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0. Introduction 

One of the fundamental results in the theory of 3-manifolds is the 
Haken lemma [19]: "If T is an incompressible surface in the closed ir
reducible triangulated 3-manifold M, then T is isotopie to a normal 
surface." This result is crucial for establishing the existence of hierar
chies in Haken manifolds [19]. The hierarchy in turn is the starting 
point for many spectacular results in 3-manifold topology e.g [19], [33], 
[31]. 

In 1990 Mark Brittenham [3] observed the following analogue of the 
Haken lemma: "If A is an essential lamination in the closed orientable 
3-manifold M with triangulation r, then M has an essential lamination 
C normal with respect to r." 

An incompressible surface can be normalized via a finite number of 
elementary operations; however, these same operations applied to an 
essential lamination A may never yield a normal lamination. Neverthe
less, Brittenham mysteriously obtains a normal essential lamination £ 
from an infinite sequence of normalizing isotopies applied to A. The 
main technical result of this paper precisely explains the passage from 
XtoC. 

Theorem 4.4. Let X be a nowhere dense essential lamination in 
the closed orientable 3-manifold M with triangulation r . Then at least 
one of the following occurs. 
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1) After possibly splitting A open along a finite number of leaves, A 
is isotopie to a normal lamination. 

2) There exists a normal essential lamination C in M such that 
QAf(C) > QAf(X) and C is obtained from A by first splitting along finitely 
many leaves, then evacuating a taut sutured manifold (N, 7) and finally 
isotopy. 

3) A has a generalized cylindrical component (see 4-1)- ^n particular 
A has a torus leaf and M is toroidal. 

The gut number QJ\f(X) is a very rough measure of how far a lami
nation is from being a split open foliation. See Definition 0.1. 

Theorem 4.4 together with the Kneser principle yields 

Theorem 5.2. To each closed 3-manifold M there exists a minimal 
nonnegative integer QJ\f(M), called the gut number of M, such that if 
A is an essential lamination in M, then QJ\f(X) < QN(M). 

In [17] we use Theorem 5.2 to establish the finiteness of the mapping 
class group of atoroidal 3-manifolds with genuine laminations, thereby 
generalizing the similar result for atoroidal Haken 3-manifolds estab
lished by Johannson [22]. 

Corollary 5.3. / / M has an essential lamination, then it has an 
essential lamination of maximal gut number. 

Corollary 5.4. If X is a maximal gut number essential lamination in 
an atoroidal manifold with triangulation T, then after possibly splitting 
along finitely many leaves, A is isotopie to a normal lamination. 

Corollary 5.5. If M is laminar, then it has an essential lamination 
A such that for any triangulation r on M, A is isotopie to a normal 
lamination. 

Theorem 6.5. Let M be a closed orientable atoroidal 3-manifold. 
The collection of nowhere dense essential laminations on M is carried, 
up to isotopy, by finitely many essential branched surfaces. 

See Theorem 6.13 for a similar statement about Reebless foliations. 
Two foliations T and Q in a Riemannian 3-manifold are e-coarse 

(resp. coarse) isotopie if up to isotopy, of each foliation, their oriented 
tangent planes differ pointwise by angle less than e (resp. n). 

Theorem 6.15. Given a closed orientable atoroidal Riemannian 3-
manifold, there exists an integer N(M) > 0 such that for any e > 0 any 
taut foliation on M is e-coarse isotopie to one of N(M) taut foliations. 
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Note that N{M) is independent of both e and the Riemannian met
ric. 

Corollary 6.16. If e > 0 and T\,--- ,FN(M)+I
 are taut foliations 

on the closed oriented Riemannian atoroidal 3-manifold M, then there 
exists i ^ j such that Tj and T% are e-coarse isotopie. 

This result had been previously obtained by Cantwell - Conlon [7] 
for depth-1 foliations. 

Corollary 6.18(Kronheimer - Mrowka [24]). On a closed orientable 
3-manifold, there are only finitely many homotopy classes of plane fields 
of taut foliations. 

In contrast to Corollary 5.5 we have 

Corollary 6 .21 . Let M be a closed orientable atoroidal 3-manifold. 
There exists a triangulation r on M such that any taut foliation or 
Reebless foliation or nowhere dense essential lamination can be isotoped 
to be normal to r. 

Corollary 6.21 can be viewed as an analogue for laminations of the 
result of Schoen - Yau [29], Schoen [28] that in a Riemannian 3-manifold, 
any 7Ti-injective closed surface is isotopie to one with uniformly bounded 
normal curvature. 

Corollary 6.21 is a positive answer to a question asked by Thurston 
in the late 1970's. 

Corollary 6.22. If M is a closed orientable atoroidal 3-manifold, 
then M is covered by a finite set of charts such that any taut foliation 
or essential lamination can be isotoped so that each of these charts is a 
foliation chart. 

Conjecturally the bound on the number of foliation charts can be 
obtained from the topological complexity of M. 

This paper is organized as follows. In §1 we provide several examples 
of infinite passages from A to C. In particular we show that for any 
triangulation on the 3-torus there exists an essential lamination which 
cannot be put into normal form with respect to that triangulation. (The 
reader who masters §1 can easily read this paper.) In §2 we define an 
infinite isotopy which at tempts to make A normal. It has the feature 
that modulo certain compression operations this isotopy is supported 
in a tiny neighborhood of the 2-skeleton. Let At denote the isotoped 
A at time t. In §3 we completely understand A<|r? where r] is an n-
simplex, where 1 < n < 3. This enables us to obtain a limit branched 
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lamination Aoo. We apply the arguments of [3] to obtain a normal 
essential lamination £ from A,». In §4 we prove our main technical 
result. In particular we observe that the lamination £ is carried by a 
branched surface H which is naturally created at some finite moment £3 
of the isotopy process. Roughly speaking, the isotopy after time £3 fixes 
H pointwise and the horizontal boundary R{^) of the evacuating sutured 
manifold is the union of sectors of// which lie on the boundary of regions 
where the isotopy does not stabilize in finite time. See Examples 1.3 - 1.5 
for examples of this phenomena. In §5 - 6 we establish the application 
cited above. 

The main results of this paper concern essential laminations in trian
gulated 3-manifolds. However all these results generalize to laminations 
in 3-manifolds with pseudotriangulations, handlebody or regular cell 
structures. 

Historical R e m a r k s . Kneser [23] introduced the idea of normal 
surface in 1929 in order to establish the prime decomposition of compact 
triangulated 3-manifolds. He showed how to transform an essential 2-
sphere into a finite set of normal essential 2-spheres. It took another 
32 years for someone (Haken) to recognize the enormous importance of 
higher genus normal surfaces. 

A c k n o w l e d g m e n t s . I would like to thank Will Kazez for his 
constructive comments. 

Defini t ion 0 .1 . Read [18] for the basic facts and definitions 
about essential laminations and branched surfaces. Define the closed 
complement of a lamination A in the 3-manifold M to be the metric 
completion of M — A with respect to the path metric on M — A. In a 
similar manner define the closed complement C of a branched surface 
B C M. Such a C is a 3-manifold with corners, the corners denoted 
s(dC) arising from the branched locus of B. A closed complementary 
region of a lamination or branched surface is a component of the closed 
complement. 

The closed complement of an essential lamination can be uniquely 
decomposed (up to isotopy) into a union of T(A) and Q(X). The inter
stitial bundle I(X) is 7ri-injective and is a maximal union of maximal 
connected noncompact / -bundle 's or /-bundles over closed surfaces or 
maximal /-bundles over connected surfaces of negative Euler character
istic. The gut G(X) is a compact manifold such that X(A) n Q{X) is a 
union of properly embedded essential annuii. See [16] for more details. 
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The gut number QJ\f(X) is the number of components of the gut of A. 

Definit ion change 0.2. Our definition of gut is different from 
that of [16] for it allows for components of the interstitial bundle which 
are /-bundles over surfaces of negative Euler characteristic. The same 
argument as [16] shows that the gut is unique up to isotopy. (Uniqueness 
is lost if we allow /-bundles over the annulus or Mobius band.) 

o 

Definit ion 0.3. See 4.1 for the definition of sutured manifold. E 
denotes the interior of E and | E | denotes the number of components 
of E. If r is a cell complex, then T " denotes the n-skeleton. Let a be a 
3-simplex and a and ß simple closed curves in da disjoint from a0 and 
transverse to and not disjoint from a1. If aHß = 0, then we say a and ß 
are strongly normally isotopie if each component of a1 H A is an essential 
arc, where A C da is the annulus cobounded by a and ß. If a n ß ^ 0, 
and they can be made strongly normally isotopie after arbitrarily small 
isotopies (e.g., because they are tangent at a point or coincide along 
arcs), then we also say that a and ß are strongly normally isotopie. 

1. E x a m p l e s 

E x a m p l e 1.1 (A nonnormal izable 2-dimensional laminat ion) . 
Figure 1.1 shows an annulus 2-complex K together with a Reeb lam
ination p embedded in its interior. Here p = po has 2 compact leaves 
and 1 noncompact leaf. With respect to the given triangulation on K, 
the leaves of po are in normal form except for one subarc. An isotopy 
of po to p\ eliminates that subarc at the expense of creating a new one. 
After 3 more such isotopies we obtain p±, which is normally isotopie to 
po, and thus have apparently accomplished nothing. 

E x a m p l e 1.2 (A nonnormal izable essential l aminat ion) . Let 
ip denote the lamination p x S1 on (Sl x / ) x S1. Call ip a cylindri
cal lamination. Let r be a triangulation on the 3-torus T 3 and let 
K(T) denote its Kneser number. (E.g. see [20]) I.e., if n > K(T) 
and T i , - - - , Tn are pairwise disjoint incompressible normal tori in T , 
then some pair of these tori are normally parallel. Parti t ion T 3 into 
n > K(T), S1 x S1 x / regions which meet only along their boundaries. 
Laminate each S1 x S1 x / regions by cylindrical laminations. The 
resulting lamination (f> on T 3 is essential, however it cannot be isotoped 
to be normal to r . Otherwise a pair of adjacent torus leaves T\, T^ of <j> 
would be normally isotopie, via an isotopy disjoint from the other torus 
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FIGURE 1.1 
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leaves. If V is the closure of the region bounded by T\,T<i and disjoint 
from the other tori, then one finds nonnormal arcs within </>|(T2 fl V) as 
in Example 1.1. 

E x a m p l e 1.3. To transform the lamination p of Example 1.1 to a 
normal lamination, one invokes the Brittenham principle (see Remark 

2.5) as follows. Let pt denote the isotoped p at time t and Et = ptCiK1. 
If s > t, then Eg C Et. Now define E^ = C\Et and define p^ to be the 
lamination of K which naturally extends E^. In this case p^ consists 
exactly of the 2-compact leaves of p. p^ is the result of at tempting to 
put p into normal form in an infmtely fast manner. See Figure 1.1. 

E x a m p l e 1.4 (The key e x a m p l e ) . Let A = Ao be an essential 
lamination in M with triangulation r such that for some (Sl x I) x 
[-1,1] C M, XKS1 x I) x [-1,1] = p x [-1,1] and some subcomplex 
K of T 2 meets (S1xI)xO as in Example 1.1. If one applies the standard 
normalizing operations to A near K, then the lamination XKS1 x I) x 
[—1,1] would get isotoped to the laminations shown in Figure 1.2 a),b) at 
times 1 and 13. In the limit one obtains the lamination C of Figure 1.2c. 
The passage from A to the limit lamination £ is obtained by evacuating 
(a term to be defined in §4) the taut sutured manifold (TV, 7) shown 
in Figure 1.3. Indeed \%\N provides a sufficient hint for describing a 
taut foliation on (TV, 7). A crucial observation is that G(X) fl N = 0 and 
so the passage from A to £ ' creates new non / -bundle complementary 
region. Finally each finite isotopy is supported within N. 

In some sense i?(7) arises from "blasting open" a (not necessarily 
connected) leaf of A. 

E x a m p l e 1.5 (The 2 -complex v i e w ) . The creation of the su
tured manifold (TV, 7) can already be detected at the 2-skeleton level. If 
K extends to a subcomplex J C r 2 , such that \Q\J appears as in Figure 
1.4 a), then \g\J appears as in Figure 1.4 b) and the limit lamination AQO 
is the branched lamination appearing in Figure 1.4 c). Finally (TV, 7) fl J 

appears as in Figure 1.4 d), the various arrows indiciting the normal 
orientation on R^). Notice that the "arrow in" region i.e., R-ij) is 
that part of dN where leaves are being "scraped off', while the "arrow 
out" region i.e., -R+(7) is that part of dN where leaves are being "sucked 
in". In some sense the leaves in N are flowing from R-^) to R+lj). 

Exercise 1.6 (A more interest ing e x a m p l e ) . Figure 1.5 shows 
a lamination restricted to a 2-complex. Show that such a laminated 2-
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FIGURE 1.2. 
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×S 

F I G U R E 1.3. 

complex might embed in a triangulated manifold with essential lamina
tion. Analyze the resulting sutured manifold evacuation and construct 
the resulting limit lamination. 

