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THE THEORY OF QUASI-SASAKIAN STRUCTURES

D. E. BLAIR

Introduction

On a contact manifold of dimension In + 1 there exists, by definition, a
global 1-form η such that η Λ (dη)n Φθ. An almost contact manifold also
carries a 1-form η but it is not necessarily of maximal rank. The purpose of
this paper is to explore the meaning of the rank of η. To this end, we initiate
the study of normal almost contact metric manifolds with closed fundamental
2-form Φ. Such manifolds will be called quasi-Sasakian manifolds.

§ 1 presents the basic definitions and some results from the theory of
almost contact structures. Beginning with §2 we develop the theory of quasi-
Sasakian structures. In §2 a large class of examples is given and in §3 we
discuss the meaning of the rank of η. The result is that if η has rank 2p + 1
and the determined almost product structure is integrable then the manifold
is locally the product of a Sasakian (normal contact metric) manifold and a
Kaehler manifold. That is to say, η having rank 2p -f 1 means, loosely
speaking, that the space is split locally into a Sasakian piece where
η Λ (dη)p Φ 0 and a Kaehler piece whose fundamental 2-form is Φ — dη
properly restricted. §4 gives some geometric results on quasi-Sasakian mani-
folds and §5 characterizes the case where dη = 0, the latter characterization
being necessary in the study of the topology of cosymplectic manifolds [1],
[2]

1. Almost contact manifolds

All manifolds considered will be C°° and connected. A superscript will
denote the dimension of the manifold, for example M2n+1, and <f2n+1 will
denote the module of vector fields over M2n+ι. When we speak of an almost
contact manifold, quasi-Sasakian manifold, etc., we mean the manifold to-
gether with the corresponding structure.

A (2n + 1)-dimensional manifold carrying a global 1-form η such that
η Λ [drj)n Φ 0 is said to have a contact structure with η as its contact form.
On the other hand, a manifold M2n+1 has an almost contact structure (φ, ξ, η)
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if it carries a tensor field φ of type (1,1), a vector field ξ, and a 1-form η
such that

i

this is equivalent to a reduction of the structural group of the tangent bundle
of M2n+λ to U(n) X 1 (see [9]). From equations (1.1) we see that the maps
— φ2 and ξ®η form an almost product structure on M2n+ι with decomposi-
tion £2n+1 = S271®^1.

Furthermore, an almost contact manifold M2n+1 admitting a Riemannian
metric g such that

where X, Y e Sc2n+1, is said to have an almost contact metric structure (φ,ξ,η,g).
It follows from (1.1) that

g(φX9 Ύ) = -g(X, φY)

that is in an almost contact metric manifold with structure tensors (φ,ξ,η,g),
φ is skew-symmetric with respect to g. We define a 2-form Φ by

Φ(X9 Y) = g(X, φY)

and call it the fundamental 2-form of the almost contact metric structure.
If M2 n + 1 has a contact structure with contact form η then it has an underlying
almost contact metric structure (φ, ξ, η, g) such that

Φ = dη

called an associated almost contact metric structure [9].
Let M2n+1 be an almost contact manifold. S. Sasaki and Y. Hatakeyama

[10] defined an almost complex structure / on M2n+1 X R1 by

where / is a C°° real-valued function on M2n+1Rι and X e &2n+1. Considering
the Nijenhuis torsion [/, J] of /, they computed [/, J]((X, 0), (Y, 0)) and
[/, J]((X, 0), (0, d/dt)) which gave rise to four tensors N™, N(2), N(3), Nw

given by
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, Y) = [φ, φ](X, Y) + dv(X, Y)ξ

N<*>(X, Y) =

where <£x denotes the Lie derivative with respect to X. The result is that /
is integrable if and only if N(1) = 0; in particular, N{1) = 0 implies N(2) = N{3)

— Nw = 0 [10]. An almost contact structure is said to be normal if Nω = 0,
that is, if the almost complex structure on M2n+1 X R1 is integrable. A normal
contact metric structure is called a Sasakian structure.

We now state some results from the theory of almost contact structures
which are required later. The first two are due to A. Morimoto [7], [8].

