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GEOMETRY OF MANIFOLDS OF MAPS

HALLDOR I. ELIASSON

Introduction

The main purpose of this paper is to lift differential geometric ob-
jects from two manifolds N and M to a Banach manifold &(N, M) of
maps from N to M. To give an explicit construction of such objects, it
seems to me, is fundamental for analysis on these manifolds. Moreover,
we are able to prove existence where conventional methods fail, because
of the lack of smooth partitions of unity on many Banach manifolds of
maps as e.g. Ck(N, M).

The general setting for manifolds of maps is as follows (§4) : N is a
compact Hausdorίf space of class Cr with a countable basis 0 < r < oo
(Cr-manifold for r > 1), il is a full subcategory of the category 95 of Ba-
nach spaces closed under the operations of taking direct sums and con-
tinuous linear maps. VB(N, il) is the category of vector bundles of class
Cr over N with fibres in il. Θ is a section functor, which is a manifold
model, t.i. 6 is a covariant functor from VB(N, il) into 2$ s.t. &(E) is
a Banach space of sections in E for any E € VB(N, il) and as a man-
ifold model Θ has the following three properties: we have continuous
linear inclusions β(E) C C°(E) and &(L(E, F)) C L(6(£), β(F))
and the map of section spaces induced by Cr-fibre maps via 6 is con-
tinuous. We then prove differentiability and give an explicit formula for
the derivatives (Lemma 4.1). This is the fundamental lemma for most
of the following constructions.

Then (§5) M is a Banach manifold of class Cr + s, s > 3, admitting
a connection of class Cr + s ~ 2 and modeled on il. we then construct
a Cs~2-Banach manifold β(iV,M) of maps. We follow the idea in
[3] to use the exponential map for the construction of a chart in a
neighborhood of a Cr-map h : N -* M using &(h*TM) as a model.

This axiomatic setting is slightly more general than in Palais [5],
where iV, M are finite dimensional of class C°°, so we have included
more of the known examples due to Eells [3] as e.g. C°(N, M), where
N is some space as above (r = 0). Moreover it is important to allow M
to be infinite dimensional, for Θ = Cfe, this has already been worked
out, Abraham [1]. Furthermore, the axioms for a manifold model are
slightly more general. The fundamental difference, however, lies in the
fact that we start globally on vector bundles and use only differential
geometric objects and structures from N and M to carry through the
constructions.
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We then proceed to the proof, that the tangent bundle of &(N, M)
can be identified with &(N, TM) in a natural manner and that a map
θ : M —> Mr of class CrJrS~2 induces by composition a map &(θ) :
&(N, M) -> 6(JV, M1) of class Cs~2 and Tβ(θ) = &{TΘ). Our main
result is Theorem 4.5, where we prove that a Cr + s ~ 2-connection on
M induces a canonical connection of class Cr + S~4 on 6 (TV, M), such
that if exp denotes the exponential map for M, then 6(exp) is the
exponential map for &(N, M). This implies that if N, M are of class
C°° and M admits a C°°-connetion, then the C-manifold Ck(N, M)
admits a connection of class C°°. We then have the iterated manifolds
of maps Cι(N, Ck(N, M)) etc. Note that here a C°° connection cannot
be constructed using C°° partitions of unity, as they do not exist (see
[4] for references).

In §6 we construct vector bundles over Θ(iV, M) and bundle maps
between those. Let λ : i l x i l — > ίl be a functor of class C°° and XN

the induced operation on VB(N, 93), X a section functor such that
we have a continuous linear inclusion &(L(E, F)) c L(%(E), ^(F)).
Let E e VB(N, ίl) be given. We then prove that the domain of de-
finition for T can be extended as to define %(\N(E, f*TM)) for all
/ € & (N, M) and the union of these Banach spaces is a vector bundle
τ(λN(E, Θ(N, M)*TM)) over 6(N, M) of class Cs~3. In particular,
we have the bundles <5(λN(6(N, Af )*ΓM)), which are just lifts of the
tensor bundles over M with obvious lifts of sections (for λ = id we have
the tangent bundle of Θ(iV, M)). The importance of this lies also in
the fact that we usually have to consider weaker variations of mappings
than those obtainable through manifold model sections.

In Theorems 6.2-6.4 we give sufficient conditions, that the tangent
extends to a section d in <Z(L(TN, ©(TV, M)*TM)) of class C s " 3 ( r >
1) and that a covariant differentiation in TN(r > 2) and TM induces
sections in

L(τλ{Lk{TN, β(7V, M)*TM)), %2{Lk+ι{TN, &{N, M)*TM)))

k > 0 of class Cs~4. This has immediate applications to the chain
C°, C 1, of manifold models. However, the most important applica-
tions will be to the Sobolev chain H°, H1, ,Hk (2k > dim iV). I do
not give any applications to Hk(= L\) here, but I intend to prove in a
later paper that the fc-th order energy function Ek : Hk(N, M) —• i?, N
and M compact without boundary, satisfies condition C of Palais and
Smale (see [4] for references).

The above bundles and bundle maps form a natural setting for the
study of partial differential equations for maps N —> M.

The first three sections are of a preparatory nature. In §1 we intro-
duce connection for vector bundles via the connection map and com-
pute canonical connections for the associated bundles of direct sums
and linear maps. In §2 we define the covariant derivative of a section
in E —• TV as a section in L(TN, E) and so on for higher derivatives
using the induced connection. We furthermore observe that this covari-
ant differentiation has properties similar to the usual differentiation in
Banach spaces.
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In §3 starting from a manifold M with connection, we define a cer-
tain induced connection for the total space TM of the tangent bundle
and investigate the properties of the corresponding exponential map,
which is to be used to obtain canonical charts for &(N, TM). This
connection may be characterized by the fact that the geodesies in TM
are exactly the Jacobi fields along geodesies in M. We furthermore an-
alyze the two first (covariant) derivatives of the exponential map for M,
as we will need those for the construction of canonical local trivializa-
tions of our vector bundles over &(N, M). The general reference here
is [2] and [6]. The Jacobi connection mentioned above has also been
constructed by J. Vilms [7].

1. Connection in vector bundles

Let M be a Banach manifold of class Ck, k > 1, with boundary dM.
A chart for M is given by a diίfeomorphism φ : U —> φU of class Ck,
where U is open in M and φU is open in Mχ — {x G M : λ x > 0}, M
is a Banach space and λ a functional on M. dU C dM is then given as
the inverse image of dφU = φUΠMχ, Mχ = {x G M : λ x = 0} (see
[6]). The restriction φ\dU gives a chart of class Ck for the manifold dM.
The tangent of φ, Tφ : TU —> φU x M gives a chart for the total space
TM of the tangent bundle τ : TM -> M. We have a Ck~λ section I in
L(TM\dM, R) given locally by the functional, such that ker / = TdM
and a vector υ G T pM, p G dM, is tangent to M iff l(p) v > 0, in the
sense that we have a curve c : [0, 1] —» M of class C1 with dc(0) = v.

Let π : E —» M be a vector bundle of class C r , 1 < r < k. A local
trivialization for π is given by a bundle equivalence:

Φ: π\

I I
Φ: U-^φU

where φ is a chart for M and E a Banach space. With ξ G Ep =
τr~1(p) we have Φ(ξ) = (φ(p), ΦP(ξ)), where Φv : Ep —» E is a toplinear
isomorphism. Given another local trivialization by (V, φ, Ψ), we will
define the transition map by:

: φ(U ΠV)-+ L{E, E) Gφφ(x) = Ψpo Φ,
P

with x = φ(p). Gφφ is then of class Cr. E is a Banach manifold of class
Cr (with boundary) so the tangent bundle TΓI : TE —> E is of class
Cr~ι. The tangent of π is a bundle map Tπ:TE-* TM of class Cr~λ

and we see immediately from the local formulas
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Φ o Φ~\x, ξ) = {ψo φ'\χ), Gφφ(x) . ξ),

T(Φ o Φ~ι)(x, ξ, y, η) = (ψo φ-\χ), Gφφ(x) ξ, D(φ o φ-ι)(x) y,

DGφφ(x) (y, ξ) +

that we can introduce vector space structure in the fibres of Tπ (locally
Tπ maps (x, ξ, ?/, 77) to (x, y)), to give Tπ : T £ —> TM a vector bundle
structure of class Cr~1.