E x a m p l e 1.7 (Creat ing R e e b laminat ions ) . It is possible 
that p and K might embed in a manifold with essential lamination as in 
Figure 1.6. In that case the resulting limit lamination £ ' (constructed 
as in Example 1.4) will contain a Reeb lamination. The lamination £ 
obtained by deleting the Reeb lamination is just A with a leaf split open. 

R e m a r k 1.8. There are more interesting ways of obtaining Reeb 
laminations in the limit lamination. 

2. T h e infinite i sotopy 

T h e o r e m 2 .1(Bri t tenham [3]). Let A be an essential lamination 
in the closed orientable 3-manifold M with triangulation r . Then M 
contains a normal essential lamination C. 

Defint ion 2.2. A local leaf in the lamination A is a leaf of A|<r, 
where a is a 3-simplex. 

The following standard result follows from the Reeb stability theo
rem and the fact that no leaf of A|cr has holonomy, since A is essential 



526 DAVID GABAI 

d) 

FIGURE 1.4. 
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FIGURE 1.5. 

FIGURE 1.6. 
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and a 3-simplex is simply connected. 

Packet L e m m a 2.3. Let T be a triangulation of the closed ori
entable 3-manifold M. If \ t is an essential lamination transverse to 
Tn,n < 2, then for each 3-simplex (resp. 2-simplex) r], \t\i] canonically 
decomposes into a finite set of sublaminations of the form Ti x K;b C 
Ti x [0,1] C 7], such that for each s £ [0,1], Ti x s is a properly embedded 
compact surface (resp. interval) transverse to r 2 (resp. T1), Ki is a 
closed subset of [0,1], and if i ^ j , then (Ti x [0,1]) n (Tj x [0,1]) = 0. 

q.e.d. 

Condi t ion (2 .1) . The essential lamination A is nowhere dense 
and has no isolated leaves. 

R e m a r k 2.4. All laminations in this chapter will satisfy the above 
Condition (2.1). This is not a serious constraint, for any lamination can 
be transformed into one satisfying (2.1) by replacing each isolated leaf by 
an /-bundles worth of leaves and then suÆciently splitting the resulting 
lamination. 

We review the procedure of [3] for transforming A into £ . Given a 
3-simplex a one isotopes A to a lamination, also called A such that A jo-
is a lamination by normal discs. Now normalize A with respect to one 3-
simplex after the next, ignoring the fact that A may now be nonnormal 
on previously cleaned up 3-simplices. Do this for each 3-simplex of r , 
and then repeatedly cycle through the 3-simplicies cleaning them up one 
at a time. These elementary normalizing operations have the property 
that if Xt denotes the lamination A at time t and Et = At f i r 1 , then Et C 
Es for t > s. Thus if E^ = f)Et, then E oo is a nonempty compact set. 
Bri t tenham shows that E^ extends to a branched lamination AQO which 
is normal with respect to r . The branched leaves naturally split open to 
create a normal lamination £ ' , and after passing to the sublamination 
obtained by deleting all the Reeb laminations, one obtains the desired 
normal essential lamination C 

R e m a r k 2.5. Let Ao be an essential lamination and A be a 
2-complex in the 3-manifold M. The following 3-step process will be 
called the Brittenham principle. See [2]-[6] for various applications. 

i) Deform A0 to Xt, t > 0 so that Xt n A 1 C As n A 1 for t > s. 
ii) Extend n(A< fl A1) to a, possibly branched, lamination Aoo. 
iii) Derive an essential lamination from this AM. 

The remainder of §2 is devoted to refining the isotopy process of [3]. 
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Definition 2.6. The branched surface C compatibly carries the 
essential lamination A, if C carries A in a manner compatible with I(X). 
I.e., if V is the /-fibring of N(C), then up to isotopy of T(A), for each 
closed complementary region V of A, V | V is a sub /-bundle of I(V). 

For example if C has a disc of contact and compatibly carries A, 
then the /-fibres of the corresponding complementary D2 x / region of 
N(C) — A is a sub-/-bundle of X(A). 

It is routine to show that if A satisfies (2.1), then A is isotopie to a 
lamination Ao which satisfies the following Condition (2.2) with t = 0. 

Condition (2.2). Xt is fully and compatibly carried by a branched 
surface Bt with fibred neighborhood N(Bt) such that dhN(Bt) C At-
Also assume that T° n N(Bt) = 0, and both r 1 and r2 intersect N(Bt) 
in a union of /-fibres and r2 is transverse to At-

Remark 2.7. If-Bt is a branched surface which satisfies (2.2) and 
Bt+i and At+i are obtained by any of the following operations, then 
Bt+i satisfies the first sentence of Condition (2.2). 

i) Bt+i is obtained by At-splitting Bt, see [18]. 
ii) Bt+i is obtained by squeezing Bt along product discs, i.e., a 

o 

squeezing corresponding to a properly embedded I x I C M — N(Bt) 
with I x di vertical arcs in dvN(Bt) and di x / C dh,N(Bt). 

The following condition for Ao follows from the end-incompressibility 
of At and the compatibility of V with X(Ao). 

Condition (2.3). If Vt is the vertical fibering of N(Bf), then no 
subinterval of a fibre of V with endpoints in At can be homotoped rei 
endpoints to an arc lying in a leaf of At-

We will also assume: 

Condition (2.4). The number of components of T 1 n N(Bf) is 
minimal. I.e., if// is isotopie to At and B is a branched surface carrying 
H satisfying Condition (2.2), then (r1 nN(Bt)\ < (r1 nN(B)\. 

Definition 2.8. The passage from Ao to AQO will consist of an infi
nite sequence of normal isotopies and three other types of isotopies called 
compressions, boundary-compressions, and general-boundary-compres
sions, which are the laminations versions of the standard normalizing 
moves of Kneser and Haken. A compression is the isotopy shown in 
Figure 2.1 a). A full compression is a finite sequence of compressions 
such that each local leaf of the resulting lamination is a disc. 
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R e m a r k 2.9. i) Any essential lamination A transverse to T 2 

admits a full compression. To see this observe that if a is a 3-simplex 
of r , ß is obtained from compressing A and each leaf of A|<r is a disc, 
then so is each leaf of ß\a. Thus by cleaning up one 3-simplex at a 
time, any essential lamination transverse to T 2 can be transformed via 
compressions to a lamination with only disc local leaves. 

ii) Full compressions are canonical. I.e., if A is essential, and / Ì I , / Ì 2 

are obtained by fully compressing A, then ß\ is normally isotopie to //2-
We will not be using this fact. 

Defini t ion 2.10. A boundary compression is supported in a small 
neighborhood of a 2-simplex K and corresponds to pushing an I-fibred 
set of nonnormal arcs of A<|K across a I-simplex e C dn. The effect on 
the 2-simplices which meet e is shown in Figure 2.1. Suppose that D is 
an embedded disc in a 3-simplex a such that 3D consists of 2 arcs a and 
ß where a lies in a I-simplex e and ß lies in a leaf of A<. Also D nda = 
a C e and Xt\D is a union of parallel arcs. Then the isotopy that pushes 
Xt\D across e and is supported in a very small neighborhood of D is 
called a general-boundary-compression. A boundary-compression differs 
from a general-boundary-compression in that the former is associated 
to a disc D which lies in a 2-simplex. General-boundary-compressions 
are needed to normalize local leaves whose boundaries are normally 
embedded. For example an almost normal octagon is not normal, yet it 's 
boundary is a normal curve. Call a d-compression an operation which 
is either a boundary-compression or a general-boundary-compression. 
Remark 2.17 i) explains our interest in distinguishing the two types of 
ô-compressions. 

L e m m a 2 .11. If Xt is an essential lamination satisfying Condi
tions (2.1)-(2.4), then the lamination /z obtained by fully compressing 
Xt satisfies Conditions (2.1)-(2.4) and /J,\T2 C A ( | T 2 . q.e.d. 

L e m m a 2.12 Suppose that a and a' are 3-simplices such that a and 
a' meet along the edge e. If L (resp. L') is a disc leaf of Xt\a (resp. 
Xt\a'), such that L n V n e ^ 0, then \(L U L') n e| < 2. In particular 
\LC\e\ < 2. 

Proof. We will show that the failure of Lemma 2.12 violates (2.4). 
By (2.3) no pair of distinct points of LC\e can lie in the same component 
of N(Bf) n e. Suppose \L n e| > 2. By Reeb stability and the nowhere 
density of A there exist leaves L\, L^ of At|cr which are normally parallel 
to L and together bound a closed complementary region of Xf\u. Let x 
be a point of LHe which separates, within e, other points of Lfle. Since 

file:///LC/e/
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FIGURE 2.1. 
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L n e > 2, there are two different ô-compressions which can eliminate x 
from L n e. To see these ô-compressions think of 1/ as lying very close 
and parallel to a disc in da that dL bounds. Each of the two choices for 
the disc suggests the various choices of 9-compression. By first doing 
one such ô-compression to L\ and then doing the other d-compression 
to 1/2, then splitting Bt and isotoping the resulting N(Bt) to satisfy 
(2.2), one obtains a contradiction to (2.4). 

A similar argument works if | ( I /UL')ne | = 3 and |Lne | = |Z/ne | = 2. 
If I/(resp. L') hits e in points x and y (resp. y and z), then again by 
(2.3) and the essentiality of At x, y and z lie in different components of 
N(Bt)r\e. If say z separates x and y, then ô-compressions in a (in order 
to 9-compress L) gives rise to a violation of (2.4). If y separates, then 
ô-compressions in a and a' give rise to a violation of (2.4). Use the fact 
that one can find local leaves L\^L^ C a, (resp. L\,L\ C a') normally 
parallel to L (resp. L') such that L\ U I/2 (resp. L'x U I/2) bound a 
closed complementary region of At|cr (resp. Xt\a!) and (I/i n L[) n e 7̂  0 
and (L2 n I/2) Pi e 7̂  0. The various ô-compressions correspond to doing 
ô-compressions to L\ and L'2 (or I/2 and L[) within a and CT'. q.e.d. 

Condi t ion (2 .5 ) . If a is a 3-simplex and 1/ is a local leaf of the 
3-simplex a with respect to the essential lamination Xt, then for each 
component ß of dL there exists an edge e of a such that \ß fi e| = 0. 

Condition (2.5) is useful because of 

L e m m a 2.13. A properly embedded disc D in the 3-simplex a is 
normal if and only if dD is a normal curve disjoint from some edge e 
of dD. q.e.d. 

L e m m a 2.14. Ao can be isotoped to Ai which satisfies (2.1)-(2.5). 

Proof. Suppose that /io is a lamination which satisfies (2.1)-(2.4) and 
such that each local leaf is a disc, for example, the lamination obtained 
by fully compressing Ao- Packet Lemma 2.3 asserts that the collection 
of local leaves can be partitioned into a finite set of normally isotopie 
families of discs. We prove Lemma 2.14 by induction on the number 
C(/io) of such families whose boundaries fail to satisfy (2.5). In fact let 
F C a b e one such family. Being connected, each leaf of OF must cross 
some edge e at least two times, hence by Lemma 2.12 it crosses e exactly 
two times. A single 9-compression eliminates the intersections of F with 
e. Any local leaf in M involved in this ô-compression is made disjoint 
from e. Thus, the number of families whose boundaries fail to satisfy 
(2.5) has been reduced. Since a full compression does not increase this 
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number, it follows that there is a lamination ß\ isotopie to ßo such that 
C(m) < C(/i0). q.e.d. 

Lemma 2.15. Suppose that Xt satisfies (2.1)-(2.5) and that every 
local leaf of Xt is a disc. If ß is obtained by either compressing or d-
compressing Xt, then ß satisfies (2.1)-(2.5). 

Proof. As in the proof of Lemma 2.14, if ß was obtained from Xt 
by a ô-compression across the edge e, then any local leaf in M involved 
in that ô-compression will give rise to local leaves of ß disjoint from e. 
Thus (2.5) holds for ß. It is routine to show the other conclusions of 
Lemma 2.15. q.e.d. 

Construction of the infinite isotopy 2.16. Cyclically order 
the edges of the 2-simplices of r by (ei, K \ ) , • • • , (e„, Kn) where K<I is a 
2-simplex and e, is an edge of K,. Thus if edge e lies on n 2-simplices, 
then it will appear as the first term of the sequence exactly n times. Let 
Au be obtained from Ai by doing a boundary-compression to eliminate 
a maximal I-fibred collection of nonnormal arcs of K,\ with endpoints in 
e\. Let Ai.2 be obtained by fully compressing Ai.i. After finitely many 
pairs of isotopies we obtain a lamination A2 such that each local leaf 
is a disc and each leaf of A2IK1 with endpoints in e, is normal. In this 
way we obtain an infinite sequence Ai, A2, • • •, where A^+i is obtained 
by normalizing A& on the e^ edge of K&, where indices of (ek,Kk) a r e 

taken mod n. q.e.d. 

