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CRITICAL POINTS AND CURVATURE
FOR EMBEDDED POLYHEDRA

THOMAS BANCHOFF

Recently a new insight into the Gauss-Bonnet Theorem and other problems
in global differential geometry has come about through the connection between
total curvature of embedded smooth manifolds and critical point theory for
non-degenerate height functions.

This paper presents an analogous program for embedded polyhedra. The
methods are completely elementary, using the techniques neither of differential
geometry nor of algebraic topology. As such the paper has a twofold purpose
—to study global geometry of polyhedra for its own sake, and to give a
deeper understanding of the theorems of global differential geometry through
an elementary presentation of their finite or combinatorial content. Moreover
the polyhedral theory applies to a wider class of objects, and gives a new
interpretation of the relation between intrinsic and extrinsic curvature.

Although the polyhedral part of the paper is relatively self-contained, the
remarks which show the connection with the differentiable theory presuppose
a familiarity with the classical differentiable results. For a bibliography on
these and related problems, see Kuiper [4]. This paper will contain no dis-
cussion of the possible convergence theorems relating the polyhedral and
differentiable theories—for a presentation of this topic, expecially in the 2-
dimensional and convex cases we refer to A. D. Alexandrow [1]. For related
total curvature concepts see also Chern-Lashof [3].

A subsequent paper of the author will deal with critical points and curva-
ture for mappings of complexes into Eι for / > 1, and into /-dimensional
manifolds.

The author wishes to thank Professor Kuiper for his interest and advice
throughout the development of this research.

1. The critical point theorem

Definition. A convex cell complex Mk embedded in En is a finite collec-
tion of cells {Cr}, where each C° is a point, and each Cr is a bounded convex
set with interior in some afϊine Eτ c En, such that the boundary dCτ of C r is
a union of Cs with s < r, and such that if s < r and Cs Γ\Cr Φ 0, then
O C dC\ Mk is called k-dimensional if there is a Ck in Mk but no C*+1.

Communicated by S.S. Chern, June 19, 1967.
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Examples of convex cell complexes are embedded simplicial complexes
and simplicial manifolds. In this paper the adjective "polyhedral" will refer
to convex cell complexes.

Definition. A linear map ξ\En-^Ex is general for Mk if ξ(v) Φ ξ(w)
whenever v and w are the vertices of a C1 in Mk.

Definition. If ξ is general for Mk, we may define an indicator function:

t\ __ ίl if 0 e C r, and ξ(v) > ξ(x) for all x in C\
v > « - (0 otherwise.

Lemma 1. If ξ is general for Mk, then for a fixed C r,

Σ A(C, v, ξ) = 1 .
V c M

Proof. This expresses the fact that a general ? o n a convex C r achieves

its maximum at exactly one vertex.

Definition. If ξ is general for Mk, define the index of v with respect to ξ

to be a(v, ξ) = Σ (~l) r Σ A(C% v, ξ).
r = 0 CreM

Definition. If # is a finite collection of cells, the Euler characteristic of

<g is χ(^) = 2 ( - l ) ^ ^ ) , where α r(^) =number of r-cells in ̂ .
r=0

Theorem 1 (Critical point theorem). // ξ is general for M, then
Σ a(v, ξ) = χ(M) .

V

Proof. Σ *(», f) = Σ Σ ( - l ) r Σ A{&, v, ξ)
v i M v t M r = 0 Cr t M

= Σ(-i)r Σ
r = 0 Ctί

= Σ {-l)rar{M) by Lemma 1
0

Remark 1. This is an analogue and a generalization of the classical
critical point theorem for non-degenerate differentiable functions on smooth
manifolds. To demonstrate this, we examine in detail an example of a poly-
hedral manifold and a smooth manifold in which the critical points are in
exact correspondence.

Let τn C E?n be the smooth n-torus embedded as a product of n copies of
a circle in a plane. In coordinates,

τn = {t*i, yi, , *π, yn)\A + >1 = 2, i = 1, , n} .

