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A FORMULA FOR THE BETTI NUMBERS OF
COMPACT LOCALLY SYMMETRIC
RIEMANNIAN MANIFOLDS

YOZO MATSUSHIMA

1. Let X be a simply connected symmetric Riemannian manifold
and let G be a connected Lie group acting transitively and almost effec-
tively on X as a group of isometries. We denote by K the isotropy group
of G at a point o of X. If G is compact, it is a well-known theorem of
Cartan-Hodge that a differential p-form is harmonic if and only if it is
G-invariant. It follows from this theorem that the p-th Betti number
of X is equal to the multiplicity with which the trivial representation
enters in the linear isotropic representation of K in the vector space of
p-covectors at the point o.

Let us suppose now that G is a connected semi-simple Lie group
with finite center all of whose simple components are non-compact. Let
I’ be a discrete subgroup of G such that the quotient I'\G is compact.
We denote by h?(X, I') the vector space of all harmonic p-forms on X
which are invariant by I'. We know that the dimension of the space
hP(X, I') is finite. The results obtained in the previous papers [4]
shows that in several cases the dimension of h?(X, I') is also equal to
the multiplicity with which the trivial representation enters in the linear
isotropic representation of K in the space of p-covectors at the point o,
if the number p/dim X is small.

The purpose of the present paper is to prove a formula which relates
the dimension of the space h?(X, I') with the decomposition of the
unitary representation of G in the Hilbert space L2(I'\G) (see §2).
This formula corresponds in a sense to the theorem of Cartan-Hodge
and, in fact, if G is compact and I" reduces to the identity, our formula
is equivalent to Cartan-Hodge Theorem.

We shall also see as an example that, if X is the 3-dimensional
hyperbolic space and if G is SL(2, C) or the proper Lorentz group, the
dimension of h'(X, I') is equal to the multiplicity in L2(I'\G) of the
irreducible unitary representation U ¢ of the principal series (see §5).

2.  We retain the notations introduced in §1 so that G will denote
a connected semi-simple Lie group with finite center all of whose simple
components are non-compact. The group K is then a maximal compact
subgroup of G. Let g be the Lie algebra of left-invariant vector fields
on G, and t the subalgebra of g corresponding to K. We denote by
©(X, Y) (X, Y € g) the Killing form of the semi-simple Lie algebra g
and by m the orthogonal complement of f in g with respect to ¢. We
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know that

g=m+§ mnNE=(0),
[m, m] =F¢, [£, m] =m.

Moreover, (X, X) is positive if X € m, X # 0, and negative if
Xet, X #0. Let {X;}i—1,..r and {Xs}a=r+1,..n be bases of m and
t respectively such that

(X, Xj) = ‘sij (1<3, j<r),
o(Xa, Xp) = —0ab (r+1<a, b<n).

In the following we shall make the convention that the indices i, j,...
will range from 1 to r, while the indices a, b,... from 7 + 1 to n.

A vector field X € g is left invariant by G and hence by I" so that X
is projectable onto I'\ G. In the following we consider the elements X
of g as vector fields on I'\ G. We denote by C the differential operator
on I'\ G defined by

czi X? - zn: X2,
=1

a=r+1

The operator C is called the Casimir operator of G. We may consider
C as an element of the universal enveloping algebra E(g) of g. It is
known that C is in the center of E(g).

Now let T be a unitary representation of G in a Hilbert space H.
A vector ¢ € H is called a regular vector if the function s — T'(s)yp is
of class C°. We denote by W the subspace of all regular vectors of
H. It is known that W is dense in H. Let X € g and let exp tX be
the 1-parameter subgroup of G corresponding to X. For ¢ € W, put

T(X)p = [% T(exp tX)go} . Then ¢ T(X) is a self-adjoint operator

t=0
with domain W. We define the self-adjoint operator Cr of H with
domain W by putting

n

cT=ij T(X,) - Y, T(X),

i=1 a=r+1

and call it the Casimir operator of the unitary representation T of G.
If Tis an irreducible unitary representation, there exists a real number
Ar such that Cr, = Ap, forall p € W.