Remark 2.17. i) By Lemmas 2.14-2.15, once Ai has been con
structed, all future isotopies consist only of normal isotopies, compres
sions and boundary-compressions. 

ii) Consequently, the infinite isotopy can be more or less understood 
by staring at the 2-skeleton. We shall see that the limiting behavior is 
basically no more complicated than that exhibited in Example 1.5. 

Lemma 2.18. If Bt is a branched surface satisfying (2.2) - (2.4) 
which carries Xt, then a branched surface Bf+i satisfying (2.2) - (2.4) 
carrying Xt+i is obtained by a finite X-splitting of Bt followed by an 
isotopy. q.e.d. 

3. Proof of Brittenham's Theorem 

In this chapter we understand how to take the limit of At as t —> 00. 
We will observe that if a is a 3-simplex, then for t sufficiently large and 
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integral, At|cr decomposes into a finite set of sublaminations called walls. 
In time the collection of walls stabilizes except possibly for at most two 
walls, which are ignored. This enables us to construct X^a which is 
the limit of \t\a as t —> oo. To carry out the above plan we will first 
analyze Xt\e for t suÆciently large, where e is an edge of r, and then 
Xt\n for t suÆciently large, where K is a 2-simplex of r. 

The limit AQO is a branched lamination, which naturally splits to a 
normal lamination £'. By [3] the desired normal essential lamination C 
is obtained by deleting the Reeb laminations of £'. 

Analysis of Xt\e where e is a 1-simplex of r , 3.1. By (2.4) 
and Remark 2.17 i), if [at, dt] parametrizes a component of N(Bt) n T 1 

and Ct = Xt C\ [at,dt], then for 1 < t < oo, Ct = Xi fl [at,dt] and for 
s < t,as < at < dt < ds. Call such a Ct & dump. Thus Et = Xt fl r 1 is 
a disjoint union of a finite number c of clumps. By Condition (2.4) the 
number of clumps is constant, independent oft. As t increases, a clump 
may shrink from its ends, but never vanishes or becomes a point, since 
A has no isolated leaves. Let E^ = nEt and C ^ = V\Ct- Again E^ is 
naturally partitioned into a disjoint union of limits of clumps. It may 
happen that a limit clump C ^ may equal one point. 

The following Packet Lemma 3.2 is just Packet Lemma 2.3 where 
the clump structure is taken into account. 

Packet Lemma 3.2. Let T be a triangulation of the closed ori
entable 3-manifold M. If Xt is an essential lamination transverse to 
Tn,n < 2, then for each 3-simplex (resp. 2-simplex) n, Xt\r] canoni-
cally decomposes into a finite set of maximal sublaminations of the form 
Tj x Kj C Ti x [0,1], such that for each s G [0,1], Ti x s is a properly em
bedded compact surface (resp. interval) transverse to T2 (resp. T1), KÌ 
is a closed subset of [0,1], and if i ^ j , then (Ti x [0,1]) n (Tj x [0,1]) = 
0. Finally if e is a 1-simplex, then (Tj x Kì) fi e lies in a clump of 
e. q.e.d. 

Analysis of Xt\n where K is a 2-simplex of r , 3.3. We shall 
see that the normal arcs of the restriction of At to a 2-simplex naturally 
decomposes into a finite set of sublaminations called planks. In time 
the collection of planks stabilizes except possibly for at most one plank, 
which is ignored. This enables us to take a limit of At fl T2 as t —> oo. 
Here are the details. 

Let K be a 2-simplex of r, let Kt denote At fl« and let OLI,OL2, and «3 
denote the edges of K. AS in Packet Lemma 3.2, the non-circle leaves of 
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Kf form a finite union of laminations of the form I x Ct C / x [at, bt], 

where Ct is closed, {at, bt} C Ct and for i G {0,1}, i x Ct lies in a clump. 
Assume that these laminations are pairwise disjoint and maximal. Such 
a lamination Ct x I is called a plank, if it connects clumps lying on 
distinct edges of K. If it connects to clumps lying on the same edge it 
is called a nonnormal plank. A leaf of a plank is called a grain. The 
grains of the plank P of the form at x I or bt x / are called the sides of 
P . Note that leaves of Kt not lying in planks get eventually isotoped 
away, for such a leaf has both endpoints on some edge e of K, and unless 
it gets eliminated by earlier compressions or boundary-compressions, it 
will get eliminated exactly when it is time to normalize arcs in K with 
endpoints in e. 

L e m m a 3.4. If P\,P2 C K are distinct planks emanating from the 

same clump C, then P1UP2 intersects every edge of K. At most 2 planks 

can emanate from a clump. 

Proof. If Pi and P2 connect to clumps C\ and C% on the edge a, then 
by squeezing the branched surface Bt which carries A< and satisfies (2.2) -
(2.4), we obtain a new one B[ satisfying (2.2) - (2.4) such that C\ and C2 

are coalesced into the same clump and the other clumps are unchanged. 
Since B't has 1 fewer clump than Bt we obtain a contradiction to (2.4). 
See Figure 3.1. q.e.d. 

Let <f) : M x [0, 00) —> M denote the infinite isotopy such that 
<j>Q = id-M and for each t, ^t(A) = A .̂ Call a point x G M t-stable, if for 
all h > 0, 4>t,Jrh{4>t {%)) = x. A point a; G M is stable if it is t-stable for 
some t. Call a clump C a K-spread clump if two planks emanate from 
C and lie in K. By Lemma 3.4, at any time t, an edge «j can contain 
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p clump 3 Questionable Solid Planks 

FIGURE 3.2 

at most one K-spread clump and K can contain at most three K-spread 
clumps. We will usually suppress the K in the expression "K-spread 
clump", since K will always be understood from context. The following 
lemma also follows from (2.4). 

Lemma 3.5. If K contains a unique spread clump, then the points 
lying on the "inside" 2 grains are stable. See Figure 3.2. q.e.d. 

Definition 3.6. We classify the planks of K into two categories, 
shaky and solid and some solid planks will also be called questionable. 
These terms are meant to reflect what might happen to planks during 
future isotopies. 

If K contains exactly two spread clumps, then call the plank that 
connects them shaky. Call the side of a shaky plank which faces these 
other two planks the + side. Call all the other planks in K solid. If 
K does not contain exactly two spread clumps, then call all the planks 
solid. If K has 3 spread clumps, then call the 3 planks emanating from 
these clumps questionable. See Figure 3.2. 

Lemma 3.7. The effect of compressing Xt on a plank P is to either 
delete grains from its ends or to eliminate it. I.e., if Pf = Ix([at, &t]nAi) 
and X't is obtained by compressing Xt, then the associated plank P' is of 
the form, I x ([aj,&£] fi Ai) with [a£,&t] C [at,bt\. A solid plank cannot 
get eliminated, unless it is questionable. At most one questionable plank 
can get eliminated from a given 2-simplex. q.e.d. 

Lemma 3.8. The effect of boundary-compressing Xt on a solid plank 
P is to delete grains from its ends or to eliminate it. Only question
able solid planks can get eliminated, and at most one such plank can be 
eliminated per 2-simplex. The effect of boundary-compressing a shaky 
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plank is to either eliminate it or delete grains from the non +-side or to 
add grains to the +-side. Boundary-compressing may create new shaky 
planks, but never creates solid planks. q.e.d. 

L e m m a 3.9. Once a questionable plank has been eliminated, the 
two other former questionable planks remain solid and are no longer 
questionable. Shaky planks never become solid, and conversely solid 
planks never become shaky. q.e.d. 

Analys i s of t h e l imit ing behavior of planks w i th in the 2-
s implex K, 3 .10. Since Ai has only finitely many questionable planks, 
and questionable planks are never created during the isotopy process, 
it follows that after some time to, no questionable planks can get elim
inated. Thus, if s > t > to, and Pt is the solid plank I x (Ai n [pt, qt\), 
then at time s there exists a solid plank Ps of the form I x (Ai n [ps, qs]) 
where [ps,çs] C [pt,qt\- Thus P^, the limit of Pt,t > to is a nonempty 
set of the form I x (Ai fl [poo, Çoo])) which may consist only of a single 
grain. 

Now consider the case that the clump Ct which hits Pt also hits 
a shaky plank Qt. In this case parametrize Ct by [a<,dt] n Ai so that 
Ct n [at,&t] C Pt and Ct fl [ct,d<] C Qt where at < bt < ct < dt and 
bt C Pt and c< C Qt- Again by Lemmas 3.7-3.8, [a<,&t] is a nested 
sequence of nonempty intervals and if Qs exists at some s > t, then 
cs < ct and ds < dt- For e G {a, b, c, d}, define e œ = lim et, if such limit 
exists. Call a plank enduring if it is either a solid plank which never gets 
eliminated or a shaky plank Qt with c< < c?oo for some t < oo. Since 
a given 2-simplex can have at most 1 enduring shaky plank, it follows 
that at some time t\ > to, the set of enduring planks are determined, 
in particular no new enduring planks are created after time t\ and none 
are eliminated. 

If Qt is a enduring shaky plank, connecting the clumps Ct and C[ 
and Qt fl Ct = [et, dt] fi Ai, Qt fl C[ = [c't, d't] fi Ai, then define the limit 
plank Qoo to be a plank connecting [c^, d^] fl A with [c^, d'^] fi A where 
the grains connect in the natural way. 

The union of the various limit planks is a branched lamination K^ 
of K such that K^ n du = E^ fl K. Indeed branching happens exactly 
when (in the above coordinates) €00 = 600. See Figure 3.3 and compare 
with Example 1.5. 

Analys i s of \t\o~ w h e r e a is a 3 -s implex of r , 3 .11 . Define 

S't to be the sublamination of St = At|<r consisting of normal cells. 

file:///t/o~
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By Packet Lemma 3.2 the lamination St decomposes canonically into 
finitely many sublaminations. Call such a sublamination a wall (resp. 
nonnormal wall) if all its leaves are normal (resp. nonnormal). Each 
wall (resp. nonnormal wall) is a maximal (D2 x 7", dD2 x I ) C (a, da) 
laminated by D2 x K, where K is a Cantor set in / containing 0 and f 
and for x G dD2 — T1,X X K lies in exactly one plank (resp. plank or 
nonnormal plank). Define an edge of a wall or nonnormal wall to be the 
intersection of w with a plank or nonnormal plank. The sides of a wall 
w are the discs D2 x t,t G {0,1}. The collection of walls is uniquely 
determined and is called a wall decomposition of S't. 

Define an equivalence relation on the set of walls of S't, generated by 
the rule that two walls are equivalent if they intersect the same plank. 
There are 25 possible combinatorial types of classes. There are 5 classes 
which contain a wall of quadralaterals such that all the other walls in 
its class lie on one side of the quadralateral wall. Figure 3.4 shows 
how these five classes intersect da. There are 15 classes which contain 
quadralateral walls. There are 6 classes (resp. 2,1,1) which exactly 
involve 4 walls (resp. 3,2,1) walls of triangles. Observe that a clump 
(resp. plank) can meet up to 3 (resp. 2) walls. Typically an equivalence 
class contains exactly one wall, however S't may contain as many as two 
classes which contain more than one wall. 

Defini t ion 3 .12. i) Each of the 25 combinatorial classes of walls 
in a corresponds to a branched surface in a which we call a 3-simplex 
local branched surface. 

ii) Call a normal wall w shaky if some edge of w lies on a shaky plank 
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and all other edges lie on either a shaky plank or on a plank shared by 
another wall of S't. We say that the side of a wall is + if it contains the 
+-side of a shaky plank. Note that a shaky wall has at least one +-side 
and can have two +-sides. Call a normal nonshaky wall solid and call a 
solid wall w questionable if the other members of its equivalence class lie 
in one component of a — w and deleting w does not reduce the number 
of clumps on a1. 

Shaky, solid and questionable walls earn their names because they 
satisfy the conclusions of the following elementary lemmas. The next 
two results are the analogues of Lemmas 3.7-3.9. 

Lemma 3.13. The effect on a solid wall W by compressing or 
boundary compressing A< is to delete sheets from its ends. If W is ques
tionable, then it might get eliminated. The effect on a shaky wall is to 
either eliminate it or delete sheets from a non +-side or to add sheets 
to the +-side. Compressing or boundary compressing may create new 
shaky walls, but never creates solid walls. q.e.d. 

Lemma 3.14. Shaky walls never become solid and conversely solid 
walls never become shaky. q.e.d. 

Lemma 3.15. If x G E^ ^x G du, then fort sufficiently large, there 
is a stable (normal) local leaf of Xt\a which contains x. (See 3.1.) 

Proof. Let K\ be a 2-simplex face of a which contains x. It follows 
from Lemmas 3.7-3.8 that there exists a stable grain g\ C n\ which 
contains x. Set x^ = dg\ — x, and K2 ^ K\ the 2-simplex of a which 
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contains xi- Let g^ be a stable grain which lies in KI and contains xi-
Continuing in this manner, for each n we find a path of stable grains 
In = 9i * 92 * • • • * 9n which begins at x and lies in da. By Lemma 2.12, 
for some n < 12, -yn is an embedded loop of stable grains through x 
which lies in da. Also 7„ misses some edge of a1. For t a sufficiently 
large integer this loop necessarily bounds a stable leaf of At|cr which is 
normal by Lemma 2.13. q.e.d. 