Analogously we define the polyhedral n-torus

Tn = {(*i,3Ί> •• -,Xn, )V)|πiax(|Λ:{|, |y f | ) = 1, i = 1, . , n} .
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( - 1 , 1)

( - 1 , - 1 )

(1, 1)

*! X X ••• X

We consider the linear function ξ: E2n -+E1 given by the sum of coordinates:
ξ(xi> yi> ' -' 5

 χn, yn) = *i + Ji + + *n + yn On each of the manifolds,
ξ achieves its maximum, 2w, at exactly one point, with all coordinates + 1 .
Similarly the minimum of — 2n is achieved at only one point with all
coordinates — 1 .

The function ξ restricted to τn is a differentiate function with isolated
non-degenerate critical points, which occur precisely at the 2n points where
xi = yiz= + 1 or — 1 for z" = 1, ••-,«.

The vertices of the polyhedral manifold Tn are the 2 2 n vertices of the 2n-
cube, i.e. the points with all coordinates + 1 or — 1 . Furthermore two
vertices lie in an edge of Tn if and only if they differ in precisely one coordi-
nate. Therefore ξ is general for Tn. Moreover a(v, ξ) = 0 unless v has
xi — yt for all i = 1, , n, so the points where a(v, ξ)Φθ are precisely the
critical points of ξ on τn.

On τn

y a critical points is of Morse index r if and only if ξ(p) = —2n + 2r,

and there are ( n j such points for each r. If a vertex v of Tn corresponds

to a critical point of Morse index r, then the set of cells in Tn for which v is
the highest vertex with respect to ξ fits together to form an open r-dimensional
cell, soa(v, ξ) = ( - l ) r .

Thus if v in a polyhedral manifold resembles a non-degenerate critical
point p of a differentiable function, then a(y, ξ) = ( — 1) to the power (Morse
index of p). For example, at an absolute minimum, the Morse index is 0,
and a(y, ξ) = 1 since A(Cr, v> ξ) = 1 if and only if Cr = v itself.

By this correspondence, we have an exact analogy

n

2 a(v, ξ) = 2 ( — l ) r (number of critical points of Morse index r).

For the above example:

= Σ
r=0
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Remark 2. Theorem 1 is not only true for manifolds, but also for arbi-
trary convex cell complexes, with no additional structure.

As particular examples of non-manifolds of interest, we mention the 2-
dimensional pseudomanifolds and manifolds-with-boundary. Another non-
manifold of interest is the complex Ck consisting of a convex cell Ck together
with all of its boundary faces. For this complex a(v, ξ) = 0 at all v except
the lowest, where a(y, ξ) = 1, so Σ Φ> ?) = x(€k) = *•

2. General mappings

In classical critical point theory, using Sard's theorem it is proved that
almost every linear function on En, when restricted to a smoothly embedded
differentiable manifold M*, possesses only non-degenerate critical points.
This is used both in the proof that non-degenerate functions exist, and in the
curvature theory that follows (compare [5]). However it is not possible to
prove that almost any height function on a given embedded polyhedral mani-
fold has only singularities which resemble non-degenerate critical points of
smooth functions (compare Kuiper [5] when the manifold is given abstractly).

For example, in the differentiable theory, the set of height functions which
have a degenerate critical point of monkey-saddle type are of measure zero,
while in the polyhedral theory, such maps are open.

However in the polyhedral theory, it is immediate that there are sufficiently
many general maps:

Each linear function ξ: En -+E1 corresponds to a vector ξ such that for
every vector x in En, ξ(x) = ξ. x = inner product of x and ξ. We give the
set of linear functions the topology of the vectors in En.

Proposition 1. The set of linear maps ξ: En —+E1 which are general for
a given convex cell complex Mk c En is open and dense.

Proof. If ξ is not general then ξ(v) = ξ(w) for some pair of vertices v, w
which span an edge of Mk. Thus ξ is in the finite union of hyperplanes

U {ξ € En I ξ(v) = ξ(w), v, w span C1}.
C*tM

Corollary 1. // ξ is general for Mk and v is a vertex of M, then a(y, ξ)
= a(v, η) for every η in a neighborhood of ξ.
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3. Total curvature and the Gauss-Bonnet theorem

In the case of a differentiable manifold Mk smoothly embedded in En, the
extrinsic curvature of an open subset Ω can be defined as the integral of a

curvature form, which generalizes the integral I KdA, where K is the Gaus-
Ω

sian curvature of a surface in Ez. Kuiper interprets this integral as an average
and deduces the Gauss-Bonnet theorem and related results [4].

