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GEOMETRY OF MANIFOLDS OF MAPS

HALLDOR I. ELIASSON

Introduction

The main purpose of this paper is to lift differential geometric ob-
jects from two manifolds N and M to a Banach manifold (N, M) of
maps from N to M. To give an explicit construction of such objects, it
seems to me, is fundamental for analysis on these manifolds. Moreover,
we are able to prove existence where conventional methods fail, because
of the lack of smooth partitions of unity on many Banach manifolds of
maps as e.g. C*(N, M).

The general setting for manifolds of maps is as follows (§4) : N is a
compact Hausdorff space of class C" with a countable basis 0 < r < oo
(CT-manifold for r > 1), il is a full subcategory of the category ‘B of Ba-
nach spaces closed under the operations of taking direct sums and con-
tinuous linear maps. V B(N, ) is the category of vector bundles of class
C" over N with fibres in 4. & is a section functor, which is a manifold
model, t.i. & is a covariant functor from VB(N, ) into B s.t. G(E) is
a Banach space of sections in F for any F € VB(N, i) and as a man-
ifold model & has the following three properties: we have continuous
linear inclusions G(E) C C°(E) and &(L(E, F)) C L(6(E), &(F))
and the map of section spaces induced by C"-fibre maps via & is con-
tinuous. We then prove differentiability and give an explicit formula for
the derivatives (Lemma 4.1). This is the fundamental lemma for most
of the following constructions.

Then (§5) M is a Banach manifold of class C"* ¢, s > 3, admitting
a connection of class C"*°~2 and modeled on {{. we then construct
a C*~2-Banach manifold (N, M) of maps. We follow the idea in
[3] to use the exponential map for the construction of a chart in a
neighborhood of a C"-map h : N — M using S(h*TM) as a model.

This axiomatic setting is slightly more general than in Palais [5],
where N, M are finite dimensional of class C*°, so we have included
more of the known examples due to Eells [3] as e.g. CO(N, M), where
N is some space as above (r = 0). Moreover it is important to allow M
to be infinite dimensional, for & = C¥, this has already been worked
out, Abraham [1]. Furthermore, the axioms for a manifold model are
slightly more general. The fundamental difference, however, lies in the
fact that we start globally on vector bundles and use only differential
geometric objects and structures from N and M to carry through the
constructions.
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We then proceed to the proof, that the tangent bundle of &(N, M)
can be identified with &(NN, TM) in a natural manner and that a map
6 : M — M’ of class C"**~2 induces by composition a map &(9) :
S(N, M) — &(N, M’) of class C*~2 and TS (d) = G(T9). Our main
result is Theorem 4.5, where we prove that a C”**~2-connection on
M induces a canonical connection of class C™+*~4 on &(N, M), such
that if exp denotes the exponential map for M, then G(exp) is the
exponential map for (N, M). This implies that if N, M are of class
C™ and M admits a C*°-connetion, then the C-manifold C*(N, M)
admits a connection of class C>°. We then have the iterated manifolds
of maps C!(N, C¥(N, M)) etc. Note that here a C* connection cannot
be constructed using C*° partitions of unity, as they do not exist (see
[4] for references).

In §6 we construct vector bundles over G(N, M) and bundle maps
between those. Let A : 4 x 4 — U be a functor of class C*® and Ay
the induced operation on VB(N, %B), ¥ a section functor such that
we have a continuous linear inclusion S(L(E, F)) C L(%(E), T(F)).
Let E € VB(N, i) be given. We then prove that the domain of de-
finition for ¥ can be extended as to define T(An(E, f*TM)) for all
f € 6(N, M) and the union of these Banach spaces is a vector bundle
T(AN(E, G(N, M)*TM)) over G(N, M) of class C*~3. In particular,
we have the bundles S(An (S(N, M)*TM)), which are just lifts of the
tensor bundles over M with obvious lifts of sections (for A = id we have
the tangent bundle of G(N, M)). The importance of this lies also in
the fact that we usually have to consider weaker variations of mappings
than those obtainable through manifold model sections.

In Theorems 6.2-6.4 we give sufficient conditions, that the tangent
extends to a section 8 in T(L(TN, &(N, M)*TM)) of class C*~3(r >
1) and that a covariant differentiation in TN (r > 2) and TM induces
sections in

L(Z1(L*(TN, &(N, M)*TM)), To(L*t1 (TN, &(N, M)*TM)))

k > 0 of class C*~%. This has immediate applications to the chain
C% C1,- .. of manifold models. However, the most important applica-
tions will be to the Sobolev chain H®, H!,.-. , H* (2k > dim N). I do
not give any applications to H*(= Lz) here, but I intend to prove in a
later paper that the k-th order energy function Ey : H*(N, M) — R, N
and M compact without boundary, satisfies condition C of Palais and
Smale (see [4] for references).

The above bundles and bundle maps form a natural setting for the
study of partial differential equations for maps N — M.

The first three sections are of a preparatory nature. In §1 we intro-
duce connection for vector bundles via the connection map and com-
pute canonical connections for the associated bundles of direct sums
and linear maps. In §2 we define the covariant derivative of a section
in E — N as a section in L(T'N, E) and so on for higher derivatives
using the induced connection. We furthermore observe that this covari-
ant differentiation has properties similar to the usual differentiation in
Banach spaces.
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In §3 starting from a manifold M with connection, we define a cer-
tain induced connection for the total space T'M of the tangent bundle
and investigate the properties of the corresponding exponential map,
which is to be used to obtain canonical charts for G(N, TM). This
connection may be characterized by the fact that the geodesics in TM
are exactly the Jacobi fields along geodesics in M. We furthermore an-
alyze the two first (covariant) derivatives of the exponential map for M,
as we will need those for the construction of canonical local trivializa-
tions of our vector bundles over G(N, M). The general reference here
is [2] and [6]. The Jacobi connection mentioned above has also been
constructed by J. Vilms [7].

1. Connection in vector bundles

Let M be a Banach manifold of class C*, k > 1, with boundary M.
A chart for M is given by a diffeomorphism ¢ : U — ¢U of class C¥,
where U is open in M and ¢U isopenin M} = {x € M : A-2 >0}, M
is a Banach space and A a functional on M. OU C OM is then given as
the inverse image of d¢U = gUNMY, MY = {z € M : A -z = 0} (see
[6]). The restriction ¢|0U gives a chart of class C* for the manifold M.
The tangent of ¢, T'¢ : TU — ¢U x M gives a chart for the total space
TM of the tangent bundle 7 : TM — M. We have a C*~1 section [ in
L(TM|0M, R) given locally by the functionals, such that ker | = ToM
and a vector v € T ,M, p € OM, is tangent to M iff I(p) - v > 0, in the
sense that we have a curve c: [0, 1] — M of class C! with 8,(0) = v.

Let m : E — M be a vector bundle of class C", 1 < r < k. A local
trivialization for 7 is given by a bundle equivalence:

&: 7Y (U) - ¢U x E
1 |
P: U— ¢oU

where ¢ is a chart for M and E a Banach space. With { € E, =
7~ 1(p) we have &(£) = (¢(p), Pp(£)), where &, : E, — E is a toplinear
isomorphism. Given another local trivialization by (V, ¢, ¥), we will
define the transition map by:

Gyg : 9(UNV) — L(E, E); Gyg(x) =¥ 0 B, ",

with z = ¢(p). Gy is then of class C". E is a Banach manifold of class
C™ (with boundary) so the tangent bundle m; : TE — E is of class
C™1. The tangent of 7 is a bundle map T : TE — TM of class C™~!
and we see immediately from the local formulas
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Tod ' (z, &) = (o (z), Gyo(z) - &),
T(!Z'/Oé_l)(gj, ga Y, 7’) = (1/1 o ¢—1($), G¢¢(£L‘) . &7 D(¢ o ¢—1)($) Y,
DGyy(z) - (y, &) + Gyg(z)-m),

that we can introduce vector space structure in the fibres of T (locally
Tn maps (z, &, y, n) to (z, ¥)), to give Tw : TE — TM a vector bundle
structure of class C™~1.

