
J . DIFFERENTIAL GEOMETRY 

53 (1999) 405-443 

G R E E N F U N C T I O N S A N D C O N F O R M A L 
G E O M E T R Y 

LUTZ HABERMANN & JÜRGEN JOST 

Abstract 
We use the Green function of the Yamabe operator (conformai Laplacian) 
to construct a canonical metric on each locally conformally flat manifold 
different from the standard sphere that supports a Riemannian metric of 
positive scalar curvature. In dimension 3, the assumption of local conformai 
flatness is not needed. The construction depends on the positive mass the­
orem of Schoen-Yau. The resulting metric is different from those obtained 
earlier by other methods. In particular, it is smooth and distance nonde-
creasing under conformai maps. We analyze the behavior of our metric if 
the scalar curvature tends to 0. We demonstrate that the canonical met­
rics converge under surgery-type degenerations to the corresponding metric 
on the limit space. As a consequence, the L2—metric on the moduli space 
of scalar positive locally conformally flat structures is not complete. The 
example of S1 x S2 as underlying manifold is studied in detail. 

Introduct ion 

For the sake of simplicity, we assume throughout this introduction 
that all occurring manifolds are compact. 

In understanding spaces of complex structures, it has proved to be 
useful to construct "canonical" metrics on complex manifolds. Such 
a "canonical" metric ideally is uniquely determined by the underlying 
complex structure, depends smoothly on that structure, and has an ana-
lyzable behavior as the underlying structure degenerates in some explicit 
manner. Such a metric on each complex structure then gives rise to a 
metric on the corresponding moduli space1 by taking the I/2-product of 
tangent vectors to the moduli space — which can be expressed as har­
monic sections of a certain bundle on the underlying complex manifold 
— w.r.t. the canonical metric. 

Received July 30, 1997. 
1 Leaving aside the issue of smoothness of t h a t space 
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The best known example is the hyperbolic metric on a compact 
Riemann surface of genus greater than 1 that gives rise to the Weil-
Petersson metric on the moduli space. Here, the existence of the hyper­
bolic metric follows from the Poincaré uniformization theorem, unique­
ness and smooth dependence are common knowledge of researchers, and 
the asymptotic behavior was analyzed by H. Masur [19]. There also exist 
other canonical metrics on compact Riemann surfaces that enjoy sim­
ilar properties, for example the Bergman and Arakelov metrics, resp. 
The Arakelov metric is defined in terms of the asymptotic behavior of 
a Green function near its singularity, see [1], and this construction will 
serve as a paradigm for us below. 

In higher dimensions, such canonical metrics include the Kobayashi 
metric which however typically lacks certain smoothness properties, as 
well as the Kähler-Einstein metrics constructed by Yau [31], Aubin [3], 
and others. In particular, Yau's solution of the Calabi conjecture and 
the resulting construction of Kähler-Einstein metrics on K3 surfaces 
and Calabi-Yau manifolds were decisive for understanding the moduli 
spaces of such complex manifolds. 

In the present paper, we start to investigate moduli spaces of con-
formal structures on the basis of a similar principle, i.e., by introducing 
and studying canonical metrics associated to conformai structures. Our 
metric is not the first such metric associated to a conformai structure. 
For example, by the solution of the Yamabe problem achieved through 
the work of Trudinger [29], Aubin [4], and Schoen [22], each conformai 
structure on a compact manifold supports a metric of constant scalar 
curvature. In the case of positive scalar curvature, however, that met­
ric in general is not unique. See Schoen [23] for a detailed example. 
Other examples that , however, only work for locally conformally flat 
structures, include a Kobayashi type metric introduced by Apanasov [2] 
and Kulkarni-Pinkall [16], as well as Nayatani's metric [20] using the 
Green function on Sn via the developing map for locally conformally 
flat structures (see Schoen-Yau [27]). 

The construction of a canonical metric typically starts with some 
Riemannian metric in a given conformai class, but in order for the re­
sulting metric to be canonical it should not depend on the choice of that 
metric in the conformai class. In this sense, the construction should be 
conformally invariant. 

Our construction will employ the Green function of the Yamabe 
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operator (conformai Laplacian) 

, n - l , 
L = A - A + S 

n — 2 

where n is the dimension of the underlying manifold (supposed to be 
> 3 here and in the sequel), A is the Laplace-Beltrami operator (with 
the sign convention that makes it a positive operator), and S is the 
scalar curvature of some metric g in a given conformai class. Since L is 
conformally invariant (up to some conformai factor), so are correspond­
ing "harmonic" functions and Green functions. (A Green function for L 
exists if L is invertible which is the case if we assume that S is positive.) 
Such functions can therefore be used to construct conformally invariant 
metrics. 

If g is our starting Riemannian metric, with distance function d(-, •), 
and if G(-, •) is the Green function for L, the idea is to put 

a(p) := lim(G(p, q) — and(p,q) n)n-2 

(with an some constant depending on n) , and 

0 := a2g 

then is our new metric. 
As indicated above, this construction is similar to Arakelov's con­

struction for a metric on a compact Riemann surface. Arakelov utilized 
the Green function of the Bergman metric, and d(p,q)2~n in dimen­
sion 2 of course has to be replaced by the logarithm of the distance 
function. In a context different from Arakelov's setting however, such 
a construction arose independently. Namely, for domains in Euclidean 
space, Hersch [13] introduced the conformai radius by such a device, and 
Hersch's idea was turned into the construction of a metric by Leutwiler 
[18] by a similar formula as displayed above. For more recent advances 
in this direction, see the survey article of Bandle-Flucher [8]. It should 
be noted, however, that our construction goes considerably deeper than 
the one of Hersch and Leutwiler, because their construction is only in­
variant under the finite dimensional group of conformai automorphisms 
of Euclidean space whereas ours is invariant under conformai changes 
of a Riemannian metric, i.e., under an infinite dimensional group. 

We should also note that the rôle of the Green function for the 
Yamabe problem was discovered by Bahri-Coron [7] and Schoen [22]. 
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A crucial point in Schoen's final solution of the Yamabe problem for a 
conformally flat manifold [22] is to use a Green function with pole at 
p to convert a given conformally flat metric into an asymptotically flat 
one for which p corresponds to infinity. By way of constrast, our metric 
will be a compact one. 

Our construction succeeds if either the dimension is 3 and the con-
formal class is arbitrary, or if the dimension is arbitrary, and we have 
a locally conformally flat class. This has to do with the existence and 
the properties of the above limit defining a, and for that purpose we 
need to invoke the positive mass theorem of Schoen-Yau [24],[25],[26] 
(a different proof of the theorem was found by Wit ten [30], with de­
tails developed by Parker-Taubes [21], see also the survey of Lee-Parker 
[17]), as does Schoen's final solution of the Yamabe problem. The posi­
tive mass theorem in its presently known form does not give sufficiently 
precise estimates for carrying our construction through for not locally 
conformally flat conformai structures in dimensions bigger than 3. 

As mentioned however, at least in dimension 3, the construction is 
not restricted to locally conformai flat structures, in contrast to the ones 
of Apanasov, Kulkarni-Pinkall, and Nayatani. On the other hand, those 
constructions also work in certain scalar negative cases. 