Definition. A connection map K for the bundle E is a map K :
TE —> i£, such that for any local trivialization (17, 0, Φ) of π : E —» M,
there is a map Γφ : φU -> L(M, E\ E) of class C r - 1 , which gives the
local representative of K, Kψ = Φ o AT o TΦ" 1 by the formula:

lfy(x, ξ, j/, 7/) = (ar, 77 + />(*) (2/, ξ))

It follows of course that K is of class C r - 1 , but not conversely. We
call Γφ the local connector for K and we will sometimes drop the suffix
φ, if the local trivialization is fixed. In the case E = TM, r = k — 1,
we have Gψφ — D(φ o φ~λ) and the local connector corresponds to the
classical Christoffel symbols, t.i. in the finite dimensional case we have
in coordinates:

[Γ(x) • (y, z)Y = Σήk(x)yhk.

Using the formula for T(Ψ o Φ~1) above we get the following trans-
formation formula for the local connector:

ΓΦ(x) • (y, ξ) = Gφφ(ψ o φ~\x)) • [DGφφ(x) • (y, ξ)

+ Γφ{φ o φ~\χ)) • (D(ψ o φ~x){x) • y, Gφφ{x) • ξ)].

Thus the required properties of the local connector are invariant
under change of trivialization. It follows furthermore, that if M admits
partition of unity of class Cr~λ, then there exists a connection map for
π.

We have two subbundles ker Tπ and ker K of πi, as Tπ and K are
both Cr~1 surjective bundle maps with splitting kernels (see [6]). We
have moreover an isomorphism ker Tπ Θ ker K = πi by (A, B) —• A+B.
For this splitting of πi and later for covariant differentiation of sections
we need our assumption on the "strong" differentiability of the con-
nection, t.i. we are not satisfied with the weaker assumption that K
or equivalently (x, y, ξ) —> Γ(x) (y, ξ) is differentiate. A connection
with this "weaker" differentiability is equivalent to a spray as defined in
Lang [6] and suffices to introduce geodesies and the exponential map.
Note that the map (TΓI, Tπ, K) : TE -> E Θ TM Θ E is a Cr~ι diffeo-
morphism.

Let a : [0, 1] —> E be a C1 -curve in E. We denote by e the basis
section of TR = R x R, e(t) = (t, 1). Then da = Ta o e is the tangent
field of a and the covariant derivative of a is defined by Vα = K o da.
We call a parallel, if Vα = 0. If a is given in a local trivialization by
(c, α), then Vα is given by
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(c, α ' + (Γoc) (c', α)).

It follows that if c : [0, 1] —> M is a given C^-curve and ξ G Fc(0), then
there is a unique parallel curve a in E with π o α = c (or parallel field
along c) and α(0) = ξ. In the case F = TM, Vdc = 0 is the equation
for a geodesic in M and there is a unique local solution with dc(0) = v,
for a given v tangent to M.

We will now show that the category of vector bundles over M admit-
ting a connection is closed under the operations of taking direct sums
and linear maps.

Lemma 1.1. Let π : E —> M and p : F —> M be vector bundles over
M, of class Cr, then there is a natural bundle equivalence T(π φ p) =
Tπ Θ Tp, given locally by an identity.

Proof. Let (A, B) e TE ΘTM TF, Tπ(A) = Tp(B) = v. Let c(t)
be a C 1 -curve in M with dc(0) = v and α, /3 any fields along c in
£?, F with θa(0) = A, dβ(0) = B. Define 7 (t) = (α(t), /?(t)) and
let (A, JB) = 97(0). This is easily seen to be an identity in a local
trivialization using tangent charts.

Proposition 1.1. Let Kπ, Kp be connection maps for π : E —> M
and p : F —» M, then Kπ (&KP is a connection map forπφp : EφF —>
M. In a local trivialization the local connector

Γπφp:φU-^ L(M,ExF;ExF)

it is given by

Γ«φP(x) ' (y, (ξ, η)) = (Γπ(x) (y, 0 , Γp(x) (2/, η)).

Proof. We use here the identification from Lemma 1.1 and the
Proposition follows from the local formula, which is evident, q.e.d.

Given two bundles π : E —• M, p : F —> M, we have the bundle
L(τr, p) : L(E, F) —> M of bounded linear maps of fibres: L(E, F)p =
L(EP, Fp). We have moreover a bundle L(τ*π, Γp) : L(τ*£, ΓF) ->
ΓM, with fibre L(τ*£, TF) V = L(Eτ(υ), TυF), TVF = (Γp)" 1 ^).
Here τ*π : τ * F -> TM is the pull back of r : ΓM -* M, t.i. (r*^),; =
Eτ(vy Let (£/, </>, Φπ) and ([/, (/>, Φp) be local trivializations for π and
p, we then have induced trivializations:

^ ^ 0C/ x £(£?, F),

' Φ*}{ξ))> A e L(EP, Fp), ξ e E,

>0C/ x Mx L(E,FxF),

where
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P(x, ξ, y, η) = (ξ, η), A G L(JSP, Γ V F), p = τ(v).

Then

Lemma 1.2. Let K be a connection map forπ : E —> M ; ί/ien there
is a canonically induced bundle equivalence:

TL{E, F) L-^l L(τ*E, TF)

TL(π,p) I I L(τ*π,Tp)

TM = TM

In a local trivialization, L(K) is given by

L(K)φ(x, y, A, B) = (x,y,A,B-A- Γ(x) • (y, •))•

Proof. We will first define L(K) intrinsically and then show that
it has the required properties by writing it down locally. Let W £
TL(E, F) and put v = TL(π, ρ)(W), p = r(υ). Assume W, v are
tangent and let c be a C 1 -curve in M with dc(0) = υ and β a field
along c in L(E, F) with dβ(0) = W. We have to define L(K)(W) as
a linear map Ep —• TVF. Let ξ G Ep and a the parallel field along
c with α(0) = ξ. Put 7(ί) = β(t) α(ί), then 7 is a curve in F. We
define L(K)(W) ξ = #7(0). To compute this in a local trivialization,
let ΓΦL(ϊΓfP)(W0 = (z, A, y, β), then φ(p) = x, Γ^(t ) - (x, j/). Put
Φπ(^) = (x, 77) and let c, /3, α be the principal parts, then c(0) =
x, 0(0) = A, α(0) = η, c'(0) = y, β'(0) = β. We have Φp o 7 =
(c, /3 α) and

ΓΦp o d7(0) = (x, A η, y, B η - A Γ(x) (y, r/))

as α'(ί) + Γ(c(ί)) (c;(ί), α(ί)) = 0, where Γ is the local connector for
K. We have then proved the local formula which shows that L(K) is
well defined and gives a bundle equivalence.

Proposition 1.2. Let Kni Kp be connection maps for the vector
bundles π : E -> M and p : F -> M. Then KL(π,p) = i (π, Kp)oL(Kπ)
is a connection map forL(π , p) : I/(£ ,̂ F) —» M. /nα local trivialization
the corresponding local connector is given by

ΓLiπ,p) : pU - L(M, L(E, F); L(E, F)),

p)(x) • (». A)] ξ = ΓΛX) -(y,A ξ)-A- Γπ(x) • (y, ξ).