Definition. A connection map K for the bundle E is a map K :
TE — E, such that for any local trivialization (U, ¢, @) of 7 : E — M,
there is a map I'y : ¢U — L(M, E; E) of class C™~!, which gives the
local representative of K, K, = ® o K o T®~! by the formula:

Ky(z, & y, ) = (z, n+ Ty(x) - (y, £))-

It follows of course that K is of class C"~!, but not conversely. We
call I'y the local connector for K and we will sometimes drop the suffix
¢, if the local trivialization is fixed. In the case E =TM,r =k — 1,
we have Gy, = D(¢p 0 1) and the local connector corresponds to the
classical Christoffel symbols, t.i. in the finite dimensional case we have
in coordinates:

[[(2) - (y, 2)]' = ZTj,(z)y’ 2"

Using the formula for T'(¥ o $~1) above we get the following trans-
formation formula for the local connector:

Is(x) - (y, &) = Goy(W 0 7 () - [DGyp() - (3, &)
+Ty(po ¢~ (z)) - (Do o) (x) -y, Gyg(x) - £).

Thus the required properties of the local connector are invariant
under change of trivialization. It follows furthermore, that if M admits
partition of unity of class C™~!, then there exists a connection map for
.

We have two subbundles ker T'r and ker K of 71, as T'm and K are
both C™~! surjective bundle maps with splitting kernels (see [6]). We
have moreover an isomorphism ker T'w & ker K = 7; by (A, B) — A+B.
For this splitting of 7; and later for covariant differentiation of sections
we need our assumption on the “strong” differentiability of the con-
nection, t.i. we are not satisfied with the weaker assumption that K
or equivalently (z, y, £) — I'(z) - (y, &) is differentiable. A connection
with this “weaker” differentiability is equivalent to a spray as defined in
Lang [6] and suffices to introduce geodesics and the exponential map.
Note that the map (1, Twr, K) : TE - E®@TM @ E is a C"! diffeo-
morphism.

Let a : [0, 1] — E be a C'-curve in E. We denote by e the basis
section of TR = R X R, e(t) = (t, 1). Then da = Ta o e is the tangent
field of a and the covariant derivative of « is defined by Va = K o da.
We call o parallel, if Va = 0. If « is given in a local trivialization by
(¢, o), then Ve is given by
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(C, o + (F ° C) : (cl7 a))

It follows that if ¢ : [0, 1] — M is a given Cl-curve and £ € E.), then
there is a unique parallel curve « in E with 7 o a = ¢ (or parallel field
along ¢) and a(0) = £. In the case E = TM, V9c = 0 is the equation
for a geodesic in M and there is a unique local solution with 9¢(0) = v,
for a given v tangent to M.

We will now show that the category of vector bundles over M admit-
ting a connection is closed under the operations of taking direct sums
and linear maps.

Lemma 1.1. Letw: E — M and p: F — M be vector bundles over
M, of class C™, then there is a natural bundle equivalence T(m & p) =
Tr & Tp, given locally by an identity.

Proof. Let (A, B) € TE &1y TF, Tn(A) = Tp(B) = v. Let c(t)
be a Cl-curve in M with dc(0) = v and a, 8 any fields along c in
E, F with da(0) = A, 96(0) = B. Define v(t) = (a(t), B(t)) and
let (A, B) & 9v(0). This is easily seen to be an identity in a local
trivialization using tangent charts.

Proposition 1.1. Let K., K, be connection maps form: E — M
andp: FF — M, then K; ® K, is a connection map fort®p: E®QF —
M. In a local trivialization the local connector

Ihgp:9U — L(M, Ex F; E x F)
it s given by
Trop(2) - (y; (& M) = (I () - (y, ), Tp(x) - (y, M)

Proof. We use here the identification from Lemma 1.1 and the
Proposition follows from the local formula, which is evident. q.e.d.

Given two bundles 7 : E — M, p : F — M, we have the bundle
L(n, p) : L(E, F) — M of bounded linear maps of fibres: L(E, F), =
L(E,, F},). We have moreover a bundle L(t*m, Tp) : L(T*E, TF) —
TM, with fibre L(7*E, TF), = L(E. (), ToF), T F = (Tp)~!(v).
Here 7*7: 7*E — TM is the pull back of 7 : TM — M, t.i. (T*E), =
E;). Let (U, ¢, &) and (U, ¢, Y,) be local trivializations for 7 and
p, we then have induced trivializations:

Br(n,p) : L(m, p)H(U) — ¢U x L(E, F),

QL(ﬂ,p)p(A) . € = 45;Op(A : Q;;}(g))y Ae L(EIH FP): "S € E,
Prren1p) t L(r*m, Tp) ' (U) — ¢U x M x L(E, F x F),
slsL(ﬂ""lr,Tp)v(‘4) §= P(T¢D(A : Q;}} (5)))7

where
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P(:I), g’ Y, 77) = (§7 71), Aec L(Epa TvF)a b= T(U)'
Then
D (ren,7p)(A) = (TO(v), PL(rrn, Tp)w(A))-

Lemma 1.2. Let K be a connection map forw : E — M, then there
is a canonically induced bundle equivalence:

TL(E, F) "% L(+*E, TF)
TL(m, p) | L L(r*w, Tp)
™ = TM

In a local trivialization, L(K) is given by

L(K)¢(Z', Y, Av B) = (iL‘, Y, Aa B-A. F(il?) : (y7 ))

Proof. We will first define L(K) intrinsically and then show that
it has the required properties by writing it down locally. Let W €
TL(E, F) and put v = TL(x, p)(W), p = 7(v). Assume W, v are
tangent and let ¢ be a C'-curve in M with dc(0) = v and 8 a field
along ¢ in L(E, F) with 03(0) = W. We have to define L(K)(W) as
a linear map E, — T ,F. Let £ € E, and a the parallel field along
¢ with a(0) = £ Put v(t) = B(¢) - a(t), then « is a curve in F. We
define L(K)(W) - £ = 8v(0). To compute this in a local trivialization,
let TOr(r ) (W) = (z, A, y, B), then ¢(p) = z, T$(v) = (z,y). Put
&,.(¢) = (z,n) and let ¢, B, a be the principal parts, then ¢(0) =
z, B(0) = A, a(0) = n,c'(0) = y, B'(0) = B. We have $,0v =
(¢, B-a) and

as a'(t) + I'(e(t)) - (¢'(t), a(t)) = 0, where I' is the local connector for

K. We have then proved the local formula which shows that L(K) is
well defined and gives a bundle equivalence.

Proposition 1.2. Let K., K, be connection maps for the vector
bundlesm: E — M and p: F — M. Then Ky (r ) = L(m, K,) o L(K,)
is a connection map for L(w, p) : L(E, F) — M. In a local trivialization
the corresponding local connector is given by

Tompy < pU — L(M, L(E, F); L(E, F)),
[FL(w,p)(m) . (ya A)] . £ = Fp("") : (y’ A- 5) —A- Fﬂ'(x) : (ya §)

Remark. Here L(m,K,) : L(t*E, TF) — L(E, F) is defined by

L(r, Kp)(A) £ =Ky(A-¢).
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Proof. Using Lemma 1.2, we have in a local trivialization:

KL(n,p)qS(x’ Aa Y, B) : £ = Kp¢($7 A- éa Y, B. § -A- Fw(x) . (y7 5))
=(2,B-§—A-T'n(z) (¥, &)+ p(z) (y, A-€)).