It turns out that the above limit a is 0 if and only if our manifold 
is conformally equivalent to the sphere Sn (with its standard confor­
mai structure). Thus, the resulting metric is trivial if and only if the 
manifold is conformally equivalent to Sn. This is in fact needed for 
the Hausdorff property of the moduli space of (locally conformally flat) 
conformai structures, because the conformai group of Sn is noncompact, 
and one may locally "bubble off" a sphere from any conformai manifold. 

Our metric is always smooth (of class C°°) in the locally conformally 
flat case, in contrast to the Kobayashi type metrics of Apanasov and 
Kulkarni-Pinkall that in general are only of class C 1 ' 1 . Again in contrast 
to Kobayashi type metrics that are distance nonincreasing under con-
formal maps, our metric is (locally) distance nondecreasing under such 
maps. This fits together with the vanishing of the metric for Sn and the 
fact that there do not exist branched coverings in conformai geometry 
in dimension at least 3. 

We already mentioned that we need a metric of positive scalar cur­
vature in the given conformai class, in order for the Green function to 
exist. Of course, by the solution of the Yamabe problem, there exists 
a metric of constant positive scalar curvature in such a class. As men­
tioned however, the latter in general is not unique, not even up to a 
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scaling factor. By way of contrast, our metric is unique in its conformai 
class, and therefore, in particular, it fixes a scaling factor. For a se­
quence of compact conformai structures with scalar curvature going to 
zero, our metric then tends to a noncompact metric of infinite diameter 
and vanishing scalar curvature. It is clear that this must be so, because 
in the zero curvature case, there can be no natural scaling factor. 

Because of its various properties as described in the first part of 
the present paper, this canonical metric seems to be a good tool for 
investigating the moduli space of locally conformally flat structures. It 
is the purpose of the second part of the paper to start exploring this idea. 
More precisely, we investigate the behavior of the canonical metric under 
surgery type degenerations. Our main result (Theorem II.2.7) says that 
the limit of the canonical metrics yields the canonical metric of the limit 
space. In other words, we can follow our canonical metric through a 
change of topological type. In analogy with the investigations of Masur 
[19] about the geometry of the Mumford-Deligne compactification of the 
space of stable Riemann surfaces, we view our analysis as a first step 
towards understanding a natural compactification of the moduli space 
of locally conformally flat structures on a given compact differentiable 
manifold. We obtain asymptotics for the L2 —metric on this moduli 
space (see Theorem II.3.1). In particular, as in Masur's work, this 
L2 —metric is not complete (Corollary II.3.2). 

We thank Arthur E. Fischer and Hubert Goldschmidt for answering 
some of our initial questions about moduli spaces of conformai structures 
and the referees for their comments. 

Our research was supported by the Leibniz program and SFB 237 
of the DFG. 

Part I: Def init ions and e l ementary propert ies 

1.1 A c a n o n i c a l m e t r i c for l o c a l l y c o n f o r m a l l y flat m a n i ­
fo lds w i t h p o s i t i v e sca lar c u r v a t u r e 

Let (M, g) be a closed, connected, smooth Riemannian n-manifold, n > 
3. The Yamabe operator L of (M, g) is defined by 

TI — 1 
Lu = 4 Au + Su for u^C^iM) 

n — 2 
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where A = — V'Vj is the Laplacian and S the scalar curvature of g. A 
4 

basic fact about L is that for a metric g = (pn~2g the scalar curvature 
S is given by 

(1.1.1) S = ip~^Ltp. 

4 

L is conformally invariant in the sense that if g = ipn~2gì then 

(1.1.2) L(ipu) = ip^L(u) for any u G C°°(M) 

where L is the Yamabe operator w.r.t. g. A consequence of (1.1.1) and 
(1.1.2) is the following well-known result. 

L e m m a 1.1.1. Let C be a conformai class of Riemannian metrics 
on M. Then one and only one of the following cases holds: C contains 
a metric of (i) positive, (ii) negative, or (in) identically zero scalar 
curvature. q.e.d. 

Referring to the cases (i), (ii), (iii) of Lemma 1.1.1, we will say that 
the conformai class C is scalar positive, scalar negative, or scalar flat, 
resp. 

If C is scalar positive, then for any metric g G C the Yamabe op­
erator L admits a unique Green function, i.e., a function G(p,q) which 
satisfies 

/ G(p,q)Lu(q)diJ,(q) = u(p) for any u G C°°(M) 
M 

where d/j, = d/j,(g) is the volume element of (M,g). This function is 
4 

strictly positive. Further, if g = (pn~2g, then 

(1.1.3) G(p,q)= I G(p,q) 

is the Green function of the Yamabe operator L w.r.t. g. 
Now we assume that the conformai class C on M is locally con­

formally flat and scalar positive. In the following, we use the Green 
function for the Yamabe operator to construct a canonical Riemannian 
metric in C, proceeding in a similar way as Leutwiler [18] for Euclidean 
domains and Arakelov [1] for Riemann surfaces. 

Let g G C such that 

g = ìp*gE on U C M 
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for a chart iß : U —> V C ffin, where QE is the Euclidean metric on 
By elliptic theory, G(p,q) — an\ip(p) — tp(q)\2~n with 

1 

4(n - l)u)n-i 

where wn_i denotes the volume of the unit sphere Sn 1 , is a smooth 
function on U x U. For p £ U, we set 

a2(p) = lim(G(p,q) - an\iß(p) - i>{q)\2~n)^ 
q^p 

= lim(G(p,q)-and(p,q)2-n)~. 
q^p 

Here d denotes the distance function w.r.t. g. We define the symmetric 
rank—2 tensor field g on M by setting 

g = a2g on U. 

We have to verify that g does not depend on the choice of g. Let 
4 

g = (pn-2g be another metric in C with 

g = ì)*gE on U 

for a chart ip : U —>• V. Since ^ o ^ _ 1 is the restriction of a Möbius 
transformation on Sn, 

i i 

(1.1.4) IV'(P) — '^{(l)\ = <p{p) n~2 <p{q)n-2 \ip{p) — ip(q)\ for p,q£U. 

By (1.1.3) and (1.1.4), 

2 

ä (p) = lim(G(p,g) - o„|^(p) - V(<?)l' 

lim 
q^p 

ip{p) n~2a2(p). 

1 (G(p,q)-anmp)-m\2-n) 
(p(p)<p(q) 

2 
n-2 

Hence, 
à g = a g on U. 

We note that it follows from the construction that the tensor g is 
smooth. Further, by means of (1.1.3), for an arbitrary Riemannian 
metric g G C 

Q = o?g 
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with 

(1.1.5) a2(p) = ip{p)~ lim ( ————G{p,q) - andv{p,q)2-

4 

where dip(p, q) is the distance function w.r.t. the metric (pn~2g which is 
assumed to be Euclidean near p. 

Remark 1.1.2. If n = 3, we can choose any metric g G C for the 
construction of g, i.e., we do not have to suppose that g is Euclidean 
on U. Moreover, in that case we obtain a symmetric rank—2 tensor 
field for any scalar positive conformai class C. Namely, if g G C, then 
elliptic theory yields that G(p,q) — and(p, q)_1 is continuous. Further, 
if g = ip4g, then 

«->A d(p,q) d{p,q) 

where d is the distance function w.r.t. g. q.e.d. 