We follow an analogous pattern in the polyhedral case, and proceed to
apply the result to a new interpretation of Gauss' theorema egregium.

Definition. Let Ω be an open set in the convex cell complex Mk (i.e. the
intersection of Ω with any Cr is a relatively open subset of Cr). The index
of Ω with respect to ξ is a(Ω, ξ) = Σ a(v> ?)•

By proposition 1, a(Ω,ξ) is defined and finite for almost all ξ in En.
Furthemore since a(v, ξ) = a(v, pξ) for any p > 0, the set of ξ for which
a(Ω, ξ) is defined and finite is an open dense set on the unit sphere

Let dω*'1 be the ordinary volume element on Sn'\ Then

Cn_γ = Γ dω

n~Λ = volume of 5n~1.

Sn-1

Definition. The curvature of Ω = K(Ω) = — — Γ a(Ωy ξ)dωn~\

Theorem 2. Jf(Λf*) = χ(M*).

Proof. K{M) = — ί — Γ a(M, ξ)dω"-1

= l Γ Σ Φ> ξ)dωn-χ

= — — Γ χ(Af ̂ o )*- 1 by Theorem 1

— ί _ Γ dee)71"1 = χ(M*) .
O~, 1 V

4. The theorema egregium

If Mk is an even-dimensional differentiable manifold, then it can be shown
that K(Ω) depends only on intrinsic quantities associated with the manifold.
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In the 2-dimensional case, the fact that the Gaussian curvature function is
intrinsic is usually deduced from the fact that it can be expressed in terms of
the coefficients of the first fundamental forms and their derivatives.

In the case at hand the intrinsic nature of K(Ω) can be proved by calculat-
ing it explicitly in terms of familiar intrinsic quantities. The key quantity is
the normalized exterior angle of a convex cell Ck at a vertex v. This is simply
the ratio of the area of the set of normals to support hyperplanes of Ck at v
to the area of the entire sphere. In terms of our indicator function, we may
express this as follows:

Definition. The normalized exterior angle of a convex cell Cr c Er at a
vertex v is

r, *>) = - J — Γ A(C*, v, ξ)dωr~1

r " 1 $r-l

This is an intrinsic quantity associated with a convex cell and one of its
points. To apply it to the problem of curvature of a ^-complex in En we
need a further lemma:

Lemma 2. // Cr a Er a En, then

% v) = _ L _ Γ A(C% v, ξ)dωn~1 .
C ^ Sn-l

Proof. We use induction on n, beginning with the case n = r. Let en+1

denote a unit vector in En+1 orthogonal to En. Then

and dωn = a(θ)dθdωn~1

9 where a(θ) is a function only of 6. We calculate

ωn = J dωn-1j2a(θ)dθ = CnΛ\(

Note that A(Cr, v, ξ cos θ + en+ι sin θ) = A(Cr, v, ξ) for — ϊ - < ff < — since

C r c En. Therefore

-L- Γ^(C% r, ξ cos 0 + en + 1 sin
C

i f r~2 i r
= A(CT, v, ξ)dωn'1 I a(β)dθ = —-— A(Cr, v

Cn J J Cn j J
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Definition. It Mk is a convex cell complex embedded in En and v is a

vertex of Mk, then

Note that

= _JL_ Γ a(Ω, ξ)dωn-Λ

= Σ -T^— Γ ̂ (^? ©do,*-1 = Σ
•571-1

Theorem 3 (Theorema egregium). K(v) is intrinsic, in fact

K

Proof. K(v) = I a(v, ξ)dωn~ι

1 /* Γ K "1

— Z J I—*•) LΛ ~Z^ I fi{\s , v, ς)UQ)
r = 0 Cr c M C 1 J

n~ι 5«-i

K

= Σ (—i) r Σ $(Cr > v) -
r = 0 CTtM

Remark 3. When r = 0, and n > 1, we have <?(w, t;) = 0 if w Φ v, and

I f 1 1 Γ
" ~ C n ~ 1 n-l ' ^ C n ~ 1 n-l " "

and we make the convention that £(v, v) = 1 for n = 0, 1 also. When r = 1
and /1 > 1, <?(<?, t;) = 0 if v φ C1 and if O = [v, w], then

fl if ξ-v > ξ-w,
A(C\ v, ξ) = * 7

ίO otherwise.
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Therefore

£(C\ v) = — ί - Γ Λ{C\ v, ξ)dωn'1 = 1 ,
5n-l

and by convention we set

1 Γ 1
I AOC1, v, ξ)dω° = — .