Obviously I' 1(x,p) is of class C"™"' if I' , and I . are.

2. Covariant differentiation in vector bundles

We will assume that we have a connection on M, t.i. a connection map
K, for the tangent bundle 7 : TM — M. Furthermore, let 7 : E — M
be a vector bundle with connection map K,. If £ is a differentiable
section in 7, we will define the covariant derivative of £ to be the section
in L(r, 7) : L(TM, E) — M defined by

VE&(p) = Ky 0o Tp€, Tpé =TET,M.
In a local trivialization we have

Vé(z) -y = DE(x) -y + I'x(x) - (y, £(2)),

where we have used the same letter for the principal part and I, is
the local connector. If € is of class C?, then V¢ is obviously of class
C* 1 for 1 < s <r—1, where r is the class of E as before. We then
define higher order covariant derivatives inductively, using the induced
connection on LY(TM, E) = L(TM, L*~Y(TM, E)) by Proposition 1.2.
Here the connection on M is needed. So V*¢ is a section in L¥(7, ).
Let p: F — M be another vector bundle of the same class as m and
A, € sections in L(m, p), 7. We then define a section A - £ in p by
(A-&)(p) = A(p) - &(p). If &, X are sections in 7 and 7, we will call
V¢ - X the partial derivative of £ in the direction X; it is again a section
in . In the case m = 7, we have the classical covariant differentiation
of vector fields.

Lemma 2.1. (i) Let # and p be vector bundles over M with con-
nection and give L(x, p) the induced connection. Then for any sections
A, ¢ in L(m, p) and 7 of class C', we have

V(A- & =VA-( & +A-VE
(i) If 7 is a bundle of class C™ with C™=1 connection there is a
C"2 section R in L(t, 7, m; ), such that for any sections X,Y in T
and & of class C? in m, we have

V% (X,Y)-V%-(Y,X)=R-(X,Y,¢).

In any local trivialization we have



176 HALLDOR I. ELIASSON

R(Z) . (yv 2, §) = DF(.’D) : (y7 2, g) —DF(Z) ) (Z, Y, 6)

Remark. In fact this is a generalization of the classical curvature
tensor, so we may keep this name for R. In the formula above I' = I"
is the local connector for .

Proof. 'We have only to write this down in a local trivialization and
use the formula in Proposition 1.2 for the local connector of L(7, p) and
L(r, «).

Using the same formula we get easily

Lemma 2.2. Let R, R, be the curvature tensors for bundles = and
p over M with some connections, and take the induced connection for
L(rm, p). Then the curvature tensor for L(w, p) is given by the formula

RL(w,p)(P) : (’U, U, A) : € = Rp(p) ) ('U, u, A- 6) i Rﬂ'(p) . (Ua U, §)7
forv,ueT,M, € E,, Ac L(E,, F,).

Letw: E — M, p: F — M be vector bundles with connection maps
K., K, and let f : E — F be a fibre map, ti. po f = m. We then
define the covariant derivative of f as a fibre map:

Vfi:E— L(TM ®E, F)

by
VFE) - (v,n)=K,oTfo(m, Tr, Kz)~ (€, v, m).

In a local trivialization, we get easily the expression

le(l', 5) Y+ D2f(x> g) . (77 - Fw(x) ) (y’ 5)) +FP(1;) : (y’ f(:l?, 5))

for the principal part, which shows that Vf(£) is in fact a linear map:
T,M ® E, — F, for { € E,. Moreover it reveals, that if we split
Vf in the obvious manner into V,f : E — L(TM, F) and Vaf :
E — L(E, F), then Vof(§) = Dfy(€), where f, = f|E, (note that
fp : Ep — Fp is a map from a Banach space into a Banach space). We
will therefore feel free to write Dsf instead of Vof. Using the local
formula above the following is easily seen:

Lemma 2.3. Let f : E — F be a differentiable fibre map and £ a
section in E, then we have

V(fo&)(p) = Vif(£(p)) + D2f(£(p)) o V(D).

These formulas show us that covariant differentiation behaves very
much alike ordinary differentiation in Banach spaces. We will now see
how it behaves under pull-backs.

Let M, M’ be Banach manifolds of class C* as before and let 7 :
E — M’ be a vector bundle of class C", 1 < r < k, with a connection
map K': TE — E. Let h: M — M’ be a map of class C". Then the
pull-back h*7 : h*E — M, (h*E), = Ejyp), is a bundle of class C". If
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(U, ¢) is a chart for M and (V, ¢, ¥) a local trivialization for 7, such
that h(U) C V, then we can define a local trivialization of h*7 by

O :hWE\U — ¢U x E; 9(&) = (6(p), Th(p)(&)) s

where F is the fibre model for 7 in the given trivialization.

We now define a connection map K for hA*m by i o K = K’ o T4,
where i : h*E — F is the inclusion. This defines K uniquely as i is an
isomorphism on each fibre.

For the local connector we get

I'(z) - (y,6) = I'(ho(x)) - (Dho(x) - 4,£) ,

where I is the local connector for m and hg the local representative
for h. We can regard the tangent of h as a section Oh in L(r, h*7’)
by Oh(p) - v = Th(v). The sections in h*m are in a class preserving
one-to-one correspondence with the fields along h, t.i. maps{: M — E
s.t. mo& = h and we will identify those. A section X in 7 induces a
section h*X = X o h in h*r and it follows easily from the above local
formula for the connectors that

(h*V')(h*X) = h*(V'X) - Oh,

where h*V’, V' denote the covariant differentiation in h*m, 7. Now let
M be with connection and let V = h*V’ denote the covariant differen-
tiation over M. Then VOh is symmetric bilinear on each fibre, so by
using Lemma 2.1 (i) and (ii) for the curvature tensor Ry, of h*m we get

Rh-(v,u,§)=(R'oh)-(8h-v, ahu?&)’

where R’ is the curvature tensor for =.

Remark. We have constantly assumed the connection for a man-
ifold to be symmetric (without torsion) t.i. the local connector is a
symmetric bilinear map at each point. This is no restriction on exis-
tence.

3. Connection in iterated tangent bundles

Here M is to be a Banach manifold of class C¥, k > 2, without a
boundary and with a connection map K : T?M — TM for the tangent
bundle 7. We will assume that the connection is symmetric. We define
amap K7 : T3M — T?M through the properties:

Krl:moKr=mom, Kr2:T,0oKpr=KoT?r,
Kr3:KoKr=KoTK —Ro (T, oT?r,7 0 T1y, 7 0 T?7).
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Here 7; : Tt 1M — T*M are the iterated tangent bundles and R is the
curvature tensor, defined as a section in L3(TM,TM) in Lemma 2.1,
but considered as a trilinear bundle map R: TM & TM & TM — TM
here. We have observed that (71,7, K) is a diffeomorphism, so Kt is
uniquely defined by those properties.

Theorem 3.1. The map Kr is a connection map for the vector
bundle 7, : T?)M — TM and gives the manifold TM a symmetric
connection of class C*¥=3. In any local trivialization induced by a chart
(U, ¢) for M, the local connector for Ky, I'r : ¢U x M — L(M x
M, M x M;M x M) is given by the formula

Ir(z, y) - ((21, 22), (&1, §2)) = (I'(z) - (21, &), DI'(2) - (y, 21, &1)
+ I'(x) - (22, &1) + ['(x) - (21, &2))

where I' is the local connector for K.