Remark. Here L(ir, Kp) : L(τ*E, TF) -> L(E, F) is defined by
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Proof. Using Lemma 1.2, we have in a local trivialization:

KL{π,p)φ(x, A,y,B) ξ = Kpφ(x, A ξ,y,B ξ - A Γ π(x) • (y, ξ))

= (x,B ξ-A -Γπ(x) • (y, ξ) + Γp(x) -(y,A- ξ)).

Obviously Γ L(π,p) is of class Cr~ι if Γp and Γπ are.

2. Covariant differentiation in vector bundles

We will assume that we have a connection on M, t.i. a connection map
Kτ for the tangent bundle r : TM —» M. Furthermore, let π : E —> M
be a vector bundle with connection map Kπ. If ξ is a differentiate
section in TΓ, we will define the covariant derivative of ξ to be the section
in L(r, π) : L(ΓM, £) ^ M defined by

ίΓiroΓpξ, Tpξ = Tξ\TpM.

In a local trivialization we have

Vξ(x) -y =

where we have used the same letter for the principal part and Γ π is
the local connector. If ξ is of class Cs, then V£ is obviously of class
Cs~ι for 1 < 5 < r — 1, where r is the class of E as before. We then
define higher order covariant derivatives inductively, using the induced
connection on L^TM, E) = L(ΓM, Lt-1(TM, E)) by Proposition 1.2.
Here the connection on M is needed. So V*£ is a section in L t(r, π).
Let p : F —• M be another vector bundle of the same class as TΓ and
A, ξ sections in L(π, p), π. We then define a section A ξ in p by
(A ξ)(p) = A(p) - ξ(p). If £, X are sections in π and r, we will call
Vξ - X the partial derivative of ξ in the direction X; it is again a section
in π. In the case π = r, we have the classical covariant differentiation
of vector fields.

Lemma 2.1. (i) Le£ π and p 6e vector bundles over M with con-
nection and give L(π, p) the induced connection. Then for any sections
A, ξ in L(π, p) and π of class C1, we have

(ii) If π is a bundle of class Cr with Cr~1 connection there is a
Cr~2 section R in L(τ, r, π; TΓ), such that for any sections X,Y in τ
and ξ of class C2 in π, we have

v 2e. (x, Y) - v2ξ (y, x) = R (x, y, ξ).

In any local trivialization we have
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R(x) • (y, z, ξ) = DΓ{x) • (y, z, ξ) - DΓ{x) • (z, y, ξ)

+ Γ(x) • (y, Γ(x) • (z, ξ)) - Γ(x) • (z, Γ(x) • (y, ξ)).

Remark. In fact this is a generalization of the classical curvature
tensor, so we may keep this name for R. In the formula above Γ = Γ π

is the local connector for π.
Proof. We have only to write this down in a local trivialization and

use the formula in Proposition 1.2 for the local connector of L(π, p) and
L(τ, π).

Using the same formula we get easily

Lemma 2.2. Let Rπ, Rp be the curvature tensors for bundles π and
p over M with some connections, and take the induced connection for
L(π, p). Then the curvature tensor for L(π, p) is given by the formula

RL(*,P)(P) (v, u,A) ξ = Rp(p) -(v,u,A ξ)-A. Rπ(p) (v, u, ξ),

for v,ue TPM, ξeEp,A eL(Ep, Fp).

Let π : E —> M, p : F —•> M be vector bundles with connection maps
Kn, Kp and let / : E —> F be a fibre map, t.i. p o / = π. We then
define the covariant derivative of / as a fibre map:

E, F)

by

V/(0 (v, η) = KpoTfo (π l 5 Tπ, i ^ ) " 1 ^ , v, η).

In a local trivialization, we get easily the expression

Z?i/(x, 0 2/ + U2/(x, 0 (V - Γ«{x) (y, 0 ) + Γ p(x) (y, /(x, ξ))

for the principal part, which shows that V/(ξ) is in fact a linear map:
TPM ® Ep —> Fp for ξ e Ep. Moreover it reveals, that if we split
V/ in the obvious manner into Vi/ : E —> L(TM, F) and V2/ :

£ -> L(J5, F), then V2/(ξ) = £>/P(0?

 w h e r e Λ> = / I E P ( n o t e t h a t

fp : Ep —> Fp is a map from a Banach space into a Banach space). We
will therefore feel free to write D2f instead of V2/. Using the local
formula above the following is easily seen:

Lemma 2.3. Let f : E —> F be a differentiable fibre map and ξ a
section in E, then we have

V(/ o ξ)(p) = Vi/(ξ(p)) + D2f(ξ(p)) o V£(p).

These formulas show us that covariant differentiation behaves very
much alike ordinary differentiation in Banach spaces. We will now see
how it behaves under pull-backs.

Let M, M' be Banach manifolds of class Ck as before and let π :
E —» M' be a vector bundle of class C r , 1 < r < k, with a connection
map K' : TE -• E. Let h : M -> M' be a map of class C r . Then the
pull-back h*π : h*E -> M, (Λ*£7)p = £7Λ(p), is a bundle of class C r . If



GEOMETRY OF MANIFOLDS OF MAPS 177

(U, φ) is a chart for M and (V, φ, Ψ) a local trivialization for π, such
that h(U) C V, then we can define a local trivialization of h*π by

Φ : h*E\U -*φUx E; Φ(ξp) = (φ(p), Φh(p)(ξp)),

where E is the fibre model for π in the given trivialization.

We now define a connection map K for h*π by i o K = K' o Ti,
where i : h*E -* E is the inclusion. This defines K uniquely as i is an
isomorphism on each fibre.

For the local connector we get

Γ(x) • (y,ξ) = Γ'(ho(x)) • (Dho(x) -y,ξ),

where Γ' is the local connector for π and ho the local representative
for h. We can regard the tangent of h as a section dh in L(τ, h*τ')
by dh(p) - v = Th(v). The sections in /ι*π are in a class preserving
one-to-one correspondence with the fields along ft, t.i. maps ξ : M -* E
s.t. π o ζ = h and we will identify those. A section X in π induces a
section h*X = X o h in /ι*π and it follows easily from the above local
formula for the connectors that

where /ι*V7, V denote the covariant differentiation in /ι*π,π. Now let
M be with connection and let V = h*V denote the covariant differen-
tiation over M. Then Vdh is symmetric bilinear on each fibre, so by
using Lemma 2.1 (i) and (ii) for the curvature tensor Rh of /ι*π we get

Rh - (v, u, ξ) = (R' o h) - (dh v,dh- u, ξ),

where Rr is the curvature tensor for π.

Remark. We have constantly assumed the connection for a man-
ifold to be symmetric (without torsion) t.i. the local connector is a
symmetric bilinear map at each point. This is no restriction on exis-
tence.

3. Connection in iterated tangent bundles

Here M is to be a Banach manifold of class Ck, k > 2, without a
boundary and with a connection map K :T2M -» TM for the tangent
bundle r. We will assume that the connection is symmetric. We define
a map KT : TSM —> T2M through the properties:

Kτ\ :τιoKτ = r1o r2, KT2 : Tτ o Kτ = K o T2τ,

KT3 : K o Kτ = K o TK - R o (Tτ o T 2r, rx o Γri, n o Γ 2 r) .
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Here r* : Ti+1M ^ f M are the iterated tangent bundles and R is the
curvature tensor, defined as a section in X3(ΓM,ΓM) in Lemma 2.1,
but considered as a trilinear bundle map R : TM Θ TM Θ TM -> ΓM
here. We have observed that (τ\,Tτ,K) is a diffeomorphism, so KT is
uniquely defined by those properties.

