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SIMPLE CLOSED GEODESICS ON PINCHED SPHERES

WILHELM KLINGENBERG

Let M be a compact simply connected w-dimensional riemannian mani-
fold. If the values of the sectional curvature K of M satisfy the condition
minK: mzxK > 1/4 then M is homeomorphic to the ^-sphere 5 n . We there-
fore call such a manifold a pinched sphere. Cf. [1], [3] for the proof of this
so-called sphere theorem, and [2] for a complete exposition.

By multiplying the riemannian metric of such a manifold M with an ap-
propriate positive constant we obtain a manifold for which the relation

holds. That is to say, such a manifold is curved stronger than the sphere
Sn(4) of constant curvature 1/4 and curved less strongly than the unit sphere
Sn = Sn(Ό- This raises the problem of existence, on such a manifold, of
simple closed geodesies of length between 2π and 4π, the length of the great
circles on Sn(l) and 5n(4) respectively. The example of the w-dimensional
ellipsoid with pairwise different axes suggests that there may be, but not
more than, n(n + l)/2 such closed geodesies on a manifold M satisfying (*).

In the present paper we shall first prove the following
Theorem 1. On a compact simply connected n-dimensional riemannian

manifold M satisfying ( * ) there exist at least n simple closed geodesies with
length in [2π, 2 J Γ / J T ] .

To formulate our next result, for each integer n > 2 w e define the integer
g(n) as In - s(n) - 1 with s(n) = Λ - 2 \ 0 < s(n) < 2 \ Note that for
n = 22 Λ — 1 we have s(n) = (n — l)/2 and hence g(ή) > (3w — l)/2.

Theorem 2. Let M be a compact simply connected n-dimensional rieman-

nian manifold satisfying ( * ) with /t(~0.64) as the solution of 2κ sin

= 1. Then on M there exist g(n) simple closed geodesies of length in [2τr, 4π[.

If Λ ( ~ 0 . 4 6 ) is the solution of 2N'T"sin — 1 L = r = 1, then there exist at least
2J K

g(n — 1) such geodesies on M.
Suppose that on M the closed geodesies of length < 4τr are not isolated or

are non-degenerate. If (*) holds with κ~0.64, then on M there exist exactly
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n(n + l)/2 simple closed geodesies of length in [2π, Aπ[\ if (*) holds with
κ~0.46, then there are at least (n — l)n/2 such geodesies on M.

Remark. We certainly have not obtained the best lower bounds for K in
our theorem. In particular, using more delicate arguments, it is possible to
show the existence of g(n) simple closed geodesies on a manifold M satisfying
(*) with K-0.46.

However, we want to stress that Theorem 2 does establish, for the first
time, the existence of several simple or prime (i.e., not covered) closed
geodesies on a manifold M which is homeomorphic to the sphere Sn(n > 2)
satisfying certain metric restrictions. In particular, the results of Morse
(1934), Lyusternik (1947) and Alber (1957) (cf. [4] for precise references)
do not imply the existence of more than one prime closed geodesic on such a
manifold M, even under the hypothesis that there exists a homeomorphism
A:S π -»M satisfying the so-called Morse condition. The reason for this is
that these authors do not exclude the possibility that all the closed geodesies
constructed in their papers are merely different coverings of the same under-
lying prime closed geodesic.

Only in the case that M is homeomorphic to S2, Lusternik and Schnirel-
mann showed in 1929 the existence of 3 simple closed geodesies, but did not
discuss, however, the length of these geodesies in the case that the gaussian
curvature on M satisfies a restriction of the type (*). It should also be men-
tioned that Fet in 1965 showed the existence of at least 2 prime geodesies on
any compact riemannian manifold provided all the closed geodesies on M are
non-degenerate. Using quite delicate geometric arguments, the present author
was recently able to show the existence of g(n) simple closed geodesies on a
manifold M homemorphic to Sn without making any assumptions on the
metric or the curvature of M.

Going back to the theorems of the present paper, we want to give an out-
line of the methods employed in their proofs. In the first place, we construct
closed geodesies on a compact riemannian manifold M by the classical meth-
ods of using the homology of the space Π(M) of unparametrized closed
curves on M modulo the subspace Π°(M) of the trivial closed curves (=point
curves). We refer to our paper [4] for a modern and detailed version of this
theory.