Proof. We have only to prove the local formula which is a simple com-
putation, using the formula for the curvature tensor from Lemma 2.1.
I'r is obviously of class C¥~3 as I is of class C*~2.

We will denote by V 7 the covariant differentiation in vector bundles
over T'M, using the connection map Kr for the tangent bundle of TM
and by V as before the covariant differentiation over M. A field « along
a curve ¢ in M is called a Jacobi field, iff

V2a+ (Roc) - (a,dc,dc) = 0.

Theorem 3.2. A curve a of class C? in TM is the geodesic (V p0a =
0) in TM with 0a(0) = w, iff o is the Jacobi field along the geodesic
c=T1oa in M with 0c(0) = T7(w), a(0) = 11 (w) and V a(0) = K(w).

Proof. 1) Suppose a is a geodesic in TM : V 70a = 0, 0a(0) = w.
Then we have for c = 70a, 0¢c =Tcoe =TT o00da, so 0c(0) = T'1(w)
and

Vdc = KoTdcoe = KoT?r0Tdace = TroKrod?a = TToV 78a = 0.
Furthermore, Va = K o da and then

V2a=K0T(K06a)oe= (KoKp+ Ro(T1oT?r, 1 0 Ty, 7 0T?7)) 0 8%
= Ro(0c, a, 0c) = —Ro (a, Oc, dc),

which, together with Vr0a =0 and T700a=T(troa)oe =3¢, 110
a = ¢, Todc = ¢, proves that « is a Jacobi field along ¢. We have
a(0) =71 0 0a(0) = 11 (w) and V a(0) = K o0 9a(0) = K (w).

2) Now suppose « is a Jacobi field along the geodesic ¢ = Toa and
put w = (11, T11K)~}((0), 8¢(0), Va(0)). Then we have
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KoVrda =K oKrod’a
=(KoTK —Ro(TToT?r, 7y 0T7, 11 0T?1)) 0 8%a
= V2a—-Ro(dc, a dc) =0,

TroVpda =TroKroda=KoT?roTdaoce
=KoTdc o e=Vdc=0.

Now as ker K N ker Tt = 0, we get Vrda = 0. Moreover from K o
0a(0) = Va(0) = K(w), TTo 8a(0) = dc(0) = T1(w) we get da(0) =
w. q.ed.

We have now to investigate the exponential maps exp, expr corre-
sponding to V and V r for later use. Moreover we have to analyze the
two first derivatives of exp. The general reference on local existence,
uniqueness and differentiability of flows in Banach manifolds is Lang
[6].

There is an open neighborhood O of the set of zero vectors in TM
and a map exp: O — M of class C*~2, if the class k of M is > 3.
We have exp v = ¢(1), where c is the unique geodesic ¢: [0, 1] — M
with 0¢c(0) = v. O is the set of v € TM such that ¢ is defined on the
unite inverval, then c(t) = exp tv,0 <t < 1. We define the covariant
derivative of exp:

Vexp:O®TM&TM - TM

by
Vexp =T expo(r, T, K)‘l,

which is then a map of class C*~3.

Theorem 3.3. Letv € O, and u, w € T,M. Let c(t) = exptv and
Y the Jacobi field along ¢ with Y (0) = u, VY (0) = w. Then

Y(t) =V exp (tv, u, tw), 0 <t <1.

Proof. Letb: [0, €] — M be a curve of class C* in M with 0b(0) =
u and 3 a field of class C*~! along b with 3(0) = v and V 3(0) = w
(e.g. geodesic and Jacobi field). Put a(t, s) = exp (¢t5(s)). Then we
have

dxa(t, s) =V exp (tB(s), 9b(s), tV B(s)),
V182a = Vg&la,
V20,0 = VoV101a + (R 0 a) - (O1a, Daa, B10).

The last formula follows from Lemmas 2.1 and 2.2, if we think of da
as a section in the pull-back a*7, introduce partial derivatives in the
obvious manner and make use of the formula for the pull-back of the
curvature tensor. Now as Vi 0;a = 0, it follows that t — «af(t, s) is
a Jacobi field for all s, and the theorem then follows for s = 0 as
a(t, 0) = c(t), 92c(0, 0) = 9b(0) = u, V102(0, 0) = VB(0) = w. The
theorem and this variation of geodesic through geodesics with Jacobi
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fields as variation field is well known in differential geometry, at least
for u = 0.

Define 0 = (11,177, K)o (T'1,7,K) : T?M — T?M, locally we
have o4(z,y,€,m) = (z, €, y, n). Combining the two last theorems we
obtain

Corollary 3.1. expy =T expoo.
We define the second covariant derivative of exp

V2 exp: 00 (@° TM) — TM

V2 exp (v, u, w, &0, &1, &2, &3)
= K(Tv eXp(A(’U, 607 61)’ A(’U,, 607 52)7 A(’U), 507 53)))7

with A = (11, T, K)~!. We have here used the identification in Lemma
1.1 of the tangent of a direct sum with the direct sum of the tangents.

Theorem 3.4. Letv € Op7 u, w, £07 517 £2a 53 € TPM Put C(t) =
exp tv, Y1(t) = V exp (tv, u, tw),Y2(t) = V exp (tv, &, t&1). Let Z(¢)
be the solution of the initial value problem :

V2Z 4+ (Roc)-(Z, dc, dc) = %(VR oc)- (dc, dc, Y1, Ya)

+ %(VR oc)- (e, Be, Ya, Y1) + 2(R o c) - (e, Yz, VY1)

+ 2(Roc)-(0c, Y1, VY3),
with Z(0) = &,V Z(0) = & + R(p) - (v, éo, u). Then
Z(t) = V? exp (tv, u, tw, &, t&1, &, t&3).

Proof. Let b: [0, € — M be a Ck-curve with 9b(0) = & and
g;’cﬂ'?—’l-ﬁelds along b with 81(0) = v, B>(0) = u, B5(0) = w and
VAi(0) = &, i=1, 2, 3. We put

aft, s) =V exp (t81(s), B2(s), tB3(s)).
Then
Vaa(t, 8) = V2 exp (t61(s), B2(s), tBs(s), Bb(s), tVBi(s), Va(s), tVPs(s)).

With a(t, s) = 7o a(t, s) = exp (t61(s)), we have by Theorem 3.3,
V3a = — (Roa)-(a, &1a, 8a) and then

ViVoa = VaVia + (R o a) . (61(1, Oha, a),
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V%V20é = V3V2a+ (Roa) - (01a, dsa, Via)+Vi((Roa) - (d1a, dza, a))
= — (VRoa)(02a, o, O1a, 01a) + (VRoa)- (01a, O1a, Bea, «)
+ 2(Roa)- (0ia, O2a, Via)+ 2(Roa)- (01a, o, V102a)
— (Roa)-(Vaa, Oia, d1a).

We have used Lemma 2.1 for the covariant derivation and Bianchi’s
first identity for the curvature tensor (the cyclic sum is zero). Using
Bianchi’s second identity for the covariant derivative VR (the cyclic
sum in three first variables with the fourth fixed is zero) together with
the first, we get

VR (z,y,v,v) = VR (v,y,z,v) + VR - (z,v,y,v)
=VR- (v,v,x,y)+VR~ (U,yﬂ-’al’)
— VR (z,y,v,v),

so 2VR - (z,y,v,v) = VR - (v,v,z,y) — VR (v,v,y,z). It now follows

that Zs(t) = V 20(t, s) satisfies the differential equation for Z for all

s, with ¢, Y7, Y5 replaced by a, a, 02a. But a and dya are Jacobi fields

in t, for fixed s, and take the initial values of Y7 and Y5 for s = 0;
moreover Zy(0) = V(32(0) = &3 and VZ(0) = V1V2(0,0) = VG33(0) +

R(p) - (0c(0), Y2(0), ¥1(0)) = &5 + R(p) - (v, €0, u). Then by uniqueness
Zo=7Z. q.e.d.