Defini t ion 3.16. i) Define the notion of a enduring wall in a 
manner analogous to that of an enduring plank. Since at any moment 
a given 3-simplex can have only a finite number of walls, it follows 
that after some time t<2, no new enduring walls are created and no 
questionable walls get eliminated. Assume that ti has the property 
that for each enduring shaky plank, ct2 < doo, with notation as in 3.10. 
Also a similar property holds for enduring shaky walls. Thus after time 
Ì2 every enduring wall has a stable leaf. 

ii) In a natural way solid walls limit to walls and a limit wall may 
consist of a single sheet. Define the limit of enduring shaky walls in 
a manner analogous to that of shaky planks. The union of the limits 
of enduring walls of a is a branched lamination S'^. As with planks, 
branching will only occur on the edges of a +-side. 

iii) Define AQO to be the branched lamination of M obtained by 
taking the union of the limit walls. 

iv) (A thick handle structure on N(At),t > 1) Let Ct = [a<,dt] fi Ai 
be a clump of A< which lies on the edge e. Construct a small D2 x [at, dt] 
which is transverse to e, intersects e in 0 x [at,dt], and intersects A< in 

D2 x {[at,dt] n Ai). The set Ct = D2 x {[at,dt] n Ai) is called a thick 

clump and the set Cf = D2 x [a<,dt] is called the fibred neighborhood 
of the thick clump Ct- Each D2 x s in a thick clump should be viewed 
as a 2-dimensional 0-handle. 

Let Pt = I x ([pt,qt] H Ai) be a plank, possibly nonnormal, of A< 
which lies on the 2-simplex K and connects the clumps Co and C\. Let 
/ ' = [1/4, 3/4]. Construct a small [—1,1] x / ' x [pt, qt] which is transverse 
to K, intersects K i nOx/ 'x [p t , qt], intersects A< in [—1, l]xl'x([pt, qt]n\i) 
and intersects Co U C\ in [—1,1] x di' x ([pt,qt] H Ai). See Figure 3.5. 

def 
The set Pt = [—l,l]xl'x([pt, qt] fi Ai) is called a thick plank and the 
set Pf =J [-1,1] xi' x [pt , qt] is called the fibred neighborhood of the 
thick plank Pt. Each [—1,1] x / ' x s should be viewed as a 2-dimensional 
1-handle. 
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In a similar manner to each wall, possibly nonnormal, Wf C a, 
construct a thick wall wt = D2 x K where K C [rt,st] is a Can
tor set containing {rt,st} and dD2 x K attaches to the various thick 
clumps and thick planks, possibly nonnormal as determined by wt- Call 

wf = D2 x [rt, St] a fibred neighborhood of wt-
The handle structure on \t2 induced by the collection of handles will 

be called a thick handle structure on Xt. A thick clump, plank, or wall, 
possibly nonnormal, will be called a thick handle. The union of the 
fibred neighborhoods of the thick handles will be denoted N(At) and is 
a fibred neighborhood of A .̂ Note that N(Xt) = N(Bt) where N(Bt) is 
a fibred neighborhood of a branched surface Bt carrying Xt. The map 
which contracts to a point each /-fibre of a fibred neighborhood of a 
thick i-handle induces the projection of N(Bt) onto Bt. 

L e m m a 3.17. If B is any branched surface which carries Xt and 
satisfies (2.2), (2.3) and (2.4), then after X-splitting or squeezing along 
bigons and discs, B is isotopie to Bt. Furthermore Bt satisfies (2.2), 
(2.3) and (24). 

Proof. By (2.2) and (2.4) each of Bfir1 and Btr\rl are cannonically 
in 1-1 correspondence with the clumps of Xt- If P C K is a plank, 
possibly nonnormal, connecting two clumps, then associated to P and 
B are finitely many arcs in K whose ends coincide in a neighborhood 
of T1 and these arcs can be transformed into a single arc via a finite 
sequence of squeezing along bigons. By (2.2) and (2.4) if P and P' are 
distinct planks (possibly nonnormal), then the associated arcs of B are 
either disjoint or coincide along a single subarc eminating from r 1 . It 
follows that we can assume that after A-splitting, squeezing along bigons 
and normal isotopy of B that B\N = Bf\N where N is a neighborhood 
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of T 2 . An analogous argument for the normal and nonnormal walls 
shows that after splitting and squeezing along bigons and discs B is 
isotopie to Bt. By Remark 2.7 and construction, Bt satisfies (2.2) and 
(2.4). q.e.d. 

A thick handle will often be denoted D2 x [x, y] fi Ai even if it is 
a thick 1-handle. The discs D2 x {x, y} of the fibred neighborhood 
D2 x [x, y] of a thick handle will be called the sides of the thick handle. 

If t > Ì2) call the union of all the thick handles associated to clumps, 
enduring planks and enduring walls a thick partial handle structure on 
Xt- The union of all the fibred neighborhoods of such thick handles 
is denoted by Np(At) and called the fibrelike neighborhood of A< even 
though \t<£NP(\t). 

R e m a r k 3.18. It is routine to modify <f) so that for any integral 
t > Ì2) the isotopy transforms the thick handle structure of A<2 into a 
thick handle structure on Xt. This means that if s > t, then the isotopy 
transforms Bt into Bs. Also if Ct2 = [at2,dt2] ri Ai C e is a clump of Xt2 

and Ct = [ot,dt] H Ai denotes the corresponding clump at time t > t<2, 
with [at, dt] C [at2 ,dt2], then the associated thick clump Ct is of the form 
D2 x ([a<,<it]nAi) C D2 x ([at2,dt2]r\\i) = Ct2 and the associated fibred 
neighborhood is of the form D2 x [at, dt]- Similarly if the thick solid plank 
Pt2 is of the form [—1,1] x / ' x ([a<2, bt2] ri Ai), then the thick solid plank 
Pt is of the form [-1,1] x I' x ([a t,&t]nAi) with [at,bt] C [at2,6t2]. If the 
thick shaky plank Qt2 is of the form [—1,1] x I' x ([ct2,dt2] fi Ai), then 
the thick shaky plank Qt is of the form [— 1,1] x / ' x ([et, dt] fi Ai) where 
O't-i < &00 < h < ct < c<2 < doo < dt < dt2 and &t < &t2 (same notation 
as in 3.10). A similar statement holds for how thick walls evolve over 
time. 

A thick handle s tructure on the fibrelike ne ighborhood 
N(X0O), 3 .19. We now define the thick handle structure on AQO 
which is the limit of the above thick partial handle structures. Define 
Coo = P>2 x ([Goo doo] n Ai) and C ^ = D2 x [a^, d^], to be respectively 
the thick clump and is associated fibered neighborhood of the clump C^ 
of AQO. In a similar manner, define the limit of thick planks and thick 
walls as well as the limit of fibred neighborhoods of the thick planks 
and thick walls. A thick handle in the limit may be a single D2. In that 
case the limit fibred neighborhood consists of a single 2-disc. In that 
case the sides of the limit fibred neighborhood are two distinct 2-discs 
that trivially 2-fold cover the given 2-disc. Define N(X00), the fibrelike 
neighborhood of AQO to be the union of the limit fibred neighborhoods 
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of all the clumps, enduring planks and enduring walls. Let B^ denote 
the limit branched surface. Define the horizontal boundary dflN(Xoc) 
of the fiberlike neighborhood to be the union of the various sides of 
the thick handles of Aoo. These sides glue together in the natural way 
to make dhN(Xoc) a compact surface, possibly with boundary. The im
mersion dflN(Xoc) —> N(X0O) is an embedding away from the degenerate 
thick handles, and maps 2-1 on the degenerate thick handles. Define 
dvN(X0O) to be the closure of those points on the boundary of N(X00) 
which do not lie on dhN(Xoo). Define dN(Xoo) = dhN(Xoo) U dyN^) 
where the boundaries of dhN(X0O) and dvN(X0O) are identified in the 
natural way. Except along circles corresponding to the branch locus of 
Aoo? dhN(X0O) is a smooth manifold with boundary that immerses into 
dN(X0O). Let s(dN(Xoc)) denote this branch locus. Note that dvN(Xoc) 
is a disjoint union of annuii, and dvN(Xoc) meets dhN(X0O) transversely 
along a finite set of circles. See Figure 3.6. 

Æ 

Def in i t ion 3.20. Let V be a component of M — N{XO0) and V 
denote its closure with respect to the path metric. We will call such a V 
a closed complementary region of N(X0O). dV inherits from N(X0O) the 
sets 9/jV, s(dV), and dvV. Call V active if it is not stable. Call x G dV 
active, if no neighborhood of x in V is stable. 

L e m m a 3 . 2 1 . i) The closed complementary region V of N(Xoc) is 
active if and only if each x G dV is active. 

ii) IfV is active, then dvV = 0. IfVis not active, then s(dV) = 0. 

Proof, i) The triangulation r induces a cell structure Ty on a closed 
complementary region V. Since <f) is an infinite composition of compres
sions, boundary compressions and normal isotopies, one readily checks 
that if i?o is a 3-cell of Ty that contains x G V and some neighborhood 
in K of x is stable, then RQ is stable. Similarly if i?i is a 3-cell of Ty 
that hits i?o, then R\ is stable. Conclusion i) now follows by induction. 

ii) If dvV ^ 0, then dvV meets the two inside grains of a spread 
clump of Xt for t suÆciently large, and thus some neighborhood in V of 
a vertical fibre of dvV is stable. By i) V is not active. By construction 
if s(dV) 7̂  0, then no neighborhood of a; G s(dV) in V is stable. By i) 
V is active. q.e.d. 

Def in i t ion 3.22. Define X = {x G X^x stable } and Y = 
AQO — X. The points Y of A^ are called new points. By construction 
y is a compact surface, and each "leaf of X is a complete surface 
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injectively immersed in M. Define J to be the union of leaves of X 
which nontrivially intersect Y. Note that JUY are the branched leaves 
of A,». 

L e m m a 3.23 . With respect to the path metric, each leaf of X is 
complete, injectively immerses in M and the induced map on ni is in
fective. 

Proof. The first two conclusions follow by construction, the last 
conclusion follows exactly as in the Lemma of p. 224 [3]. q.e.d. 

Defini t ion 3.24. (Creating the lamination £ from, AQO) Let /z 
be the branched lamination obtained by first splitting AQO along J and 
then adding a leaf called J middle- This is the usual operation of replac
ing the leaves J by dN(J) and then adding the "zero section" of the 
/ -bundle on N(J). Let £ be the (unbranched) lamination obtained 
from /i by deleting int(V n dN(J)), where V is the union of closed com
plementary regions of /z corresponding to the union of the active closed 
complementary regions of Aoo. See Figure 3.7. 

R e m a r k 3.25. Replacing J by the triple cover prevents disjoint 
complementary regions of A œ from connecting during the passage of A œ 

to £. This would happen if a thick wall of A œ was degenerate and both 
sides met active complementary regions. For example such a situation 
could occur if the wall structure within a simplex appears as in Figure 
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FIGURE 3.7 
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FIGURE 3.8 

3.8. This local picture can be part of an example where the branch 
locus of AQO is not embedded. 

Lemma (Brittenham) 3.26. If T" is a compressible torus in C, 
then T' bounds a solid torus W, T fl F / I, and T' is isolated exactly 
on the non-W side. Here T C AQO is the immersed torus corresponding 
to T' and we denote by W the corresponding immersed solid torus. If V 

o 

is a closed complementary region of AQO and V n W = 0; then V n W C 
Y. There are only finitely many such tori T', and they bound pairwise 
disjoint solid tori which are disjoint from the various Jmiddle 's- Finally 
the lamination £ obtained from £ by deleting these solid tori is a normal 
essential lamination. 

Proof. Apply the argument of p. 229-233 [3], noting that what he 
calls the "1/ of N(L)V is what we call Jmiddle- Actually that argument 
only asserts that compressible tori bound either solid tori or cubes with 
knotted hole. If T' bounded a cube with knotted hole C, then by Lemma 

o 

3.23 and the proof of the Theorem of p.616-617 [13], it follows that C\C 
extends to a foliation by planes and hence by [21] 7ri(C) is abelian (see 
also [13]) and so C is a solid torus. There is a much more elementary 
yet verbose proof of this fact. 

Note also that the interior of each W is nontrivially laminated 
by planes. The nontriviality follows from the fact T n Y ^ 0 and 
Lemma 3.23. The 7ri-incompressibility of X together with the end-

o ' 

incompressibility of A implies that each leaf of £' | W is a plane. q.e.d. 