Since in our case M is homemorphic to the sphere Sn, we know moreover
that there exists a map hΓ: (Γ(Sn), Γ°(Sn))-^(Π(M), Π°(M)) of the space
Γ(Sn) of the circles on Sn, which is considered as a subspace of Π(Sn)
modulo the subspace Γ°(Sn) of the point circles. The important fact is that
this map is injective in Z2-homology and therefore gives us n(n + l)/2
= dim H*(Γ(Sn), Γ°(Sn)) non-homologous cycles in Γ(M) mod Γ\M).

Secondly, we use a great deal of information about simply connected com-
pact riemannian manifolds M satisfying (*), which leads to the proof of the
sphere theorem. In particular, we use in an essential manner the fact that on
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such a manifold M every non-trivial geodesic loop has length at least 2π.
By linking together the above information we construct a homeomorphism

h:Sn-+M with M satisfying the hypothesis of the theorems, which carries
circles into curves of length < 4π.

1. We recollect the basic facts on the construction of closed geodesies on
a compact riemannian manifold M homemorphic to Sn. For a detailed exposi-
tion we refer to [4],

First of all, for any compact riemannian manifold M we have the space
Λ(M) of parametrized closed curves. Λ(M) is a Hubert manifold, and the
riemannian metric on M induces on A(M) z. riemannian metric and a differ-
entiable function, the energy integral E. The orthogonal group 0(2) oper-
ates continuously on Λ(M), the orbit of an element / = (/(0), ί € S1 = [0, 1]/
{0, 1}, being formed by the curves (/(± t + c)), ceS\ te S\ Let π: Λ(M)
->Π(M)=Λ(M)/O(2) be the quotient map, where Π(M) is called the space
of unparametrized closed curves on M. Since the 0(2)-action on Λ(M) is
compatible with the riemannian metric and the function E on Λ(M), these
objects are also defined on Π(M) although Π(M) is not a manifold.

For c > 0, we denote by Π°'{M) the set of g e Π(M) with E(g) < c.
Consider now, in particular, the sphere Sn of constant curvature. Then

Π(Sn) contains the subspace Γ(Sn) of the circles on Sn with Γ°(Sn) = Γ(Sn)
Γ\Π\Sn), the subspace of point circles, isomorphic to Sn. An important fact

is that the inclusion (Γ(Sn), Γ°(Sn)) -> (Π(Sn), Π°(Sn)) induces an injective
homomorphism in Z2-homology, carrying subordinated homology classes into
themselves. Here, if z' and z are non-trivial homology classes of Π(M) mod
Π°(M) and there exists a cohomology class φ in Π(M) — Π°(M) with
z' = z Π φ then z' is said to be subordinated to z. Here we make use of the
pairing by the cap product of H*(Π(M), Π\M)) X H*(Π(M) - Π°(M)) into
H^Π(MX Π°(M)) (cf. [4]).

H*(Γ(Sn), Γ\Sn)) has dimension n(n + l)/2, and g(n) of the homology
classes are pairwise subordinated.

Let now M be homeomorphic to Sn. Then there exists a homeomorphism
h : S n ^ M s u c h that / 6 Λ(Sn) i m p l i e s hofe Λ(M), a n d t h e m a p h Λ : Λ(Sn)
-> Λ{M) so defined is differentiable. Let hπ: Π(Sn) -• ZΓ(M) be the induced
map on the quotient space. Then hΓ = hπ\Γ(Sn): (Γ(Sn), Γ°(Sn)) -» (Π(M),
77°(M)) carries n(n + l)/2 pairwise non-homologous cycles in the space of
circles into such cycles of Π(M) mod Π°(M), among which g(n) are pairwise
subordinated.

If c* > 0 such that hΓ(Γ(Sn)) c 77C*"(M), then the critical number c(z)
of each of the homology classes z represented by one of the cycles coming
from the space of the circles on Sn is less than c*, i.e., there exists a closed
geodesic of length Nί2c(z) < N'2c*.

