(t, h),
J L ay ay A

where 0(0, ft) = 0, φ is continuous at (0, ft), and the integrand is clearly con-
tinuous in (/, k) at (0, k) and is 0 at (0, k).

2. Elementary Frobeniαs9 theorems

We now recall two classical theorems which will be of use to us.
Theorem 1 [3, p. 29]. Let R be the set of real numbers, Ex = [0, aj,

aι > 0, and F a finite dimensional vector space over the reals. Suppose FoaF
is an open relatively compact convex neighborhood of the origin and T: Eτ

X Foχ R-+F is a Cn, n>l, function linear in R. Then there exists
£ 0 = [0, α0], 0 < aQ < a1? and a unique Cn+ι function f: E0->F0 such that
/(0) = 0 and Df(x; 1) = T(x, /(JC), 1).

Theorem 2. Let E = R x R and suppose F is a finite dimensional vector
space over the reals, and Foa F is an open relatively compact balanced
neighborhood of the origin. Let Eλ = [0, a] x [0, b], a, b > 0, and suppose
T:EX χFQχE-+F is aCn, n> 1, function linear in E such that

| ^ ( ( * , y), z,h;k) + ^r((x, y), Z, h; T((x, y), z; ft))
at, at

is symmetric in h, k e E. Then there exist a non-trivial interval [0, αj =
Jo C [0, a] n [0, b] and a unique function f: 70 x 70-*F0 such that /(0, 0) = 0,

fix, y) = J X Γ((«, ty), fox, τy), (x, y))dτ
o

is C«+1 and Df((x, y) a) = T((x, y), f(x, y);a).
Remark 4. In Theorem 1 we may take α0 = max {a < ax \ T(El9 FQ, [0, a])

a Fo}; in Theorem 2 we may take

a0 = max {min {£M, a, b) \ T(E,, FQ, [0, M] x [0, M]) c FQ}, (see [3, p . 53]).

Theorem 3. Let E be a barrelled topological vector space and F a finite
dimensional vector space. Let E1cE and Focz F be open convex neighbor-
hoods of xQeE and yoe F respectively, and let T: Eλχ Foχ E-^F be a Cn,
n > 1, function linear in the third variable such that T(EX X Foχ Ex) is
relatively compact and such that for all x € E19 y € Fo, h, k€ E,

jg-Oc y,h;k) + | Ϊ4c, y, h; T(x, y, *))
dt t
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is symmetric in h and k. Set I = [0, 1]. Then there exist an open convex
neighborhood of x0, Eo c E19 and a unique C n + 1 junction f: E0—>F such that
f(x0) = y0 and Df(x; h) = T(x, f(x\ A).

Proof. As in the classical case we may suppose * 0 = 0, y0 = 0. Since
T(Eλ x Fo x EJ is relatively compact there exists a real number r > 0 such
that rT(Ex χFQχ £ , ) c F 0 . Let £ 2 be a barrel contained in r ^ and set EQ

= £E2. For A: € E2let Γ x : / X Fo x R~*F be given by Tx(τ,a; 1) = Γ(τJC,α;;c)
where / = [0, 1]. Then by Theorem 1 and Remark 4 there exists a unique

solution gx: [0,1]-»FO of Tx such that gx(0) = 0, gx(t) = J V x ( τ , ^ ( τ ) ; l)dτ.
0

Now

τ, gx(τ); l)dτ=flaTx(ar, gx(aτ); \)dτ

; l)dτ

Thus h(t) = gx(at) is a solution for Tax such that ή(0) = 0, and by uniqueness
we obtain gx(at) = hit) = gax(t). Now set /(JC) = gx(l).

( 1 )

In order to show that /(Λ) satisfies Γ with /(0) = 0 we shall use the following
Lemma.