This completes our rendering of Brittenham's Theorem. 
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delete Reeb laminations 

interiors, plus boundary 

sectors in Y 

split 

F I G U R E 3.9 

delete Reeb 

laminations 

Definit ion 3.27. By Lemma 3.26, the collection of solid tori 
W[, • • • , Wm in M bounded by leaves of £ ' is finite and pairwise dis
joint. These tori correspond to immersed solid tori W\, • • • , Wm whose 
boundaries lie in AQO and whose interiors are pairwise disjoint. Define 
W = W\U- • -UWm. Let t ingp : M —>• M denote the map which collapses 
N(J) to J and hence projects £ ' onto AQO, define Coc = p(C — UW/). In 
words £oo is the branched lamination obtained from AQO by splitting off 
and deleting the Reeb solid tori. These operations are summarized in 
the commutative diagram of Figure 3.9. A Reeb lamination on a solid 

Æ 

torus W', is a lamination such that dW is a leaf and W is nontrivially 
laminated by planes. Lemma 3.26 implies that the solid tori bounded 
by compressible torus leaves of £ ' have Reeb laminations. Let K, denote 
the leaves of C which intersect N(J) U Y, and let /Co C /C be the leaves 
which intersect Y. 

L e m m a 3.28. /Co C C is non-isolated on exactly one side. 

Proof. The Lemma of p.229 [3] exactly proves the analogous result 
for £. Since £ is obtained from £ ' by deleting laminated solid tori 
which are isolated to the outside (p. 229-230 [3]), Lemma 3.28 follows. 

q.e.d. 

Definit ion 3.29. By thick handle structures on C^ and £ we 
mean the thick handle structures induced by Aoo. Also let N^OQ) and 
N(C) denote the induced fibrelike neighborhoods of C^ and £ . Note 
that N^oo) = N(X0O) — (W — £oo)- Call a closed complementary region 
of iV^oo) active if it contains an active closed complementary region of 

W(Aoo). 
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L e m m a 3.30. i) The closed complementary region V o/iV(i200) is 
active if and only if for each x G V either x G W or some neighborhood 
of x in V is not stable. 

ii) If V is active, then dv(V) = 0. Furthermore V is a union of 
Wi 's and active closed complementary regions of AQO and contains at 
least one of the latter. 

iii) If V is inactive, then V n int(W) = 0. 

Proof. If W = 0, then this is Lemma 3.21. Otherwise combine 
Definition 3.24 with the conclusions of Lemma 3.21 and Lemma 3.26. 

q.e.d. 

R e m a r k 3 .31 . i) The reader should check that the no-isolated 
leaves requirement of Condition (2.1), was used purely to simplify the 
notation in §2-3. For example, it allowed us to construct natural fibred 
neighborhoods and thus equate the closed complementary regions of 
N(Bt) with the union of G(\t) and a compact part of the I(Xt)- It 
allowed us to avoid the annoying situation of clumps of At being reduced 
to points for t < oo, which in turn implied that the various closed 
complementary regions of Xf,t < oo are injectively immersed in M. 

ii) The nowhere densitiy of A was used only to construct a branched 
surface carrying A. Many locally dense laminations are carried by 
branched surfaces. Our argument could have been readily carried out 
for such laminations. 

4. Evacuat ing t h e sutured manifold 

The reader is advised to go directly to Theorem 4.4, referring back 
only as needed. 

Defini t ion 4 .1 . A sutured manifold [10] (N, 7) is a compact 
oriented 3-manifold N together with a collection of pairwise disjoint tori 
T(-y) C dN and annuii ^ ( 7 ) C dN, where the core of each component 

0 def 
of ^ ( 7 ) is oriented. Also dN — A(^) = R(j) is the disjoint union of 
oriented surfaces R-i'j) and # + ( 7 ) where the orientations on <9i?_(7) 
and dR+('j) are induced from the orientations on the cores of ^ ( 7 ) . 
Think of N as a manifold with corners dA(-y), possessing a vector field 
defined near dN, pointing in along R_(^y), out along R+d) and tangent 
to .4(7) U T(7) . A product sutured manifold is one of the form R x 7", 
where ^ ( 7 ) = OR x I. A product disc (resp. product annulus) is a 
properly embedded I x I C N (resp. S1 x I C N) such that di x I are 
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U^V, H 

F I G U R E 4.1 

essential arcs in A(j) and I x di C # ( 7 ) (resp. S1 x 0 C Ì ? _ ( T ) and 
S 1 x 1 C Ì ? + ( T ) . ) 

A generalized cylindrical component is an essential lamination ip on 
a manifold i*1 which is either the torus xl or the nonorientable / -bundle 
over the Klein Bottle, such that dF is a union of leaves of ip, ip has a 

o 

transverse orientation which points in along dF and ip\F ^ 0. 

Definit ion 4 .2 . We say that the essential lamination ß is obtained 
from the essential lamination A by evacuating the taut sutured manifold 
(N, 7) if A (resp. ß) is fully carried by a branched surface B (resp. H) 
such that 

i) H is obtained by splitting a proper subbranched surface of B along 
(possibly zero) discs of contact. 

ii) N is the union of the closed complementary regions of M — H 
which contain deleted sectors of B. The branching of H induces the 
sutured structure on N and (N, 7) is taut . Finally N is 7ri-injectively 
embedded in M. 

iii) Q(X) lies in the union of components of M — N(H) which are 
disjoint from N. Q{ß) is the disjoint union of Q(X) and the gut of the 
closed complementary regions of fi which contain N. 

R e m a r k 4.3 . The motivating example is shown in Figure 1.2b 
(Example 1.4). Here H is the branched surface of Figure 4.1 which 
carries the lamination /z and B is obtained by attaching a single saddle 
shaped disc sector to H. The A of Definition 4.2 is A13 of Figure 1.2. 

T h e o r e m 4.4. Let A be an essential lamination in the closed ori
entable 3-manifold M with triangulation r . Then at least one of the 
following occurs. 
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1) After possibly splitting X open along a finite number of leaves, X 
is isotopie to a normal lamination. 

2) There exists a normal essential lamination C in M such that 
QAf(C) > QAf(X) and C is obtained from A by first splitting along finitely 
many leaves, then evacuating a taut sutured manifold (N, 7) and finally 
isotopy. 

3) A has a generalized cylindrical component. In particular A has a 
torus leaf and M is toroidal. 

Idea of Proof. Given A, let <f) : M x [— 1, 00) —> M be the infinite 
isotopy which at tempts to normalize it. If this isotopy becomes constant 
after finite time, then 1) holds without any splitting of leaves. Other
wise as in §3 we obtain the limit branched lamination AQO, the branched 
lamination C^ obtained by deleting the Reeb laminations of AQO, and C 
the normal essential lamination obtained by splitting C^. We saw that 
the limit clumps, enduring planks and enduring walls gave rise to a thick 
handle structure on N(X0O), where N(Xoc) (in the non-degenerate cases) 
is a fibred neighborhood of Aoo. This structure in turn gave rise to a 
thick handle structures on N^OQ) and N(C). In Step 2 we see that the 
isotopy <f) is supported (for t > £3) in a very small closed neighborhood 
N of the active closed complementary regions of N^OQ) and that N 
possesses a natural sutured manifold structure (TV, 7) . The crucial ob
servation is that after time £3 the isotopy pushes the leaves of A< only in 
one direction, thus Xt\N obtains a natural transverse orientation, even 
though A itself may not be transversly orientable. It also suggests the 
fact that (TV, 7) has a taut foliation. The leaves of Xt\N get spun around 
and around and get washed out in the limit, creating a new complemen
tary region whose gut is equal to the gut of (TV, 7) . N(Coo) is a useful 
technical device, serving to separate the active complementary regions 
of £oo from the gut of A<3. 

For the remainder of §4 we will assume without loss of generality 
that £oo has no degenerate thick handles. This allows us to avoid the 
annoying but easily understood situation of a degenerate thick handle 
of £oo meeting an active closed complementary region of C^ on both 
sides. We now begin the proof of Theorem 4.4. 

Step 1. Construction of the foliations Jr(N(X0O)) and JF(A?"(£00)). 

The /-fibred structure on the nondegenerate thick handles of N(X00) 
induces an I-fibering on the closed complementary regions of A œ re
stricted to N(X0O). By filling in these /-bundles in the natural way (e.g. 
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by product foliations on the trivial /-bundles) we obtain a branched foli
ation Jr(N(X0O)) of N(Xoc) which is tangent to dflN(X00) and transverse 
to dvN(X0O). Define ^F(N(C00)) to be the restriction of Jr(N(Xoc)) to 
N(Coo). Of course these are foliations in the usual sense away from dY. 

Step 2. Construction of the sutured manifold (TV, 7). 

Let V be the union of the active closed complementary regions of 
COQ. F is a compact set by Lemma 3.30 ii). Let V* denote the union of 
closed complementary regions of C which contain V. Each component 
of s(dV) corresponds to a properly embedded annulus CKJ in V*, and V 
corresponds to a compact submanifold V\ C V* which is bounded by 
these annuii. If some component of don bounds a disc in a leaf of C, 
then by essentiality of £ so does the other component (on the same side 
of aì) and the two discs together bound a D2 x I with «j = dD2 x I 

Æ 

and D2 x I n C = 0. Let N\ be the union of V\ together with all such 
D2 x I components. Again without loss of generality we will assume 
that TVi is embedded in M for it is routine to extend to the degenerate 
case of dN\ being immersed and nonembedded in M. Define a sutured 
structure (iV"i,7i) on N\ as follows. Let A\ denote the union of those 
annuii a, lying in dNx. Let i?-(7i) = (dNi) n J middle and i?+(7i) = 
dN\ — int(R-(/yi) U At). Here is another description of the sutured 
structure. To start with assume that W = 0 and no a-i bounds a D2 x I. 
Let A denote the cell structure on dV induced by the sides of the thick 
handles. Label a 2-cell + if it corresponds to the +-side of a shaky wall 
or shaky plank, otherwise label the 2-cell —. Thus s(dV) separates dV 
into two (not necessarily connected) surfaces of — or + type. R-(-yi) 
(resp. i?_|_(7i)) consists of those components of dNi — 'mt(Ai) which 
contain a surface of — (resp. +) type. If W 7̂  0, then all of dWndNi is 
labelled —. If some CKJ'S bound D2 x I's, then in the natural way extend 
the sutured structure on Vi to Ni. 

We now isotope TVi slightly to a manifold called N which among 
Æ 

other things has the property that for t sufficiently large M — N is t-
stable. See Figure 4.2. By construction R_(-yi) is stable, however no 
point of i?_(7i) has a stable neighborhood. Our desired N (constructed 
in the next paragraph) is obtained by first thinking of iV"i as a closed 
complementary region of C^ and then pushing both A(71) and R+(-yi) 
out a little bit. In what follows it is helpful to remember the following 
basic fact of foliation theory. If T is a compact oriented surface and T 
is a foliation defined in an open neighborhood l o f T x O c T x / , such 
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FIGURE 4.2 

that T x 0 is a leaf and T is transverse to dT x [0, e), then there exists 
a properly embedded surface T ' c l transverse to the /-fibres of T x I 
such that either T" is a leaf or T" is transverse to T except at isolated 

Æ ' 

saddle singularités in T . Furthermore each component of dT' is either 
transverse to T or lies in a leaf of T. 

A small isotopy takes iV"i to a manifold N satisfying the following 
properties. R-(-yi) is isotoped to a surface called R-i'j) = p(R-(,yi)), 
where p is defined in 3.27. By Lemma 3.30, N(Coo) contains a neigh
borhood of p(R+('ji)), thus we can isotope A\ to a union of thin annuii 
A = J4(T) C N^COO) which have the property that T{N{Coo)) is trans
verse to the /-fibres of A and if ß is a component of dA — R- (7), then ß 
is either transverse to or lies in a leaf of T{N{Coo)). Finally R+{^\) is 
isotoped to a surface R+i'j) C N^OQ) such that either R+d) is a leaf 
of JF(A?"(£00)) or i?+(7) is transverse to ^F(N(Coo)) except at isolated 

Æ 

saddle fangendes in R+d) with points of ^F(N(Coo)) — C^. Also there 
is a normal vector field to R+ij) which is transverse to JF(A?"(£00)). 

Æ 

By construction there exists an integer £3 such that M — N is fa-
stable. q.e.d. 

For the remainder of §4 we will assume that N is both connected 
and embedded in M. We will also assume that W = 0 and no a, bounds 
a D2 x / . After reading the whole proof in this special case, it should 
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be routine for the reader to promote our argument to the general case. 

S t e p 3. If (N, 7) is a product sutured manifold (i.e., N = R x 7", 
with ,4(7) = dR x I,R-{>y) = R x 0 and # + ( T ) = -R x 1), then after 
splitting A open along a finite number of leaves, a (finite) isotopy takes 
A to a normal lamination. 

Proof. First isotope A to At, for some £ > £3. By construction Xt 

is transverse to the /-fibres of N near dN. We now show that we can 
isotope At to / j , so that ß\N is transverse to the /-fibres of TV. If dR 7̂  0, 
then there is a finite set (possibly empty) of pairwise disjoint product 
discs which decompose (TV, 7) to a D2 x I. If C is a product disc, use 
the 7Ti-injectivity of leaves of At, the second sentence and Lemma 2.3 to 
isotope At to ßi so that ß\\C is transverse to the /-fibres. Again use 
Packet Lemma 2.3 to isotope ß\ within the D2 x / to finally make it 
transverse to the /-fibres of N. If OR = 0, then an inspection of At fl T2 

shows that dN = R- (7) and hence (N, 7) is not a product sutured 
manifold. 

