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EINSTEIN HYPERSURFACES IN A
KAHLERIAN MANIFOLD OF CONSTANT

HOLOMORPHIC CURVATURE

SHIING-SHEN CHERN

Introduction

In his dissertation Brian Smyth studied the complete hypersurfaces
in a complex space-form whose induced metric is einsteinian and proved
that these are either totally geodesic or certain hyperquadrics of the
complex projective space. We wish to show in this note that the corre-
sponding local theorem is true:

Theorem. Let V be a kahlerian manifold of dimension > 3 with
constant holomorphic sectional curvature K. Let f: M —> V be a holo-
morphically immersed hypersurface such that the induced metric is ein-
steinian. Then, if K < 0, M is totally geodesic. If K > 0 and V is
identified with the complex projective space, M is either totally geodesic
or a hypersphere (cf §3 for definition).

1. Preliminaries on kahlerian geometry

We will summarize the basic formulas of kahlerian geometry. For details
cf. [1].

In order to avoid repetitions it will be agreed that our indices have
the following ranges throughout this paper:

(1) l < α , / J , 7 , $ < n + l,
0<A,B,C,D<n + l.

Let V be a kahlerian manifold of complex dimension n + 1. The
metric defines an hermitian scalar product in the tangent spaces of
V and a connection of type (1,0) under whose parallelism the scalar
product is preserved. More precisely, let ea(x) be a field of unitary
frames, defined for x in a neighborhood of V. Its dual coframe field
consists of n + 1 complex-valued linear differential forms θa of type (1,
0) such that the hermitian metric can be written
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(2) ds2 = ΣθJa.
a

The connection forms θ^β are characterized by the conditions

(3) θaβ + θβa = 0,

(4) dθa

and they can be interpreted geometrically as defining the covariant dif-
ferential

(5) Dea

β

The curvature forms θaβ are then defined by

(6) dθaβ = ] Γ 0α 7 Λ θΊβ + θaβ,
7

and we have

(7) θaβ = -θβa = Σ RotβΊδθΊ Λ θδ.

The skew-hermitian symmetry of θaβ expressed by the first equation
of (7) is equivalent to the symmetry conditions

(8) Raβyδ = RβaδΊ

The Bianchi identities, which are relations obtained by exterior differ-
entiation of (4) and (6), give the further symmetry relations

(9) RotβΊδ =

and the equation

(10) dθaβ + Σ Θ<*Ί
 Λ θΊβ - Σ θa-r Λ

The metric on V is called einsteinian, if

Σ « Λ

where

(12)

is the scalar curvature.
The quantities RaβΊδ define the holomorphic sectional curvature to

every tangent vector of V. In fact, let

(13) ξ
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be a tangent vector at x. Then the holomorphic sectional curvature is
defined to be

(14) Λ(*,0 = 2
α, ,<5

Because of the symmetry relation (8), R(x,ξ) is real.

V is said to be of constant holomorphic sectional curvature K if
R(x, ξ) = K for all (#,£)• This is expressed by the condition

1

or

(16) θaβ = ±K(θβ Λθa + δaβ ΣθΊA ΘΊ).
7

The above treatment depends on the choice of a frame field. As is
well-known, the geometrical results which follow are independent of this
choice. However, it is useful to know explicitly the effect of a change of
the frame field on the various quantities. Let

β

be a new frame field defined in the neighborhood in question, where
uaβ are complex-valued C°°-functions such that (uaβ) is a unitary ma-
trix. Let θa,θaβ be the forms relative to the frame field e£. Then, by
definition and by (5), we have

(18) θ*a

and

(19) fl*^ = ] P duaΊΰβΊ +

2. Hypersurfaces in a kahlerian manifold

Let / : M —• V be a holomorphic immersion, with dim M = n, dim
V = n + 1. In a neighborhood of M we can choose a frame field in V
such that e n + i(x),x G M, is orthogonal to the tangent hyperplane to
M at x. This is expressed analytically by the condition

(20) θn+1 = 0.

Since M is an immersed hypersurface, the θi are linearly independent.

Using (4), we get
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It follows by Cartan's lemma that

(21)

where

(22) aik = aki.

M is totally geodesic if α ^ = 0.