+ σ(y2 - y,), / 0 Ί + <χ(y2 - yO); y2 - yjdσ

= /(y2) - f(yθ, Λ, y2

 € £o

. For *„ ^2 € JE2 define S: I x I x Fo x R x R -» F by

, t), y, (w, v)) = Γ ( ^ + tx%, y, M^

S satisfies the hypotheses of Theorem 2 and, by (1), h(s, t) = f(sxτ + tx2)
satisfies

h(s, t) = jsiTS, τt, h(τs, τt), (s, t))dτ ,
0

and Dh((s, t); a) = S((s, ί), h(s, t);a). For y15 y2 € £0 set yt = xx, y2 - yx =
JC2 € | £ 2 . Now
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, + σ(y2 - yj, f(y, + σ(y2 - yj), y2 - yjdσ
0

JVCxx + σx*, fa + σx2), x,)dσ = J ^ ί d , σ), MX, σ), (0, \))dσ
0

0

= Jz>Λ(l + σ(l - 1), 0 + σ(l - 0); (1 - 1, 1 - 0))dσ

= Ml, 1) - Λ(l, 0) = /(y2) - / & ) . q.e.d.

Now set 3Ί = Λ and y2 = c + λh and apply the above lemma to obtain

j[f(x + λh) - fix) - T(x, 1(x), λh)]

= J\T(X + σλh, f(x + σλh), h) - T{x, /(*), h)]dσ.
0

To obtain the theorem it suffices to prove / to be continuous. To see this
let T: Eox FQ-^>L(E, F) be the mapping canonically associated with Γ, where
L(E, F) is the vector space of linear transformations from E to F (i. e.
T(x, y)(a) = T(x, y, a)). Since T(E0 x Fo) is simply bounded it follows from
the Banach-Steinhaus Theorem that T(E0 x Fo) is equicontinuous. Thus

/(y2) - /(Λ) = fVcy, + σ(y2 - yj, fiy, + σ(y2 - yj), y2 - yjdσ

i
shows that / is continuous since f(E0) c Fo by construction.

Remark 5. Designate by Ck(p) c F the cube with center p € F and side
2k. Now when Fo = Cd(0) we have that C3ώ/8(0) c Π {Ctf/2(0) - y}, and

yecd/B{0)
therefore that there exists a barrel £ 2 , with center at the origin, sufficiently
small so that T(E2 x {Cώ/2(0) - y} x £2) c C3d/8(0) c {Cd/2(0) - y} for all
y £ Cd/8(0). From the proof it follows that there exists a flow a: {x0 + E2} X
Cd/s(yo) -^Fo of the differential equation (i.e., ay(x) = a(x, y) is a solution of
the differential equation such that aQ(x0) = y).

Proposition 5. Lei Λ(;t0 + £E0) x 5d/4(y0) — (x0 + $E0) x Fo be defined
by A(x, y) = (x, a(x, y)). ΓAen A is one-one and contains (x0 + £E0) x Sd/4(y0).

Proof. A is one-one, since the set of points, where aVl(x) = αy5(jc), is open
by Theorem 3 and closed by the fact that both ayi and ayi are continuous.
For x e x0 + %E0 and y € 5d/4(y) it follows from the proof of Theorem 3 that
there exists a solution f: x + E0-*F0 such that f(x) = y provided that
/(*0)=y0. Note that *0 + %E0 C Λ: + Eo. By uniqueness, α y oW = f(x), and
thus ^ U , y0) = (*, y).
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Proposition 6. a: Eoχ Sd/i(y0)-*F0 is a Cn mapping under the hypotheses
of Theorem 1.

Proof. By Theorem 3, a is Cn+ι in the first variable. β(t, y) = a(xQ +
t(x = x0), y) is the flow of the differential equation S(t, y) = T(x0 + i(* — x0),
y, (x — x0)). It is classical that β is Cn in the second variable, and obvious

that — £ - ( 1 η) = -—^-(x; η). To conclude the proof it suffices to prove a to
dyk dyk

be continuous since —~(x, y; r) = Γ(Λ, Q:(Λ, y), r). To see that α is continu-
dx

ous, consider

a(x + h,y + k) - a(x, y)

= a(x + h,y + k) - a(*, y + A) + a(x, y + k) — <*(*, y)

Λ, y + k)9 h)dt + (α(jc, y + *) - «(*, y)) .

As a(x, th, y + k) 6 Fo for h 6 £ , A € F sufficiently small, T(E0 x Fo) c L(E, F)
is equicontinuous, and, in addition, ax(y) = a(x, y) is continuous, it follows
that a is continuous.