Proposition 1.1. Suppose that M2n+ι is the bundle space of a principal
circle bundle over a complex manifold M2n and that there exist a connexion
form η on M2n+1 and a 2-form Ω, the curvature form of η, of bidegree (1, 1)
on M2n such that dη = π*Ω, where π: M2n+1 —>-M2n is the bundle projection
map. Then we can find a linear transformation field φ and a vector field ξ
on M 2 n + I such that (φ, ξ, η) is a normal almost contact structure.

For later use we give the definitions of φ and ξ in this proposition. Let /
be the almost complex structure on M2n, that is P = —/. Then φ is given
by φX = πJπ^X where π denotes the horizontal lift with respect to the con-
nexion given by η. The vector field ξ is defined by requiring that it be
vertical (i.e., π*ξ = 0) and that η(ξ) = 1.

We say that the vector field ξ on an almost contact manifold M2n+1 is
regular if for every point m e M2n+1 there is a (coordinate) neighborhood Um

of m such that every orbit of ξ passes through Um at most once. If the orbits
of ξ are closed curves, ξ is called a (regular) closed vector field.

Morimoto [8] showed that if ξ is a regular closed vector field, then the
only normal almost contact manifolds are those constructed above.

Proposition 1.2. // M2n+1 is a normal almost contact manifold with ξ a
regular closed vector field, then M2n+1 has a principal circle bundle structure
over a complex manifold M2n as described in Proposition 1.1.

As a corollary we have that if M2n+1 is a compact regular normal almost
contact manifold, then it has a circle bundle structure over a complex mani-
fold as in Proposition 1.1.

The almost complex structure tensor / in this theorem is given by
JX = π^φπX. The operator / is well-defined; for, if X is a vector field on
M2n+1 then φX is a horizontal vector field with respect to the connexion
determined by η. Thus, φ is invariant under the right translations of M2nJrl

by the action of S1 and hence JX(π(m)) is independent of the choice of m on
the fibre over π(m). In the proof of Theorem 2.4 below we will show that
P = - / .



334 D. E. BLAIR

If the manifold M2n in Proposition 1.1 is only an almost complex manifold,
then φ and ξ as given, together with the connexion form η define an almost
contact structure on the bundle space M2 n + 1. Hatakeyama [4] proved the
following proposition.

Proposition 1.3. The almost contact structure on the circle bundle M2Λ+1

given in Proposition 1.1 is normal if and only if the almost complex structure
on the base manifold M2n is integrable and the curvature form Ω of the con-
nexion form -η is of bidegree (1, 1).

2. Quasi-Sasakian structures

Definition. An almost contact metric structure (φ, ξ, η, g) is called quasi-
Sasakian if it is normal and its fundamental 2-form Φ is closed, that is, for
every X, Y e ^ 2 n + 1

[
dΦ 0 Φ(XY) = g(X,φY).

There are many types of quasi-Sasakian structures ranging from the
cosymplectic case, dη = 0 (rank η = 1), to the Sasakian case, η Λ (dη)n Φ 0
(rank η = In + 1, Φ = dη). The 1-form η has rank r = 2p if (dή)* Φ 0 and
η Λ (dη)p = 0, and has rank r = 2p + 1 if 7 Λ (dη)p Φ 0 and (dηy+ι — 0.
We also say that r is the rank of the quasi-Sasakian structure.

We shall first show that there are no quasi-Sasakian structures of even rank.
Lemma 2.1. // (φ, ξ, η, g) is a normal almost contact metric structure,

then

dη(X, ξ) = 0

fof every XeS2n+\
Proof. The coboundary formula for d gives

dη(X, ξ) = X(η(ξ)) - ξ(η(X)) - η([X, ξ])

= - ξ(η(X)) - η([X, ξ])

since η(ξ) = 1 and by normality (see formula (1.3)), (&ξή)(X) = 0.
Theorem 2.2. There are no quasi-Sasakian structures of even rank.
Proof. Let X19 , X2p€ £2n+ι = S2n®Sι be vector fields such that

(dη)p(X19 , X2p) Φ 0. By Lemma 2.1 we may assume without loss of
generality that X19 , X2p e S2n, from which

(?Λ (dη)P)(ξ, X19 ., X2p) =
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where we have used the facts that η(ξ) = 1 and η(Xτ) = = η(X2p) = 0
forZ1 ? . . . ? Z 2 ί , € ^ Λ .