Let ß2 be the lamination obtained by splitting /z open along the 
leaf which contains R-i'j) = R x 0. By pushing up along the /-fibres 
isotope ß2 to /J3 via an isotopy supported in the union of N and a small 
neighborhood of dR x / so that ß%\N consists of R x 0 together with 
leaves that lie very close to Rx 1 and have tangent planes almost parallel 
to those of R x 1. /Z3 is the desired normal lamination. q.e.d. 

From now on we will assume that (TV, 7) is not a product sutured 
manifold. 

R e m a r k 4.5. If the annulus K of Figure 1.6 was triangulated as in 
Figure 1.2 and appeared as part of a 2-subcomplex of the 2-skeleton of 
a triangulation, then the sutured manifold (N, 7) arising from the limit 
lamination AQO would be a product. (Assuming no other nonnormality 
phenomena.) Also £ would be obtained from £ ' by deleting a Reeb 
lamination. 

S t e p 4. If N is an active region, then for £ > £3 the leaves of Xt\N 
are 7ri-injective in M. The surfaces R+(^y), R-ij) are 7ri-injective in M. 

Proof. By the essentiality of C and construction, the surfaces 
R+ (7), R- (7) are 7ri-injective in M. (Technical point: We included in 
N the D2 x I components bounded by a, 's to obtain this 7ri-injectivity 
condition.) Since the isotopy is supported in N for £ > £3, it suffices to 
establish Step 4 for £ = £3. Since each leaf of At3 is 7ri-injective, it suffices 
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to show that if a is a embedded circle lying in a leaf of ^F(N(C00))\dN, 
then either a is homotopically nontrivial in M or a bounds a disc in 
a leaf of ^F(N(Coo))\N. If a is homotopically trivial in dN, then be
ing simple it bounds a disc D in dN. This would imply that either 
Jr(N(C00))\N is the product foliation D2 x I or that there exists a cen
ter tangency of ^F(N(Coo)) with dN. Either case is a contradiction. If a 
is homotopically non trivial in dN, then it is homotopic to a nontrivial 
element of 7ri(i?+(7)) and hence is homotopically non trivial in M. 

q.e.d. 

Step 5. If N is an active region, then for t > £3, Xt\N is transversely 
orientable. The isotopy can be chosen so that after time £3, points only 
move in the direction of the transverse orientation. 

Proof. If L is a non normal local disc leaf of A<3 in the 3-simplex a, 
and L could be transformed to the (possibly disconnected) leaves K\,Ki 
via distinct boundary-compression (or even ô-compression) operations, 
then K\ and K^ must both lie on the same side of L. This follows by 
enumerating the various possibilities for L using Lemmas 2.12 and 2.14 
which assert that L is disjoint from an edge e of a and can intersect any 
other edge at most 2 times. (One readily enumerates such L's by first 
labeling all the vertices of a with x or y. Second labeling an edge 1 if it 
connects vertices labeled x and y otherwise labeling it 0 or 2, but label 
at least one edge 0. Third draw a circle (= dL) in do which intersects 
the various edges the indicated number of times.) This assertion would 
be false if either of these conditions was false, e.g. consider either the 
almost normal octagon or any disc which hits an edge 3 times. Thus in a 
well defined manner we can transversely orient all nonnormal local leaves 
of At3 so that the orienting vector points in the direction of normalizing 
operations. 

Transversely orient each leaf of a non-enduring shaky wall w so that 
the orienting vector points into the +-side of w and out the other side 
which is necessarily an unlabeled side since w is non-enduring. Any 
other leaf of At3|iV can be normally isotoped into # ( 7 ) . Transversely 
orient such a leaf consistantly with that of R(^y), i.e., at points near of 
_R_(7) (resp. #+ (7 ) ) the orienting vectors should point into (resp. out 
of) N. 

Given At3, the isotopy starts off by normalizing some nonnormal lo
cal leaves, i.e., boundary compressing say leaves in a 3-simplex a. Wi th 
the above conventions, one readily checks that the boundary compres
sion can be executed so that points move infinitesimally only in the 
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direction of the transverse orientation. Also (using (2.4)) if the isotopy 
gives rise to nonsimply connected local leaves, the compression needed 
to normalize these leaves can be forced to respect the transverse orien
tation. Finally if a leaf L is transformed to a leaf K under the isotopy 
and i f is a disc, then the transverse orientation induced on K from L 
is consistant with the transverse orientation mandated in the previous 
two paragraphs, q.e.d. 

R e m a r k 4.6. The fact "for £ > £3 the isotopy pushes leaves in one 
direction only, (i.e., there is never backtracking)" is the most important 
technical observation of this paper. 

S t e p 6. g(Xt3)nN = 0. 

Proof. By construction for £ > £3, dN C N(Bt) and N(Bt)ng(Xt) = 
0. For £ > £3 define the sutured manifold (At, at) where At denotes the 
closure of N — N(Bt) and the transverse orientation on Xt\N induces a 
sutured structure (At, at) on At, i.e., R-(at) (resp. R+(at)) consists of 
those x G dAt where the transverse orienting vector points into (resp. 
out of) At. To complete the proof it suffices to show that (At3, at3) is a 
product sutured manifold, since R(at3) C Xt3 and A(at3) is a union of 
vertical fibres of I(Xt3) implies that At3 C I(Xt3) and hence Ç(Xt3)C\N = 
0. 

No component R of R-(at3) is closed else R would have a stable 
neighborhood, thereby contradicting Lemma 3.30. 

If K is a 2-simplex, then each arc of KCiR+(at3) is a properly embed
ded arc in R+(at3). Furthermore the collection of such arcs a\, • • • ,an 

coming from all the 2-simplices cuts R+(at3) into a union of discs. We 
need to show that for all i, there exists maps f\ : I x I —> At3 such that 
fi\I x 0 is an embedding onto a,, fi\dl x I are embeddings onto /-fibres 
of I(Xt3) and fi\I x 1 C R-(at3). The desired homotopy of a\ is sug
gested in Figure 4.3. By sliding the ends of a\ up and off the interstitial 
fibre through da\ we obtain a homotopy of a\ to an arc 61 C At3 with 
endpoints in R_(at3). We now show how to homotope òi into R-(at3) 
rei db\. Since 61 lies in an active region and our infinite isotopy is a 
composition of normal isotopies, compressions and boundary compres
sions, there must be a time s\ > £3 when 61 is part of a compression 
or boundary compression. At that moment one sees how to homotope 
61 into i ? _ ( a S l ) . By playing this homotopy backwards we see how to 
homotope òi into R-(at3). 

By the loop theorem and the usual innermost disc arguments there 
exists pairwise disjoint product discs D\, • • • Dm C (At3, at3) which in-
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FIGURE 4.3 



ESSENTIAL LAMINATIONS AND KNESER NORMAL FORM 557 

tersect R+(at3) in ci, • • • , cm where R+(a>t3) — UCJ is a union of discs. 
Since Af3 is irreducible, R-(a>t3) is 7ri-injective in At3 and no compo
nent oîR(a,t3) is closed, these discs cut (At3, a>t3) into a union of product 
sutured manifolds D2 x 7" and hence (At3,a>t3) itself is a product, [11]. 

q.e.d. 

S t e p 7. Either A|7V is a generalized cylindrical component or 
(TV, 7) is not an /-bundle. 

Proof. A connected non-product sutured manifold can only be an 
/ -bundle if A(^) = 0. By construction R+d) 7̂  0 implies that A(^) 7̂  
0 and hence if (TV, 7) is a non-product / -bundle, then _R_ (7) = dN. 
By Steps 5-6, ^F(N(Coo)) is defined on all of N and is transversely 
orientable, such that the orientation points in along R_(^y). Therefore 
0 = x(N) = x(R-(l)) a n d hence R-ij) is a union of tori. Finally 

o 

Xt3\N 7̂  0, since N contains an active region. Therefore if N is a non-
trivial / -bundle, then A|iV is a generalized cylindrical component. 

q.e.d. 

From now on we also assume that A contains no generalized cylin
drical component. 

S t e p 8. QAf(C) > QN(X) with equality holding if and only if 
(TV, 7) is an /-bundle. 

Proof. The closed complementary region X of C which contains N\ 
lies in the union of N\ and N(J). Therefore, the non-/-bundle closed 
complementary regions of £ are of two mutually disjoint types, the 
X which contains TVi and those which contain closed complementary 
regions of N^LQ^) — N. Let C denote the collection of closed comple
mentary regions of the second type. The fiberlike structure on N^OQ) 
together with I(Xt3) induce an /-bundle structure I on all but a compact 
set C of C. Combining this with Step 6 we conclude that C = Q(Xt3). 
To conclude the proof that C = Q{C) we must show that no component 
B of X is an /-bundle over the annulus, Mobius band or disc. Suppose 
that such a B exists. Since B n C is t-stable, t > £3, the proof of Lemma 
3.21 shows that B is t-stable for t suÆciently large, say t > s. Since 
every product dies of C is 9-parallel and dv(B) C X(XS), it follows that 
B is a component of X(XS), which is a contradiction. 

Thus distinct components of Q(X) correspond to distinct components 
of G(C) and these components are distinct from the closed complemen
tary region X. Since by construction each component of A (71) is essen
tial in X and cl(X — Ni) is an / -bundle extending an / -bundle structure 
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on A(-yi) it follows that X is an /-bundle if and only if (iVi,7i) is an 
/-bundle if and only if (TV, 7) is an /-bundle. q.e.d. 

Remark 4.7. The proof of Step 8 shows that Q{C) is diffeomorphic 
to (as a manifold with corners) to the disjoint union of Q{X) and the 
gut of the closed complementary region of C which contains N. 

Step 9. (iV,7) is taut. 

Proof of Step 9. It suffices to show that N is irreducible and 
R(^y) is 7Ti-injective and Thurston norm minimizing as an element of 
H2(N,A(-y)). Irreducibility follows from the 7ri-injectivity of leaves of 
Xt3 \N in M and the essentiality of A<3. The 7ri-injectivity of #(7) follows 
from Step 4. In particular this implies that if some component of R(-y) is 
a disc D, then (TV, 7) is the product sutured manifold (D2 x / , dD2 x / ) . 
Now assume that no component of R(^y) is a disc. To complete the 
proof we need to show that if T is an embedded incompressible surface 
in N, such that dT C A(-y) and [T] = [#(7)] G H2(N, A(j)), then 

x(R(i)) > x(T). 
In the usual way construct a partial foliation T' on M — Q(Xt3) by 

filling in T(Atg). It follows from Steps 5-6 that T = T'\N, is defined on 
all of N, is transversely oriented and is tangent to R-(-y), transverse to 
.4(7) and almost tangent to R+('j). Additionally, the normal vectors to 
T point in along R_(-y), out along R+ij) and are tangent along ^(7) . 

Isotope T within N so that each component of dT is either a leaf of 
^1^4(7) or is transverse to ^F\A(^y). Since the leaves of T are 7ri-injective 
we can apply the Roussarie - Thurston [27], [30] isotopy to transform 
each component of T to either a leaf of T or a surface transverse to T 
except at isolated saddle and circle tangencies. It is crucial to observe 
that the isotopy never pushes T outside of N. Indeed, as discussed 
in [12], a partially isotoped T called Ts can be viewed as a compact 
submanifold of T together with a finite number of subsurfaces, called 
plateaus, which lie in leaves of T. If the isotopy pushed T out of N, 
there would be a moment where Ts C N, and a plateau of Ts would 
be tangent to an interior point of R(^y) which contradicts the fact that 
R+d) is transverse to T except at isolated saddle tangencies. Finally 
by considering the Euler class of F, Thurston's argument (Corollary 2, 
p. 119 [32]), shows that x(R(l)) ^ xCH a n d hence R(^y) is Thurston 
norm minimizing. q.e.d. 

Step 10. The essential lamination £ is obtained (up to isotopy) 
from the essential lamination A by evacuating the taut sutured manifold 
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Proof. We check that i)-iii) of Definition 4.2 hold. 
i) By construction £ is carried by the branched surface H obtained 

by splitting open the branched surface corresponding to the clumps, 
enduring planks and enduring walls of A<3. 

ii) All but 7Ti-injectivity of TV follows by construction. Again by con
struction, (TV, 7) is isotopie to (7V"i,7i) which is a closed complementary 
region of a fibred neighborhood of H. N\ has the feature that if X is the 
closed complementary region of C which contains Ni, then cl(X — N\) 
has no D2 x I components. It follows from [18] that complementary 
regions of essential laminations in M are 7ri-injective in M. Thus N\ 
and hence N is 7ri-injective in M. 

iii) This follows by Step 8. 
Suppose that A has no cylindrical components. If (TV, 7) has multi

ple components then the above argument shows that each component 
corresponds to either splitting of leaves or sutured manifold evacua
tion, depending on whether or not the component is a product sutured 
manifold. Thus up to isotopy, A can be transformed into a normal lami
nation C by first splitting along finitely many leaves and then perfoming 
N < 00 sutured manifold evacuations. Thus QAf(C) > QN(X) + N and 
the proof of Theorem 4.4 is complete, q.e.d. 