Proposition 7. Lei U cE be an open subset of a topological vector space
E, and F a second topological vector space. Suppose that T: U x F —• F is a
C Λ , n > 0, mapping linear in the second variable such that f:U—* L(F, F)
m<2/?.y into the isomorphisms of F. Designate by T"1: U X F —»F /λe
defined by T'Ku, f) = T(u)-\f). If T'1 is continuous, then Γ"1 w C π .

Set

, or; A) = -IWJC, — (x, T'Kx, T'Kx, a); h))
\ dx Idx \ dx

and observe that

'Kx + th, a) - T~\x, a) + Γ"1^, ?L(x, T'\x, a); ί

= - Γ " 1 ^ + th, K(χ, T-Kx, a); A)) + T^[x, |L(JC, T"1^, α); A))

- Γ-1^ + th, λ[τ(x + th, T~\x, a)) - T(x, T-\x, a))

is continuous in (/, A) at (0, A) and equal to 0 at (0, A).
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3. Analysis in Banach chains

Definition 2. Let J+ denote the set of nonnegative integers. A chain of
Banach spaces is a set {Bk} of Banach spaces indexed by /+ such that

(a) if k > / > 0, then the underlying vector space of Bk is a linear sub-
space of the underlying vector space of Bι and the inclusion map Bk —• Bι is
continuous

(b) B00 = Γ\Bk is dense in each J3\
k

B°° is given the topology of the inverse limit limB*.
k

Definition 3. Let {Bk} and {Bk} be Banach chains.
Definition 4. Let {Bk} be a Banach chain and U d B°° open, / an open

interval containing OeΛ, and || ||fc the norm in Bk. We shall say that f:Iχϋ
—• B°° satisfies uniformly a Lipschitz condition on U uniformly with respect to
/ if there exists a number L > 0 such that || f(t, x) — f(t, y) \\k < L\\ x — y \\k

for all k > 0. L as usual is called the Lipschitz constant.
For k > I, let πk: Bk -* Bι be the canonical injection, and suppose

Definition 5. Suppose {Bk} and {Bk} are Banach chains, and U C B? is
an open set. A mapping / : U —»B~ is called strongly continuous when there
exist an integer N and an open set UN such that U = (TΓJ^-WJV) and further
that there exists a continuous extension ίi' iπ^yWx) —»££ for all Z > N. It
is obvious that any strongly continuous mapping is continuous.

Define {Bk} x {Bξ} = {Bk x i5J}. In a canonical way every Banach space B
may be considered as the B°° of a Banach chain by setting BL = B for all I
>0.

Proposition 8. Let {Bk} be a Banach chain, U C B°° open, and I an open
interval containing OGR. If f:I x U —•J?00 satisfies uniformly a Lipschitz
condition on U uniformly with respect to I, then f is strongly continuous.

The proof follows easily from the definitions.
Definition 6. Suppose {Bk} and {Bk} are Banach chains and U c B" is an

open set. A mapping /: U —»B% is called strongly Cp it f is strongly continuous
with respect to some integer N (see Definition 5) and there exist an integer
M > N and an open set UM such that U = (π%)-KUM) and further that the
continuous extensions ft: (πι

M)(UM) -* B\ are Cp for I > M. We leave this to
the reader to verify.

Proposition 9. Every strongly Cp function f:U —> B% is Cv.

Theorem 4. Let {Bk} be a Banach chain, I an open interval containing
OeR, U an open subset of B°°, and f:I x U-+B°° a O , p > 0, function
such that f satisfies uniformly a Lipschitz condition on U uniformly with re-
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spect to I. Suppose that for some N > 0 (using Proposition 8) the maps fL:I
X (K1N)~KUN) ->B\ l> N, determined by f are Cv, and further that x0 e U.
Then there exist open subsets V, J of U, I containing x0 and 0, respectively,
and a unique flow a:Jx V ->U of f (i.e., aΌ(j) = α(/, v) is a solution of f
so that av(0) = V). (UN C BN is an open subset of BN such that U = (π^)"1

ίUN).)

To prove the above theorem it suffices to prove
Lemma. Under the hypotheses of Theorem 4 there exist an open interval

J C I containing 0 6 R, an open subset V c UN containing x0, and flows of
/*, ak :J X (πi)-KV) - Grj^iE/) such that ak+ι = ak - π*+\ N<k<oo.