In the following we shall denote by Dy the set of irreducible unitary
representations T of G such that Ay = 0.

We denote by U the unitary representation of G in the Hilbert
space L2(I'\G). The vector space C™(I'\G) of all complex valued
C*-functions on I'\G is a subspace of the space of regular vectors of
Lyo(I'\G), and we have Cf = —Cy f for all f € C°°(I'\G). The repre-
sentation U decomposes into sum of a countable number of irreducible
unitary representations in which each irreducible representation enters
with a finite multiplicity [1]. We denote by N(T') the multiplicity in U
of an irreducible unitary representation T of G.
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Now let T be an irreducible unitary representation of G, and Tk the
restriction of T onto K. It is well-known (see [2]) that the representation
Tx of K decomposes into sum of a countable number of irreducible
representations in which each irreducible representation enters with a
finite multiplicity. We shall denote by M (Tk;7) the multiplicity in Tk
of an irreducible representation 7 of K.

Let now m® be the complexification of m. We denote by adP the

P
representation of K in the vector space A m€ induced by the adjoint
action of K in m. Let

(2.1) ad® =10 +--- 4+ 7P

Sp

be the decomposition of adP into a sum of irreducible representations.

Theorem. Let G be a connected semi-simple Lie group with finite
center, K a mazimal compact subgroup of G, and I' a discrete subgroup
of G with compact quotient space I'\G. Assume that I" acts freely on
the symmetric space X = G/K, and let h?(X, I') be the vector space
of all harmonic p-forms on X invariant by I'. Let T be an irreducible
unitary representation of G, and Tk the restriction of T on K. Let
N(T) denote the multiplicity of T in the unitary representation U of
G in the Hilbert space L(I'\G), and M (Tk;7F) the multiplicity of the

irreducible representation 77 of K in Tx. Then

dim hP(X,T) = ) N(T)(Zp: M(Tk; 7)),
TeDo =1

where Dy denotes the set of all irreducible unitary representations of G
with vanishing Casimir operator.

The following sections are devoted to proving this theorem.

3. Let 1 be a complex valued differential p-form in X invariant by
I'; and mp: G — G/K = X the canonical projection of G onto X. Put
7 = nomo. Then 7 is a p-form on G having the following properties:

floly=17 (yeT), ioRk =1 (k€ K),
0

where Ly (resp. Ry) denotes the left (resp. right) translation of G by
g € G, and i(X) the operator of interior multiplication.



102 YO0ZO MATSUSHIMA

- Now let ‘w"(l < i < 1) be the left invariant 1-form on G such that
w*(X;) = 0;. We denote by I an ordered set of p indices is such that
1<4; <ip <--- <ip < 7. Further put

wi=wh A AW,

Then the p-form 7} is written uniquely in the form
77 = Z n1 wIa
I

where the coefficients 7; are functions on G. Now {w’} form a basis of

D D
A m*C, and we denote by ad*? the representation of K in A m*€ which
is contragredient to adP. Since the p-form w! is left-invariant, we have
w! o Ry, = ad*P(k) - w! for all k € K. Put

ad*?(k) - w' =Y " ri(k)w’.
J

We then have 7o Ry = Y. > 71(k)(n1 o Ri)w’ and, since 7j o Ry, = 7,
J T
we get

ni(g-k)=> (k" nile) (9€G, keK).
J

It follows also from 7j o L., = ) and wlo L, = w! that
n(v-9)=m(g) (verl)

Hence we may consider 7; as a function on I'\G such that

ni(z-k) =Y 17 (K )ns(e)
J

for z € I'\G and k € K. We may also consider i} as a A m*C_valued
function on I'\G defined by

i(z) =Y m@w’  (zel\G).
I

We have then
(1) iz k) = ad*?(k~")i(z).