Proposition 1.1.3. Let C be a scalar positive conformai class on 
M, where C is locally conformally flat or M is three-dimensional. If 
(M, C) is conformally equivalent to the standard sphere Sn, then g van­
ishes identically. In all other cases, g is a Riemannian metric in C. 

Proof. One has to verify that if a(p) = 0 for some p G M, then 
(M,C) is conformally equivalent to the standard sphere Sn. But this 
(and 

lim(G(p,q)-and(p,q)2-n)>0) 

was shown by Schoen and Yau (cf. [28], Theorem V.3.6) by consider-
4 

ing the Riemannian metric G(pi •) n~2g of vanishing scalar curvature on 
M \ {p} to which the positive mass theorem can be applied. q.e.d. 

For simplicity, we will refer to g in any case as the canonical metric. 

1.2 Basic properties of the canonical metric 

First, we state 

Proposition 1.2.1. Let Ci, i = 1,2, be a scalar positive conformai 
class on a closed, connected n-manifold M;b, n > 3, suppose Ci is locally 
conformally flat or n = 3, and let g, be the canonical metric of (Mi, Ci). 

(i) If f : (Mi,C\) —> (M2,C2) is a conformai diffeomorphism, then 
/*02 = 0 1 -
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(ii) A conformai covering f : (Mi, Ci) —> (M2,C2) is length nonde-
creasing w.r.t. the respective canonical metrics. 

Proof, (i) This is proven straightforwardly. 

(ii) Let #2 G C*2- If n > 3, choose 52 such that 32 is Euclidean on an 
open set U C M2. Set g\ = /*g2 G Ci- Let GÌ denote the Green function 
for the Yamabe operator and di the distance function of {Mi,gì). Using 
that the covering transformation group T of / : M\ —> M^ consists of 
isometries of {Mi,gi), one sees that 

G2{f{p)J{q)) = J2G^P^^-
7er 

It follows that for p G f~l{U) 

a2(/(p))n_2 = lim{G2{f{p)J{q))-and2{f{p)J{q))
2-n) 

q^p 
Hm(Gi(p,9) -Ondi{p,q)2 ") + V Gi{p,j{p)) 

V ^ ^ 

ier\{id} 
q^p 

2-n > lim{Gi{p,q) - andi{p,q) 

q^p 

= «lb)""2-
Since fj2 = a?,g2 on U and gi = afgi on / _ 1 (£7) , the assertion follows. 

q.e.d. 

R e m a r k 1.2.2. 

(i) In particular, Proposition 1.2.1 (i) yields that in the considered 
cases the group Conf(M, C) of conformai transformations of (M, C) 
coincides with the group Isom(M, pj) of isometries of (M, pj), if 
(M, C) is not conformally equivalent to the standard sphere. 

(ii) Proposition I.2.1(ii) is one of the reasons why our canonical met­
ric differs from that of Apanasov [2] and Kulkarni-Pinkall [16]. 
Namely, the distance function defined by their canonical met­
ric coincides with the distance obtained by applying Kobayashi's 
construction in the Möbius context. Thus, a conformai map is 
distance nonincreasing w.r.t. the canonical metrics defined by 
Apanasov and Kulkarni-Pinkall. q.e.d. 

If one looks for a canonical metric in a scalar negative or scalar flat 
conformai class C on a closed, connected manifold, one can choose a 
conveniently normalized Yamabe metric, i.e., a constant scalar curvature 
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metric. Namely, in these cases there is only one such Riemannian metric 
in C up to multiplication by a positive constant. If C is scalar positive, 
this is no longer true in general. 

The next proposition shows that the choice of our canonical metric 
fits with the choice of the normalized Yamabe metric as the canonical 
metric for a scalar flat conformai class. 

Propos i t i on 1.2.3. Let gk, k G N, be locally conformally flat Rie­
mannian metrics on a closed, connected n—manifold M, n > 3, with 
constant scalar curvature Sk > 0 and unit volume and let g be a Rie­
mannian metric on M with vanishing scalar curvature. Assume that 

gk^g in Cm{M) for m > - ^ T — . 

Then 

2 Sr? + 2 
Sk~25k ^g in C\M) for 0<l < m 

2 

where gk denotes the canonical metric of the conformai class of gk. 

Proof. First observe that the assumptions imply that g is also locally 
conformally flat. 

Let Lk be the Yamabe operator of (M,g k ) , i.e., 

77 — 1 
(1.2.1) Lk = A -Ak + Sk 

n — 2 

where Ak is the Laplacian w.r.t. gk, and let Gk(p,q) be the Green 
function for Lk. Let 0 = Ao;fe < Ai^ < A2,fc < • • • denote the eigenvalues 
of Afc. Because of (1.2.1), the eigenvalues of Lk are 

n 

Hence, 

n — 1 
4 ^j,k + Sk, j = 0 , 1 , 2 , . . . 

Gk(p,q) - TT 
L2(MxM,gk®gk) 

0 0 / — 1 

i = i 

e* £*J 
n 1 

n 

2 oo 
2 
k 

i = i 
2 

4 I ö WTk(P,q)\\L2(MxM}gkegk) 
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where Vk(p, q) is the Green function of A&. Since gk tends to g in 
Cm(M), there exists a c\ > 0 such that 

l|rfe(p,g)||L2(MxM,öe9) < c i f o r a 1 1 fcGN 

(cf. [5]). Consequently, there exists a C2 > 0 such that 

< c2 for all k G N. 
L2(MxM,5e9) 

Now, let 7T : M —> M denote the universal covering map and let 
$fc : M —> Sn be a developing map w.r.t. the conformai class of gk. If 
$fc would be surjective for some k G N, then M would be diffeomorphic 
to a quotient of S"" by a finite subgroup of 0(n + 1) (cf. [27]); such a 
quotient, however, does not admit a scalar flat locally conformally flat 
structure. Therefore, we may assume that 

$fc(Af) C ffin C Sn. 

Fix po G M. Let UQ be a simply connected neighborhood of po and 
choose a connected component E/o of 7r_1(£/o). Then 

v"o = 7i~|i>0 : t ^ o -> • ^ 0 

is a diffeomorphism and 

for a positive function (/?& G C°°(M). We set 

4 

h = Vk~29k on M. 

Composing <!>& with a scaling of W1 if necessary, we may assume that 

(1.2.3) <Pk(po) = ! for all k G N. 

Since gfc is flat on UQ, by (1.1.1) 

(1.2.4) Lk<pk = 0 on [70. 

Let UQ and f/g' be neighborhoods of po such that UQ CC UQ CC UQ 
and such that C/Q' has a smooth boundary. The Harnack inequality says 
that there exists C3 > 0 such that 

(1.2.5) sup</?fc < C3 inf (fh for all k G N. 
7"/"' 

(1.2.2) Gk(p,q) 
Sk 
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Because of (I.2.3), it follows that 

(1.2.6) sup</?fc < c3. 