Theorem 3.1. The map KT is a connection map for the vector
bundle τ\ : T2M -+ TM and gives the manifold TM a symmetric
connection of class Ck~3. In any local trivialization induced by a chart
(17, φ) for M, the local connector for Kτ, Γτ : φU x M —> L(M x
M,M x M\M x M) is given by the formula

Γτ(x, y) ((zu z2), (&, 6)) = (Γ(x) (zu ξi),DΓ(x) (</, zx, 6 )

w /iere Γ is the local connector for K.

Proof We have only to prove the local formula which is a simple com-
putation, using the formula for the curvature tensor from Lemma 2.1.
ΓT is obviously of class Ck~3 as Γ is of class Ck~2.

We will denote by V T the covariant differentiation in vector bundles
over ΓM, using the connection map KT for the tangent bundle of TM
and by V as before the covariant differentiation over M. A field α along
a curve c in M is called a Jacobi field, iff

V2α + ( f i o φ (α,9c,9c) = 0.

Theorem 3.2. A curve a of class C2 in TM is the geodesic (Vτ^α =
0) in TM with da(0) — ω, iff a is the Jacobi field along the geodesic
c = τ o α in M with dc(0) = Tτ(ω), α(0) = n(ω) and Vα(0) = K(ω).

Proof 1) Suppose a is a geodesic in TM : Vτ<9α = 0, 9α(0) = ω.
Then we have for c = r o α, dc = Tc o e = Tr o 9α, so 9c(0) = Tτ(ω)
and

V9c = KoTdcoe = KoT2τoTdaoe = TroKτod2a = TroV τda = 0.

Furthermore, Vα = K o da and then

V2α = if o Γ(ίr o9α)oe = ( ϋ : o i ί τ + i?o(Tro T2r, n o Tτi, n o T2τ))

= iϊ o (9c, α, 9c) = — iϊ o (a, dc, dc),

which, together with V τ9a = 0 and Tr o da = T(τ o α) o e = 9c, ri o
^ = c, τ o dc — c, proves that α is a Jacobi field along c. We have
α(0) = n o 9α(0) = n(α ) and Vα(0) = UΓ o 9α(0) = K{ω).

2) Now suppose a is a Jacobi field along the geodesic c = τoa and
put ω = (τi, ΓriίfJ-^αίO), 9c(0), Vα(0)). Then we have
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= KoKτod2a

= (KoTK-Ro(TτoT2τ, noTn, τιoT2τ))od2a

= V2α - R o (dc, a dc) = 0,

TT O Vτda =TτoKτod2a = Ko T2τ o Tda o e

= K o Tdc o e = Vdc = 0.

Now as ker K Π ker Tr = 0, we get V rda = 0. Moreover from K o
<9α(0) = Vα(0) = UΓ(u ), Γr o da(0) = dc(0) = Tr(ω) we get dα(0) =
ω. q.e.d.

We have now to investigate the exponential maps exp, exp^ corre-
sponding to V and V T for later use. Moreover we have to analyze the
two first derivatives of exp. The general reference on local existence,
uniqueness and differentiability of flows in Banach manifolds is Lang
[6].

There is an open neighborhood O of the set of zero vectors in TM
and a map exp: O —> M of class Ck~2, if the class k of M is > 3.
We have exp υ = c(l), where c is the unique geodesic c: [0, 1] —> M
with dc(0) = v. O is the set of υ G TM such that c is defined on the
unite inverval, then c(t) = exp tυ,0 <t < 1. We define the covariant
derivative of exp:

V exp : O Θ TM 0 ΓM -> TM

by
V exp = T expo(n, Γr, i f )" 1 ,

which is then a map of class Ck~3.

Theorem 3.3. Let v € Op and u, w G TpM. Lei c(ί) = exp fa; and
Y the Jacobi field along c with Y(0) = u, VΓ(0) = w. Then

Y(t) = V exp (tυ, u,tw), 0 < t < 1.

Proof. Let 6 : [0, G] -> M be a curve of class Ck in M with db(0) =
w and /? a field of class Ck~ι along 6 with 9/3(0) = υ and V/3(0) = w
(e.g. geodesic and Jacobi field). Put α(ί, 5) = exp (tβ(s)). Then we
have

, 5) = V exp (tβ(s), db(s), tVβ(s)),

(β o α)

The last formula follows from Lemmas 2.1 and 2.2, if we think of da
as a section in the pull-back a*τ, introduce partial derivatives in the
obvious manner and make use of the formula for the pull-back of the
curvature tensor. Now as V\d\a = 0, it follows that t —> α(t, s) is
a Jacobi field for all 5, and the theorem then follows for s = 0 as
α(t, 0) = c(t), <92α(0, 0) = db(O) = u, Vi92α(0, 0) = V/3(0) = tι;. The
theorem and this variation of geodesic through geodesies with Jacobi
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fields as variation field is well known in differential geometry, at least
for u = 0.

Define σ = (T^TT^K)-1 O (TT,TUK) : T2M -> T2M, locally we
have σφ(x,y,ξ,η) = (x, ξ, y, ή). Combining the two last theorems we
obtain

Corollary 3.1. expτ = Γ expoσ.

We define the second covariant derivative of exp

V2 exp : Ό Θ (ΘσTM) -> TM

by

V2 exp (υ, u, w, ξ0, ξi, &, 6 )

with >1 = (τi, Γr, iί")"1. We have here used the identification in Lemma
1.1 of the tangent of a direct sum with the direct sum of the tangents.

Theorem 3.4. Let v e Op, u, w, ξ0, 6> 6 , ξs € TPM. Put c(t) =
exp tv, Y\(t) = V exp (tυ, u, tw),Y2(t) = V exp (ίv, ξ0, tξi). Let Z(t)
be the solution of the initial value problem :

V2Z + ( f i o φ (Z, 9c, 9c) = i(Vi? o c) . (9c, 9c, Yu Y2)

+ 1(VΛ o c) (9c, 9c, y2, YΊ) + 2(Λ o c) (dc, Y2,

with Z(0) = ξ2, VZ(0) = & +

Z(ί) - V2 exp (it;, tx, tw, ξ0, tξu ξ2,

Proof. Let 6 : [0, G] -> M be a Cfc-curve with 96(0) = ξ0 and

along 6 with /?i(0) = v, /32(0) = u, /?3(0) = ^ and
=ξi, i = l ,2,3. We put

α(ί, 5) = V exp (tβi(s), β2(s), tβs(s)).

Then

V2α(ί, 5) - V2

With α(t, s) = r o α(t, 5) = exp (tβι(s)), we have by Theorem 3.3,
V2α = — (R o α) (α, 9χα, 9χα) and then

V 2 α = V2Viα + (fioo) (9iα, 92α, α),
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d2α, Via) + Vi((floa) (dλa, d2a, a))

= - (VRoa)(d2a, a, dλa, dλά) + (Vi? o a) (dλa, dλa, d2a, a)

+ 2{R o a) (9χa, <92a, Via) 4- 2(# o a) (^a, a, Vid2a)

— (iϋ o a) (V2a, 9ia, did).

We have used Lemma 2.1 for the covariant derivation and Bianchi's
first identity for the curvature tensor (the cyclic sum is zero). Using
Bianchi's second identity for the covariant derivative VR (the cyclic
sum in three first variables with the fourth fixed is zero) together with
the first, we get

VR (x, y, υ, v) = VR (v, y, x, v) + VR (x, υ, y, υ)

= VR - (υ, v, x, ?/) 4- V.R (v, y, υ, x)

so 2V.R (x, y, v, v) = VR (v, υ, x, ί/) — Vlϊ (v, v, y, x). It now follows
that Zs(t) = V 2α(ί, s) satisfies the differential equation for Z for all
5, with c,Y\,Y2 replaced by α,α,92α. But α and 92α are Jacobi fields
in ί, for fixed 5, and take the initial values of Y\ and Y2 for 5 = 0;
moreover Zo(0) = V/52(0) = ξ2 and VZ0(0) = ViV2o;(0,0) = V/33(0) +
Λ(p) (9c(0), y2(0), ^i(O)) = ξ3 + β(p) (v,ξOϊ w)- Then by uniqueness
Zo = Z. q.e.d.