It follows from the differential equation for Jacobi fields that V exp (v, u, w)

is linear in (u,w), so we have a splitting:

V exp (v,u,w) = Vi exp(v,u) + Vaexp (v, w).

Similarly we see that V2 exp (v, u, w, &, &1, €2, €3) is linear in (u, w, &2, £3),
so after the obvious definitions, we have

v2 €xXp ('U, u,w,§0,§1,§2,§3) = Vv1 €xp (’U, u, €07§1,§2)
+ VVZ €xp (v,w, 60,§17 53)
Moreover putting w = & = 0 and u = & = 0 respectively in the
differential equation for Z in Theorem 3.4 we see that the first and

second terms on the right hand side above are linear in (&, £1,&2) and
(€o, &1, &3) respectively. Therefore

vv1 exp (’U, u, §1,§27§3) = Z:7,:'3=1v'iv1 exp (U7 u, él)’
VV2exp (v,w,n1,m2,m3) = Loy ViVaexp (v,w,n;).

Corollary 3.2.
a) Vi exp (0,§) =§, i=1,2.
b) V3V, exp (v,€,n) =V, exp (v,7), i =1,2.

¢) ViVaexp (v,w,§) = VaViexp (v,€,w), bilinear in (w, £).
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d) VoVaeexp (v,€,m) = VaVaexp (v,1,£), bilinear in (§,7).

e) Vjvi exp (0,&77) =0,475=12

This follows at once from the differential equations. Note that the
equation in Theorem 3.4 is symmetric in Y7, Y.

The restriction of Vg exp to T, M & T, M for some z € M is just
the tangent of exp, = exp |T,M. Using a) above and the inverse
function Theroem there is an open neighborhood D, C Tz M of oz the
zero vector at x, such that exp, maps D, diffeomorphic into M. It
follows that there is an open neighborhood D € TM of the set of zero
vectors in TM, such that (7, exp) maps D diffeomorphic onto an open
neighborhood of the diagonal in M x M. Then V3 exp (v,-): T M —
Texp vM is a toplinear isomorphism for every v € D,z = 7(v). We
therefore have a map ¥ : D — L(TM,TM) by

Vaexp (v,9(v) -u) = Viexp (v,u),

which is a fibre preserving map of class C*¥~3. Similarly we define a
map A: D — L*(TM,TM) by

V2V2 exp (vvw7§) = Vs e€xp (’U,A('U) : (w7 5))

Then A is a fibre preserving map of class C¥~4 and maps actually into
the subbundle of bilinear symmetric maps by d) Corollary 3.1.

Lemma 3.1.
a) 9(0) = id, Dyv(0) =0, I(v)-v = v.

b) A(0) =0, A(v)- (v,v) =0, v, D.

¢) ViVzexp (v,w,§) = Vaexp (v, D29(v) - (w,§) +A(v)- (9(v)-§, w)).

Proof. 1¥(0) is the identity by a) Corollary 3.1. If we replace v by
v +tw and take the derivative of both sides with respect to ¢, we obtain
fort=0: '

VaViexp (v,u,w) = VaVaexp (v,9(v) - u,w)
+ Vaexp (v, Da9(v) - (w,u)).

Then using Corollary 3.1 ¢) we get ¢) and putting v = 0 there and in
the defining equation for A gives Dy¥(0) = A(0) = 0. We have V3 exp
(tv, tv) = tOc, where ¢ = exp tv. Therefore, if we put w =& =v, u=
&o = & = & = 0 in the differential equation in Theorem 3.4 we have
Y1 =Y, =t0c, VY = VY3 = Oc, so the equation reduces to the Jacobi
equation with zero initial conditions, thus the solution is zero which
means V2Vs exp (v,v,v) = 0, so we have A(v) - (v,v) =0. q.e.d.

The result of our effort is that a complete knowledge of the two first
derivatives of the exponential map is now stored in Vj exp, VoVa exp
and the fibre maps ¥ and A, both of them will play an important role
in the theory of manifolds of maps.
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4. Banach spaces of sections

Here N will denote a compact Hausdorff space, whose topology has a
countable base. Then N is normal and metrizable. We call N of class
Cr,r > 1, iff N is a C"-differentiable manifold with (or without) a
boundary, else we call N of class C? (for convenience only).

Let m : E — N be a vector bundle of class C*,0 < s < r, where r
is the class of N. We denote by C*(7) the linear space of sections of
class C* in 7 and we will define a normable topology in C*(7) in the
following way:

We take any Finsler structure for m, t.i. a continuous function ||
- |I: E — R, which is an admissible norm on each fibre. Clearly Finsler
structures exist and any two are equivalent as N is compact. We then
define a norm for C°(r) by

| € llco=sup || £(p) || (p € N).

For r > s > 1, we take a Finsler structure for the tangent bundle
7: TN — N and connection of class C*~! for 7. Moreover if r > 2 we
take a connection of class C"~2 for 7. We then have an induced Finsler
structure for
L(r,7m),j>1: || Al =sup || A-(v1,---,v5) ||
(lvi [l =1,1<i < ).

This gives us a norm for CO(U (r,m)) as before. For r > 2 we take the
induced connection for L’ (7, 7) as in Proposition 1.2 and define

I €lles =D 1 V7€ ||co,
j=0

where V denotes covariant differentiation. Note that we need a con-
nection for L(r,7) only for s > 2. It is well known that C*(w) with
this norm is a Banach space, and it can easily be shown that we get
equivalent norms, if we change the structures used for the construction
(N being compact!).

Let B be the category of real Banach spaces and VB(N) the cate-
gory of vector bundles of class C" over N with fibres in B. The set of
morphisms 7 — p is then the Banachable space C"(L(m, p)). Then C*
is a covariant functor C° : VB(N) — B, with

C: - C7(L(m, p)) — L(C°(7), C*(p))

by C2(A) - € = A- €. C? is a continuous linear map for any s < 7 as is
easily seen using Lemma 2.1(1). We will consider C as inclusion map
because of naturality. Let U be a full subcategory of B closed under the
operations of taking direct sums (products) and bounded linear maps.
(e.g. Y4 = B or finite dimensional spaces.) Let VB(N,4l) denote the
category of vector bundles of class C" over N with fibres in Y. By a
section functor ¥ on V B(N,il), we mean a covariant functor



184 HALLDOR I. ELIASSON

T:VB(N,U) —B

which assignes to every 7 € VB(NV,U) a Banachable space ¥(m) of
sections in 7 and where the induced map of morphisms:

Tu: C7(L(m, p)) — L(%(7), %(p))

is a continuous linear inclusion, T.(A) - £ = A - €. Given three section
functors ¥;, we will say, that the relation 1L C L(%2,%3) holds, if
for any two bundles 7, p from VB(N,4l) we have a continuous linear
inclusion

T1(L(7, p)) C L(Ta(), T3(p))

defined as above by (A - &)(p) = A(p) - £&(p). This means A - £ € T3(p)
for A € T1(L(m, p)),€ € To(m) and taking any admissible norms, there
is a constant C > 0 s.t.

[A-£lTs<CI AT E] %

In particular C"L C L(%,%) is supposed to hold for any section functor
% and it then follows easily that the spaces T(7 @ p) and T(7) x T(p)
are top-linearly isomorphic under the natural bijection.