Let (k1) be any subsequence of (k) and let m ' e Z with 0 < m' < m — ̂ . 
Using (1.2.4) and (1.2.6), elliptic theory (cf. e.g. [9]) implies that there 
exists a subsequence (k") of (k1) such that 

(1.2.7) <Pk»^<P m Cm'(ÏÏH). 

By (1.2.3) and (1.2.5), 

infifk > —. 
% c3 

Thus, also 

(1.2.8) — - • - in Cm'{W). 
ipk„ ip 

Let expfc : TpoM —> M be the exponential map w.r.t. gk. Since gk is 
flat on C/Q' and 

9k" ^ ^ 9 m Cra'TO 
we may choose a neighborhood C/i C UQ of po such that for all k" there 

exists a neighborhood 14" C TpoM of 0 such that 

exPfc"|vfc„
 : vk" ->• ^ i 

is a diffeomorphism. Then, setting 

V'fe" = ( e x p ^ i ^ , , ) " 1 

and identifying (Tp oM, gk\po) with (M n , ^ E ) , 

Now, let G kip, q) denote the Green function for the Yamabe operator 
Lk of (M, gk). We consider 

Fk"ÌP,q) = Gk»(p,q) -— an\tpk»(p) - ipk"(q)\2~n 

(Pk"{'P)lPk"{q)Sk" 

for p,q G Z/i- According to (1.1.1), 

1 rt+2 

Lk— = <Çk "~2 Sk. 
Vk 
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Thus, 
(1.2.9) 

n+2 1 rt+2 1 
(Lk",p + Lk",q)Fk» (p, q) = -<Pk" (p) n~2 TT - ¥>k" (<?) n~2 TT-

Since by (I.1.3) 

Gk{p,q) T~, TT7T = 7^ TT Gk{p,q) ~ ^~ 

by elliptic theory we obtain from (1.2.2), (1.2.7), (1.2.8), and (1.2.9) that 
for any subdomain U2 CC U\ and for any m" G Z with 0 < m" < m!—n 
there exists C4 > 0 such that 

(1.2.10) \\Fk"(P,q)\\Crr.>>{ü^ü-2)<C4 for all k". 

Recall that Qyi = à2
k„gk" with 

àk»{p) = \im(Gk»{jp,q) - an\ipk»{p) - ipk»{q)\ n)n~2 

for p G U\. Since by assumption 

Sk^O 

and 

Sk"àk"(p)n~2 = Sk»Fk„(p,p) H —-T 
<Pk"(pY 

(1.2.8) and (1.2.10) imply that 

S^à^^cp-^ in Cm"(Th) 

and consequently 

SpQk'^Spàl^pg^^g in Cm" (TT2). 

Since the subsequence (A;') may be chosen arbitrarily, this concludes the 
proof. q.e.d. 

We mention that one can similarly verify 

Propos i t i on 1.2.4. Let gk, k G N, be Riemannian metrics on a 
closed, connected manifold M of dimension 3 with constant scalar cur­
vature Sk > 0 and unit volume and denote by gk the canonical metric 
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of the conformai class of g^. If the sequence (g^) tends to a Riemannian 
metric g with vanishing scalar curvature in C2(M), then 

Sfak^g in C°(M). 

q.e.d. 

A complete proof of the last proposition will be given in a forthcom­

ing paper of the first author. 

1.3 The geometry of the modul i space of locally confor-
mally flat structures on S1 x S2 

We first recall how the choice of a canonical metric in every conformai 
class yields a Riemannian L2 —metric on the moduli space of conformai 
structures. 

Let M be a closed, connected n—manifold. Let M.(M) denote the 
space of smooth Riemannian metrics on M and pr : M(M) —> C{M) the 
natural projection onto the space C(M) of conformai structures on M. 
Of course, to be precise, we have to complete M.(M) w.r.t. a convenient 
Sobolev norm, but we shall suppress here the analytical details. On 
M(M) we have a natural Riemannian metric that is invariant under 
the action of the diffeomorphism group Diff(M) of M. This metric is 
given by the L 2 - p r o d u c t ( , )L*(g) on TgM(M) = S2(M) w.r.t. g, 
where S2(M) is the space of symmetric rank—2 tensor fields on M. We 
recall that for h1,h2£ S2(M) 

{h1,h2)Lz(g)= / (hi,h2)gdn(g) 
M 

with 
n 

{hl,h,2)g = ^ hl(eiiej)h2(ei'ej) 

for an orthonormal frame ei,...,en w.r.t. g. 
Now, let i : C(M) ->• M(M) be a section of pr : M(M) ->• C(M) 

which is equivariant w.r.t. the action of Diff(M) and set B(M) = 
C(M)/Diff(M). Then we can identify the tangent space T[C]B(M) with 
the L2(t(C))—orthogonal complement of 

Ti{c)(C™(M) • i(C)) + T t ( c ) ( D i f f ( M ) • L{C)) 

in S2(M). Here C^(M) is the set of positive, smooth functions on M. 
It is clear that the L2(t(C))—orthogonal complement of T t (-C)(C^°(M) • 
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i(C)) = C°°(M) • b(C) is the space S%(M,L(C)) of traceless symmetric 
rank—2 tensor fields on M w.r.t. i(C). Further, since 

T t(c)(Diff(M) • c(C)) = {£Xi(C) : X G X(M)} 

where C denotes the Lie derivative, and X(M) denotes the space of vec­
tor fields on M, the L2{L(C)) —orthogonal complement of r t(^(Diff(M)-
L(C)) is the kernel hs,r8biQ) of the divergence operator 5btc) '• S2(M) —> 
QX(M) into the space Q (M) of 1-forms on M. Thus, 

T[C]B(M) = ker^ ( c ) n S2(M, b{C)) 

and the restrictions of ( , )L2U(C)) onto keiô^c) H SQ(M,L(C)) yield a 
Riemannian metric on B(M). 

Analogously, if LQ : CQ(M) —> M{M) is an equivariant section 
over the space CQ{M) of scalar positive locally conformally flat struc­
tures, we get a Riemannian metric rj on the moduli space £>Q~(M) = 
£+(M)/Diff(M). 

In general, the spaces B(M) and BQ(M) have singularities. 
In the following, we shall examine the Riemannian metric f) on 

B$(M) for the case where M — S1 x S2 and where the section CQ 
is given by the canonical metric defined in §1.1. For this, we identify 
S2 = CU {oo} and denote by g§2 the standard metric of S2. 

First, we describe the moduli space BQ(S1 X S2). 

Proposi t ion 1.3.1. Let 

,z)~(t+\,eie z) for A > 0 and 0£[O,n] 

be equipped with the conformai class of g\,e, where g\te is the Rieman­
nian metric induced from the product metric di2 ®gg2 onWxS2. Then 
(\,0) G R+ x [0,7r] H- M\fi yields a parametrization of BQ{SX X S2). 