It follows from the differential equation for Jacobi fields that V exp (υ, u, w)
is linear in (u, w), so we have a splitting:

V exp (υ, u, w) = V\ exp(υ, u) + V2 exp (υ, w).

Similarly we see that V2 exp (v, u, w, ξo, ξι, ξ2, 3̂) is linear in (u, w, ξ2, ̂ 3),
so after the obvious definitions, we have

V2 exp (υ,u,w,ξo,ξi,ξ2,ξ3) = VViexp (v,ix,ξo,ξi,6)

-I-VV2exp (υ,^,& J 6 J &).

Moreover putting w — ξs = 0 and u = ξ2 = 0 respectively in the
differential equation for Z in Theorem 3.4 we see that the first and
second terms on the right hand side above are linear in (ξo>£i»£2)
(£θj£i>f3) respectively. Therefore

VV2exp (v,iy,r/i,r72,r73) = Σf=1

Corollary 3.2.

a) V, e x p ( ( U ) = ξ , z = l,2.

b) V3Vi exp (υ,ξ,η) = Vi exp (υ,r/), i = 1,2.

c) ViV2exp (V,U;,0 = V2Vxexp (v,ξ,w),bilinear in (w,ξ).
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d) V2V2βxp (v,ξ,η) = V2V2βxp {v,η,ξ), bilinear in {ξ,η).

e) VjV

This follows at once from the differential equations. Note that the
equation in Theorem 3.4 is symmetric in Y\,Y2.

The restriction of V2 exp to TXM (&TXM for some x G M is just
the tangent of expx = exp \TXM. Using a) above and the inverse
function Theroem there is an open neighborhood Dx <zTxM of ox the
zero vector at x, such that expx maps Dx diffeomorphic into M. It
follows that there is an open neighborhood V C TM of the set of zero
vectors in TM, such that (r, exp) maps V diffeomorphic onto an open
neighborhood of the diagonal in M x M. Then V2 exp (v, •) : TXM —*
2eχP VM is a toplinear isomorphism for every v G V,x — τ(υ). We
therefore have a map ϋ : V -> i(ΓM, ΓM) by

V2 exp (v, $(i>) u) = Viexp (v,u),

which is a fibre preserving map of class Ck~3. Similarly we define a
map A\V-+ L2(TM, TM) by

V2V2exp (v,w,ξ) = V2exp (υ,Λ(v) (w,Q).

Then ΛΊs & fibre preserving map of class Ck~4 and maps actually into
the subbundle of bilinear symmetric maps by d) Corollary 3.1.

Lemma 3.1.

a) ΰ(0) = id, D2ΰ(0) = 0, ΰ(υ) -v = υ.

b) Λ(0) = 0, Λ(v) (υ, v) - 0, v,e V.

c) ViV2exp (υ,w,ξ) = V2exp (υJD2ΰ(v) (w,ξ)+Λ(υ)'(ΰ(<υ)'ξ,w)).

Proof. ΰ(0) is the identity by a) Corollary 3.1. If we replace v by
v + tw and take the derivative of both sides with respect to t, we obtain
for t = 0 :

V2 Vi exp (υ, u, w) = V2 V2 exp (v, ϋ(v) u, w)

+ V2 exp (v, D2ϋ(v) (w, u)).

Then using Corollary 3.1 c) we get c) and putting υ = 0 there and in
the defining equation for A gives D2#(0) — Λ(0) = 0. We have V2 exp
(tv, tv) = tdc, where c = exp tv. Therefore, if we put w = ξι = υ, u =
ζo — £2 = £3 — 0 in the differential equation in Theorem 3.4 we have
Y\ = Y2 = tdc, VYi = VI2 = dc, so the equation reduces to the Jacobi
equation with zero initial conditions, thus the solution is zero which
means V2V2 exp (v,v, v) = 0, so we have A(v) (v,v) = 0. q.e.d.

The result of our effort is that a complete knowledge of the two first
derivatives of the exponential map is now stored in V2 exp, V2 V2 exp
and the fibre maps ϋ and A, both of them will play an important role
in the theory of manifolds of maps.
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4. Banach spaces of sections

Here N will denote a compact Hausdorff space, whose topology has a
countable base. Then N is normal and metrizable. We call N of class
Cr,r > 1, iff N is a Cr-differentiable manifold with (or without) a
boundary, else we call N of class C° (for convenience only).

Let π : E —• N be a vector bundle of class C5,0 < s < r, where r
is the class of N. We denote by Cs(π) the linear space of sections of
class Cs in π and we will define a normable topology in Cs(π) in the
following way:

We take any Finsler structure for π, t.i. a continuous function ||
• \\: E —> R, which is an admissible norm on each fibre. Clearly Finsler
structures exist and any two are equivalent as N is compact. We then
define a norm for C°(π) by

|| ξ \\co= sup || ξ(p) || (peN).

For r > s > 1, we take a Finsler structure for the tangent bundle
τ : TN —> N and connection of class C 5 " 1 for π. Moreover if r > 2 we
take a connection of class Cr~2 for r. We then have an induced Finsler
structure for

This gives us a norm for C°(Lj(τ, π)) as before. For r > 2 we take the
induced connection for lJ{τ,π) as in Proposition 1.2 and define

3=0

where V denotes covariant differentiation. Note that we need a con-
nection for L(τ, π) only for s > 2. It is well known that Cs(π) with
this norm is a Banach space, and it can easily be shown that we get
equivalent norms, if we change the structures used for the construction
(N being compact!).

Let 55 be the category of real Banach spaces and VB(N) the cate-
gory of vector bundles of class Cr over N with fibres in 05. The set of
morphisms π —> p is then the Banachable space Cr(L(π, p)). Then Cs

is a covariant functor Cs : VB(N) —> 05, with

by Cl(A) - ξ = A ξ. Cl is a continuous linear map for any s < r as is
easily seen using Lemma 2.1 (i). We will consider C% as inclusion map
because of naturality. Let 11 be a full subcategory of 05 closed under the
operations of taking direct sums (products) and bounded linear maps,
(e.g. il = 05 or finite dimensional spaces.) Let VB(N,il) denote the
category of vector bundles of class Cr over N with fibres in iί. By a
section functor T on VJ3(JV,ίl), we mean a covariant functor
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which assignes to every π G VB(N,ίl) a Banachable space X(π) of
sections in π and where the induced map of morphisms:

is a continuous linear inclusion, T*(A) ξ = A - ξ. Given three section
functors 2^, we will say, that the relation %\L C L(%2^3) holds, if
for any two bundles π,p from VB(N,ίl) we have a continuous linear
inclusion

Ii(L(π,p))cL(ϊ 2 (π) 5 l3(p))

defined as above by (A ξ)(p) = A(p) ξ(p). This means A ξG ^ ( p )
for A G Xi(Z/(π,p)),£ G T2(τr) and taking any admissible norms, there
is a constant C > 0 s.t.

In particular C rL C L(ϊ, T) is supposed to hold for any section functor
T and it then follows easily that the spaces T(τr Θ p) and Ί(π) x T(p)
are top-linearly isomorphic under the natural bijection.

We will call a section functor Θ satisfying the following three con-
ditions a manifold model:

1) We have a continuous liner inclusion Θ(π) C C°(π) for every

2) 6 L c L ( 6 , 6 ) holds.