C° o 2

This agrees with the convention of assigning Co = 2 and letting

JΛ(C\ v, ξ)dω° = /1(C\ i;, f) + A(C\ v, - f) ,

where f and — f are the two points in 5°.
Remark 4. In the case that M is a 2-dimensional pseudomanifold,

Theorem 3 yields

= 1 (number of edges)

+ Σ — (Exterior angle of C2 at v).
C-zxv 2

But in a pseudo-manifold, the number of edges at a vertex is equal to the
number of 2-cells there, so

K(y) = — - — 7r (number of 2-cells)
2π 2π

(π a ng l e o f C2 a t ^)

= J _ [ 2 π - Σ (angle of C2 at v)],

and this agrees with the normalized classical formula for the intrinsic curva-
ture at a vertex of a polyhedral 2-manifold. This result may be considered
as a generalization of a theorem of Poly a for convex polyhedral discs [6].

Remark 5. In the case that Mk = C*, the Gauss-Bonnet theorem states
that 2 K(v) = l(Ck) = l This can be interpreted as saying that the sum

vtC

of the normalized exterior angles of a convex polyhedral cell is 1, as can be
proved independently.
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The sum of the normalized exterior angles of a convex cell is the ratio of
the area of the set of vectors in S*"1, which are normal to oriented support
hyperplanes of Ck, to the area of Sk~ι. But almost every unit vector is normal
to exactly one oriented support hyperplane.

Remark 6. As in the classical 2-dimensional case, we may show, without
using the extrinsic theorem, that the sum of the intrinsically defined curva-
tures over the set of vertices of a complex gives the Euler characteristic of
the complex.

Theorem 4 (Intrinsic form of Gauss-Bonnet theorem). Let κ(v) be defined

to be Σ ( - l ) r Σ SiC^v). Then Σ κ(v) = χ(Mk).
r = 0 CrtM vtM

Proof. Σ Φ) = Σ Σ (~l) r Σ *(Cr,v)
VtM VtM r = 0 CrcM

= Σ(-i) r Σ [Σ
r = 0 CrtM VcM

Note. This intrinsic theorem is related to a special case of the Allen-
doerfer-Weil generalization of the Gauss-Bonnet theorem for n-manifolds-
with-boundary which are not embedded in a Euclidean space [2],

5. Results for manifolds

In theorem 4 we have shown that K(v) is an intrinsic quantity even when
the dimension of Mk is odd. In the case that Mk is an odd-dimensional
manifold, this is a trivial statement: K(v) = 0, which follows from the fol-
lowing lemma on polyhedral manifolds:

Lemma 3. // v is a vertex of a k-dimensional polyhedral manifold M\
and ξ is general for Mk, then a(v, — ξ) = (— l)ka(v, ξ).

The proof of this lemma is not difficult, but it requires a new set of defini-
tions and some technicalities, and we will not present it in this paper. As-
suming this result however we may prove some corollaries:

Corollary 2. // Mk is embedded in En and k is odd, then K(v) = 0 for
all v in Mk.

Proof. K(v) = - i — Γ a(v, ξ)dωn'

= ir-^— Γ [*&> f)

2 C-15Ϊ.i

>*-1 = 0
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Corollary 3. // Mk is an embedded odd-dimensional manifold, then
χ(Mk) = 0.

6. Generalizations

We have already pointed out that the theorems of this paper are valid for
arbitrary complexes embedded in Euclidean space and linear functions on
these complexes. We now make some remarks to indicate how the theorems
go over to more general complexes and maps.