Proof. By [27], Theorem 4.5, for any scalar flat or scalar positive 
locally conformally flat structure C on Sl x S2 there exists a Kleinian 
subgroup r C Conf(5'3), T = Z, of the conformai group Conf(5'3) of the 
standard sphere S"3 such that (S1 x S2,C) is conformally equivalent to 
Q( r ) / r , where Q(Y) C S3 is the domain of discontinuity of T. More­
over, two such structures C\ and C<2 are equivalent iff the corresponding 
Kleinian groups Y\ and Y2 are conjugate in Conf(S'3). Observing that 
each Kleinian group Y C Conf(S'3) for which f î ( r ) / r is diffeomorphic to 
S1 x S2 is generated by a hyperbolic element of Conf(5'3), the assertion 
now follows from the classification of the conjugacy classes in Conf (S3) 
(cf. [15]). q.e.d. 
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R e m a r k 1.3.2. Since ni(Sl x S2) = Z is abelian and therefore 
amenable, by [27], Proposition 1.2, there do not exist scalar negative 
locally conformally flat structures on S1 x S2. Further, the proof of the 
last proposition excludes the existence of scalar flat locally conformally 
flat structures on Sl xS2. Hence, BQ~(S1 X S2) coincides with the moduli 
space Bo(Sl x S2) of all locally conformally flat structures on Sl x S2. 
q.e.d. 

In the remainder of this section we want to prove 

Propos i t i on 1.3.3. For the Riemannian metric rj on the moduli 
space Bo(Sl x S2) induced by the choice of our canonical metric, we 
have 

f) = ui(A,6>)dA2 + u2(\,6)d62 

with 

and 

Ui(\,0) > const.\ 4 on (0,1) x [0,ir] 

3A 
Ui(X,0) < const.A e 2 on ( l ,oo) x [0,7r] 

where const, means a positive real number independent of A and 6. 

R e m a r k 1.3.4. As a consequence of the last proposition, the metric 
completion of (BQ(S1 x S"2), h) differs from BQ(S1 X S2) by a point which 
corresponds to A = oo. This point can be interpreted as the unique 
element of the moduli space of locally conformally flat structures on S"3 

with two punctures. q.e.d. 

For the proof of Proposition 1.3.3 we shall use the following two 
lemmas. In the first lemma, we give explicit expressions for the canonical 
metrics Q\ß on M\ß] in the second one, we compare the divergence 
operators w.r.t. conformally equivalent Riemannian metrics. 

L e m m a 1.3.5. We have Q\ß = a\eg\ß with 

a\,e{t,z) = ct\ß{\z\) 

V2 A T 4k2 

8LO2 2-" z k=l 

cosh(A;A) — 1 + — 9 „(1 — cos(k6)) 
(1 + \z\z)z 

Proof. Since the translations in t—direction and rotations on CU{oo} 
with centre 0 are isometries of {M\ß,g\ß), we have 

a\,e{t,z) =ax,g(\z\). 
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The Green function G\ß(p,q) for the Yamabe operator of {M\ß,g\ß) 
which we identify with its pull-back onto R x S2 is given by 

GxAito, ZQ), (t, z)) = J2 G((to, ZQ), (t + kX, eikez)) 
kez 

where G(p, q) is the Green function for the Yamabe operator of 
(R x S2,dt2 ®gsz)- One verifies that 

CIS 1 

G((0, ZQ), (t, z)) = -j=(co8h(t) - (ZQ, z)R3)-ï 

where ( , )K3 is the canonical product in R3. Using the identification of 
S2 with C U {00} via stereographic projection, 

/ v 4 i ? e ( ^ ) + ( l - | ^ o | 2 ) ( l - | z | 2 ) 2 
(ZO, Z)RS = ( l + | Z o | 2 ) ( l + | z | 2 ) for Z0,zeCcS . 

Since 

lim (G{(0,z0),{t,z))-a3dRxS2({0,z0),(t,z))-1)=0 
(t,z)^(0,zo) 

where (%jxs
2 is the distance function on 1 x S2 w.r.t. di2 © gS2, we 

obtain that 

«A,e(M) = ax,e{0,zo) 

= Yl G((0,z0),(kX,emz0)) 
kez\{o} 

0 0 

8 w 2 ^ «=1 

MZQ 2 

cosh(A;A) — 1 + :—pyrrol — cos(&0)) 
( 1 H- l^ol ) 

q.e.d. 

Lemma 1.3.6. For the divergence operators ôg,ôg : S2(M) 
Q1(M) w.r.t. conformally equivalent Riemannian metrics g and g 
a2g, a G C^(M), on M we have 

(i) {8ga
2h){X) = {8gh){X) - na-1 / i (grada,X) + a-

làa{X)Trgh 
for h G S2(M) and X G X(M)Ì where the gradient is w.r.t. g. 

(ii) a2~n • (ker£5 n S2{M,g)) = kerSg n S$(M,g). 
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Proof, (i) Recall that 

(Ægh)(x) = -^iVeM^x) 
i 

= - Y)ei(h(ei,X)) - h(VeieuX) - h(eu Ve,X)] 

for h G S2(M) and X G A!(M), where e i , . . . , e„ is an orthonormal frame 
w.r.t. g. Then (i) follows from (cf. [6], Theorem 1.159) 

V x Y = VXY + a'1 [da{X)Y + d a ( Y ) X - g(X, Y)grada] 

for X, y G X(M), where V and V are the Levi-Civita connections w.r.t. 
g and g, respectively. 

(ii) Let h G kerÆg n S^M.g). It suffices to show that a2~nh G 
kerÆnSg(Af,i7). Clearly, a2"™/* G 5g(Af,^). The relation Æ~g(a

2-nh) = 0 
is a consequence of (i). q.e.d. 

Proof of Proposition 1.3.3. Define fs t : JR x S2 ->• R x S 2 by 

/ 8 ) i ( t , z) = (at, *) and /S ) 2(t , *) = (t, éstz). 

Then / S ; i and fsß project to diffeomorphisms / S ; i : M\ß —> Ms\ß and 
/s,2 : A^A,ö ""*" ̂ A,ö+sA- Therefore, for the canonical frame on Bo(Sl x S2) 

given by the parametrization described in Proposition 1.3.1, we have 

d_ 

9Ä (A,9) 

1 P d /* 

A 0A'e I d s 'lösA'6' 

1 / 2 d 

s = l 

^pSA,e ax,e fofli98\,o 
s = l 

and 

90 (A,9) 
T-^flA,» J - / s , 2 Ö A , e + s A ds 

d 
^ P 0 A . « «A,e •^fs,29\,e+ 

s=0 

sX 
s=0 

where Pgx e denotes the L2(g\ß)— orthogonal projection onto 
kerÆx0 n <Sg(M, g^g). One computes that 

_d_ 

ds 
fs,i9sx,e 2 d r 

s = l 
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and 
_d_ 
ds — Js,29\,9+s\ 

8r2 

s=0 :i + r 2 ) 2 dtpdt 

using polar coordinates (r, ip) on C C S2. Hence, 

(1.3.1) 
d_ 

(A,fl) 
jP,>.Mx,0àt2). 

On the other hand, observe that 

8 r 2 

f l + r 2 ) 2 d^dt G Sl{MXfl^Xfl). 