We now give some examples of quasi-Sasakian structures of odd rank. In
fact we shall exhibit a large class of quasi-Sasakian manifolds.

Let M2n be a Kaehler manifold with metric gr. Let Ω be the fundamental
2-form and / be the almost complex structure tensor. S. Kobayashi [6] has
shown that the set of all principal circle bundles over M2n can be given a
group structure isomorphic to the cohomology group H2(M2n, Z), where Z is
the ring of integers. Using this result we can prove the following theorem.

Theorem 2.3. Let M2n be a Kaehler manifold. If there exists a 2-form ¥*
of bidegree (1, 1) and rank p representing an element of H\M2n

y Z), then
there exists a quasi-Sasakian structure of rank 2p + 1 on the corresponding
principal circle bundle.

Proof. Let M2n+1 denote the bundle space and π : M2n+1 ->M2n the pro-
jection map. Let -rf be a connexion form on M2n+1. Then there exists a 2-form
?F*' on M2n such that dη' = π*Ψ*'. However, the characteristic class [Ψ*] of
M2n+\ [¥*] e H\M2n, Z), is independent of the choice of connexions (Ko-
bayashi [6]), so that [¥*] = [¥*']. Thus, there exists a 1-form ω on M2n such
that r* - ¥*' = dω. Hence

π*¥* = π*¥*' + π*dω = d{ηf + τr*α>) .

Now τr*<y is horizontal and αd-equivariant (i.e. π*ω oRs = ad(s~1)π*ω, where
R$ is right translation by sεS1). Since S1 is abelian, ad{s~ι) is the identity
map, so π*ωoRs = π*ω. Hence, if we set η — ηf + π*ω,

η o Rs = η ,

since rf is αd-equivariant. Moreover, if ξ is a vertical vector field such that
τf(ξ) = 1, then η(ξ) = 1, since (π*ω)(ξ) = ω(π*ξ) = 0. Thus, η is a connex-
ion form on M2n+1 with dη = π*?Γ*, the curvature form of η, and hence
Ύ] Λ (dηY Φ 0. For, if X^ , X2p are 2p linearly independent horizontal
vector fields,

0? Λ (dη)*)(ξ, Z l 5 , X2p) = η(ξX(dη)P(Xl9 , Z2 p))

Define φ by 0AT = πJπ^X where π denotes the horizontal lift with respect
to the connexion η. Then, since ξ is vertical, φξ = 0; moreover η oφ = 0.
An easy computation gives φ2X = — X + 7]{X)ξ. Hence, we have an almost
contact structure on M27l+1. Now define a metric g on M 2 Λ + 1 by g(X, Y) —
gf(π*X, π*Y) + η(X)η(Y). Then, since g' is hermitian, one can verify that g
satisfies equations (1.2), so we have an almost contact metric structure on



336 D. E. BLAIR

M2 n + 1. Defining the fundamental 2-form Φ by Φ(X, Y) = g(X, φY) we see
that

Φ(X, Y) = g'(π*X, π*φY) + η{X)η{φY)

so that Φ = π*Ω, and dφ = 0 since M2n is Kaehlerian. Finally, since ¥* is of
bidegree (1, 1) and M2n is Kaehlerian, it follows from Proposition 1.3 that
the almost contact metric structure is normal.

That quasi-Sasakian manifolds actually exist may be seen by taking M2n to
be the Kaehlerian product of Kaehler manifolds M2p and M2q(p + q=ri) and
letting Ψ* denote the fundamental 2-form of M2p extended to be a form on
M2n vanishing over M2q.

We shall now show that if ξ is a regular closed vector field on a quasi-
Sasakian manifold M2n+1, then M 2 n + 1 has a circle bundle structure as in Theo-
rem 2.3.