Thus there corresponds to a differential p-form n on G/K invariant

by I' a A m*C-valued function on I’ \G satisfying the condition (1),
and conversely, to each of the functions satisfying (1) corresponds a I-
invariant p-form and this corresponds is bijective. If the form 7 is of
class C* so is the corresponding function 7j; if 7 is measurable (with
respect to the invariant measure on G/K), so is 7] (with respect to the
invariant measure on I'\G).
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Now let §2, be the Hilbert space of all I-invariant measurable p-
forms on G/K such that

nnn2=/<n,n>dv<+oo,
F

where F' denotes a compact fundamental domain for I', and <, > the
length of 7 with respect to the Riemannian metric of G/K. We can
show that if » and 6 are in §2,, and 7 and 6 are the corresponding

A m*Cvalued functions, then

(6,m) = MZ/9I 1 dz,

ne

where M is a suitable constant independent of 7, 8 [5].

Suppose now that 7 is of class C*°, and let A denote the laplacian
operator for the p-forms. Then we have

(A8); =C -6y,

where C denotes the Casimir operator [5]. Therefore we get

(48, n) MZ/ Co; - 7y dz.
I'\G

and 6 is harmonic if and only if C; = 0 for all I = (4, ..., ip).
The Killing form ¢ of g defines a positive definite hermitian inner

. P . . . :
product ¢* in A m*€ invariant by the representation ad*? of K for which
{w'} is an orthonormal basis. We have then

6, =4 [ ¢0a), i@) da.
e
Let
AmC=Fro---oF;,
be the decomposition of A m*C into the sum of mutually orthogonal

irreducible K-invariant subspaces. We may assume that the irreducible
representation of K in F} is contragredient to 77 (cf. (2.1)). Let P; be

the projection of A m*€ onto F}, and put

fii(z) = Pj(z)  (z € I'\G).
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Then 7); is an F}-valued function on I'\G such that

fi(zk) = 7P (k™ )i (x) (z e I'G, ke K).

Let 7; be the I'-invariant p-form corresponding to 7;. We then have
n=>_ m;, and 7 is harmonic if and only if each 7; is harmonic (cf. [5]).
i

We denote by Ay ; the vector space of all F;*-valued C*-functions
f on I'\G satisfying the conditions:

fz-k) =7k f(x) (zeI\G, kekK),
Cf=0.

Then

(3.2) dim hP(X, I') = Z dim A, ;.

i=1
4. In this section we shall show that

(4.1) dim Ay ;= Y N(T)- M(Tk; 7).
TED()

Then the theorem follows from (3.2) and (4.1).

Let {¢!,---,{™} be an orthonormal basis of F}, and {Z1,--+ , Zn}
the dual basis of the dual vector space F; of F*. We may consider F;

. . . . p
as an irreducible K-invariant subspace of A m¢ such that

}(mczpl@...@ F,,,

and we may assume that the representation of K in F; is 77. To simplify
the notation we write 7 instead of 77. Let

= au(k)C

Then we have

k)zx =Y ah(k™)z,.

Let now

L3(I'\G) = Z ®H,

a=1

be the decomposition of the Hilbert space L2(I'\G) into the direct sum
of irreducible G-invariant closed subspaces, and U, the irreducible uni-
tary representation of G in H, induced by U. Further, let
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oo
Ha = Z @ Ha,b
b=1
be the decomposition of H, into the direct sum of irreducible K-invariant
closed subspaces. We take an index a such that U, € Dy, and suppose
that the representations of K in Hg 1, -+ ,Hap,(b; = M((Ua)k;7T))
are equivalent to 7(= 77). We fix an index b such that 1 < b < b;, and
take a basis {fa}a=1,..,m of Hgp such that

(4.2) Ua(k)fr =Y ah(k™") fu.

"
If {gra}r=1,.,m is another basis of H, ; which satisfies (4.2), then there
exists a complex number a such that gy = af\(A =1,---,m) by Schur’s
lemma.