Proof. Without loss of generality we may suppose x0 = 0. Given 5 > 0,
fN being continuous there exist a closed subinterval / of / containing 0 in its
interior and a number 0 < a < 1 such that fN(Jι x S£(0)) c 5£(0). Thus by
Newton's method (see [5, pp. 55-62]) there exist an interval J = [— b, b]
C Λ and a flow aN:J x S?(0) -* ϋN9 where b < inf (1, αr/S). For / > N let
Mt be the set of the continuous mappings a:J -+ (πι

N)~KSξa(Q)) With the uni-
form topology Mi is a complete metric space. Let St :ML —> M^ be the operator
defined by

(SιCcKt) = x + J ft(u, cc(u))du ,
- 0

) - 1 ^ (0)), ί6 [ - b, b], (πV)-α(5^(0)) being closed and convex we have

Further since /z has Lipschitz constant L it follows that S satisfies the shrink-
ing lemma and thus there exists a unique fixed point a € Mt. Suppose V > I
> N, and av{t, π) is the fixed point of Sv. Note that

(π\' oalf)(t, x) = + JΓ{ J /^(«, αr^(w, x))du
o

= ^ + J πϊff(u9 aLr(u, x))du
0

= x +

0

0

Thus 7rj' oαrΓ(/, JC) is the fixed point of St,.
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It is classical that at:I0 X GrW'WCO)) -» (^)"H5fα(0)) is a C* mapping.
Remark. We have proved more than we stated indeed we have proved

that there exists a strongly Cp flow a:J X V->U. In the above theorem, V
is taken to be

4. Frobenius theorem for differentiable manifolds

For the elementary definitions of this section substitute our definition of
differentiability here for that used in [5]. The objective of this section is to
prove

Theorem 5. Let {E1} be a chain of Banach spaces and M a connected Cp,
p > 2, differentiable manifold modelled on E"°. If B is a sub-bundle of T(M)
of finite codimension with fiber F such that the Cv~ι sections of B are closed
under the bracket operation of T(M), then B is integrable.

Definition 7. Suppose {E[} and {Eι

2} are chains of Banach spaces. A linear
function f:E™ —•> 2%° will be called a morphism if there exist an integer N and
continuous linear extensions of /, ft:E\ —*E\ for I > N. Chains of Banach
spaces clearly form an additive category with this definition of morphisms;
designate this category by CB. Given a Banach space B we shall designate by
{B} the trivial chain {B1}, where Bι = B for all / and πι

m:Bι-»Bm is the
identity for all I > m.

Proposition 10. Let {E1} be a Banach chain and G a subspace of E°° of
finite codimension having H as a complementary subspace. Then there exists
a Banach chain {G1} characterized by the property that Gι is the closure of G
in Eι such that {E1} « {G1} + {H}.

To prove Proposition 10 it suffices to prove
Lemma. Under the hypotheses of Proposition 10 there exists an integer

No such that Gι + HχEιforl> No.
Proof. Let π:£°° —• H be the canonical projection onto H. We shall show

that 7r is a morphism {E1} —• {H}. Let U be a compact neighborhood of the
origin in H. Then by continuity there exists a neighborhood of the origin V
C E°° such that π(V) c U. By definition of the topology in £°° there exist an
integer NQ and a bounded neighborhood of the origin VNo c ENo such that
O^o)"1^,,) C V. Thus π:E°° -*H is continuous for the topology on £°° in-
duced by the Banachable topology on ENa, and π:E°° —• H is extendable to
πN«\EN»-*H. Hence π is a morphism in CB. It is easy to see that Kerfa*)
= Im(I - πι) = Gι,l> No.

Proof of Theorem 5. As in [4, p. 92] one may express the subbundle B
locally in the form of an exact sequence

0-+UXVX Fr-* UXVxFxGπUxVXE00,

where U C F, U c G are open neighborhoods of x0 and y0 respectively.
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Furthermore we may suppose that / is of the form

/((*, y), a) = ((*, y), (a, f(x, y, a))),

where / is a O" 1 function linear in the third variable such that f((x0, y0), a)
= 0 for all a € F.

Let us recall that the bracket of the two given sections ζ and η of T(M) is
given locally by

[ξ, V](x) = Dξ(x; 9(jc)) - Dη(x, ξ(x)) .