Theorem 2.4. If M27l+1 has a quasi-Sasakian structure (φ, ξ, η, g) of rank
2p + 1 with ξ a regular closed vector field, then M2n+1 has a principal circle
bundle structure over a Kaehler manifold, the characteristic class of M2n+1

being [W*] where dη = 7r*?Γ*; ¥* is of bidegree (1,1) and rank p.
Proof, By Proposition 1.2, M2n+1 has a circle bundle structure over a

complex manifold M 2\ Let π: M2n+1->M2n be the bundle projection map
and πX the horizontal lift of a vector field X on M2n with respect to the con-
nexion given by η. The almost complex structure tensor / on M2n is given by
JX = π^φπX and / is well-defined as we saw in § 1. A direct computation
gives J2 = — /. Indeed,

PX = π^

= π*φ(φπX — η(φπX)ξ)

= τr*(- πX + η(πX)ξ) = -X .

Now define a metric g' on M2n by g'(X, Y) = g(πX, πY) - η(πX)η(πY), and
a 2-form Ω on M2n by fi(ΛΓ, Y) =

g\JX, JY) = flr'(2T, Y), β(X, Y) = φ(ifJf, πY)

where Φ is the fundamental 2-form of the structure (φ, ξ, η, g). Thus, g' is
hermitian and π*Ω = Φ. Now Φ has rank n, and hence β does also. Further-
more 0 = dφ = dπ*β = π*(dΩ) implies dΩ = 0 since π* is injective. Thus,
M2Λ is Kaehlerian. Finally there exists a 2-form W* on M2n (the curvature
form of η) such that <*? = π*Ψ* which by Proposition 1.3 is of bidegree
(1,1). Moreover, the characteristic class of M2n+1 is [W*] e H\M2n, Z).
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Remark. Combining the above results with the well-known Boothby-
Wang fibration [3] it is seen that if M2n+1 has a quasi-Sasakian structure of
rank 2p + 1 with ξ a regular closed vector field, and [Ω] € FP(M2n, Z), then
it also has a Sasakian structure.

3. Locally product quasi-Sasakian manifolds

Before proceeding with the results of this section, we require some new
notation and to possibly alter the quasi-Sasakian structure to a more canonical
form. Let (φ, ξ, η> g') be a quasi-Sasakian structure of rank 2p + 1 on a
manifold M2n+1. Let S2p denote the submodule of £2n+ι on which (dη)p Φ 0
and φS2p = £2p\ since dη(X, ξ) = 0 by Lemma 2.1, i2p is a submodule of
S2n. Let &2q denote the orthogonal complement of £2p in S2n and define
maps ψ and θ by

φ I ^ 2 p on S2p (0 on

0 on £2q , θ -

s 0 on cί1 ( 0 on

then φ = ψ + θ. Observe that ψ and hence θ are not unique since the choice
of S2p is not so. Now, if necessary, define a new metric g on M 2 n + 1 by re-
quiring that g agree with g' on <ί2<z, and £ι and satisfy #(X, ^y) = dη(X, Y)
for AT, Y e S2p. It is easy to verify that (φ, ξ, η, g) is a quasi-Sasakian struc-
ture of rank 2p + 1 on M2n+1. We shall work with this structure in this paper.

The maps — ψ2 + ξ ® η and — θ2 define an almost product structure with
decomposition i2n+ι = £2p+ι® £2q, where £2p+1 = £2p® S\ Similarly the
maps — ψ2 and -- θ2 + ξ ® η give an almost product structure with decom-
position S2n+ι = i2p ® £2q+\ where £2q+ι = £2q® £\ The integrability of
these almost product structures is discussed below in detail.

Theorem 3.1. // M2n+ι has a quasi-Sasakian structure of rank 2p + 1 with
[0, 6] = 0 for some θ, then M2n+1 is locally the product of a Sasakian manifold
M2pJrl and a Kaehler manifold M2q, q = n — p.

Proof. It is well-known that [θ, θ] = 0 if and only if [ - 02, - θ2] = 0;
but this is just the integrability condition for a locally product structure (the
decomposition here is S2n+1 = £2p+ι® £2q). Let xa (a = 1, . , 2p + 1), xa

(a = 2p + 2, , 2n + 1) be coordinates such that {d/d*a} is a basis of £2pJrl,
and {5/3xa} is a basis of <^2?. Thus if {xa, xa} and {yα, ya} are coordinates for
two over lapping coordinate neighborhoods, then

dya dya I

Φ o.

dxa dxa
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However, since we have a locally product structure, the yα 's depend only on
the Jtα's, and the yα's only on the * α ' s ; hence

i£- = o, dr - o.
dxa ' dxa

Therefore,

2-ntt I 13-nα

0 .
dya

dxa 5
9yα

dχa

Hence the system of subspaces defined by xa = constant, for each a, is an
atlas determining a manifold M2p+1 similarly, the system of subspaces defined
by xa — constant, for each a, is an atlas determining a manifold M2q. Locally,
M 2 n + 1 is the product of M 2 p + 1 and M2q, and the localized modules of vector
fields over M2p+1 and M2q are (isomorphic to) <f2p+1 and <g2q, respectively.