2. Consider a compact riemannian manifold M satisfying (*). Then the
following holds (cf. [2]):
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The maximal distance d(q0, qj between two points of M is < 7Γ/~ΛΓ < 2τr;
if the upper bound of d(q0, qλ) is attained then M is isometric to the sphere
5(/c) of constant curvature *. Moreover, for every point q<ε M, the restriction
of the exponential map expQ: Mq->M to the open disc Dκ(q) of radius π
around the origin q of Mq is an injective differentiable map. This is equiva-
lent essentially to the fact that every non-trivial geodesic loop on M has
length > 2τr.

Let now q0, qx be two points on M with maximal distance. Then define on
M the subsets (which may be called half-M's with respect to (q0,

HM(q0) = {qeM\d(q, q0) < d(q,

HM(qx) = {q β M\d(q, qλ) < d(q, qQ)) ,

and call EM(q09 qj == HM(q0) f] HM(q^) the equator of M with respect to

(<?o> ^ i )

HM(q0) and HMiqJ belong to expqo(Ds(q0)) and exp^D^fo)), respectively.
The counter images in Mqo and Mqi, respectively,

Hq*) = (expQ01 DMdYιHM{q0), J«( f t) = (expgi | D^q^HMiq,)

have the property that every ray, starting from the origin q0 (resp. ^j), meets

Σn-\qά = al n (^ 0 ) (resp. Σ71-1 = dΔn(qJ) at precisely one point.
The Σn~\q<) and Σn~ι{q^ are differentiably embedded (Λ — l)-spheres in

Mqo and Mqi, respectively. We now define the diffeomorphism

dσ0: S

of the sphere of radius τr/2 and center qQ in Mqo onto Σn"ι(q^ by associating
with a point on this sphere the point at which the ray through the former
point meets Σn~\q^. By extending 3σ0 linearly to the interior D?/2(q0) of

we obtain the diffeomorphism

We now use these constructions to define a homeomorphism h: Sn —> M.
First of all, we choose in Sn a pair (p0, pα) of diametral points, and denote by
HSn(p0) and HSn(pd the halfspheres with centers p0 and p^ respectively.
ESn(pQJ px) = HSn(p0) (Ί HSn(Pτ) is the equator of Sπ with respect to (p0, p^
Moreover, we fix an isometry i = iPo: S£o -»M^o of the tangent space of Sn at
p0 onto the tangent space of M at #0. We then define

and the diffeomorphism
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h0 = exp 9 o o σQ o (exp P o | D?(po))->: HSn(p0) -> HM(q0) .

Since the equator EM(q0, qx) also belongs to exp^φJC^)), we can define

dστ = (exp,x I AXft))-1 o Λo o expP l: S
njXPl) c 5 ^ -> J ? - 1 ^ C AfQl,

which is a diffeomorphism. Let

be the linear extension of dσx. Note that σλ is a homeomorphism, but in gen-
eral it will be a diffeomorphism only on D^/2{p^) — pλ. We then define

o σx o (expPl | D%pj)-1: flS ίpJ -> HM{qx).

Since ho\dHSn(po) = Λ1|3flr5*(p1), h0 and Λx together define the desired ho-
meomorphism h: Sn —• M, which is differentiable outside of ESn(p09 pj \j {p2}.
The image of a half great circle from p0 to px will consist of a once-broken
geodesic of length < π/JT with the corner in the middle on EM(q0, qj. It is
possible to modify h in such a manner that these corners are being smoothed
out; however, in general it may not be possible to make h smooth also at the
point pλ. Note that h induces a map from 5J, onto M^, which is linear and
bijective on each ray starting at px but not necessarily linear on all of S£1? and
that there will be an obstruction to smooth out this map whenever M is not
diffeomorphic to Sn.

3. We can now prove Theorem 1. First of all, we recall from [4] that the
space Γ(Sn) — Γ°(Sn) of non-trivial circles on Sn can be viewed as the total
space of a bundle γ of open (n— l)-discs over the space Δ(Sn) of great circles
on Sn by mapping each circle onto its parallel great circle. Δ(Sn) is isomorphic
to the Grassmann manifold G(2, w—1) of 2-planes in Rn+1 and γ is the disc
bundle of the canonical (n— l)-bundle γ71'1 over G(2, n— 1). With Γ°(Sn) de-
noting the subspace of Γ(Sn) formed by the trivial (or point) circles it follows
that Γ(Sn) mod Γ\Sn) can be interpreted as the Thorn space of γn~ι.