Corollary 4.8. Let X be a nowhere dense essential lamination in 
the closed orientable 3-manifold M with triangulation T. Then A can be 
transformed into a normal essential lamination ß by doing or skipping 
in turn the following operations 1) - 4)-

1) Deleting the interior of finitely many generalized cylindrical com
ponents. 

2) Splitting open along a finite number of leaves. 
3) Evacuating a taut sutured manifold (N, 7) . 
4) Isotopy. 

Proof. Being 7ri-injective and embedded, the torus leaves of A can 
be partitioned into finitely many parallel families [19]. Thus one can 
obtain an essential sublamination JJ,Q of A without generalized cylin-
drial components, by deleting the leaves in the interior of finitely many 
generalized cylindrical components of A. Corollary 4.8 now follows by 
applying the proof of Theorem 4.4 to /io- q.e.d. 

R e m a r k 4 .9 . The proof of Theorem 4.4 shows that one can 
permute the above operations 1) - 3). 



560 DAVID GABAI 

L e m m a 4.10. If fj, is obtained from X by deleting a generalized 
cylindrical component, then QN{n) = QAf(X). q.e.d. 

P r o b l e m 4 .11 . Classify the evacuable sutured manifolds (TV, 7) 
which arise from the normalization procedure of Theorem 4.4. Are they 
all depth-1 sutured manifolds? 

5. T h e gut number 

Def inint ion 5 .1 . Define 

QM{M) = max{QM{X)\X is essential in M} 

to be the gut number of the closed orientable 3-manifold M. The essential 
lamination A in M is said to have maximal gut number if QAf(X) = 
QN{M). 

T h e o r e m 5.2. QM(M) < 00. 

Proof. Fix a triangulation r on M. By Theorem 4.8 and Lemma 
4.9, if A is an essential lamination in M, then there exists a normal 
essential lamination £ on M such that QAf(C) > QAf(X). Now Kneser's 
argument [23], [20] shows that QAf(C) < 6(|3-simplices in T | ) . q.e.d. 

Corollary 5.3. / / M has an essential lamination, then it has an 
essential lamination of maximal gut number. q.e.d. 

Corollary 5.4. If X is a maximal gut number essential lamination in 
an atoroidal 3-manifold with triangulation T, then after possibly splitting 
along finitely many leaves, X is isotopie to a normal lamination. 

q.e.d. 

Corollary 5.5. If M is laminar, then it has an essential lamination 
X such that for any triangulation r on M, X is isotopie to a lamination 
normal with respect to r . 

Proof. Let / j b e a maximal gut number essential lamination in M 
without generalized cylindrical components. Let T Ì , T 2 , - - - be a series 
of triangulations which contains a representative of each isotopy class 
of triangulation on M. By Theorem 4.4, after possibly splitting along 
finitely many leaves, ß can be isotoped to a Tj-normal lamination. Let 
{Fj} be the countable union of these finite sets of leaves. Let A be the 
lamination obtained by splitting ß along {Fj}. q.e.d. 
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In [17] we use Theorem 5.2 to obtain the following result which 
generalizes the similar result for Haken manifolds due to Johannson 
[22]. 

T h e o r e m 5.6 [17]. If the atoroidal 3-manifold M contains a gen
uine essential lamination, then the mapping class group (the group of 
homeomorphisms modulo isotopy) of M is finite. q.e.d. 

R e m a r k 5.7. See Remark 3.6 i) [15] for another possible applica
tion of Theorem 5.2. This paper was motivated by that application. 

6. Local regularity of essential laminat ions 
and taut fol iations 

Def ini t ion 6 .1 . Let r be a triangulation on the 3-manifold M. 
If S is a normal immersion of a compact surface S whose boundary is 
a union of normally immersed curves, then define length(9/ ) to be the 
number of 1-cells in the induced triangulation on dS, and area( / ) to be 
the number of 2-cells in the induced cellulation on S. 

The following definition is meant to locally describe the types of 
branched surfaces B^ that can carry our limit laminations Aoo. 

Definit ion 6.2. The branched surface B in the 3-manifold M 
with triangulation r is said to be a standard normal branched surface if 
it satisfies the following conditions. 

i) B is transverse to the 0, 1 and 2-skeleta and dB C dM. 
ii) If a is a 3-simplex, then each component of a n B is a 3-simplex 

local branched surface. (See 3.12.) 

The branched surfaces Bt2 are the motivating examples of standard 
branched surfaces which are defined as follows. See Remark 6.4. 

Definit ion 6.3. The branched surface B' in the 3-manifold M with 
triangulation r is said to be a standard branched surface if it satisfies 
the following conditions. 

i) B' is transverse to the 0, 1 and 2-skeleta and dB' C dM. 
ii) B' is the union of a standard normal branched surface B and 

finitely many discs D\,- • • , Dm such that each Di is either normal or a 
properly embedded disc in a 3-simplex a, such that dDj is transverse 
to aj, dDj crosses each edge of o;b at most twice, dDj crosses some edge 
of a, exactly twice and dDj misses some edge of o;b. If Dj and Dj are 
embedded in the same 3-simplex a and Di is not normal, then dDj 
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is not strongly normally isotopie to dDj. (See 0.3.) Furthermore D, 
lies to one side of Dj in a, although D-i and Dj may coincide along a 
compact set. The various discs are identfied with each other and B in 
the standard manner. (See Remark 6.4 ii).) 

iii) There exists a neighborhood U of r 1 such that U n B = U fi /? ' . 

R e m a r k 6.4. i) As in 3.18, -Bt|cr is obtained by identifying finitely 
many discs, one disc for each equivalence class of walls of Xt\u. If t > ti 
and B\ denotes the branched surface obtained by just using the discs 
arising from the enduring walls in the various 3-simplices, then B^ = 
-Boo is a standard normal branched surface. The D\,--- ,Dn are the 
various discs corresponding to the equivalence classes of non enduring 
normal walls (at most 2 per 3-simplex) and the equivalence classes of 
the nonnormal walls. 

ii) The local models for the identifications of 6.3 ii) are given by the 
possibilities in the passage of B^\a to Bt.2. 

T h e o r e m 6.5. Let M be a closed orientable atoroidal 3-manifold. 
The collection of nowhere dense essential laminations on M is carried, 
up to isotopy, by finitely many essential branched surfaces. 

Proof of Theorem 6.5. By replacing isolated leaves by Cantor sets 
of leaves it suffices to consider laminations without isolated leaves. Fix 
a triangulation r on M. To avoid notation such as \2(\), we abuse 
notation by letting ti denote the time that an isotoped lamination sat
isfies the properties described in 3.16 i), irrespective of the lamination 
in question. We will assume that £ = £ for again the extension to the 
general case is routine. Thus B^ carries the essential lamination C. 

Step 1. There are only finitely many possibilities for B^. 

Proof of Step 1. The triangulation r induces a cellulation A on 
Æ 

the complementary space C(N(B)) = M — N(B) of a standard normal 
branched surface B. If a 3-cell d of A has the property that dr\d^N{B) 
equals two normally isotopie discs, then d has a natural / -bundle struc
ture. The union of all such cells induces an / -bundle structure on a 
subset J(B) of C(N(B)). Now let ß b e a branched surface which arises 
from an infinite normalizing isotopy of the essential lamination A. Such 
a branched surface will be called a B'^-branched surface. 

If X is a component of J(B) let Z C C(N(B)) be the maximal 
connected space which contains X, has an / -bundle structure extending 

that of X, dZ C dX U dhN{B) and dvZ C dvX. Here dvX
 d= dX -
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mt(dh(N(B)) fi X), and dvZ is defined similarly. By thickening near 
finitely many /-fibres in X n T 1 we will assume that Z is an / -bundle 
over a surface ZQ (rather than a possibly pinched surface). We now 
show that ZQ is either a disc, annulus or Mobius band. Since B carries 
an essential lamination and M is atoroidal, Z is not an / -bundle over a 
closed surface of non-negative Euler characteristic. If x(-^o) < 0, then 
using the essentiality of A and (2.3) , one can isotope A<2 to a lamination 

o 

/i which is carried by a standard branched surface C disjoint from Z. 
Furthermore, C is obtained from B by the standard splitting, isotopy, 
and squeezing along bigon operations. Also both C and B have the same 
underlying standard normal branched surface. It follows that Z can be 
incorporated into the interstitial bundle X(/i) and that the / -bundle 
structure on X can be made compatible with T(/i). By squeezing C 
along X one obtains a branched surface D carrying ß which satisfies 
(2.2) and (2.3) and has fewer clumps than C. This contradicts (2.4). 

To complete the proof of Step 1 it suffices to show that C(N(B)) 
has bounded combinatorial complexity. If t is the number of tetrahedra 
of T, then there are less than 6* non-/-bundle 3-cells of C(N(B)) and 
each has small combinatorial complexity. Thus we need to show that 
area(Jo) is uniformly bounded where Jo is the 0-section of J(B). If not 
there is a sequence of essential laminations \\2, Af , • • •, and branched 
surfaces J1^, Ff2, • • •, F^, F^, • • • which are the corresponding branched 
surfaces arising at times ti and oo such that area(Jg) —> oo. Here Jg is 
the 0-section of J(F^c). By the previous paragraph, each component of 
Jg is either a disc with holes or Mobius band with holes. In either case 
the number of boundary components is bounded by 4 • 6*, furthermore 
length(ôJg) < 4 -6* . By the Plante [26] argument, after passing to a 
subsequence the Jg's converge to an embedded measured Euler char
acteristic 0 normal lamination <j>. An analysis of <f) and Jg for i large 
shows that one can obtain a branched surface E% carrying an isotoped 
\\2 satisfying (2.2) and (2.3) but E1 has fewer clumps than F\2. Again 
we obtain a contradiction to (2.4). Here E% is more or less obtained from 
F\ by either unrolling a Reeblike subdisc of Jg or unrolling a (monogon 
with long t a i^xS 1 1 C J\. q.e.d. 

Let N denote the maximal number of 3-cells that can arise in the 
cellulation A of a C(N(B)), where B is a -Boo-branched surface. 

S t e p 2. There are only finitely many possibilities for Bt2. 

Proof of Step 2. Remark 6.4 explains how Bt2 is obtained from 
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-Boo by adding at most It + lOOOiV sectors, where the t sectors arise 
from the non-enduring walls of Xf2 and the other sectors arising from 
the nonnormal walls. Since each such sector is of uniformly bounded 
complexity, Step 2 follows. q.e.d. 

Step 3. If C is a Bt2 branched surface in M, then there exists 
essential branched surfaces C\, • • • , Cm, such that every \t2 carried by 
C is carried by some C,. 

Proof of Step 3. By hypothesis C carries no S2 and fully and 
compatibly carries an essential lamination /z. By construction and def
inition any \t2 essential lamination carried by C is compatibly carried 
by C. (Recall Definition 2.6.) The branched locus of C is a compact 
1-complex b. Let n(b(C)) = \b{C) - b(C)°\, where 6(C)0 is the set of 
nonmanifold points. The branched surface C might fail to be essential 
because it contains discs of contact, or monogons or it might carry a 
torus bounding a solid torus. If an essential lamination / / is compatibly 
carried by C and C\ is obtained by splitting C along a disc of contact, 
then \J is compatibly carried by C\ and n(b(Ci)) < n(b(C)). It follows 
by induction on n(b(C)) that there exists a branched surface D such 
that D has no discs of contact, and every essential lamination compat
ibly carried by C is compatibly carried by D. Each lamination carried 
by D is fully carried by one of finitely many subbranched surfaces. Pass
ing to a subbranched surface neither increases n(b(D)) and nor destroys 
compatibility. By repeatedly splitting along contact discs and passing 
to subbranched surfaces we conclude by induction on n(b(C)) that the 
Xt2 laminations are fully and compatibly carried by one of finitely many 
branched surfaces without discs of contact. The operations of splitting 
along a disc of contact or passing to a subbranched surface does not 
increase the number of complementary regions of the branched surface. 
By (2.3) a branched surface which compatibly and fully carries an essen
tial lamination has no monogons. Now suppose that D carries a torus 
bounding a solid torus V. Since D has neither monogons nor discs of 
contact, each component of C(N(D))nV is a D2 x 7". Thus by squeezing 
all but one of the D2 x / components of D\V and "rolling up" D\V we 

o o 

obtain a new branched surface D\ such that D\\(M — V) = D\(M — V) 
and D\\V is the standard Reeb branched surface. Also any lamina
tion compatibly and fully carried by D is compatibly and fully carried 
by D\. Now consider a lamination ß fully and compatibly carried by 
D\. The effect on D\ by suitably unrolling" \i inside V is to create 
a new branched surface D2 compatibly and fully carrying \i which has 
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rollling up 

F I G U R E 6.1 

the Reeb branched surface broken open and 

\C(N(D2))\ < \C(N(D1))\ < \C(N(D))\ < \C(N(C))\. 