3) Let E,F e VB(N, il), O C E an open subset projected onto
N and / : O —> F a fibre preserving map of class C r , then for every
f G 6(O) = {ξ G Θ(E) : ξ(iV) c O} we have foξ G Θ(F) and the map

: 6(O)

thus defined is continuous.

Remarks. It follows from 1) and the fact that N is compact, that
Θ((9) is open in <B(E). The compactness of N is needed in order that
C°(O) is open. It follows from 2) that β(E) is an &(L(E,E)) module
and 6(iV, î ) = &(N x i?) is a Banach algebra of functions on N. Let
/ : O -* F be a map as above in 3). We call / of class (C r, C r + S ) , 0 <
s < oo, iff fp = f\Op is of class Cs and D\f : O -> L*(E, F) defined by
D\F\Όv = D%fv, is of class Cr for 0 < i < s. In particular / is of class
(C r, C r), iflF / is of class Cr and any morphism is of class (C r, C r + O°).
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Lemma 4.1. Let the section functor & be a manifold model and
f : O —• F a fibre preserving map of class (C r, C r + S ) , then &(f) is of
class Cs and

Dse(f) = e(D*2f).

Proof By induction on s > 0:
The Lemma is true by assumption for s = 0 and it is obviously

sufficient to prove it for s — 1, as the step from s to s + 1 then follows
replacing / by D%f and F by LS{E,F). Now D2f : O -> L(£,F) is of
class C r, therefore

6(D 2 F) : 6 ( 0 ) -* β(L(E,F)) C L(6(£),6(F))

is continuous by 3) and 2) above. Let ξ G &(O) and O' C O an
open neighborhood of ξ(N) such that each fibre O'p is convex. Such a
neighborhood can easily be constructed using any Finster structure, as
ξ is continuous. We define ί O ' θ O ' ^ L(E, F) as the fibre preserving
map:

θ{x,y)= ί D2f(x + t(y-x))dt-D2f(x),
Jo

then θ is of class C r , 0(z, x) = 0 for all X G O ' and

/(y) - / ( x ) - D2f(x) >(y-x) = θ(x, y) (y-x).

Therefore for any η e &(O'):

β(f)(v) ~ β ( / ) ( 0 " 6 ( D 2 / ) ( 0 (i/ - 0 = β(β)(ί, ry) (η - ξ).

Now β(0)(£,ξ) = 0 and 6(0) is continuous by property 3) of 6, it
follows that 6(/) is diίferentiable at ξ with

5. Manifolds of maps

Let N and il be as in §4 and 6 a manifold model on VB(N1ίi). Let M
be a Banach manifold of class C r + S , 5 > 3, modelled on Banach spaces
in iί and admitting a connection of class Cr+S~2. M is furthermore to
be without boundary.

Theorem 5.1. Under the assumption above, there exists a unique
Banach manifold &(N, M) of class Cs~2, such that i/exp: O - > M , O c
TM, is the exponential map corresponding to any C r + S ~ 2 connection
on M,V C O an open neighborhood of the set of zero vectors in TM
such that (r, exp)\V is a diffeomorphism (§3), h : N —• M a map of
class Cr. Then

6 (exp) : &{h*V) -* β(N,M) by ξ .—> expoξ,

and is chart for Θ(iV, M), called a natural chart centered at h.
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Proof. Let Eh = h*TM be the pull-back of r : TM -> M by ft
and Vh = h*V C Eh. Then ^ is in VΊ?(iV,ίl) and % is an open
neighborhood of the set of zero vectors in Eh, such that with π^ = ft*τ:

Φh = (π/j, exp) :Vh-^ N x M

is a diffeomorphim of class Cr onto an open neighborhood Uh of the
graf oί h in N x M. We define Θ(N,M) to be the set of maps g G
C°(ΛΓ, M), such that there is an ft G Cr{N, M) with graf (g) C % and
Φ'1 o (id,g) G Θ(DΛ) We then define &{Uh) to be the set of the g's
with this property and

^) : &(Uh) -+ &{Vh) by &{φ-h

1){g) = Φ~h

ι o (id, <?).

This is a one-to-one mapping with

Let / G Cr(N,M) be another map, such that 6(I7Λ) Π 6(E//) is
not empty. Then Uh Π f// contains the graf of a continuous map, so
Oh = Φ^λ{Uh Π [//) is an open subset of Eh projected onto N. Now

is a fibre preserving map of class (C r, C Γ + S ~ 2 ), therefore

β(φ-f

ι) o S(ΦΛ) = &(Φhf) : β(OΛ) ^ Θ(E/)

and is of class Cs~2 by Lemma 4.1. Hence the collection (6(Uh), ©(Φ^1)), h G
Cr(N,M) is an atlas of class Cs~2 for &(N,M) and defines a topol-
ogy and differentiable structure of class Cs~2 on Θ(iV, M) the topology
is easily seen to be Hausdorίf. The differentiable structure does obvi-
ously not depend on the connection on M used, so long as it is of class

Remark. In particular, the Theorem holds for Θ = Ck,0 < k <
r, k < oo. Note, that if &(E) is defined to be the closed subspace of
Ck(E) vanishing on the boundary of N (if not empty) for all E G
yj5(iV,iί), then 6(TV, M) consists of all maps / G Ck(N, M) such that
f\dN G Cr(dN,M) and is rather disconnected.

Theorem 5.2. With s > 4 and else the same assumptions as in
Theorem 5.1, we have a vector bundle:

β(τ) : &(N,TM) -+ &(N,M), β(r)(η) = roη

of class Cs~3, which is naturally equivalent to the tangent bundle of
&(N, M). Moreover given any connection on M, let Θ(exp) : &(Dh) —>
6(ΛΓ, Af) be the natural chart centered at h G Cr(N,M). Then

Θ(V2exp): β(Vh) x @{Eh) -+ β(N,TM)

Θ(V2 exp)(ξ, η) = V2 exp o(ξ, η)
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gives a trivialization of &{τ) over Θ(exp) corresponding to the tangent
trivialization TΘ(exp) under the bundle equivalence.

Proof. Given a Cr+s~2-connection on M we have a (7 r + s ~ 3 connec-
tion on TM by Theorem 3.1., therefore Θ(N, TM) is a Banach manifold
of class Cs ~ 3 . We will use the natural atlas for the manifold &(N, TM)
constructed by using the induced connection on TM with exponential
map exp τ.

We define Oh : N —> TM as h followed by the zero section of r,
then Oh is of class Cr as well as h. We define a bundle equivalence
Ih:Eh®Eh-> Eoh = (0/ι)*T2M, by

h(ξP,ηP) = {Tτ,τuK)-ι{^0,ηp)

where K is the connection map for TM (§3). Then with T>oh = ih^Ph θ
Eh),Φoh = (TΓO/I? expτ) : VOh —> N x TM is a diίfeomorphism of class
C r + S " 3 and

[ΦOh ° h](ξp, VP) = (P, V2 exp

using Corollary 3.1. ©(Φ^1) is then a chart for ©(ΛΓ, TM) by definition.
Consider the diagram

We claim β(T) = 6(Φ0/ι °̂ /ι) o ^ β ί ^ 1 ) does not depend on h and is a
diffeomorphism of class Cs~s. WehaveTe(Φhf)(ξ,η) = (©(Φ^)^), e(D2Φhf)
η) using Lemma 4.1. Now exp (Φ/ι/(£p)) = exp (£p) so

V2exp (Φhf(ξp), D2Φhf{ξP)' ηP) = V2exp (ξp,ηp)

and then by the above formula for Φoh°Ih we are done. β(T) is of class
Cs~3 as 6(//ι) is. This proves that β(τ) is a vector bundle equivalent
to the tangent bundle as the above diagram is commutative and linear
on fibres, where the linear space structure of &(τ)~1(g) is of course
the one inherited from sections in g*TM, which is a bundle of class C°
at least. This shows that we can extend © to all bundles g*TM for
g G ©(AT, M) and the above map ©(Γ) is a toplinear isomorphism of
the tangent space over g with &(g*TM) so the bundle equivalence is
natural, q.e.d.