Now η Λ (dη)* ΦOon <?2p+1 = S2p ® S\ so η\^P^A(d(η\^2p+1)y φ 0 over

Λf2p+i giving a contact structure. Since ψ and φ agree on 82v and vanish on

&1, (Ψ> f>7)l^2p+i satisfy equations (1.1) on M*p+1. Furthermore, ^L2ί>+i

satisfies equations (1.2). Hence, (φ, ξ, η, g)\»2p+ι is an associated almost

contact metric structure. To show that M2p+1 is Sasakian, it remains only to
show that the structure is normal. For X, Y e i2p+1

= [φ9 φ](X, Y) - 2[φ, Θ](X, Y) + [θ, Θ](X, Y) + dη(X, Y)ξ

= - 2[φ, Θ](X, Y)

since ψ = φ-θ,[θ,θ] = 0, and by normality [φ, φ](X, Y) + dη(X, Y)ξ = 0.
Continuing the computation we have

[φ, φ](X9 Y) + d(v\f2p+0(X, Y)ξ = - 2[φ, θ](X, Y)

= - (φθ[X, Y] + θφ[X, Y] + [φX, ΘY] + [ΘX, φY]

- φ[X, ΘY] - θ[Xy φY] - φ[ΘX, Y] - θ[φX, Y])

= 0

where each term in the last expression vanishes because X, Y e £2p+1 and θ is
zero on <?2*+1, Z € <̂ 2*+1 = <̂ 2^ 0 i ι implies φX = ψX + ΘX e S2p, and the
distributions — 0 2 + ξ ® ^ and — θ2 are integrable so that [X, Y] e <f 2*+1.

Finally, define a 2-form Θ by Θ(X, Y) = flr(ΛΓ, ίY). Since θ = φ - ψ we

have θ = Φ — ?Γ, and hence dΘ = 0. Furthermore, ^ has rank 2q, so θ 5 Φ 0,

(^l^2g)
2 = —L [0, θ] = 0 and ^ |^ 2 ? is hermitian. Thus, θ\^2q and ^r|̂ 2? give

M2q a Kaehler structure.
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We can also obtain the converse of this theorem, so we again have a large
class of examples of quasi-Sasakian manifolds.

Theorem 3.2. // a manifold M2n+1 is (locally) the product of a Sasakian
manifold M2p+ι and a Kaehler manifold M2q, then M2n+1 has a quasi-Sasakian
structure of rank 2p + 1.

Proof. Let i2n+ι, g2p+1 and S2q denote the localized modules of vector
fields on Λf2n+1, M2p+1 and M2q respectively. Then, since M2n+1 is locally the
product of M2p+ι and M2q, we have <f2Λ+1 s £2p+1 Θ <?**. Let (φf, ξ', ηf, gp)
be an associated almost contact metric structure to the Sasakian structure on
M2p+1, and (#', gq) an associated almost hermitian structure on M2q (i.e. θ'2 —
- I, gq(θ'X, ΘΎ) = gq(X, 7) , X, Y e i2q, and Θ'(X, Y) = gq(X, ΘΎ) where
θ' is the fundamental 2-form of the Kaehler structure on M2 ?).