See Figure 6.1. As shown in that figure, one may need to rechoose 
the complementary region of /z within the solid torus to exactly meet a 
complementary region of /z outside of the torus. Since D is of bounded 
combinatorial complexity, the number of such branched surfaces D2 

that can arise in this manner is finite. Thus Step 3 follows by induction 
on pairs of nonnegative integers (\C(N(C))\,n(b(C))) lexicographically 
ordered. q.e.d. 

Definit ion 6.6. The foliation T is said to be carried by the 
branched surface B, if there exists a lamination A obtained by splitting 
T along a countable number of leaves and A is carried by B. Define a 
foliation branched surface to be a branched surface such that each closed 
complementary region of a fibred neighborhood is a product sutured 
manifold. 
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Propos i t i on 6.7. If B is a foliation branched surface in the closed 
orientable 3-manifold M, then there exists an integrable plane field T>B C 
M whose integral surfaces are smooth and consist of B and the leaves 
of a branched product foliation T{X) on the closed complement X of B. 
I.e., if y G B, then Vßiy) = Ty(B). If X is the closed complement of B, 
then X = S x [0,1]/ ~ where S is a compact surface and (x,t) ~ (y,s) 
if and only if x = y and either t = s or x G dS. The foliation T(x) is 
induced from the product foliation on S x [0,1]. q.e.d. 

E x a m p l e 6.8. Here is an example in dimension 2, which provides 
the idea for the proof of Proposition 6.7. The train track T of Figure 6.2 
is a foliation branched surface on the torus. The closed complement of 
T is a bigon. Filling in the bigon with a branched product foliation gives 
rise to the branched foliation of Figure 6.2 whose tangent plane field is 
a nonLipshitz, tangentially smooth, integrable line field on the torus. 
(A standard result in differential geometry asserts that there exists a 
unique integral curve through any point of a Lipshitz line field.) 

A model for the nonuniquely integral points is given by the following 
vector field on M. Take a vector field consisting of unit tangent vectors 
to the following 3 families of curves; gv(x) = v,v G (—oo,0];gu(x) = 
f(x) + u, where u G [0, oo); and fs(x) = sf(x), where s G [0,1] and 
where 

e"1/*2 x > 0, 

0 x < 0. 

L e m m a 6.9. A foliation branched surface B has a sequence of 
nested fibred neighborhoods Nt(B) such that for each t,dflNt(B) is an 
integral surface ofVß and each vertical fibre of Nt(B) is transverse to 
VB. Finally ntNt(B) = B. (See Figure 6.3.) q.e.d. 

Defini t ion 6.10. Let J-(T>B) denote the branched foliation con
sisting of integral surfaces of "Dg. The foliation T is strongly carried 
by the foliation branched surface B if for some fibred neighborhood 

N(B),?\(M - N{B)) = T{VB)\{M - N(B)) and the vertical fibres of 
N(B) are transverse to T. 

Propos i t i on 6 .11 . If the foliation T in the compact 3-manifold 
M is strongly carried by a foliation branched surface B with associated 
plane field VB, then for every e > 0 there exists a smooth ambiant 
isotopy of M taking T to a foliation also called T such that if x G M 

m 
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Train Track on Torus A non Lipshitz tangentially smooth line field 

FIGURE 6.2 
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F I G U R E 6.3 

the angle between the unoriented tangent plane to T at x is e-close to 
the plane T>B(X). q.e.d. 

The following result roughly says that any two linear foliations on 
the torus can be isotoped so that their tangent line fields are e-close. 

Corollary 6.12. If T\,TÏ are linear foliations on the torus T and 
e > 0 ; then there exist foliations Gi,G2 respectively isotopie to T\^Ti 
such that for each x G T the tangent line field of G\ at x is e-close to 
the tangent line field of Gì at x. 

Proof. If the foliations have slopes si and «2, then after applying 
an element A of SL(2,Z) we can assume that each of si and «2 is fully 
carried by the branched surface of Figure 6.2. Let r\ and r% be the 
new slopes with corresponding foliations T\^Ti- For a given Æ one can 
individually isotope T\, Ti to G\, G2 so that the angles between the 
tangent line fields of Gl, G2 are Æ close to that of the branched foliation 
of Figure 6.2. Since the linear map A boundedly distorts angles, the 
line fields of the foliations A~l(Gi)iA~l(G2) are e-close provided that Æ 
is sufficiently small. q.e.d. 

T h e o r e m 6.13. Up to isotopy any Reebless foliation T on a closed 
atoroidal orientable 3-manifold M is strongly carried by one of finitely 
many foliation branched surfaces. 

Proof. Let A be an essential lamination carried by a foliation branched 
surface B satisfying (2.3) such that A is obtained by splitting T along 
finitely many leaves. Indeed, if M is covered by n foliation charts, then 
any finite set of leaves of T whose union meets these charts will suffice. 
Since Reebless foliations on atoroidal 3-manifolds have no torus leaves 
we can apply the machinery of this paper to show that A is carried by 
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a Bt,2 branched surface. Recall that Step 2 of the proof of Theorem 6.5 
shows that the number of such surfaces is finite. To check that such a 
branched surface B* is actually a foliation branched surface, note that 
B is a foliation branched surface and that, up to isotopy, B* is obtained 
from B by finitely many A-splittings and squeezing along product discs. 

Let L denote the union of leaves on which T was split. We can 
assume that L has trivial holonomy since by [8] such leaves are dense 
in M. 

We will now show that after isotopy T is strongly carried by B*. 
First observe that B = BQ has the property that there is a small product 
neighborhood To x I of a compact subsurface TQ C L such that To is 
identified with To x l/2,jF|To x I is the product foliation and BQ has a 
fibred neighborhood N{B0) such that dhN(B0) = T0 x dI,dvN(BQ) = 
dT0 xl and F\N(B0) is transverse to the /-fibres of N(B0). Now if B\ is 
obtained from BQ by A splitting, then N(Bi) is obtained from N(BQ) by 
deleting a compact /-bundle. Since L has no holonomy, we can enlarge 
To to a compact surface T\ C L, and shrink / to I\ C / such that T\T\ x 
h has the product foliation, dh,N(Bi) = F x dI\1dvN(Bi) = dF x I\ 
and F\N(B\) is transverse to the /-fibres OÎN{BQ). A similar statement 
holds if B\ was obtained by squeezing BQ (except that T\ C To). Thus 
up to isotopy of T there exists a compact suface T* C L, a product 
neighborhood T* x /* of T* with T* identified with T* x 1/2 such that 
T\T* x /* is the product foliation etc. By [1] one can isotope T to have 
the above properties such that if X is the closed complement of N(B), 
thenT\X = T(VB)\X. q.e.d. 

Definition 6.14. The transversely orientable foliations Q and J-
in the Riemannian 3-manifold M are said to be e- coarse isotopie if JF 
and Q can be respectively isotoped to foliations T* and Q* such that 
for each x G M the angle between the transverse orienting orthogonal 
vectors (to T* and Q*) is less than e. We say that Q and T are coarse 
isotopie if e < 7T. I.e., for each x G M either Q is transverse to T at a; 
or t/ is tangent to JF at x and at a; the normal orientations agree. 

The next two results follow directly from Proposition 6.11 and The
orem 6.13. 

Theorem 6.15. Given a closed, orientable, atoroidal 3-manifold, 
there exists an integer N(M) > 0 such that for any e > 0 any taut folia
tion on M is e-coarse isotopie to one of N(M) taut foliations. q.e.d. 

Corollary 6.16. / / e > 0 and T\,--- ,TN(M)+I o,re taut foliations 
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on the closed oriented atoroidal 3-manifold M, then there exists i ^ j 
such that up to isotopy the tangent plane fields of Ti and Tj are e- close. 
I.e., for k G {i,j},Fk «s isotopie to Gk such that for each x G M the 
oriented orthogonal to the tangent plane of GÌ at x is e-close to that of 
Gj at x. q.e.d. 

Quest ion 6.17. Do higher order jets allow one to obtain a finer 
measure of distance between isotopy classes of foliations. 

Since e-close tangent plane fields are nomotopic, via the straight line 
homotopy we obtain the following result. 

Corollary 6.18 (Kronheimer—Mrowka [24]). On a closed ori
entable 3-manifold, there are only finitely many homotopy classes of 
plane fields of taut foliations. q.e.d. 

R e m a r k 6.19. The proof we gave required that M be atoroidal, 
however it is not diÆcult to obtain a proof of the toroidal case using 
our technology. 

Defini t ion 6.20. We say that the foliation or lamination T is 
normal to the triangulation r on the 3-manifold M if for each 3-simplex 
a there exists a topological foliation chart l 2 x l such that in local co
ordinates a is a linear 3-simplex with vertices at distinct ^-coordinates. 
If T is nowhere dense, then we require that its support be disjoint from 
the 0-skeleton. 

T h e o r e m 6.21. Let M be a closed, orientable, atoroidal 3-manifold. 
Then there exists a triangulation r on M such that any essential lam
ination or taut or Reebless foliation can be isotoped to be normal to 

T. 

Proof. Given a branched surface BQ, it is easy to construct by hand 
a triangulation r such that any lamination carried by BQ or any foliation 
strongly carried by BQ is normal to r . Also if A is normal with respect 
to r , and T\ is any linear subdivision of r , then one can isotope A to 
be normal with respect to T\. Theorem 6.21 now follows from Theorem 
6.5, Theorem 6.13 and the fact [25] that any two triangulations have 
isomorphic linear subdivisions, q.e.d. 

Corollary 6.22. Given a closed, orientable, atoroidal 3-manifold 
M, there exists a finite set of manifold charts (U\, • • • , Un) which cover 
M such that if T is a taut foliation, then T is isotopie to G such that 
each Ui is a foliation chart for G• (And so for each i, each leaf of G\Ui 
is a disc.) q.e.d. 
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Theorem 6.21 positively answers a question asked by Thurston in 
the late 1970's. Later Larry Conlon independently asked this question 
and I thank him for a discussion during 1994. 

R e m a r k (Thurs ton 1970's) 6 .23. Every 3-manifold has a tri
angulation T such that no taut foliation is normal to r . Indeed let r be 
a triangulation such that in some coordinate chart there exists a knot
ted simple closed curve which is the union of three 1-simplices. If that 
coordinate chart was also a foliation chart, then the knot would have at 
least four critical points with respect to the third coordinate. However, 
at most three of these extrema can occur at vertices, thus there has to 
be a tangency of a 1-simplex with a leaf. If the coordinate chart is not 
a foliation chart, then a more elaborate argument using the Roussarie -
Thurston [27], [30] isotopy theorem, applied to a 2-sphere which bounds 
a ball and contains the knot, reduces to the foliation chart case. 

R e m a r k 6.24. Theorem 6.5 and Theorem 6.13 can be viewed as 
discrete analogues of Schoen's Theorem [28] to essential laminations in 
3-manifolds. Schoen asserts that any least area surface in a fixed closed 
Riemannian 3-manifold has bounded normal curvature, i.e., it cannot 
locally bend too much. In the same manner, our results assert that up 
to isotopy, essential laminations and in particular taut foliations have 
uniformly bounded normal curvature. 

7. P r o b l e m s and conjectures 

In what follows triangulations also mean pseudo-triangulations. (I.e., 
two simplices are allowed to meet along more than one face.) 

P r o b l e m 7.1. Let r be a triangulation on a closed oriented 
atoroidal 3-manifold M. 

a) Is every nowhere dense essential lamination isotopie to a normal 
lamination? 

b) Is there an explicit example requiring splitting of leaves? 
c) Is there an explicit example requiring sutured manifold evacua

tion? 
d) Is there a number n such that for every closed oriented 3-manifold 

N with triangulation r , every nowhere dense essential lamination on 
N can be isotoped to be normal with respect to the n ' t h barycentric 
subdivision of r . 

P r o b l e m 7.2. Compute an explicit function / : N —> N such that 
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if M is an atoroidal 3-manifold with a triangulation of n simplices, then 
every essential lamination is carried by one of f(n) explicitly described 
essential branched surfaces. 

Conjecture 7.3. Let X be a nowhere dense essential lamination in 
the closed orientable atoroidal Riemannian 3-manifold M. Then after 
possibly splitting along leaves and/or collapsing along I-bundles, A can 
be isotoped to a lamination by stable minimal surfaces. (Is splitting ever 
necessary?) 

A positive proof of this conjecture together with Schoen's theorem 
[28] could be used to give another proof that an essential lamination 
can be isotoped to a lamination with bounded normal curvature, and 
hence another proof that every essential lamination is carried by one 
of finitely many branched surfaces. Indeed one could then derive an 
explicit bound on the number of such surfaces. 

Conjecture 7.4. Let T be a taut foliation on the closed orientable 
3-manifold M. Suppose thai no leaf or pair of leaves bounds an I-
bundle in M. If M has a generic Riemannian metric, then T naturally 
fractures into a nowhere dense essential lamination by stable minimal 
surfaces. 

Question 7.5. How does the splitting of leaves of C depend on 
the Riemannian metric on M? 
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