Moreover, since 

Ægxe{ß(r)a<pat) = ß{r)Æxe(dvat) = 0 

for any smooth function ß(r), applying Lemma I.3.6(i) and the fact that 
ax,e depends only on r = \z\, we get 

Æ « ( a A , 9 ( 1 ^ r 2 ) 2 d ^ d t j = Æ ( ( l + r 2 ) 2 d ^ d t 

Thus, 

(1.3.2) 

Since 

also 

(1.3.3) r, 

d_ 

Ho 
a A,0 

(A,9) A (1 + r 2 2 
d(/?dt. 

2 , 2 9 
*x,edt , ^ 0, 

(A,0) ^ 2 (SA,e) 

(A,fl) 

d_ 

(A,9) 9Ä (A,9) 

0. 
(A,Ö) i 2 (0A,f l ) 

From (1.3.2), we further get that 

•I (A,9) 30 (A,Ö) 

(1.3.4) 
Mx,e 

(A,fl) 

8 

2 

i 2 ( 0 A , « ) 

A2 (1 + r 2) 2 d/i(ß A,eJ 

A S2 (1 + r 2 ) 2 dß(9s 
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(1.3.1) implies that 

•é (A,fl) 

d_ 

(V) 

(1.3.5) 

Now, set 

A2 

3A 

«A,fl(d* -ööA.6 r 2 . . 

«A,ö(^)3d//(fc2)-

MA;Ö with ux,e = «A;ö
 d*2 - 3#A,0 • 

IUA,0| |L2 ( 0 A J Ö ) 

From Lemma 1.3.6(h), we know that 

ex,e G kerÆ lX) f lnSg(MA)f l,0A)e). 

By means of (1.3.1), it follows that 

d_ 

9Ä (A,fl) L'2(sx,e) 
- a | ) 9 d t 2 , e A ; 

- a | ) 9 d t 2 , e A ; ö 

i2(0A,«) 

L2(sx,e) 

e\,e 
L2(8x,e) 

Since 

(aXjedt ,u\,0)L2(9Xt0) d/i(g \,0) 

and 

W H ^ G J X , « ) 

2|K,fld< ^A,e)^(BA,,)l 

A ll«A,ellL2(flXifl) 

d t 2 ,d£ 2 - -# A j 
MA,e ò gx,e 

-AW 

d£2, d i 2 - -gx,e ax
 3

edn(gXje) 
fi ó

 SA,« ' 

-T- / aA,0(r)"3d//(fc2) 

we arrive at 

(1.3.6) f) 
(A,fl) 

d_ 

(-M) 
~3T I 2

ax'e^ ^vids*) 
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Because of (1.3.3), (1.3.4), (1.3.5), and (1.3.6), it remains to estimate 
a\Ar). Since 

£[cosh(A;A) - 1 ] " 
(1.3.7) lim — _ = V2 

we have 

A—»OO p 2 

/2 °° 
a\,e(r) < — ^[cosh(A;A) - 1 ] " 

W 2 fe=i 
_A 

< const, e 2 

for A G (1, oo). We conclude the proof by the observation that 

/2 °° 
ax,e(r) > ^ - J}cosh(A;A) + l ] " i 

fc=i 

^ 2 - 1 

A 

> const.\~ 

A / 2 Z 0 0
 I 

> ^ A _ 1 / [cosh(s) + l]-2ds 

for A G (0,1). q.e.d. 

Remark 1.3.7. Using the above considerations, in particular (1.3.5), 
(1.3.6), and (1.3.7), one can show that A_1e~~i ;f(A,0) tends to a nega­
tive constant as A —> oo and 

limK(A,0) = 0 
A^O 

where K is the curvature of f). q.e.d. 

Part II: Surgery type degenerations of conformally structures 

II. 1 Preparat ions 

Let MQ be a closed and connected n—manifold with two punctures 
Pi,P2 or the disjoint union of two closed and connected n—manifolds 
Ml,M2 with one puncture p-i G M% each, n > 3, and let Co be a 
scalar positive locally conformally flat structure on MQ. Let Ui,U2 be 
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disjoint neighborhoods of the punctures pi,P2 with local coordinates 
Xi : Ui —> B(2) = { i E 1™ : \x\ < 2} such that the pull-back gE,i of the 
Euclidean metric g E via x;b is contained in the restriction of Co onto Uj. 
We set 

Vt,i :={p£M0:t< \Xi(p)\ < 1} for i = 1, 2 

and 

Mo = M 0 \ { p i , p 2 } . 

For t G (0,1) and A G SO(n), we form an n—manifold Mt>A by 
removing the balls {\xi\ < t}, i = 1,2, from MQ and identifying V^i 
with y t j2 via / t ;A : V^i ->• Vt,2 given by 

^2 ° ft,AÌp) = | — r ^ ^ i ( p ) -
\xi{p)\ 

If K C MQ is compact, for small t we shall consider i f as a compact 
subset of MftA via the canonical inclusion of M^A \{\xi\ = t?} into MQ. 
Further, x;b will also serve as local coordinates on Mt>A-

The conformai class Co induces a locally conformally flat structure 
Ct,A on Mt>A- As shown by O. Kobayashi [14] (cf. also [10]), C^A is 
scalar positive at least for small t. For our purposes, it will be useful to 
proceed more explicitly. To do so, we first prove the following lemma. It 
says that we may locally interpolate between any locally conformally flat 
metric of positive scalar curvature and a cylindrical one within the class 
of locally conformally flat metrics with positive scalar curvature. (Note 
that in contrast to this result, in the interpolation lemma of Gromov-
Lawson [11], the conformai class may change.) 

L e m m a II. 1.1. Let ip be a positive, smooth function on B = {x G 
4 

W1 : \x\ < 1} such that the Riemannian metric ipn~2gE has positive 
scalar curvature. Then for each EQ G (0,1), there exist real numbers 
a > 0 and e\ G (0, £o) and a positive, smooth function ip on B \ {0} 
such that 

(i) ip{x) = aip(x) for \x\ > EQ 

2 — n 

(ii) 'ip(x) = |icI 2 for \x\ < £i 
4 

(iii) The Riemannian metric ipn-'2gE has positive scalar curvature on 
B\{0}. 

Proof. Let 771,772 be nonnegative, smooth functions on (0,1) such 

that for 0 < £1 < £2 < £0, 
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(a) 771(f) = 1 for f < £2 and r?i(f) = 0 for t > eo-

(b) /72(f) = 0 for f < £1 and 172(f) = 1 for f > £2-

We set 

2 — n 

(II.l.l) 'ip(x) = r/i(\x\)\x\^~ + ari2(\x\)ip(x). 

Now we fix £2 and 171 and show that we can choose a, £1, and ^2 such 
4 

that ipn~2gE has positive scalar curvature on B \ {0}, i.e., by (1.1.1) 

AEtp > 0 on B \ {0} 

where Ag denotes the Laplacian w.r.t. the Euclidean metric gE. 
With the ansatz (II.1.1), we get 

2 — n 

AEtp = AE(rii(\x\)\x\~)+aAE(p on {E2 < \x\ < 1}. 
4 

Hence, since ipn-'2gE has positive scalar curvature, i.e., 

(ILI.2) AEip > 0 on B 

we can choose a > 0 such that A ^ > 0 on {£2 < \x\ < 1}. 
Recall that 

<92 n - 1 3 1 

with r = |a;|, where ASn-i is the Laplacian on the unit sphere Sn~l. 
Setting p = logr, we obtain 

A- = «-*(-£-<-2>£+*»--)• 
Because of (II. 1.2) and 

2 — n 

ip = e 2 c -\- af}2{p)^> on {0 < \x\ < £2} 

with 772 (p) = rj2 (ep), we obtain 

A ^ > e - 2 p a M ± Ç ^ _ e ^ p _ ^ - v , ( 2 - n ) 2 ^ a2r72 
4a ôp2 

2 — _ - ( „ - 2 ) — *>j on { 0 < N < £ 2 } . 
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Thus, since the functions ip and •# = r -# are bounded, we can choose 
op or 

£1 and 772 such that Ag»/) > 0 on {0 < |a;| < £2}- q.e.d. 