Let now p0, px be a pair of diametral points on Sn as in § 2. The set of
great circles on Sn, which pass through p0 and p19 forms a (n — l)-cycle xn_γ

of Δ(Sn)> and jcn-1 is dual to the (n — l)-th power of the 1-dimensional gener-
ator of the cohomology ring of Δ(Sn) = G(2, n — 1). Therefore, the subset
3>2n-2 of Γ(Sn) formed by the circles parallel to a great circle belonging to
jcn_j is modulo the subspace of point circles a (2n — 2)-cycle y2n_2 which con-
tains {n — 1) cycles y n - 1 , yn9 , y2n_3 such that the n cycles yt, n — 1 < /
< 2w — 2, are pairwise subordinated.

Consider now Γ(Sn) as subset of Π(Sn). Then the y£ form n pairwise sub-
ordinated cycles of Γ(Sn) mod Γ°(Sn). We replace the yt by homologous
cycles y{ as follows: Each non-trivial circle of y2n_2 meets the equator
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ESn(p0, p2) at exactly two points. Replace the circle by the closed curve
formed by the two half great circles going from pQ to px and passing through
these two points. Replace a point circle of y2n-2, which necessarily belongs to
ESn(p0, pj, by the closed curve formed by the half great circle from p0 to p19

which passes through the point curve and goes back to p0 in the same way.
Finally, join this curve to the point circle by a 1-parameter family of closed
curves which consist of arcs of this half great circle, run through back and
forth, and shrink towards the point circle.

If we replace, for each /, the circles in yf by the closed curves just de-
scribed, we obtain the cycles y?, homologous to yt. Consider now the map
h: Sn —• M of §2. Then the induced map hπ carries each closed curve of y2n_2

into a closed curve of length < 2π/^κ ", and we can introduce simultaneously
on the elements of hΠ o y2n_2 a parameter proportional to the arc length by a
homotopy in Π(M). Hence, we can assume that hΠ o y2n_2 consists entirely of
curves having E-value < 2π2/tc < Sπ2.

From § 1 now follows the existence of n non-trivial closed geodesies of E-
value < 2a*/κ, i.e., of length < 2π/ JT < 4π. However such a geodesic is
necessarily simple since every non-trivial geodesic loop on M has length > 2π.

4. For the proof of Theorem 2 we need an upper bound for the stretch-
ing of the length of a circle b of Sn under the map h: Sn -»M constructed in
§2. For this purpose we prove the

Proposition. Let v be a tangent vector at a point pr e HSn(p0) or tangent
to one of the geodesic arcs of length π/2 from pλ to the equator ESn(p0, p^).
Then for the length \ h^v \ we have the relation

(i) \Kv\<\v\/{T.

If v is a tangent vector at a point pr € HSn(px) — {pλ} then

I Kv I < I v I sin (r/JT)/ UT sin r sin- •—-

(n)

where r = dM(p', px).
For the proof of this Proposition we cover Sn with two normal coordinate

systems based at p0 and pl9 respectively. The line element of Sn is then given
by ds2 = dr2 + sin2r dφ2, where dφ2 is the line element of the unit sphere in
either 5£0 or

Since the geodesic segments of length π/2 from p0 to a point p € ESn(p0, Pi)
are stretched by at most 1/NΠΓ we have in this case h^dr < dr/JT".

Consider now the geodesic segment σ0: 0 < r < π/2, φ = φ0, from p0 to a
point p 6 ESn(p0, pj. Then sin rdφ can be considered as a normalized Jacobi
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field (Y0(r)\ 0 < r < π / 2 , along σ0, i.e., 70(O) = 0 and DY0(O)/dr = 1. The
image λ* sin r dφ then will be a normalized Jacobi field (Y(r)), 0 < π/(2Nf Λ )̂
<π/(2NIT) along the image segment σ = hσ0 of length π/(2Nlί7). Since the
sectional curvature ϋC along σ is bounded from below by K, the comparison
theorem of Rauch [5] (cf. [2] for a complete proof) gives | Y(f) \ < \ Yx(r) |,
0 < r < π/(2jκ^), where (Y^r)) is the normalized Jacobi field
sin (r^ΊΓ) in the sphere Sn(κ). That is to say, we have