For given C*-1 maps ξl9 ηt: U X V— F note that the C*"1 maps given by
ξ(x, y) = (ξ^x, y), f((x, y), £ ( * , y))) and 9 (Λ, y) = (Vl(x, y), f((x, y), η(x, y)))
determine the sections of B. The closure of the sections of B under the
bracket operation implies that

4r&χ, y), ?i(*, y) « * , yϊ) + %- b, y, %U, y) /((*, y), fiU, y)))

is symmetric in {jU, y), η^x, y).
It follows from Theorem 3 and Proposition 6 that there exist open sets Uo

C ί / , F o c F, and a Cp'1 flow of /, α: l/0 X VQ -> F. That there exist open
neighborhoods of the origin U aH, V c E°° so that f(UXVX U) is rela-
tively compact follows from the continuity of / and the local compactness of

G.
There exist open sets 0 c Uo and W c V such that φ(x, y) = (JC, y)

= (x, a(x, y)) is α C*-1 diffeomorphism for (x, y)εθx W.
In fact, from Proposition 5 we have that φ: Uo X F f l - ^ F x G is an injective

mapping containing in its image a neighborhood Uι X Vx of (JC0, y0).

Since —~ (x0, y0 8̂) = β for all ^ € G there exists an open set U2 X F2
dy *

C φ'KUx X Fx) containing Uo, y0) such that — (x, y β) is an isomorphism
dy

for (JC, y)<zU2X F2. Thus

= [a, Da(x, y;(α, j8) = (α,

is a continuous isomorphism of F X G onto F X G for (JC, y) € t/2 X F2. Since
/: U2 X F2 X F —• G is continuous there exist neighborhoods C/3 c t/2, F3 c F2

of Λ:0 and y0, respectively, and a neighborhood U of the origin in F such that
/(C/3 X F3, U) is relatively compact in G. It now follows from the Banach-
Steinhaus theorem that the linear functions f^y)(ά) = /(JC, y, αr) are equicon-
tinuous for (JC, y)€U3XV3.
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Let 5 be the unit ball in G, and suppose that B is an open set in F such
that /(Λf y )(α) € 5 for (x, y) € Uz X Vz and a € 5 . Further let Bk c F* (see Pro-
position 10) be an open set such that (π%)-ι(Bk) = B designate the continuous
extension of / by ft: Uz X Vz X Fι -> G, / > k. Thus Zty determines continu-
ous maps φιiUsX VZX P x G ^ P x G i n such a way that

(«> β> = & ( ( > y)» («»β)) («» Λ ( ( » y ) ι « ) + ?
\ oy

is a continuous automorphism of Fι X G for (JC, y) € C/3 X Vz. Note that
^ι-i,(x,y) oίrf-i = 0ι,(*,y) ^ ^s classical that φt determines a continuous map

Φι'.U9 X K8-^ Aut(Fι X G).

Letρ:Aut(Fι X G) —> Aut(Fz X G) be the continuous map which associates
its inverse with every automorphism. Designate the map foφt by φϊι:Uz

X Vz -* Aut(Fz X G). Since ^f1 is continuous it follows that Dφ-\x, y, or, 0)
is continuous and therefore Cp~ι for (*, y) € C/3 X F3 by Proposition 7.

Set

7Xx, y, a) = 7Γ o Z)^-1^, y, α, 0) ,

where π:F X G —* G is the canonical projection. Γ is obviously a C p - 1 func-
tion linear in a. We shall now show that there exist open neighborhoods C/5,
F5 of JC0 and y0, respectively, such that for all (x, y) e t/5 X F5

( 3 ) iZL (JC, >;, ft; Λ) + | I (x, y , Λ; Γ(JC, y; *))
3x 9y

is symmetric in h and /:.
Let Y be the subspace of F generated by x, h, and k, and

the restrictions of Γ and φ respectively. It follows from the inverse function
theorem that g is a diffeomorphism such that

D ( r )(*, y,«, β) = Φ * ) - 1 ^ * , y),«, β)

where (α, j8) € Y X G, (JC, y) € ( ϋ 4 Π Y) X P4, and ί / 4 c F , F 4 c G are open
sets such that l/4 X V4 c ^(t/8 X Vz). Thus (π: o ̂ -^ | (£/4 n Y) X V4 is a flow
for ί, and
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Ϊ^l£l-(X, y ; cc; β) = E.(x,πoφ-\x, y), a; β)

( 5 ) ^
+ ϊL(x,πoφ~\x, y),a; T(x, πoφ~\x, y), β))

oG

is symmetric in a, β for (x, y) e (t/3 f\ Y) X Vz.
Since x € U4, h, k € F were arbitrarily chosen, (3) is time for all x € U4, h,

£ € F. φ being continuous φ~ι(U4 X F4) contains an open set t/5 X F 5. (5)
now implies (3).