We shall write X € i2n+1 as Xτ + X2 where XΎ e £2p+1 and X2 e i2q (under
the isomorphism £2n+ι s <^2p+1 Θ ^ 2 ί ) . Define a 1-form η on M 2 n + 1 by η(X)
= '̂(ΛΓO and take f e ̂ 2 Λ + : | to be equal to ξ' e <f2'+1; then η(ξ) = η'(ξr) = 1.
Now define new maps ψ,θ,φ: £2n+ι -> ̂ 2 n + 1 by ψX = ^ Z ^ ^ Z = Θ'X2,
φ = ψ -f θ then a direct verification gives 0f = 0, η o φ = 0 and 02 = — /
+ £ ® jy. Defining a metric ^ on M2n+1 by g = gp + gQywe obtain equations
(1.2) by direct computation using the facts that gp satisfies equations (1.2)
and gq is hermitian. Thus, M2n+1 has an almost contact metric structure.

Now since M 2 Λ + 1 has a locally product structure, we have coordinates
{xa, xa} and basis vector fields {d/dxa, d/dxa} as in the proof of Theorem 3.1.
With respect to this basis the components φ\ of ψ are functions of the xa's
alone (ψb

ad/dxb = ψd/dxa = φ'djdx") and similarly for the components θβ

a of θ.
Using these facts a direct computation yields [φ, φ] + ξ ® dη = 0 giving the
normality of the structure on M2n+1.

Finally let Φ, given by Φ(X, Y) = g(X, φY), denote the fundamental 2-form
of the structure on M2n+1. Since M2q is Kaehlerian, dΘ' = 0, and since φ —
φ + θ ( = φ' + θ'), Φ = dηf + &. Thus dφ = d(dη' + &) = 0. Hence, the
almost contact metric structure defined above is quasi-Sasakian; since φr has
rank 2p, so has ψ and therefore the structure has rank 2p + 1.

It should be remarked that quasi-Sasakian structures with [ψ9 ψ] = 0 (de-
composition S2n+1 = S2p Θ <^2g+1, where i2q+ι = i2q φ S1) are of special
interest. In fact, it[φ,φ] = O then φ is the zero map and we therefore have
only the rank 1 case (cosymplectic). For, since [ψ,φ] = O gives an integrable
distribution, X, Y € i2p implies [X, Y] e £2p, and hence [θ, Θ](X, Y) = 0.
Now, by normality

- dη(X, Y)ξ = [φ, φ](X, Y)

= [ψ, ψ](X, Y) + 2[φ, Θ1(X, Y) + [θ, Θ](X, Y)

) = o.
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But if X or Y is in <?2q+1 then dη(X, Y) = g(X, φY) = 0. Thus, dη(X, Y) = 0
for every X, Y € £2n+λ giving the cosymplectic case.

The integrability of the almost product structure determined by — φ2, and
ξ ® η (decomposition i2n+1 = £2n ® iι) also occurs only in the cosymplectic
case. For, we know that [ — φ2, — φ2] = 0 ([£ ® 9, f (g> 9] = 0) if and only if
[φ, φ] = 0, and hence it follows from the normality condition,

[φ, φ]{X, Y) + dη(X, Y)ξ = 09

that [φ, φ] = 0 if and only if dη = 0.
Returning to the case [θ, θ] = 0, let us suppose that ξ is a regular closed

vector field and see what effect the integrability condition has on the base
space of Theorems 2.3 and 2.4.

Theorem 3.3. Let Af2n+1 be a quasi-Sasakian manifold of rank 2ρ - 1
with ξ a regular closed vector field. If M2n+1 has the locally product structure
of Theorem 3.1 (i.e. [θ, θ] = 0), then the base manifold M2n of the circle
bundle M2n+ι is locally the Kaehlerian product of two Kaehler manifolds M2p

and M2q, p + q = n.
Proof. Using the usual notation, define maps P and Q over M2n by PX

= π^φπX and QX = π#θπX where πX is the horizontal lift of X with respect
to the connexion η on M2n+K Then, since φ = ψ + θ, the almost complex
structure tensor / on M2n satisfies / = P + Q. Since ψθ = θψ» = 0, it can be
verified that PQ = QP = 0 and - P2 + ( - Q2) = I, and hence - P2 and - Q2

are projection maps. Thus, to show that M2n has a locally product structure
one needs only to show that [Q, Q] = 0, for, then [— Q2, - Q2] = [— F2,
- F2] = 0. Thus, if X and Y are vector fields on M2n

[β, QXX, Y) = Q2[X, Y] + [QX, QY] - Q[X, QY] - Q[QX, Y]

= π*θ2π[X, Y] + [π*θπX, π*θπY] - π*θπ[X,

— π*θπ[π*θπX, Y]

= π*62[πX, πY] + π*[θπX, θπY] - π*θ[πX, θπY]

- π*θ[θπX, πY]

= 0 .