We define an F}*-valued function f on I'\G by putting

f@) =) @)
A

Then we have
flx-k)=7*("")f(2).

Let ) be the I'-invariant p-form on G/K corresponding to the function
f. We are going to show that 7 is harmonic. For this purpose we remark
first that we have

(4.3) (C-h,p)=0

for all h € C*(I'\G) and ¢ € H,. In fact, let W, be the space of
regular vectors of H,, and let ¢ € W,,. Since C is equal to the opposite
of the Casimir operator Cy of the representation U, Cy is self-adjoint,
and ¢ is in the domain of Cy, we get (Ch,p) = —(h,Cyyp). Now
Cuyp = Cy, = 0, and hence (Ch, ) = 0. Since W, is dense in H,, we
get (Ch,p) =0 for all ¢ € H,,.

Now let 0 be a I'-invariant p-form of class C®, and 6 the corre-

sponding A m*C_valued function on I'\G. Take an orthonormal ba-
sis (€1,-++ ,€V) of A m*C such that € = ¢(M(A = 1,---,m), and let

b(z) = él 6x(@)¢*. We have i) = f(2) = 55 f1(@)e’, and

(46,m) = M ) (COy, f).
A=1

Since f) € H,, we get (A6,n) = 0 by (4.3). Thus 7 is orthogonal to
the p-forms A6 and, as is well known, it follows from this that 7 is of
class C*° and harmonic. Therefore the functions f) are of class C* and
satisfy the equation C f) = 0. It follows then that the function f belongs
to A, ;. Thus we have shown that to each H,p with U, € Dg,1 <b <
M((Ug)k; 77), and to each basis {fa}r=1,..,m of Hap satisfying (4.2)
there corresponds a function f, 5 € A, ;. Moreover, f, is independent



106 Y0zO MATSUSHIMA

of the choice of such a basis {f\} up to a scalar multiple, and these
functions f,p are linearly independent. Therefore we get

dim Ap; > Y N(T)M(Tk;P).
T€D0

Let conversely f € A, ;. We show that f is a linear combination of the
functions f, . Put

fl@)=>" flx).
A

We have then

(4.4) Uk)fr = Zaf\‘(k Vfu,  Cfr=0.

Let P, be the projection operator of L2(I'\G) such that P, = ¢ for
¢ € Hy, and P, = 0 for ¢ € Hy, b # a. Then f\, = Y P,fx. Let

W (resp. W,) be the space of regular vectors of L2(I'\G) (resp. H,).
Since f) is of class C°, f) belongs to W, and moreover P,f), € W,
for all a. We have P,Cyp = CyoPyp for ¢ € W, and hence we get
CuoPafr = 0, because Cy fy = —Cfy = 0. It follows that P,fy = 0
for the index a such that U, ¢ Dy. Now suppose that U, € Dy and
P,fx # 0 for an index A\. We see from (4.4) that

(k)PfA—ZaA YPf, (keK).

Let F be the linear subspace of H, spanned by the elements P, f\(A =
1,---,m). Then F is a K-invariant subspace of H,, and there exists
a K-module homomorphism of F; onto F which maps Z, onto P, f).
Since F # (0) and F; is an irreducible K-module, this homomorphism
is an isomorphism. It follows then that P, f are linearly independent,

and F is contained in the direct sum Z H,p(b; = M((Ug)k;77)). Let
{fa,p: \}r=1,.,m be a basis of H, satlsfymg (4.2), and put

Pofa= zzaﬁ)\fa,b;w
b p

We see easily that the matrix (o y)a, u=1,.,m commutes with the ma-

trix (aX(k))x, p=1,.-,m for all k € K, and hence (o ,) is a scalar
matrix. Therefore P, f), = Zab fapa with ap € C, and hence

F=YXSP At =Y m fa,b. Thus f is a linear combination of the
a A

a,
functions f, 5. We have thus completed the proof of (4.1) and the the-
orem is proved.
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5. We consider now the special cases where G is the complex uni-
modular group SL(2, C) or the proper Lorentz group.