By Theorem 3, T has a C*=1 flow f . [ / s X F 5 ^ C since from
iF X ^ I (Uδ Π 10 X F 5 = ί*-11 (t/5 Π Y) X Kβ it follows that ^"x is C^-1 on
U5 X F 5 . O c t / 0 , ί/ |C F o be open sets such that O X l ^ C φ~KU5 X F5). To
prove Theorem 5 it now suffices to show that φ: 0 X W —* φ(0 X W) is such
that (iOxW X S0/3JC): (0 X W) X F-» (0 X W) X (F X G) is a Cp~ι isomor-
phism onto /(OX ( F X f ) which follows immediately from —%-(x, y\a)

dx
= (<*> / ( ^ ? J ) , <*))•

Corollary 1. Let M satisfy the hypotheses of Theorem 5. Suppose that N
is a Cp finite dimensional connected manifold, and let f:M —»N be a Cp onto
mapping. If /*: TM —> TN is onto, then Ker(/*) is an integrable sub-bundle
of TM, and f~\x), xe N, is a closed sub-manifold of M.

Corollary 2. Under the hypotheses of Corollary 1, each leaf of the folia-
tion is an ANR.

5. Frobenius theorems for the group Diff (M)

In this section by manifold we shall mean a compact connected smooth
manifold.

Let M be a manifold, and Diff(M) the group of diffeomorphisms of M.
The author has shown in [5] that Diff(M) admits a differentiate structure
which is locally Frechet (indeed locally nuclear) such that the multiplication
and the operation of taking the inverse define smooth differentiable functions
of Diff(M) X Diff(M) to Diff(M) and of Diff(M) to Diff(M) respectively.

Now let us recall the following local definition of the differential structure
of Diff(Λί): Let / € Diff(M) and lf(M, TM) be the vector space of all liftings
of / (i.e. the vector space of all functions g:M-*TM such that πog = f
where π = TM —> M is the canonical projection). In order to give lf(M, TM)
a Frechet topology cover M by two finite collections of trivializing (for TM)
normal (for some fixed Riemannian structure) open charts {C/i}ί=1,...,m and
{*0b-v ,* s o * a t dianii/Ct/t)) < λ/3 where λ is the Lebesgue number of {Vj}.
Let £ t :£/<—* l/J c Rι and Jj: Vi —* V'ά C Rι be homeomorphisms determin-
ing the local structure on M, and suppose f(Ui) C VHi). Let φj^iπ'KVj^)
-*Vjw X Rι be a smooth diffeomorphism with φj{i)\π~\x), xe Vm linear.
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It is convenient to suppose that kt extends to a homeomorphism ki:Όi—*Ur

i.
Now let ^(U'i, RL) be the Frechet space (indeed nuclear) space of smooth

maps with the C°° topology. Set ^ 0 = Σ (&U R l ) - Define γ:lf(M, TM)-*^

by γ(g) = &( + ) ( + )gm where gt € <Fφ'i, Rι) is the composite

Let <F = λ(lf(M, TM)) c ,^> <F is a closed subspace and 7* is injective. By
means of γ we transport the induced Frechet structure of IF to lf(M, TM).

To fix ideas we shall suppose that the {t/J and {Vj} are normal open spheres
for a smooth Riemannian metric and that φHi) :(VJ{i)) —> V'Hi) X Rι is given
by φj(i)(a) = (exp^ίαr), rXo(α)), where *0 is the center of Vj(i), and τΛβ is the
parallel translation along the unique geodesic from π(a) to JC0.

Designate by Diffn(M), Dn(M), and @n(M) the group of O diffeomorphisms
of M, the connected component of the identity of Diffn(Λί), and the vector
space of right invariant C71"1 vector fields on Dn(M), respectively. It is well
known that DifL is dense in Diffn. We shall suppose n ^ 3.