We will in the following use Ih and ©(T) as identification maps.
Note that it was not a priori clear whether <S(h*TM) coincides with
the set of maps ξ e &(N, TM) s.t. τoξ = h.

Theorem 5.3. Let M,M' be Banach manifolds of class C r + S , s >
4, and else the same situation as in Theorem 5.1. Let θ : M —> M' be
a map of class Cr+S~2. Then ©((9) : β(N,M) -> β(N,M'),g ->θog,
is of class Cs~2 and T&(θ) = β(TΘ).
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Here we have identified the tangent bundles with 6(iV, Γ r M), Tr&(θ)
Θ(Γr(9),r < s - 2, follows then by induction.

Proof. Let h e Cr(N,M), and / e Cr{N,M) s.t. ί o / ι G 6(1//).

Then 0 /̂ = ΦJ1 o (id, θ) oφh :V'h -^ Ef is a fibre preserving map of
class (C r ,C r + s ~ 2 ) and &{θhf) is the local representative of θ. Now by
Lemma 4.1 6(0/*/) is of class C s " 2 and D&(θhf) = β(D2θhf) More-
over we have exp' oθhf = θ o exp, so

V2exp'oT20Λ/ = TθoV2 exp, with Γ20Λ/(ξ,η) = (0Λ/(f )> D2θhf(ξ) • η)

which shows in the light of Theorem 5.2 that &(T2θhf) is the local
tangent of 6(0^/).

Theorem 5.4. Let K be a connection map for the manifold M in
Theorem 5.1. Then β(K) : A \—• K o A, is a connection map for
&(N,M), the connection is of class C s ~ 4 and the local connector is
given by

β(Λh) : β(Vh) -H. L2(β(Eh), β(Eh)) with Ah = h*Λ (§3).

The corresponding exponential map is just & (exp).

Proof. We have only to prove the local formula, as Ah : Ί>h —>
L2(Eh,Eh) is of class ( C r , C r + s ~ 4 ) and we have a continuous liner
inclusion &(L2(Eh,Eh)) C L2(&(Eh),&(Eh)) applying the maniflod
model property 2) for 6 twice. So let ξ e &(Vh) and 77, Ci, C2 € 6(£τO
be the local components of some A e Γ26(iV, M) = 6(iV, Γ2M). Then

7i oA = V2exp o(ξ,ry),

i ^ o i = V2 exp o (<e,C2) + V2V2exp o (ξ,ry,Ci)

as

- 0

0, ζi(p),ζ2(p))

and then using Corollary 3.2 b) and the definition of A in §3. A some-
what longer but more precise proof can be obtained by using V2 expτ

and computing the connection with exp from Corollary 3.1 and the
defining properties of the connection map Kτ By Lemma 3.1 b) we
have 6(Λh)(tξ) (ξ, ξ) = 0, which proves that tξ, 0 < t < 1, is a geodesic
in this chart. This means that Θ(exp): ξ \—> expoξ is the exponential
map. The natural charts are exactly the "normal coordinates."

6. Bundles of sections over manifolds of maps

Let N, il C 55, Θ and M be given as in §5. Suppose we have a functor
λ : it —> iί of class Cr+S~3 and covariant let's say. The corresponding
map of morphisms:
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), λ(F))

is then of class Cr+S~~3 and we have an induced functor

λN:VB(N,U)-^ VB(N,ίl)

with XN(E)P = \(Ep), p E N (see Lang [6]) and the fibre preserving
map λ*jv (given by λ* on each fibre) is of class (C r, C r + S ~ 3 ) . Moreover
the map of morphisms for λ v is

λ,v* = Cr(\*N) : (A,B) —> λ*^ o (A,B).

Theorem 6.1. Let N,it, Θ, M, λ be as above and letΊ be a section
functor on VB(N,ίl), such that &L C L(T,X) holds (§4). Then %
can be uniquely extended over the vector bundles \w(f*TM) for f €
&(N,M) and the union of all the Banach spaces T(λjv(/*TM)) is a
vector bundle %(\N(<5(N, M)*TM)) of class Cs~s over&(N,M).

Proof For any continuous maps α, β : N —> M, with β £ C°(Ua)
say β = expoξ, ξ e C°(Va) C C°(α*ΓM) we will define a section:

Jaβ e C°(L(α*ΓM, β*TM))

by Jaβ(p)'Vp — ̂ 2 exp (ξ(p),ηp). Then Jaβ is a toplinear isomorphism
on each fibre. Now let hj £ Cr(N,M) with β(Uh) Π 6(Uf) φ φ.
Then with Oh=Φ^1(Uh Π Uf) we have

and this is a fibre preserving map of class (C r, C r + S ~ 3 ) , so
is of class Cs~ 3 by Lemma 4.1. Moreover

(^/c,)"1 Jhg, 9 =

as V2expo(Φhfoξ, (D2Φhf°ξ) -η) = V2expo(ξ,ry), for any ξ e &{Oh).
We define

%(XN(g*TM)) = {(λ*jv ojhg)-η:ηe 1(XN(Eh))}.

This definition does indeed not depend on /ι as

(λ*ΛΓ © J / g ) (λ*ΛΓ O ( - 0 2 ^ / O ξ)) = λ*ΛΓ O Jfej

and

λ*jv : L{Eh,Ef)

is of class (C r, C r + S - 3 ) , s - 3 > 0, so

λ* o (D2Φhf oξ)
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which in turn is continuous linearly included in

L(τ(λN(Eh)),

by property &L C L(T,T). The local trivialization over the chart
(<5(Uh), ©(Φ^1)) of &(N,M) is now given by the linear isomorphism
λ*jv o J^g in the fibre over g and defines a Banach space topology on
each fibre. The transition map between charts centered at h and /, is
the composite of

6(0) -> 6(L(/ι*ΓM, f*TM)) ->

-> β(L(XN(h*TM), \N(f*TM))) -

-+ L(τ(\N{h*TM)), %(XNf*TM))),

where the first map &(D2Φhf) and the second 6(λ*;v) are of class Cs ~ 3

and the last one is a continuous linear inclusion, q.e.d.

The theorem holds in particular for T = Θ. Observe that
P\M{TM), SO the fibre over / consists of sections in the pull-back of
the tensor bundle of type λ over M by /, t.i. tensor fields of type
λ along the map /. For λ = id, we get exactly the tangent bundle of
Θ(iV, M), the local trivialization used here is moreover the same as used
for &(N, TM) before. If X is a tensor field of type λ on M, t.i. a section
in XM(TM), we have an induced section 6*X in &(XN(&(N, M)*TM))
defined by (θ*X)(f) = f*X = Xof, which is of class Cs ~ 3 if X is of
class C r + S " 3 .

We note that λ could just as well have been contravariant or of
mixed variance. Moreover if λ is of several variables, we could replace
some by fixed bundles from VB(N, il) and the rest by pull-backs of TM
by maps in β(N,M). However, as TN is not in VB(N,ii) if r < oo,
we will have to make some additional assumptions before applying the
theorem.