We will call a section functor & satisfying the following three con-
ditions a manifold model:

1) We have a continuous liner inclusion &(w) C C°(x) for every
m € VB(N,4).

2) 6L C L(6,6) holds.

3) Let E,F € VB(N,U4),0 C E an open subset projected onto
N and f: O — F a fibre preserving map of class C", then for every
£€6(0)={e€B(FE):&N) C O} we have fof € G(F) and the map

&(f) : 6(0) - &(F)

thus defined is continuous.

Remarks. It follows from 1) and the fact that V is compact, that
6(0) is open in G(E). The compactness of N is needed in order that
C%(0) is open. It follows from 2) that G(E) is an &(L(E, E)) module
and S6(N, R) = 6(N x R) is a Banach algebra of functions on N. Let
f: O — F be a map as above in 3). We call f of class (C",C"%),0 <
s < o0, iff f, = f|O, is of class C* and Dif : O — L*(E, F) defined by
DiF|O, = D' f,, is of class C for 0 <i < s. In particular f is of class
(CT,C"), iff f is of class C™ and any morphism is of class (C",C"t®).
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Lemma 4.1. Let the section functor & be a manifold model and

f: O — F a fibre preserving map of class (C™,C"*%), then &(f) is of
class C*® and

D*6(f) = (D3 f).

Proof. By induction on s > 0:

The Lemma is true by assumption for s = 0 and it is obviously
sufficient to prove it for s = 1, as the step from s to s + 1 then follows
replacing f by D5f and F by L°(E,F). Now Daf : O — L(E, F) is of
class C", therefore

&(DyF) : 6(0) - S(L(E, F)) C L(&(E), &(F))

is continuous by 3) and 2) above. Let £ € &(0O) and O’ C O an
open neighborhood of {(IV) such that each fibre O, is convex. Such a
neighborhood can easily be constructed using any Finster structure, as
€ is continuous. We define 6 : O’'® 0O’ — L(E, F) as the fibre preserving
map:

1
O(e.) = [ Daf(e+tly—a))dt - Daf(a),
then 6 is of class C",0(z,z) = 0 for all z € O’ and

fly) = f(x) = D2 f(2) - (y — ) = 6(z,y) - (y — z).
Therefore for any n € 6(0O’):

&(f)(m) — &(F)(€) — &(D2£)(&) - (n— &) = &(0)(&,m) - (n — &)

Now &(6)(&,6) = 0 and &(0) is continuous by property 3) of &, it
follows that G(f) is differentiable at ¢ with

D&(£)(§) = 6(D2f)(§) = D2f o &.

5. Manifolds of maps

Let N and Y be as in §4 and & a manifold model on VB(N,4). Let M
be a Banach manifold of class C™*%, s > 3, modelled on Banach spaces
in # and admitting a connection of class C™t$~2. M is furthermore to
be without boundary.

Theorem 5.1. Under the assumption above, there exists a unique
Banach manifold S(N, M) of class C*~2, such that ifexp: © — M,0 C
TM, is the exponential map corresponding to any C™+°~2 connection
on M,D C O an open neighborhood of the set of zero vectors in TM
such that (1, exp)|D is a diffeomorphism (§3),h : N — M a map of
class C". Then

S (exp) : 6(h*D) — &(N, M) by £ — expok,
and is chart for S(N, M), called a natural chart centered at h.
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Proof. Let En, = h*TM be the pull-back of 7 : TM — M by h
and D, = h*D C Ej. Then Ej is in VB(N,4) and Dy, is an open
neighborhood of the set of zero vectors in Ej, such that with 7, = h*7:

&y, = (mh,exp) : Dp, = N x M

is a diffeomorphim of class C” onto an open neighborhood U}, of the
graf of h in N x M. We define G(V, M) to be the set of maps g €
CO(N, M), such that there is an h € C"(N, M) with graf (g) C Uj and
®; ' o (id,g) € &(Dp). We then define G(Us) to be the set of the g's
with this property and

&(®,") : 6(Un) — &(D4) by &(8;")(9) = " o (id, 9).
This is a one-to-one mapping with
&(2;,1)7! = 6(®n) : £ — expot.

Let f € C"(N,M) be another map, such that &(U,) N &(Uy) is
not empty. Then U, N Uy contains the graf of a continuous map, so
O = 45;1(Uh NUy) is an open subset of E}, projected onto N. Now

th =¢;1 Oﬁph : Oh — Ef
is a fibre preserving map of class (C", C™+~2), therefore
&(P;") 0 &(n) = &(ny) : 6(Oh) — S(Ef)

and is of class C*~2 by Lemma 4.1. Hence the collection (& (Up), 6(45;1)), he
CT(N,M) is an atlas of class C*~2 for §(N, M) and defines a topol-

ogy and differentiable structure of class C*~2 on &(N, M) the topology

is easily seen to be Hausdorff. The differentiable structure does obvi-

ously not depend on the connection on M used, so long as it is of class

cr +s—-2 .

Remark. In particular, the Theorem holds for & = C*,0 < k <
r,k < 00. Note, that if G(F) is defined to be the closed subspace of
CF(E) vanishing on the boundary of N (if not empty) for all E €
VB(N, ), then G(N, M) consists of all maps f € C¥(N, M) such that
fION € C"(ON, M) and is rather disconnected.

Theorem 5.2. With s > 4 and else the same assumptions as in
Theorem 5.1, we have a vector bundle:

S(1) : 6(N,TM) - S(N,M), &(r)(n) =707

of class C°~3, which is naturally equivalent to the tangent bundle of
S (N, M). Moreover given any connection on M, let S(exp) : S(Dp) —
G(N, M) be the natural chart centered at h € C™(N, M). Then

S(Vaexp) : &(Dp) x G(ER) — 6(N,TM)
S(Vzexp)(£,n) = Vaexpo(,n)
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gives a trivialization of &(7) over &(exp) corresponding to the tangent
trivialization TG (exp) under the bundle equivalence.

Proof. Given a C™t*~2-connection on M we have a C"t*~3 connec-
tion on TM by Theorem 3.1., therefore §(IN, T M) is a Banach manifold
of class C° ~3. We will use the natural atlas for the manifold G(N,TM)
constructed by using the induced connection on TM with exponential
map expr.

We define Oh : N — TM as h followed by the zero section of 7,
then Oh is of class C" as well as h. We define a bundle equivalence
Ih . Eh ©® Eh — EOh = (Oh)*TZM, by

Ih(épv np) = (TT? 71, K)_l(glh 0, np)

where K is the connection map for TM (§3). Then with Doy, = I (Dy @
Er), Pon, = (mon, expr) : Do — N x TM is a diffeomorphism of class
Cr*+s=3 and

[Pon © In)(&p, mp) = (P, Vaexp (&p,1p))

using Corollary 3.1. 6(455,3) is then a chart for (N, T M) by definition.
Consider the diagram

~1 .
6 L@ Ve (Dy) x 6(En E e (D)o S P e Ugn)
| | !

—1
s ) e(Dy) (@) S(Un)

We claim &(T) = &(Pop 0I1) o TS(P; ') does not depend on h and is a
diffeomorphism of class C*~3. We have TS (Phs)(£,7) = (&(Phy)(€), S(DaPry)
7n) using Lemma 4.1. Now exp (Prs(&p)) = exp (&p) so

Vaexp (Pns(p)s DaPrs(&p) - mp) = Vaexp (§p,mp)

and then by the above formula for @gp, o I, we are done. &(T') is of class
C?®~3 as G(I},) is. This proves that &(7) is a vector bundle equivalent
to the tangent bundle as the above diagram is commutative and linear
on fibres, where the linear space structure of G(7)7!(g) is of course
the one inherited from sections in g*T M, which is a bundle of class C°
at least. This shows that we can extend & to all bundles g*T'M for
g € 6(N, M) and the above map &(T) is a toplinear isomorphism of
the tangent space over g with &(¢*T'M) so the bundle equivalence is
natural. q.e.d.