The spaces of which M2n is locally the product will be denoted by M2p and
M2q; we now show that these spaces are Kaehlerian. Since — P2 and — Q2

are projection maps we have P2\gιv = — I\g*v and Q2\g^ = — ̂ l^23 giving
almost complex structures on M2p and M2q furthermore, we have [P, P] = 0
and [Q, Q] = 0 so these are complex structures. If gf is the Kaehler metric
on M2 n, then for X, Y e S2v

, PY) = gVX, JY) = g'&, Y) = g'\^(X, Y).
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Similarly g'\giq(QX, QY) = gf\^(X9 Y) for X, Ye<?2q. Thus, the restrictions

of g' to S2p and i2q give hermitian metrics on M2p and M2q, respectively. De-
fine 2-forms Ωλ and Ωt by Ωj(X, Y) = g'(X, PY) and Ω2(X, Y) = g'(X, QY).
Then, since / = P + Q, the fundamental 2-form Ω on M2n is equal to β 2 + Ω2.
Since P has rank 2p and β rank 2q, Ωξ ψ 0 on M2p and βf ^ 0 on M2q.
Finally, since β ^ = Ω\g2p and £ 2 | ^ 2 g = Ω g n , dφx\s2p) = 0 and d{Ω2\g2q)

= 0 .
Now F 2 ^ = 0 for every X implies [θ, θ] = 0 where F is covariant differ-

entiation with respect to the Riemannian connexion determined by the metric
g of the quasi-Sasakian structure. Thus, if the stronger hypothesis is imposed
we have a locally product structure as above. We show that it is actually a
locally decomposable Riemannian structure, i.e., if {xa, xa} are the coordinates
introduced above, then g(d/dxa, d/dxb), α, b = 1, , 2p + 1, depends only
on the * α ' s , and g(d/dx% d/dxβ), a, β = 2p + 2, , In + 1, only on the * " s .

Lemma 3.4. Vxθ = 0 implies Vxθ
2 = 0.

Proof. (VXΘ)Y = Fχ^y - ^ F x y .

Hence

Y = F^^y - ΘΨXY

= {Vχθ)ΘY + Θ{FXΘ)Y

from which the lemma follows.
Let F = — ψ2 + f ® 97 + ^2, that is, F is the difference of the projection

maps — φ2 + ξ (x) 37 and — 02. It is known (Yano [12], p. 221) that a neces-
sary and sufficient condition for a locally product Riemannian space to be
locally decomposable is

for every X. But in our case F = — ψ2 + ξ ® η + θ2 = / 4- 202 and our re-
sult follows from the lemma. We state the result formally.

Theorem 3.5. // M 2 n + 1 has a quasi-Sasakian structure of rank 2p + 1 with
Vxθ = 0 for every X € «?2n+1, then M2n+1 is a locally decomposable Rieman-
nian manifold with the locally product structure of Theorem 3.1.

Corollary 3.6. The Riemannian structure of a cosymplectic manifold is
locally decomposable.

4. Some geometric results

In the last section we considered the distributions — θ2 and — ψ2 + ξ ® η
with [θ, θ] = 0; here we shall work with a general quasi-Sasakian structure,
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that is, we have the three distributions — ψ\ — θ2, ξ ® η. We begin with
some important and interesting lemmas.

Lemma 4.1. The fundamental vector field ξ of a quasi-Sasakian structure
is a Killing vector field.

Proof, By normality N(3) vanishes, that is, S£$ = 0; hence for X, Y €

On the other hand

Se^Φ = dcξΦ + cξdφ = 0

since dφ = 0 and (cξΦ)X = Φ(ξ, X) = g(ξ, φX) = 0. Furthermore, by norma-
lity, iV(4) vanishes, that is, &ξη = 0. Hence, a computation gives

Thus (&ζg)(X, φY) = 0 and (&ξg)(X, (ξ ® η)Y) = 0. Now since the map
φ + ξ ® r) is non-singular, &ξg = 0 and hence £ is a Killing vector field.