IA* sin r dφ \ < (1 /NIT) | sin (r^T/^)dφ\ < (1 / J"F) | sin r dφ|,

which is ( i ) .
It remains to consider the image A* sin r dφ of a normalized Jacobi field

sin r dφ along the segment σ1: 0 <r < π/2, φ = φl9 of length π/2 from pλ to
a point p e ESn(p0, px). Let π/(2^) be the length of the image segment
a = Aa1? with π/2 < π/(2Nί/c7) < 7r/(24~ϋΓ) < π. A sin r dφ is again a Jacobi
field (y(r/Nl/ζ")), 0 < r < π/2, along σ, but it is not necessarily normalized.

However, we know that Y[—?zr-( < 1/-JT. We consider now the Jacobi
V2J/CO 'I

field

= (sin (r/fDdφ/ ( j T s i n ^ ^ ) ) , 0 < r < π/2 ,

on 5n(l) along a geodesic segment of length π/2^~κ~ < π. From the proof of
Rauch's comparison theorem in [2] one knows that, since the sectional cur-
vature K along a satisfies K < 1, the function p{r) = | Y(r/JT) | / | Y0(r/JT) |
is monotonely increasing with r in the interval [0, π/2]. Since /o(π/2) < 1 it
follows that

IMI = I Y(r/JΓiΠI ^mfr/JT)I

= sin (r/JDI (JT sin r sin π ) \\ sin r dφ | ,
L \ 2JΛ: /J

which is (ii).
5. We can now prove Theorem 2. There is a well determined solution

K—0.64 of 2/csin—%=r — 1. We fix K in this manner and consider the map
2\κ

h:Sn-^M constructed in §2. From §4 it now follows that each circle of Sn is
carried under h into a curve having length < 4π; actually the length of the
image of a circle is < 4π. This is true if the circle is not a great circle; if it
is a great circle it belongs with at least a half great circle to the half sphere
HSn(Po) on which the stretching of a tangent vector is bounded by 1/JT < 2.

We consider now the induced map hΓ: Γ(Sn) —> Π(M). We can modify hΓ
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in such a manner that the parameterization on the image circles is propor-
tional to the arc length. By keeping the same notations, we therefore can as-
sume hr(Γ(Sn)) c ΠC*-(M) with c* = 8τr2. From § 1 we then have the existence
of g{n) different closed geodesies of positive £-value < Sπ2, i.e., of length
< 4π. But such geodesies must be simple and of length > 2π.

Assume now that K ~ 0.46 is the solution of the equation 2 J T sin π

= 1. Consider a circle b on HSn(pτ) parallel to the equator ESn(p0, pj and
having distance sinr from p19 measured on Sn. Such a circle has length 2π
sin r. From (ii) it follows that the length of the image of b under h is bounded

by 2π sin (r/,JT)/UT s in—ξ_)<4τr; actually the length is even < 4π .
\ 2J/C /

This is clear for r < ττ/2; for r = jr/2, the circle b lies on H5n(p0) and then
we can apply ( i ) .

If we denote by Γ(Sn~ι) the subspace of Γ(Sn) formed by the circles paral-
lel to ESn(p0, px) we can assume that hr(Γ(Sn^)) c ΠC*~(M) with c* = SV.
Thus we have the existence of g(n — 1) simple closed geodesies on M with
length in [2π, 4τr[.

Assume finally that the non-trivial geodesies on M with length in [2π, 4π[
are not isolated or are non-degenerate. In the first case there then are infinitely
many simple closed geodesies with length in [2π, 4τr[. In the second case we
deduce from the Morse theory that two linearly independent homology
classes zx and z2 of Π(M) mod Π\M) having the property that the critical
points (=closed geodesies) g{z^ and g(z2) of £-values c(zj and c(z2), respec-
tively, at which these homology classes remain hanging (cf. § 1), are prime
can be assumed to be different. Since dim H*(Γ(Sn), Γ\Sn)) = n(n + l)/2,
under our assumption and with tz ~ 0.64 there are n(n + l)/2 simple closed
geodesies on M with length in [2τr, 4ττ[. Similarly, we get (n — l)n/2 such
geodesies if we assume K — 0.46.
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