The e* define a unitary frame field in the tangent bundle of M, with
θij as the connection forms. Equation (6) gives

so that

(23) θ^ = θij — θi,n+ι Λ

are the curvature forms of the induced metric on M.
Suppose now that V is of constant holomorphic sectional curvature,

K, so that the equation (16) holds. Then

The condition that the induced metric on M is einsteinian can be ex-
pressed as

(24) J2 θi,n+1 Λ

Using (21) this condition is equivalent to

(25)

which gives

(26)

From now on suppose n > 2. We wish to show that p is constant.
In fact, we have by (6),

so that it follows by exterior differentiation of (24) that

Σ θi Λ θi ) = °
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Put

k

and substitute into the above; we get immediately

If p = 0, we have by (26), α^ = 0 and M is totally geodesic. From
now on suppose that p is a positive constant

We take the exterior derivative of the equation (21) and make use
of (4) and (6). This gives

(27) ] Γ daik - Σ aϋθkj - ^ α?/c% + aikθn+i,n+i Λ θk = 0.

* V
It follows that we can put

where aikj are symmetric in all its indices. The complex conjugate
of this equation will give a formula for dάik. Differentiating (25) and
substituting these expressions for daik, dάik, we get

from which it follows that

i

Since p > 0, we get from the last equation

aikj = 0.

We have therefore the equation

(28) dCLik — y ^ Q>ijθkj ~ / v (^jk^ij ~\~ ttikVn+l,n+l — 0.

Equation (28) is valid for a holomorphically immersed hypersurface of
dimension ^ 2 in a kahlerian manifold of constant holomorphic sectional
curvature such that its induced metric is einsteinian. Notice that (28)
is still valid if M is totally geodesic, for then aik = 0.

We now take the exterior derivative of (28). This gives, after sim-
plification,

(29) (p - ^K)(δijakι + δkjaϋ + δβdik) = 0.

If p K φ 0, we have
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— 0.

Putting j = / and summing, we get (n -f 2)αi/e = 0, so that α^ = 0 and
M is totally geodesic. Hence M is not totally geodesic only if p = K/4,
which implies K > 0 since p > 0. We have thus proved the first half of
the theorem stated in the Introduction. Our next problem is to study

the hypersurfaces satisfying the condition p = — > 0.

3. The complex projective space

For K > 0, V can be realized locally as the complex projective space
Pn+i of dimension n + 1 with the Study-Fubini metric. We proceed to
give a description of this metric.

Let V̂ +2 be the complex vector space of dimension n + 2, whose
points are the ordered ennuples of complex numbers: Z =
In T4ι+2 we introduce the hermitian scalar product

(30)

The unitary group U(n-\-2) in n + 2 variables is the group of all linear
homogeneous transformations on ZA leaving the scalar product (30)
invariant. Let V*+2 be the subset of V^+2 obtained by the deletion of
the zero vector. Then Pn+i is the orbit space of V*+2 under the action
of the group Z —• λZ, λ being a complex number φ 0. We have thus the
projection π : V*+2 —> Pn+i To a point p G Pn+i a vector Z G π " 1 ^ )
is called a homogeneous coordinate vector of p, and we will frequently
identify p with Z. We put

(31) Zo

so that (Zo, Zo) = 1. Then the Study-Fubini metric is given by

(32) ds2 = (dZ0, dZo) - (dZ0, Z0)(Z0, dZ0).

To study this metric let ZA be a unitary frame in V̂ +2> s o that

(33) {ZA,ZB) = δAB.

In the space of all unitary frames in Fn+2 let ωAB be defined by

(34) dZA

so that we have

(35) ωΛB = -ωBΛ = (dZA, ZB).

Then UJAB are the Maurer-Cartan forms of U(n + 2) and satisfy the
structure equations
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(36) dωAB = 2_^ uAc Λ ωcB-
c

The same equations remain valid if we restrict ourselves to a frame field
defined over a submanifold of Vn+2- The metric (32) can then be written

(37) ds2 =

a

It is of the form (2) if we set

(38) θa = ωOa.

Equations (3) and (4) will be satisfied, provided that we choose

(39) θβa = ϋύβa —

These are therefore the connection forms of the metric (32). By (36)
we find the curvature forms of this metric to be

(40) θaβ = θβΛθa + δaβ Σ,ΘΊΛ ΘΊ.
7

Comparing with (16), we see that the metric (32) has constant holomor-
phic sectional curvature equal to 4. From the definition of the metric it
is clear that U(n + 2) acts on Pn+i as a group of isometries.

Consider in P n + i a hyperquadric defined by the equation

(41) Σ bΛBZAZB = 0, bAB = bBA

A,B

Under a unitary transformation

(42) ZA

B

this goes into the hyperquadric

A,B

By introducing the matrices

(43) β = t B = (6 Λ β ), £ * = * £ * = (&A*), U=tTΓ1 = (uAB),

we can express the relation between the coefficients bAB and b*AB by the
matrix equation

(44) £ * = %UBU.