Lemma 4.2. i f^ = 0and £>$θ = 0.
Proof. jίf̂ ST = 0, since dΨ = 0 and (: e r)Z = 0. Hence

o = c^o( )
However, by Lemma 4.1

0 = {

Therefore, 0 = [£, ̂ Y] - 0[f, Y] = (JS^Y. On the other hand, since Sfξφ
= 0, we have &ξθ = &ξφ - Se^φ = 0.

Lemma 4.3. Fγξ — φY for any Y e i2n+ι (V is covariant differentia-

tion with respect to the Riemannian connexion).
Proof. Since V is covariant differentiation with respect to the Riemannian

connexion

(Fxη)(Y) - (Vγη)(X) = dη(X, Y) .

Using the fact that ξ is a Killing vector field, that is,

0 = ξg(X, Y) - g([ξ, X], Y) - g(X, [?, Y]),

and the identity

Xg(X, Z) = g(Y, VXZ) + g(FxY, Z)
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we obtain

Hence,

dη(X, Y) = - 2(FYV)(X) ,

so #(AΓ, ̂ Y) = — 2g(X, Vγξ) from which since X is arbitrary

Fyξ = - λφY

as desired.
The questions of the distributions — ψ2, — θ2, ξ ® η being parallel along

one another, being flat and being geodesic were discussed in detail in [1].
Here we will prove an interesting curvature theorem.

Let Xm, Ym be tangent vectors at m e M2 n + 1 and K(Xm, Ym) denote the
sectional curvature at m determined by the plane section spanned by Xm and
Ym. Let Rxγ denote the curvature transformation, that is,

Theorem 4.4. // M27l+1 has a quasUSasakian structure of rank 2p + 1
at every m e M2n+1

0 , Z m e f*(m) .

Proof. Without loss of generality we may take Xm to be a unit vector
orthogonal to ξm. We now have

g(R$xξ, X) = g(Ttt.rf, X) + g(FxF(ξ, X) - g(F,Fxξ, X)

= 9(- γφ[ξ, X}, X)-9(- ^PsψX, X)

= g(- jΦie, X], X) - g(- ^rΦχξ, X) - g(- j[ξ, ψx], X)

= - g(±φ>X, X)

0 , X € β*
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from which the result follows. We have used Lemmas 4.2 and 4.3 in the
computation.

In the Sasakian case (rank In + 1) the theorem reduces to that of Hatake-
yama, Ogawa, Tanno [4].

Corollary 4.5. A quasi-Sasakian manifold of constant curvature is either
Sasakian or cosymplectic {locally flat).

Corollary 4.6. A quasiSasakian manifold of strictly positive curvature is
Sasakian.

5. Characterization of the cosymplectic case

The following formula in the theory of Sasakian manifolds is proved in
[11]:

(5.1) (FχΦ)(Y, Z) = λ(v(Y)g(X, Z) - η(Z)g(X, Y)) .

In this section its quasi-Sasakian analogue is given in order to determine the
meaning of the vanishing of V XΦ (equivalently Fxφ).

Proposition 5.1. On a quasiSasakian manifold

{VXΦ){Y, Z) = ^.(η(Y)g(X, Z) - η{Z)g{X, Y))

(5.2)
(V(Y)9(Θ*X, Z) - η{Z)g{θ*X, Y)) .

The proof is a very lengthy computation but is similar to that of (5.1).
Theorem 5.2. A quasi-Sasakian manifold M2"*1 is cosymplectic (rank 1)

if and only if VXΦ = O for every Xeg2n+\
Proof. The condition is clearly sufficient; for, VXΦ = 0 for every X, im-

plies [φ, φ] = 0 and hence by normality we have

dη(X, Y)ξ = - [φ, φ](X, Y) = 0

for every X, Y s «?2n+1. Necessity follows from Proposition 5.1 for, if dη = 0
on M2 n + 1, then ψ is the zero map on <f2p+1 and θ = φ. Thus (5.2) becomes

(VXΦ)(Y, Z) = ±(χ(Y)g(X, Z) - V(Z)g(X, Y))

- V(Z)g(- X + v(X)ξ, Y))

= 0 .
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