Let r > 1 and denote by VBι(N,ίl) the category of vector bundles
of class Cι, 0 < i < r, over N with fibres in iί. Section functors and
manifold models on VBι(N,ίl) are defined just as before (replacing r by
i). We will henceforth suppose 6 is a manifold model on VBr~1(NJίi).
Let λ : il x iί —* il be a functor of class Cr + s ~ 4 and T a section functor
onVB r-^i\Γ,:U)with6LcL(X,X). Then%{XN(TN, Θ(AΓ,M)*TM))
is a vector bundle of class Cs~ 3 over 6(N, M) with X(AAr(TiV, / T M ) )
as the fibre over /. The proof is exactly the same as in previous the-
orem, replacing λ*;v by X*N{I, •)> where / is the identity section in
L(TN, TN).
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Let Xi,X2 be section functors in VB^N^ii) and VBi~1(N,il) re-
spectively. We will call %\ of higher degree than Ί2, if the following
holds: Given E G VBι(N,ίl) and any connection of class Cι~ι on E,
then we have a unique extension of the covariant derivative to a contin-
uous linear map

This means that C*(E) Π %\{E) is dense in %\{E) and V : C*(E) Π
Ti(E) -> C^iHTNiE)) Π Z2(L(TN,E)) is continuous, in the Ti,T 2

topologies. Obviously Cfc is of higher degree than Cj for fc > j . We will
say that %\ is contained in T2, if we have a continuous linear inclusion
Ίi(£?) C ^(E) for every vector bundle E on which both Ti and T2

are defined.

Theorem 6.2. Let N be a compact manifold of class Cr, r > 1, Θ
α manifold model on VBr~1(N,ii) and M a Banach manifold of class
Cr+S, s > 3, as before. Let % be a section functor on VBr~1(N,ίi),
such that <BL C 1/(1,1), Θ is of higher degree than T and contained in
%. Then d:f^dfe Cr~ι{L(TN, f*TM)) for f G Cr(N, M) can be
extended uniquely to a section d of class Cs~3 in %(L(TN, 6(ΛΓ, M)*TM)).
Moreover in the local trivialization centered at h G Cr(N,M) con-
structed above, the local representative dh is given by

dh = β{ΰh) + Vh : &{Vh) -> Z(L(TN, h*TM)),

where V^ = /ι*V is the pull-back of the covariant derivation on M
obtained from the connection used to construct the natural chart at h
and

ϋh = {h*ϋ) dh, where ΰ:V-+ L(TM,TM)

is the twist map from §3. Explicitly,

V2 exp (£p, ϋh(ξP) ' vp) = Vi exp (ξp, dh{p) υp).

Proof Vh is a covariant differentiation coming from a connection
on Eh of class Cr~ι, and has therefore by the assumption that Θ is of
higher degree than T a unique continuous linear extension to

Moreover ϋh is a fibre preserving map of class (C r ,C r + 5 ~ 3 ) and thus
by Lemma 4.1 induces a C s~3-map:

e(ϋh) : &{Vh) -> &{L{TN,Eh)) C %(L(TN,Eh))

where the inclusion is continuous linear by the assumption that 6 is
contained in %. We have therefore only to prove that the local formula
is correct for sections of class Cr in &(T>h) as those are dense. So let
/ = exp o ξ with ξ € 6(Z\) and of class CΓ; then

df(p)-v = [V exτ>o(πi,Tπ,K)oTξ}(v)

= Vi exp (ξ(p), dh{p) -v) + V2 exp (ξ(p), Vhξ(p) • υ)
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which proves the local formula.

Theorem 6.3. Let the assumption be as in previous theorem and
give M a connection of class Cr+S~2. Then the pull-back of the covari-
ant derivation on M has a unique extension to a vector bundle map

V* : &(<S{N,M)*TM) -> T(L(7W, &(N,M)*TM))

of class Cs~4 provided s > 4. Moreover in the natural local trivializa-
tion centered at h G Cr(N,M) the local representative o/V*:

V£ : e(Vh) -+ L(6{Eh), τ{L{TN,Eh)))

is given by the formula

VJί(O = VΛ + &(D2ϋh)(ξ) + &(Λh)(ξ) • dhξ,

where V^ = h*V,ΰh and dh are as in Theorem 6.2 and Λh is the local
connector from Theorem 5.4-

Proof D2ϋh and Λh are both fibre preserving maps of class (C r, Cr+S~4)
from Vh into L(Eh, L(TN, Eh)) and L2(Eh, Eh) -> L(L(TN, Eh), L{Eh,
L(TN, E^))) respectively, so Vj£ is of class Cs~~4 and we have only to
prove the local formula under the additional hypothesis that ξ is of class
Cr. Let / = exp o ξ, ζ = Jhf -η = V2 exp (ξ, η) with η e Cr(Eh). Then

= Vi V2 exp (ξ, 77, dh) + V2V2 exp (ζ, η, Vξ) -h V2 exp (ξ, Vr?)

by Lemma 3.1 c) and definition of A. The local formula follows as we
have D2ΰh(ξP)' VP = D2ΰ(ξP) (ηP, dh{p)).

Theorem 6.4. Given JV, iί, Θ,M as in Theorem 6.3 with r >
2, s > 4 and let both N and M have connections of class Cr~2 and
(jr+s-2 respectively. Letii,^,^ be section functors onVBr~1(N,ίi)
and suppose &L C L{%,%) for i = 1,2,3; %λL C L(T2,T3); 6 is of
higher degree and contained in TL\ and T2 is of higher degree than T3.
Then taking the induced connection for the bundles Lk(TN, f*TM), f G
Cr(N,M) (see §2), there is a unique extension of the covariant deriva-
tion to a vector bundle map

V* : 12{Lk(TN, S ΓΛf)) -> Z3(Lk+1(TN, 6*TM))

of class Cs~4 for k > 0. Moreover we have exactly the same local
formula with the obvious interpretation of $h and Λh.

Proof It is an easy matter to check the local formula. We use the
inclusion:

L2(Eh,Eh)^L(L(TN, Eh), L(Lk(TN, Eh), Lk+1(TN, Eh))
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to follow Ah and similar inclusions to follow ϋh and £>2$/ι to obtain the
correct maps. Our assumptions are easily seen to ensure that V* is of
class Cs~4.

Corollaries for C*. Let N be a compact Riemannian manifold of
class C°° and M a paracompact Banach manifold of class C°°, without
boundary and with a C00-connection and a Finsler structure. Then for
0 < k < oc:

1. Ck(N, M) is a paracompact Banach manifold of class C°°, with
Ck(N, TM) as a tangent bundle space and admits a C°° -connection and
a Finsler structure.

2. The connection on M induces a canonical C°° -connection on
Ck(N, M), such that Ck(exp) is the exponential map for Ck(N,M), if
exp denotes the exponential map for M.

3. Cs{Lr(TN, Ck(N,M)*TM)) -> Ck(N,M) is a vector bundle
of class C°° for 0 < s < k, 0 < r < oo.

4. The tangent derivative d : Ck(N, M) -» Ck-λ{L(TN, Ck(N, M)*TM))
is a C°° section in this bundle.

5. The connections on N and M induce C°° sections in

L{Cs(Lr(TN, Ck(N,M)*TM)), Cs~l(Lr+l(TN, Ck(N,M)*TM)))

for r > 0, which are given by the covariant derivative on each fibre
defined as in §2, taking the induced connection for the pull-backs.

6. We have an induced Finsler structure on Ck(N,M) given on
the fibre Ck(f*TM), f e Ck{N,M),by

where the Riemannian metric on N and the pull-back of the Finsler
structure from M are used to obtain a Finsler structure for Lι(TN, / T M ) , i >
0.

Remark. If M is finite dimensional Riemannian manifold and k >

- dim iV, we obtain the same results for the Sobolev chain Hs using

the properties of Hs as a section functor (see [5]), except we replace the
Finsler structure by the Riemannian metric

ΐ = 0 N

where we integrate with respect to the Riemannian measure on N and
the Riemannian metrics for Lι(TN, f*TM) are constructed from the
Riemannian metrics for TN and TM. A fc-th order energy function Ek
: Hk(N, M) -» R may be defined by

= \ Σ2

and is of class C°° as is easily seen applying theorems 6.2-4. Ek satisfies
condition C.
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