Remark 7. It is not necessary for Theorem 1 that the complex be em-
bedded. To make this extension it is necessary to define an abstract convex
cell complex Mk, where again the (finitely many) cells are bounded convex
cells Cτ in Euclidean spaces Er, and the incidence relations that express the
fact that Cs c dCr are given by isometric maps. If Mk is connected then it
has a natural metric space structure. A function ξ on Mk is cell-wise linear
if ξ is continuous on Mk and linear on each convex cell Cr (i.e. it coincides
on Cr with the restriction to Cr of a linear map Er —•E1). Again say ξ is
general if it is a homeomorphism for each CιeM. The proof of Theorem 1
goes through without change.

To extend the curvature theorems, we introduce the concept of an isometric
mapping /: Mk —> En by the condition each point p € M has a neighborhood
U in M such that if ge U, then the dM(p, q) = dEn(f(p), f(q))9 where dM

denotes the (intrinsic) distance in M. Then the concept of curvature can be
defined abstractly using the definition

K(v) = —L_ Γ a(v, ξ o f)dωn~\ for ξ e S"-1 .

In the special case where each point p has a neighborhood which is iso-
metrically embedded, we say that / is an isometric immersion. Isometrically
immersed hypersurfaces will be treated in a later paper.

Remark 8. In a certain sense for Theorem 1 it is not necessary that the
map ξ be general for Mfc, but it is necessary to broaden the definition of
index. If ξ is any cell-wise linear map on Mfc, then we may define A(Cr, v, ξ)

and a(v, ξ)[= Σ ( ~ l ) r Σ ^(C r , v> f) as before if v is a vertex.
\ r = 0 Cr tM I

For a point x in the interior of a cell O, not a vertex, we may consider
the smallest subdivision of Mk as a convex cell complex containing v as a
vertex. One of the advantages of the concept of convex cell complex is that
this is very easy to construct—simply remove the interior of Cs and replace
it by the cone over 3C* with vertex at x. Extend the map ξ to this new com-
plex by the identity, and define a(x, ξ) as above, since now x is a vertex. By
this method we assign an index to every point of Mk. In fact if x and y are



CRITICAL POINTS AND CURVATURE 255

both in the interior of Cs, then a(x, ξ) = a(y, ξ) so we may use this common
value to define an index a(Cs> ξ).

If we define an indicator function

11 if σ c dC', ξ(x) > ξ(y) for all x e O and y e O,
A(CT, C°, ξ) = \

10 otherwise,

then we may obtain an alternate description of a(C% ξ), which we could have
used as a definition:

Definition. a(C*9 ξ) = Σ ( ~ l ) r Σ A(Cr, C; ξ) .
r = 0 CrtM

Lemma 4. For a given Cr,

Σ
5 = 0

(-i)s Σ

Proof. The expression on the left is the Euler characteristic of the set of
points on Cr at which ξ attains its maximum value. Since Cr is a convex
set, this maximum set is also a closed convex set, with Euler characteristic 1.

Theorem 5. // ξ is any cell-wise linear map on a convex cell complex, then

Σ ( - l ) * Σ β(C', ?) = χ(M«) .
s = 0 C*εM

Proof. Σ (-i) s Σ «c; ξ)=Σ (-i) s Σ Γί: (-i) r Σ Λ(Cr, O, ξ)λ

= Σ (-i) r Σ [ έ (-i)5 Σ Λ(C%c*,f)Ί

= Σ ("l)r«r(M) = χ(M) .
r = 0

We may interpret this theorem by considering a(—, f) as a function from M*
to the integers. α(—, ξ)(x) = a(x, ξ). Let <g be the set {C} of connected
components of M under the equivalence relation x~y if and only if α(;t, ξ)
= ^(^, ?)• Let α(C, f) be the common value of a(x, ξ) for x in C. Then the
theorem states that Σ α(C, f)z(O = %(MA:)

Corollary 4. For cnj convex cell complex, Σ (~ l) s Σ X (open star of
0 C$M

Cs) = χ(M) where the open star of Cs is the collection of cells Cr in M such
that Cs (zCr.

Proof. Consider the linear map ξ which sends every x to 0. Then
A(Cr, Cs, ξ) = 1 if Cs c Cr, and the corollary follows.

In particular, if Mk is a /:-manifold, χ (open star of C) = (— l)k for every
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cell Cs, so ( - l)fcχ(M) = χ(M). This yields a proof of the fact that χ(Mk) = 0
for an odd-dimensional manifold which uses only the property that χ (open
star of x) = (— 1)* for every x.
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