We will in the following use I, and &(T') as identification maps.
Note that it was not a priori clear whether G(h*TM) coincides with
the set of maps £ € (N, TM) s.t. To& =h.

Theorem 5.3. Let M, M’ be Banach manifolds of class C™*%, s >
4, and else the same situation as in Theorem 5.1. Let 6 : M — M’ be
a map of class C™+*=2. Then &() : (N, M) — &(N,M'),g - 0o g,
is of class C*~2 and TG(0) = &(T9).
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Here we have identified the tangent bundles with G(N,T" M), T"G(0) =
S(T70),r < s — 2, follows then by induction.

Proof. Let h € C"(N,M), and f € C"(N,M) s.t. 8o h € &(Uy).
Then 6 = 45;1 o (id,0) o Py : Dj, — Ef is a fibre preserving map of
class (C7,C™*=2) and &(6y) is the local representative of 6. Now by
Lemma 4.1 &(hy) is of class C*~2 and D&(6hs) = S(D2bps). More-
over we have exp’ of ¢ = 0 o exp, so

Vaexp' oIl = T o Vs exp, with Tobhs(€,n) = (Ons(§), D2bhs(€) - 1)

which shows in the light of Theorem 5.2 that &(T56y) is the local
tangent of G(byy).

Theorem 5.4. Let K be a connection map for the manifold M in
Theorem 5.1. Then G(K) : A — K o A, is a connection map for
S(N, M), the connection is of class C*~* and the local connector is
given by

&(An) : 6(Dy) — LHS(En), S(En)) with Ay = h*A (53).
The corresponding exponential map is just &(exp).

Proof. We have only to prove the local formula, as Ay, : Dy —
L?(Ep, Ey) is of class (CT,C™*~) and we have a continuous liner
inclusion &(L?(Ey, Ep)) C L*(S(Er),S(E}y)) applying the maniflod
model property 2) for & twice. So let £ € &(Dy) and 1, (1,(2 € G(E4)
be the local components of some A € T2G(N, M) = G(N,T?M). Then

T10A=Vsexpo(&,n),
KoA=Vy expo(§,¢2) + VaVaexp o(&,1,(1)
= V2 exp (5,(2 + (A 06) : (7” Cl))’

K (%V2 exp(€(p) + t¢1(p),n(p) + téa(p))|t = 0)
= VVaexp (&(p),n(p), 0, C1(p),C2(p))

and then using Corollary 3.2 b) and the definition of A in §3. A some-
what longer but more precise proof can be obtained by using V3 expy
and computing the connection with exp from Corollary 3.1 and the
defining properties of the connection map Kr. By Lemma 3.1 b) we
have G(Ap)(t€)-(&,€) = 0, which proves that £, 0 < ¢ < 1, is a geodesic
in this chart. This means that G(exp): £ — exp of is the exponential
map. The natural charts are exactly the “normal coordinates.”

6. Bundles of sections over manifolds of maps

Let N, 81 C B, & and M be given as in §5. Suppose we have a functor
A : U — U of class C™7*73 and covariant let’s say. The corresponding
map of morphisms:
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A : L(E,F) — L(\(E), \(F))
is then of class C"**~2 and we have an induced functor
An : VB(N,4) — VB(N, 1)
with An(E)p = A(Ep), p € N (see Lang [6]) and the fibre preserving
map A, (given by ), on each fibre) is of class (C", C™*+*~3). Moreover

the map of morphisms for Ay is

AN =C(An) ¢ (4, B) — Ay o (4, B).

Theorem 6.1. Let N,U, S, M, X\ be as above and let T be a section
functor on VB(N,4), such that L C L(%,%) holds (84). Then T
.can be uniquely extended over the vector bundles An(f*TM) for f €
&(N, M) and the union of all the Banach spaces T(An(f*TM)) is a
vector bundle T(An(S(N, M)*TM)) of class C*~3 over G(N, M).

Proof. For any continuous maps a,3 : N — M, with 8 € C°(U,)
say B =expo&, £ € C°(D,) C C°(a*TM) we will define a section:

Jap € CU(L(a*TM, B*TM))
by Jas(p)-np = V2 exp (§(p),np). Then J,p is a toplinear isomorphism
on each fibre. Now let h,f € C"(N,M) with §(U,) N &(Uy) # ¢.
Then with Oy = d5h (Un N Uy) we have
Dg@hf : Oh - L(Eh,Ef)

and this is a fibre preserving map of class (C7, C™+573), so &(D2Phy)
is of class C*~3 by Lemma 4.1. Moreover

S(Da®hf)(€) = (J5q) ™" - Jng, g =expof

as Vaexp o(®py o, (DaPrysof)-n) = Vaexpo(€,n), for any £ € &(Op).
We define

TAN(GTM)) = {(An 0 Jng) - n : m € T(AN(ER))}-
This definition does indeed not depend on h as
(Aenv 0 Jgg) - (Aun 0 (D2Phy 0 €)) = Aun © Jng

and
AN 2 L(Ep, Ef) — L(AN(ER), AN(Ef))

is of class (C", C™**73), s—3>0, so

Ax © (Da@rys 0 &) € S(L(AN(ER), An(Ey)))
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which in turn is continuous linearly included in

L(Z(ANn(En)), T(An(Ey))

by property 6L C L(%,%). The local trivialization over the chart
(S(Un), 6(¥;1)) of (N, M) is now given by the linear isomorphism
AsN © Jh“g1 in the fibre over g and defines a Banach space topology on
each fibre. The transition map between charts centered at h and f, is
the composite of

6(0) - S(L(K'TM, f*TM)) —
= S(L(AN(R'TM), AN(f'TM))) —
— LT (R"TM)), TN fTM))),

where the first map &(D2®p¢) and the second G (A, n) are of class C* =3
and the last one is a continuous linear inclusion. q.e.d.

The theorem holds in particular for ¥ = &. Observe that Ay (f*TM) =
f*Am(TM), so the fibre over f consists of sections in the pull-back of
the tensor bundle of type A over M by f, t.i. tensor fields of type
A along the map f. For A = id, we get exactly the tangent bundle of
&(N, M), the local trivialization used here is moreover the same as used
for §(N,T M) before. If X is a tensor field of type A on M, t.i. a section
in Ay (T M), we have an induced section 6*X in S(An(S(N, M)*TM))
defined by (&*X)(f) = f*X = X o f, which is of class C*~3 if X is of
class CT+s3,

We note that A could just as well have been contravariant or of
mixed variance. Moreover if ) is of several variables, we could replace
some by fixed bundles from V B(N, i) and the rest by pull-backs of TM
by maps in (N, M). However, as TN is not in VB(N, ) if r < oo,
we will have to make some additional assumptions before applying the
theorem.

Let 7 > 1 and denote by VB*(N,4) the category of vector bundles
of class C%, 0 < i < r, over N with fibres in {{. Section functors and
manifold models on V B*(N, 1) are defined just as before (replacing r by
i). We will henceforth suppose & is a manifold model on VB"~}(N, ).
Let X : 4 x 4 — 3 be a functor of class C" ¢~ 4 and ¥ a section functor
on VB™ YN, ) with SL C L(%,%). Then T(An (TN, &(N, M)*TM))
is a vector bundle of class C* ~2 over G(N, M) with T(An (TN, f*TM))
as the fibre over f. The proof is exactly the same as in previous the-
orem, replacing A«ny by Ain(I,-), where I is the identity section in
L(TN, TN).
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Let T;, %2 be section functors in VB!(N,4) and VB~}(N,4) re-
spectively. We will call ¥; of higher degree than %5, if the following
holds: Given E € VB*(N,{) and any connection of class C*~! on E,
then we have a unique extension of the covariant derivative to a contin-

uous linear map
V:%1(E) — %2(L(TN, E)).