Let go be a Riemannian metric in the conformai class Co with pos­
itive scalar curvature »So- By the lemma, we may assume without loss 
of generality that there exists a positive function ipo G C°°(MQ) such 

4 
n - 2 that the Riemannian metric 50 = <Po 9o on Mo has positive scalar 

curvature, and 

1 3 
9o = ]—T29E,i on { 0 < | a ; , | < - } for i = l,2 

i.e., (Mo, go) n a s cylindrical ends. Since the gluing map ft,A is isometric 
w.r.t. go, the metric go induces a Riemannian metric g^A on M ^ , which 
is the cylinder metric T-^W9E i on {t < \xA < §} and coincides with go 

\Xi\ ' ^ z -1 

on some compact K C Mo for small t. In particular, there exists a 
positive real number co such that 

(II.1.3) inf St,A > co for all t G (0,1) and A G SO(n) 

where »S1^ is the scalar curvature of g^A • 
Before ending this section, we need to introduce some further nota­

tions. For 0 < t < 1, we set 

Mt = M t ; I, gt = gtji, St = St,i and Ct = Ct,i 

where I denotes the unit element in SO(n). Let g< for 0 < t < 1 and 
$t,A for 0 < t < 1 and A G SO(n) be the canonical metrics of Ct and 
Ct,A-> respectively. We write 

flt = <*t9t 

with a positive function at G C°°(Mt). The volume elements of gt and 
go are denoted by d/j,t and d/io, respectively. Let Gt(p,q) for 0 < t < 
1 denote the Green function for the Yamabe operator Lt of (Mt,gt)-
Finally, we set 

Go(p,q) = —r-s—r^G0{p,q) 

which is the Green function of the Yamabe operator LQ of (MQ, go)-
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II.2 The asymptot ic behavior of the Green functions and 
canonical metrics 

In this section, we shall investigate the asymptotic behavior of the Green 
functions Gt as t tends to 0. From that, we shall deduce the behavior 
of the canonical metrics gt-

We start with 

Proposition II.2.1. For any domain U CC MQ, 

Gt - G0 ->• 0 in C°°(U xU) as t-> 0. 

Proof. We consider domains 

U CC UW CC U{2) CC t/(3) CC M0-

Recall that [A3-1 is embedded in Mt for small t. By construction, 

gt = go and Lt = L0 on U^. 

We denote the Green function of the Dirichlet problem for L0 on 
£7(3) 

by GDiU(3)(p,q) and define Ft,Ft G C°°{U^ x U^) by 

Ft(p,q) = Gt(p,q) - GDjU{3){p,q) 

and 
Ft(p,q) = Gt{p,q) - G0(p,q). 

Then 
(11.2.1) (L0,p + Lo,q)Ft = 0 

where Lo,p and LQ^ are the actions of Lo w.r.t. the first and second 
argument, respectively. Since the scalar curvature »So of go is positive, 
we can apply the maximum principle to (II.2.1) to obtain that 

(11.2.2) Ft > 0. 

Using (II. 1.3), we see that 

1 = / Gt(p,q)Ltl(q)dnt(q) 

Mt 

(11.2.3) = J Gt(p,q)St(q)dßt(q) 
Mt 

> co / Gt{p,q)aßt{q)-
Mt 
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It follows that there exists some c\ > 0 such that 

/ / Ft(p,q)dßo(p)dß0(q) <ci foral i Ì G ( 0 , E ) . 

Hence, 

(11.2.4) inf Ft< — % foral l t£(0,e). 

By means of the Harnack inequality (cf. [9], Corollary 8.21), we get 
from (II.2.1) and (II.2.2) that there exists a c<2 > 0 such that 

(11.2.5) sup Ft<c2 inf Ft foral i i e ( 0 , e ) . 
U(2)xU(2) (7(2)X(7(2) 

Combining (II.2.4) and (II.2.5), 

(11.2.6) sup F t < — ^ — . 
u{2)xU{2) vol(UW,gQy 

By standard arguments, (II.2.1), (II.2.2) and (II.2.6) imply that the 
family (i?t)te(o,i) is bounded in the Sobolev space L\{U^1' x EA1), «foffiöo) 
for each p > 1. Now elliptic theory yields that for each sequence t^ —> 0 
in (0,1) and for each m G N, there exists a subsequence (£&/) of (£&) 
such that (i7^/) converges in Cm(U x [/) and therefore 

i \ , ->£<) m C r a ( [ / x [ 7 ) . 

Since U CC Mo is chosen arbitrarily, FQ can be extended to a smooth 
function on MQ X MQ with 

(11.2.7) (L0,p + L0,g)*b = 0. 

It remains to show that FQ vanishes identically. For this, we fix 

and set 

q£Mü\{J{\xi\ <a0}, 0 < a 0 < l 

ft (p) = Gt (p, q) for small t 

and 

ÛO(P) = h(p,q)-
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Since LfVt = 0 on Mt \ {q} and since gt is the cylinder metric on {t < 
\xj\ < 1}, by the Harnack inequality, there exists some C3 > 0 such that 

sup{vt(p) : £ < \xi(p)\ < a^} < c3 inf{u t(p) : £ < \xi(p)\ < a^} 

for all t and all £ G ^-, ^ . On the other hand, because of (II.2.3) and 

vol({£ < \xi\ < ai(},gt) = w n _ i l o g a i 

we have 

inf{vt(p) : £ < \xi(p)\ < a i£} < / Vt(p)d/zt 
Wn-i logai 

{Ç<\xi(p)\<aiÇ} 
1 

c 0 a;„_i logai 

Consequently, 

Ì C3 
sup{wt(p) : — < |a?i(p)| < ao} < ; for small t. 

a0 c0o;„_ilogai 

Recalling that 

G0(p,q)^0 as p ^ Pi , i = l,2 

the above considerations show that the function ûo G C°°(Mo) is bounded. 
Now observe that by (1.1.2) and (II.2.7) 

LQ{<PQÛQ) = 0 on Mo-

Further, since ûo is bounded and 

2 - n 

ipo = 0{\xi\ 2 ) as p^-pi 

we have 
n 

(^o^o G 2 > - 2 (Mo). 
Applying a result of Harvey and Polking (see [12], Theorem 4.1), it 
follows that Lo(ipQÛo) = 0 in the weak sense on Mo- Then elliptic theory 
implies (^o^o £ C°°(MQ). Finally, since the operator LQ is invertible, 
<POÛQ and therefore ÛQ have to vanish identically. q.e.d. 
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The following lemma says that the family {Gì) is monotonically in­
creasing in t. More precisely, setting 

2 

Mt = Mo\\J{\x,\<ê} 
i=l 

and using the canonical identification of Mt with Mt \ {\XJ\ = t?}, we 
have 

L e m m a II .2 .2 . For p,q G Mt, 

^-Gt(p,q)>0. 
at 

Proof. We fix t G (0,1), p G M t , and u t G C°°(Aft). For - t < r < 0, 
let u t + T G C°°{Mt+T) such that 

u t + T = ut on M t . 