Let G = SL(2, C). A maximal compact subgroup is the special uni-
tary group SU(2), and put K = SU(2). Then G/K is the 3-dimensional
hyperbolic space.

The irreducible unitary representations of the compact group K are
given as follows:

There is a 1-1 correspondence between the set of equivalence classes
of irreducible unitary representations of K and the set of non-negative
integers and non-negative half-integers. The irreducible representation

k
px corresponding to — (k: non-negative integer) is realized in the vector

space of covariant symmetric tensors of order & constructed over the 2-
dimensional complex vector space on which K operators (see [6]).

Now let m be the vector space of 2 x 2 hermitian matrices of
trace 0. We then have g = m + ¢, [f, m] = m, [m,m] = §, and the
representation ad, of £ in m is absolutely irreducible and equivalent to
the representation pa.

The irreducible unitary representation of SL(2, C) are the following
[6]:

1. Principal series U,y ,. These representations depend on two pa-
rameters m and p with m € Z and p € R. U, , is the representation

in the Hilbert space H = L?(C), and the unitary operator Uy, ,(g) is
defined by

(Un,p(9))(2) = (bz + d)™ [bz +d| =™ +P=2f (““Zﬁ . 2) ’

where

9= (‘Z Z) € SL(2, ).

The representations Up, , and U, , are equivalent if and only if n =
—m and 0 = —p.

The Casimir operator Cy, , of Up, , is:
1 m\ 2 p 2
Cmop = IE{(E) -(5) ‘1}' L

The irreducible representation py is contained in Up, ,|K at most

once, and pi is actually contained in Up, ,|K if and only if ) equals

k k k
one of the numbers —, - — 1, = —

2 ...
2°2 2 ’
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2. Supplementary series U, (0 < ¢ < 2). The representation U, is
realized in the Hilbert space H of complex-valued function on C, the
inner product (f;, fo) in H and the unitary operator U, (g) are defined
as follows:

(f1, f2) = //|21 — 2|72 f1(21) fo(22)d21d22,

c

Wala) )@ = b5+ A (Fors )

where
a b
g= (c d) € SL(2, C).

The Casimir operator C, of U, is :

Cg:%{(%)z—l}d 0 <o <2).

The representation U,|K decomposes as follows:

[o9)
Us|K = Z P2k
k=0

Now the Casimir Operator C, does not vanish, and the Casimir
Operator Cp, ,(m > 0) vanishes if and only if p = £vVm? —4. As p is
real, we have m > 2. On the other hand, Uy, ,|K(m > 0) contains py
if and only if m = 2. Therefore there is one and only one irreducible
unitary representation T of SL(2, C) with vanishing Casimir operator
such that T'|K contains po, that is, T' = U ¢. Moreover, the multiplicity
of po in Usp|K is 1.

Let now G be the proper Lorentz group. Then G = SL(2, C)/{£ 1}
and K = SU(2)/{£1}. The irreducible unitary representations of K
are por(k = 0,1,2---), and the irreducible unitary representations T
of G are those of SL(2, C) satisfying the condition T'(—1) = 1, and
therefore these representations are U, , with even m and U,. Just
as in the of SL(2, C), the only irreducible unitary representation T of
G with vanishing Casimir operator such that T'|K contains py is the
representation Uy o. The multiplicity of py in U o] K is 1.

From our theorem we then have the following result:

Let G be the compler unimodular group SL(2,C) or the proper
Lorentz group. Let I' be a discrete subgroup of G such that I'\G is
compact. Assume that I' acts freely on the 3-dimensional hyperbolic
space G/K. Then the multiplicity of the irreducible unitary representa-
tion Ua g of G in the unitary representation T of G in L?>(I'\G) equals
the rank of the finitely generated abelian group I'/T", I"' being the com-
mutator subgroup of I.
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