Diffn(M) is a topological group whose underlying topology is compatible
with a Cn differentiable manifold structure modelled on the Banach space
ΓJM) of Cn vector fields on M with the Cn topology [7]. Moreover the map-
ping jR,:Diffn(M) -• Diffn(M) defined by Rc(τ) = τσ is a Cn mapping for this
differentiable structure [7]. It follows that the right invariant vector fields on
Diffn(M) are C71"1 sections of the tangent bundle Γ(Diffn(M)) -»Diffn(M).
Set Γ(Diffn(M)) = τn{M).

Lemma. Let G be a topological group whose underlying topology is com-
patible with a Cn differentiable manifold structure modelled on a Banach
space B such that multiplication from the right Rβ:G-^G,σ€ G, defines a
Cn function, and let K be a finite dimensional subspace of the vector space
of Cn~ι right invariant vector fields on G. If K is closed under the bracket
operation, then K is integrable, that is, there exists a Cn~x submanifold of
G, H, which is, in addition, a subgroup in such a way that Te(H) is canon-
iccally isomorphic to K.

Proof. Now suppose if the finite dimensional subalgebra of L(G) and
designate by S(x) the subspace of TX(G) spanned by the vectors ξ(x) for ξ € y .
We may write TX(G) = S(x) + R(x) where R(x) is a complementary subspace
of S(x) in ΓX(G). Put Σ = U S(x) and let π':Σ -* G be the natural projection.

We now make πf a subbundle of π. Let (£/, φ) be a symmetric chart of G at
the identity with φ(U) c E and put Ua = Ua and let σe:π'~ι(U) = Σ(U) -• U
X S(e) be the Cn~ι map induced by multiplication on the right.

Defineσa:π
f'KUa) = Σ(UJ — Ua X S(e)byσa = (Ra X Is{e))oσeodRa-ι.σa

such that the following diagram
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is commutative where PUa:Ua X S(e) -* Ua is the canonical projection.
Now set

Φab = Φa Φf .ΦtWa n un)-*φa(ua n ub).

Since multiplication from the right is Cn, one obtains a O " 1 mapping
τ>a .φa(Va Π £/») X S(e)-+φb(Ua Π Ub) X S(e) given by r6 α(*, v) = (&α(*),
DφbΛχ'> v))l under these conditions there exists a unique structure of a Cn'1

manifold on Σ such that π' is a C""1 mapping and σa, a e G, is a C71"1 dϋϊeo-
morphism making i£:Σ -*G into a vector bundle with {(t/α, crα)}αeG as a trivi-
alizing covering.

The injection of S(x) into T(x) shows that J is a subbundle of Γ(x). As ίC
is closed for the bracket operation in L(G) it follows that Σ is closed under
the bracket operation in T(G) and therefore K is integrable (see [5, p. 92]).
Let H be a maximal integral manifold of G containing the identity. As in the
classical case, Rσ permutes with the maximal integral manifolds of K, and
thus H is a subgroup of G. It is immediate that the Lie algebra of H is K.

Lemma [7]. Dm(M) X Dn(M) - 1 » Dn(M) given by π(f, g) = fog is Cn for
m >2n.

Corollary, a € Te(Dm(M)) c T€(Dn(M)) generates a Cn right invariant
vector field on Dn(M) for m>2n.

Theorem. Finite dimensional and finite codimensional subalgebras of
SfJM) wre integrable.

Proof. The canonical injections i%:D.i7n(M) -» D2Λ(Λf), oo > m > n > 0,
are obviously Cn homorphisms. Set

l j j m co > m > n > 2 .

It is not difficult to see that if ^f is a finite dimensional subalgebra of Dsm(M),
m < oo, and H is the subgroup corresponding to it, then i™(H) is the subgroup
corresponding to J™^).

Now suppose ^f is a finite dimensional subalgebra of ^(Λf), and let
Hn, n < oo, be the subgroup of Dsn(M) corresponding to tfn = ./"(Jf). Then
we have

, oo>m>n>2.
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Since

lhn ^2n(M) = ®Jtf), DJM) = lim Dsn(M) .

and further J% and z™ are injective, we obtain that lim Hn = H is the integral
subgroup of «?f in ^ ( M ) . V

That finite codimensional subalgebras are integrable follows from Theorem
5 immediately.
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