It follows that

B*B* =
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Thus the eigenvalues of BB are invariant under the unitary transfor-
mation. In particular, the invariance of the trace of BB gives

(45)
A,B A,B

We will establish the following lemma:
Given a symmetήc matήx B with complex elements, there exists a

unitary matrix U such that tUBU is diagonal
For n — 0, i.e., for a (2 x 2)-matrix B this can be verified by an

elementary calculation, and we suppose the lemma true in this case.
Let

(46) φ(B) = Σ \bbAB\ \2

AφB

i.e., φ(B) is the sum of the squares of the absolute values of the non-
diagonal elements of B. Suppose |6QI| > |&AB|?^4 Φ B\ this can always
be achieved by interchanging the rows and columns when necessary. Let
UQ be a (2 x 2)-unitary matrix such that tUoBιUo is diagonal, where

B1 = (f00 f°Λ and let

where / is the (n x n)-unit matrix. Then we have

and

Under the assumption that |feoi| > |ί>AJ5|»̂  Φ B, we have

from which it follows that

Notice that the factor at the right-hand side before φ(B) is < 1. We can
therefore find a sequence of unitary matrices ί/i, , Uv, , such that
φ^UvBUv) is strictly monotone decreasing and tends to zero. Since the
unitary group is compact, there exists a unitary matrix C/QO such that
Ψ^UOQBUOQ) = 0 and tUooBUoo is diagonal. This proves the lemma.

It follows that the equation of the hyperquadric can be by unitary
transformations brought to the normal form



EINSTEIN HYPERSURFACES 29

(48) +

We can further suppose that 6^ are real and > 0. The ratios of ί^
are invariants of the hyperquadric under U(n -f 2). In particular, the
hyperquadric

(49) Z2

0+ -- + Z2

n+1=0

will be called a hypersphere.
A one-one mapping T : Vn+2 —> Vn+2 is called antilinear, if

(50) T(λZ) = λT(Z), Z, Zί, Z2 € Vn+2,

λ being a complex number. It induces a one-one mapping in Pn+i. By
the properties (50) an anti-linear mapping is completely determined by
its effect on a frame.

4. Completion of the proof of the theorem

We wish to prove the second part of the theorem stated in the Intro-
duction by showing that a hypersurface in Pn+i (with the Study-Fubini
metric) whose induced metric is einsteinian and which is not totally
geodesic is necessarily a hypersphere.

Continuing the proof of §2, we have K = 4 and p = 1. We apply a
change of the frame field as defined by (17) with

(51) Ui,n+1 = 0,

so that the normal vector e n + i to M remains unchanged. By (18) and
(19) we have respectively

If we set

(52)

we get

(53)

Our lemma in §3 implies that unitary matrices (uik) can be so chosen
that the matrix (a*k) is diagonal. Moreover, since p = 1, we can even
make it the unit matrix.



30 SHIING-SHEN CHERN

Suppose such a change of the frame field be already carried out. By
dropping the asterisks, we have aik = δik and

(54) 0i,n+l=0i.

Equation (28) becomes

(55) 0i* + 0*t-<Si*0n+l,n+l=O.

By (39) this gives

(56) ωik + ωki - <^(ωOo + ωn+i,n+i) = 0.

We now modify Zn+i by setting

Z*+1=eiφZn+u φveal

Then

and we have

Since z(α;oo + ωn+i? n+i) is real-valued and

we can determine φ so that

Dropping the asterisks again, we have

(57) α;Oo + ωn+hn+ι = 0

and (56) gives

(58) ωik + ωki = 0.

Let T be an anti-linear transformation in Pn+i? so that

(59) d{T{ZA)) = Σ UABT{ZB).

B

By using (57), (58) and (59), we find

(60)

d(Z0 + T(Zn+1)) = woo(Zo

0 ) + Zn+1) = - α;00(Γ(Z0) + Zn+1) - Y^ώOi(Zi -

o) + Zn+1) - ώOi(Zo + T(Zn +i))
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This is a differential system which is linear and homogeneous in the
vectors Z 0 + T(Z n + i ) , T(Z0)Λ-Zn^1,Zi-T(Zi). It follows that if these
vectors are zero at a point of M, they are identically zero. We choose
the anti-linear transformation T so that they are zero at po G M and
we have

(61) T(Z0) = -Zn+1, T(Zn+1) = -Z0, T(Zi) = Zi

everywhere on M. As a consequence we get

(62) (Zo, T{Z0)) = 0.

We put

(63)
αo = (Zo(po) - Zn+i(po))Λ/2, «n+i - i(Zo(po) + Zn+1(po))/y/2,

a3 = Zj(Pθ)

Then a A is a unitary frame having the property

(64) TaA = a A.

Let

Σ peM.
A

Then

A

and equation (62) can be written

A

This proves that M is a hypersphere.
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