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REMARKS ON THE FIRST MAIN THEOREM IN
EQUIDISTRIBUTION THEORY. I

H. WU

1. This is the first of a series commenting on the various aspects of the
First Main Theorem (FMT) in several complex variables as proved by Chern
[1] and Levine [4]. Our ultimate goal will be to recast the theorem of Chern
[1, p. 537] in a form which can adequately "explain" the Fatou-Bieberbach
example. We note that the FMT has recently been generalizd by Stoll [6],

We shall deal exclusively with the equi-dimensional case of the FMT, i.e.

the situation where the dimensions of the domain and range manifolds are

the same. In [4], Levine proved the nonintegrated FMT for a holomorphic

/: D -* PPC by explicitly writing down a (2p — 1) form A in PPC, and ex-

pressed the boundary integral if*A as the difference of the counting func-
oD

tion and the volume of the singular chain f(D). The purpose of this short
note is to point out that at least for the equi-dimensional case, which we are
interested in, an a priori knowledge of A is unnecessary; a precise statement
is given in the following theorem.

Let D be an orientable compact manifold of real dimension d, and M an
orientable compact riemannian manifold without boundary also of dimension
d. We adopt the convention throughout that Ψ denotes the volume form of M

and that (V = 1. If /: D ->M is C00, we write v(D) for Cf*ψ as usual.
M D

Theorem. For every ae M, there exists an integrable (d — l)-form μa on
M such that:

(i) If f:D->M is C°% and j-\a) is finite and disjoint from dD, then

where n(D, a) denotes the algebraic number of points in f~\a).
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(ii) μa is C00 in M-{a} with dμa = ψ, and its singularity at a is specified in
(12).

(iii) // M is Kάhlerian and of complex dimension n (2n = d), then there
is an (n — 1, n — 1) form λa in M-{α} such that de λa = μa.

(iv) // M is Kάhlerian, then a choice for each λa can be made so that λa

depends continuously on a, and each λa is a positive (n — 1, n — 1) form on
M.

We briefly explain the terms involved. First, n(D, a) of (i). Since f~ι{a) is
a finite point set off 3D, let f~\a) = {bly , bs} and around each bt choose
an open ball neighborhood Ut so that f~\a) Π Όt = {£?*}. Let U be an open
ball neighborhood of a so that /(£/<) c t/. Then /: l/4 - {*<}-* ί/ - {a}. If
σ, σ̂  are respectively the generators of Hd^(JJ — {a}) and H^iJJi — {£><})
coherent with the orientations of M and Z), then

( 1 ) f*(σd = ntσ

for an integer nim By definition,

( 2 ) n(D9a) = ΣtniΛ

Next, by continuous dependence of λa on a, we mean: if a' —• α, theu jlβ/ —• ^α

in the sense of currents (see de Rham [5]). To say that λa is positive, we
mean that locally there exists (n — 1,0) forms θt such that

( 3 ) λa^^-^ϊy^ΣiθiΛθi,

where sign = (n — I)2. This implies of course that λa induces a non-negative
measure on every complex subvariety of codimension one in M. (Complex
manifolds are oriented as in Weil [7, p. 33].)

2. We proceed to the proof of the theorem. (For background and motiva-
tion, see [2], [3] and [8].) We refer once and for all to de Rham [5] for
notation as well as the more delicate facts about harmonic theory on compact
riemannian manifolds; see particularly §§ 27-31. Let δa be the Dirac measure

at a, i.e. if / is a continuous function on M, δa(f) = ί(β). Since I Ψ = 1,
M

Ψ — δa is orthogonal to the harmonic w-forms (which are of course just con-
stant multiples of ψ) and so the equation of currents:

( 4 ) ΔΠa = Ψ-δa

has a solution. Define

( 5 ) μa = δΠa.

Note that while Πa is defined only up to constant multiples of Ψ, the defini-
tion of μa is unambiguous. Now,
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dμa = dδΠa = ΔΠa = Ψ - δa ,

so that in Λf-{α}, dμα = ΔΠa = ?F. (ii) is therefore clear in view of the Weyl
Lemma. Let M be Kahlerian. By a well-known identity: [Λ, dc] = δ (Weil
[7, p. 43]) so that δΠa = —dcΛΠa. If we define in turn:

( 6 ) λa=-ΛΠa9

(iii) is immediate. To prove (iv), let us first recall some general facts about
the Green operator. So M is again compact riemannian and orientable. One
knows that one solution of ΔΠa = Ψ — δa can be chosen to be Πa =
G(Ψ — δa) where G is the Green operator. In other words, we may let

( 7 ) Πa=-Gδa,

since GΨ = o. Now, G is an integral operator which (when operating on
functions) has kernel g(x, y)Ψy, where g(x9 y) is a function defined o n M x M
and C°° off the diagonal; its singularity along the diagonal will be presently
specified. To make Πa more explicit, let φ be a C°° function on M. Then 77α

as a current operates on φ as follows:

Πa(φ) = -

In other words, i7α is a current induced by the integrable d form {—#(α, yWv}
which is C00 except at a, i.e. except when a = 37. To describe the behavior of
g at (Λ, α), let ra:M—>R be the function: rα(y) = distance from a to 3> in
terms of the riemannian metric on M. ra is C°° in a sufficiently small neighbor-
hood of α as is well-known. Then the following holds when y is near a:

1 1 . n/ 1 \ i f d>2,
(d-2)Sd r£"2 \τt-3

( 8 ) g{a9 y) =
_ l o g — — + 0(1), if d = 2.
2π ra(y)

Here, Sd denotes the volume of the unit (d — l)-sphere imbedded in Rd

(which is — ϊ — to be precise), 0(1) a bounded function, and 01 -) a

function h such that (rd

a-
zh) is bounded. From (8) and by the compactness of

the diagonal in M x M, g(x9 y) is nonnegative in a suitable neighborhood N
of the diagonal. In M x M — N9 let K' be the lower bound of g(x9 y) and let
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K > IK'\. Then clearly {g(x,y) + K] is strictly positiveonMxΛί and hence,
for every a, — {g(a,y) + K) as a function of y is a strictly negative function
on M. Thus far, we have only assumed M is riemannian. If now M is
Kahlerian, we may let

It is immediate that μa = δΠ'a and ;£ satisfies all the properties thus far
claimed for λa. Since A is just the interior product by the Kahler form and
(gfa*') + K) > 0, A'a is obviously a positive (Λ — 1, Λ — 1) form on M (see
(3)). With this choice of λ'a, the last part of (iv) is proved. It remains to show
that with the same choice of 7!a the other part of (iv) also holds. Now if
a! -+a, then as currents, obviously δa> —>δa. Since G is continuous on cur-
rents, Gδa> -> Gδa, which means Πa, -> Πa by (7), so that Π'a. -> Π'a by (9).
Since Λ is obviously also a continuous operator, λ'a.—*λ'a again by (9). Thus
we have proved (ii) to (iv) completely. The next section is devoted to the
proof of (i).

3. In keeping with the notation of the discussion before (1), let f~ι{ά)
= {̂ i> * * * > bs} as before, and let U be a normal coordinate neighborhood
centered at a with coordinate functions xl9 , xd. We may assume U =

{Σtx\ < ε2} and that I — (0)1 is an orthonormal set. We may further assume
\dXι >

ε so small that
(or) rα = {ΣiX&, i.e. the geodesies in U emanating from a are in fact

minimizing geodesies.
(β) There exists a disjoint set of open balls {Uu , Us} such that

ί'\ά) Π Ui = {bi} and /(!/<) C U.
Now by Stokes' theorem and (ii) of our theorem,

v{D) = [f*Ψ = lim f
2> D { Γ

In view of (1) and (2), to prove (i) it suffices to prove

(10) rii = lim j — f*μa .

We pause to observe that if ζ is a closed (d — 1) form in U — {a} such that
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j ζ = 1 (in the notation of (1)), then (1) implies that nf = Γ/*ζ. Since we
a at

may choose dVt to be σt and dU to be σ, we then have

(11) rii = ί/*ζ , provided dζ = 0 and Γζ = 1 .

We will in effect show that, by passing to the limit, the right side of (10) is
in the form of the right side of (11). We will take up the case of dimΛf =
d > 2; because of the dichotomy of (8), the case d = 2 has to be treated
separately, though it is simpler.

Now μa = δΠa, so (7) and (8) lead to the following:

\Ud-2)s< Λ'2

{d-2)Sd r

which simplifies to, by virtue of (α),

Now we know that

where (gmn) is the matrix of the metric tensor with respect to the coordinate
system {JC1? , xd}, and gij are the components of the matrix inverse to
(gmw). Since {xu •• ,x d} is a normal coordinate system by choice and

— (o) ί are orthonormal vectors, it follows that
\dXi )

f* and giJ = δij + 0(rl),

where O(r̂ ) will now denote a function or a form which vanishes to at least
the second order at the origin. Obviously then,

*dxt = ( - l ) ' - 1 ^ Λ Λ Ski A - Λ dxd + 0(r*a).

We have therefore arrived at the following:

(12) μa = -Z-L ^ ( - 1 ) * - ^ ^ Λ Λ Sxt A Λ dxΛ + θ ( J L ) .
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But it is clear, by way of polar coordinates, that

° as —°
Hence, the right hand side of (10) becomes

lim — f*μa = lim f*l——Σi(—l)i-1xidx1 Λ Λ dxt Λ Λ dxt

<~*0 c/ £— 0 4/ \ i j ft/"

SU i 9X7 % "

DEF lim [f*θ .

By a routine calculation, dθ = 0 in ί/ — {α} and moreover, one recognizes

Σiί—ly'1-!-dxι Λ Λ «** Λ Λ "*<f as the volume form of the ε-
£

sphere imbedded in Rd. As 9J7 is the e-sphere in this coordinate system,

f 0 = 1. By (β) and (11), we have n* = j f*0. Thus we have proved (10),

and therewith (i). Hence the proof of the theorem is complete.
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