This means that C*(E) N %,(E) is dense in T1(E) and V : C*(E) N
%, (E) —» CYL(TN, E)) N T2(L(TN, E)) is continuous, in the 1, T
topologies. Obviously C* is of higher degree than C7 for k > j. We will
say that T; is contained in ¥, if we have a continuous linear inclusion
%1(E) C %5(E) for every vector bundle E on which both ¥; and %,
are defined.

Theorem 6.2. Let N be a compact manifold of class C™, r > 1,6
a manifold model on VB™"}(N,{) and M a Banach manifold of class
CT™*s, s > 3, as before. Let T be a section functor on VB™~}(N,4),
such that 6L C L(%,%), & is of higher degree than ¥ and contained in
. Thend: f — 0f € C"Y(L(TN, f*TM)) for f € C"(N, M) can be
extended uniquely to a section 8 of class C*~3 in T(L(TN, G(N, M)*TM)).
Moreover in the local trivialization centered at h € C"(N,M) con-
structed above, the local representative Oy is given by

Oh = &(93) + Vi : G(Dp) — S(L(TN, h*TM)),

where V, = h*V is the pull-back of the covariant derivation on M
obtained from the connection used to construct the natural chart at h

and
Ip, = (h*V) - Oh, where ¥ : D — L(TM,TM)

is the twist map from §3. Ezxplicitly,
Vaexp (&,9n(&p) - vp) = Viexp (p, Oh(D) - vp).

Proof. V4, is a covariant differentiation coming from a connection
on Ej, of class C™!, and has therefore by the assumption that & is of
higher degree than ¥ a unique continuous linear extension to

Vi : 6(Ep) — T(L(TN, En)).

Moreover ¥}, is a fibre preserving map of class (C™,C™+*~3) and thus
by Lemma 4.1 induces a C*~3-map:

S (V) : 6(Dr) — S(L(TN, Ey)) C T(L(TN, Eyp))

where the inclusion is continuous linear by the assumption that & is
contained in ¥. We have therefore only to prove that the local formula
is correct for sections of class C" in &(Dy,) as those are dense. So let
f =expo & with £ € G(Dy,) and of class C”; then

0f(p) -v= [V expo(m, T, K) o T¢](v)
= Viexp (£(p), Oh(p) - v) + Vaexp (§(p), VrE(P) - v)
= Jrs(p) - (9n(&(p) - v+ VirE(P) - v)
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which proves the local formula.

Theorem 6.3. Let the assumption be as in previous theorem and
give M a connection of class C"t*~2. Then the pull-back of the covari-
ant derivation on M has a unique extension to a vector bundle map

V* : 6(6(N, M)*TM) — T(L(TN, &(N, M)*TM))

of class C*~*4 provided s > 4. Moreover in the natural local trivializa-
tion centered at h € C"(N, M) the local representative of V*:

Vi : 6(Dr) — L(S(En), T(L(TN, En)))
is given by the formula
Vi(€) = Vi + 6(D294)(§) + &(A1)(€) - O,

where Vi, = h*V, 9, and 0y, are as in Theorem 6.2 and Ay, is the local
connector from Theorem 5.4.

Proof. Dy¥), and Ay, are both fibre preserving maps of class (C”, CT+5~4)
from Dy, into L(Ex, L(TN, E})) and L?(Ey, Ey) — L(L(TN, Ey,), L(Ep,
L(TN, Ey))) respectively, so V} is of class C*~* and we have only to
prove the local formula under the additional hypothesis that £ is of class
C". Let f =expo&,{ = Jnr-n=Vyexp (§,n) withn € C"(Ep). Then

V¢ =VVaexp (§,n,0h,VE V)
= V1Vaexp (§,n,0h) + VaVaexp (§,1, VE) + Vaexp (£, Vn)
=Vsexp (§,Vn+ (Dado§)-(n,0h) + (Ao&) - ((90€)-0h+ VE,n))

by Lemma 3.1 c¢) and definition of A. The local formula follows as we
have Dy94(&p) - np = D29(&p) - (np, Oh(p)).

Theorem 6.4. Given N, {, &, M as in Theorem 6.3 with r >
2,s > 4 and let both N and M have connections of class C™% and
CT 572 respectively. Let T1,%o, T3 be section functors on VB™1(N, )
and suppose GL C L(%;,%;) fori=1,2,3; T;L C L(%2,%3); G is of
higher degree and contained in %1 and T2 is of higher degree than Ts.
Then taking the induced connection for the bundles L*(TN, f*TM), f €
C"(N, M) (see §2), there is a unique extension of the covariant deriva-
tion to a vector bundle map

V* : Zo(LF(TN, 6*TM)) — Z3(L*(TN, &6*TM))

of class C*~* for k > 0. Moreover we have exactly the same local
formula with the obvious interpretation of 95 and Ap,.

Proof. It is an easy matter to check the local formula. We use the
inclusion:

L*(En, Ey) — L(L(TN, Ey), L(L*(TN, E), L¥"Y(TN, Ey))
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to follow A, and similar inclusions to follow 9, and D39}, to obtain the
correct maps. Our assumptions are easily seen to ensure that V* is of
class C—4.

Corollaries for C*. Let N be a compact Riemannian manifold of
class C*® and M a paracompact Banach manifold of class C™, without
boundary and with a C*®-connection and a Finsler structure. Then for
0<k<o0:

1. C¥(N,M) is a paracompact Banach manifold of class C*®, with
Ck(N,TM) as a tangent bundle space and admits a C*-connection and
a Finsler structure.

2. The connection on M induces a canonical C°-connection on
C*(N, M), such that C*(exp) is the exponential map for C*¥(N, M), if
exp denotes the exponential map for M.

3. C*(L"(TN, C*¥(N,M)*TM)) — C¥(N,M) is a vector bundle
of class C™® for0<s <k, 0<r <oo.

4. The tangent derivative 8 : C*(N, M) — C*~Y(L(TN, C*(N,M)*TM))
is a C™ section in this bundle.

5. The connections on N and M induce C*™ sections in

L(C*(L" (TN, C*(N,M)*TM)), C*~Y{(L™*(TN, C*(N,M)*TM)))

for r > 0, which are given by the covariant derivative on each fibre
defined as in §2, taking the induced connection for the pull-backs.

6. We have an induced Finsler structure on C*(N, M) given on
the fibre C*(f*TM), f € C*(N,M),by

k
k _ 7
Il € le —;)pslelgv Vi),

where the Riemannian metric on N and the pull-back of the Finsler
structure from M are used to obtain a Finsler structure for L'(TN, f*TM), i >
0.

Remark. If M is finite dimensional Riemannian manifold and k >

3 dim N, we obtain the same results for the Sobolev chain H* using
the properties of H® as a section functor (see [5]), except we replace the

Finsler structure by the Riemannian metric

k
<e =Y [<vie V>
i=0 y
where we integrate with respect to the Riemannian measure on N and
the Riemannian metrics for L*(TN, f*T'M) are constructed from the

Riemannian metrics for TN and TM. A k-th order energy function Ej
: H*(N, M) — R may be defined by

k—1
B(H=5 3 [IVor P

1=05

and is of class C™ as is easily seen applying theorems 6.2-4. E}, satisfies
condition C.
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