Because of gt+T = «ft on M t , 

«t(p) = / Gt+r{p,q)Lt+rV4+T{q)aßt+r{q) 

Gt+r{p,q)LtUt{q)diJ,t{q) 

Mt 

2 

+ X 1 / Gt+r{p,q)Lt+TUt+r{q)à-iJ,t+T{q)-
i=i l 

{ ( t + r ) 2 < | a ; i | < t 2 } 

Further, 

T = 0 

-^ I Gt+T{piq)Lt+Tut+T{q)diit+T{q) 

{{t+T)V<\Xi\<à} 

= ~Yt / Gt{piq)Ltut{q)dut{q) 

{\Xi\=ti} 

where dut is the volume form induced from the restriction of gt onto 
{\xi\=é}. Thus, 

—^{p,q)Ltut{q)dßt{q) = - Gt{piq)Ltut{q)dut{q). 

Mt {\xi\=é} 
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Since Lt : C°°(Mt) ->• C°°(Mt) is surjectiv, we obtain that 

t-(p,q)u(q)dnt(q) = - / Gt(p,q)u(q)dut(q) 
d t ™ t 

Ä* {|x<|=ti} 

for each u G C°°(M t ) . Since Gt > 0, this yields the assertion. q.e.d. 

As a consequence of Proposition II.2.1 and Lemma II.2.2, we get 

Corollary I I .2 .3 . For all t G (0,1) and for allp,q G Mt, 

Gt{p,q) > G0(p,q). 

q.e.d. 

In the next step, we want to derive uniform estimates from above 
for the Green functions Gt near {\xi\ = t?}. For this, we need some 
preparations. 

Let ZXjb = {x G ffi" : f < \x\ < \b} and S™"1 = {x G ffi" : \x\ = A} 
for ft > 1 and A > 0. Let GN,x,b(x,y) denote the Green function of 
the Neumann problem on Z\ b for the Yamabe operator Lz w.r.t. the 
cylinder metric gz = -O-IQE- We extend GN,\,b{x,y) by reflections to 
(Mn \ {0}) x (Mn \ {0}) and set 

mb,+ {a) = sup{GNjX,b(xo,y) • \y\ = ACT} 

and 
mb,-(a) = inî{GNyX,b{x0,y) : \y\ = ACT} 

for er > 0, where XQ G S™~ . Clearly, roj]+(ff) and m(,;_(cr) do not 
depend on A and the choice of xo, and 

(II.2.8) mb,±(-) = mb,±(a). 
CT 

L e m m a II .2 .4 . For each c > 1, there exists a So > 1 such that 

mbj+(b) < mbj_(cb) for all b > So. 

Proof. One verifies that the Green function Gz(x, y) for the Yamabe 
operator Lz of (W1 \ {0},gz) is given by 

o 2 —n 
( \x — y * 2 

Gz(x,y) = an m\y\ 
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and that for I O G S ™ , 

GN,x,b(xo, y) = ^ Gz(xo, b2ky). 
kez 

It follows that 

2 - n 

kez 

and 

mb,-{a) = GNjx,b{x0i -ax0) = an ^ 
kez 

Therefore, 

m6)+(ö) = 2an J J - ^ 

and 

oo 

mb-{cb) = an^ 

One concludes the proof by verifying that for each c > 1, there exists a 
<?o > 1 such that 

for all ò > (5o- q.e.d. 

Lemma II.2.5. Xei G(p,q) be the Green function for the Yamabe 
operator L on a closed Riemannian n—manifold (M,g), n > 3, with pos­
itive scalar curvature S. Suppose that a cylinder (ZxyCbi9z) forc,b > I, 
A > 0 is isometrically embedded in (M,g) and that m,bt+(b) < m,bt-(cb). 
Then 

GN,x,b{p,q) > G(p,q) 

for each p G S™~ C Z\yCb and for a^ Q G ^A,c6-

blKoY 
b2k 

a 

i + fr •lkoY 
b2k 

a 

2-n 

f(l + cb2k+1)2\~ / ( l + c-1b2fc+1)2\ 
cb2k+l + c~lb2k+l 
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Proof. Fix p e S ™ and assume that 

min{GN,\,b{p,q) - G(p,q) : q G ZXyCb} < 0. 

By the maximum principle for L, this minimum is attained at a bound­
ary point go of Z\fib. Because of (II.2.8) and mb>+(b) < mbj-(cb), we 
obtain that 

G(p, q0) > GNyX,b(p, go) - GNjX,b(p, q) + G(p, q) 

> mb_{cb) -mbj+(b) + G(p,q) 

(II.2.9) > G(p,q) 

for each q in the boundary of Z\f,. Consequently, G(p, •) has a maximum 
in the open set M \ Z\bi which contradicts the maximum principle. 

q.e.d. 

Now we are able to estimate Gt in the following way: 

Propos i t i on II .2 .6 . There exists a 8\ G (0,1) such that for all 

t G (0,ôf) and for allp,q £Ui, i = 1,2, satisfying £2 < |a;,(p)| < S\ and 

\xi(p)\2 < \xi(q)\ < 1, 

Gt(p,q) <GN!\yb{xi(p),Xi(q)) with \ = \Xi(p)\ and b=-—--7. 
\xi\P)\ 

Proof. By construction, (Mt,gt) contains the cylinder {t < \xi\ < 
| } U {t < \x'z\ < §} . Thus, the statement follows from Lemma II.2.4 
and Lemma II.2.5. q.e.d. 

We now study the behavior of the canonical metrics £jt. Let the 
positive functions ät,i for 0 < £ < 1 and i = 1, 2 be defined by 

0* = àï,i9E,i on Wt,i = {tï < \xi\ < 1}. 

Since Qt = a\gu 

Ott 

ä t ) i = —L for 0 < t < 1. 
\%i\ 

T h e o r e m II .2 .7 . 

(i) For any domain U CC MQ, 

0 t — > 8 o in C°°(U) as t ->• 0. 
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(ii) There exists a constant q, > 0 such that for each t G (0,1), 

«o,i < àt,i < cb on Wt,i-

Proof (i) We have to show that for U CC MQ 

at—> «o in C°°(?7) as t ->• 0. 

4 

Let (p be a positive, smooth function on MQ such that the metric ipn~2go 
is Euclidean on a neighborhood U' C U and let p G U'. Then, by (1.1.5), 

i 
\ o » n~2 

ao(p) = y{'P)n-'2 lim , ^ , ,G0(p,q) - and0jlf(p,q) ~n 

<P<p)^ um T f 0™Ô0(p,q) - M o , ^ ) 2 " " 
1 

W(PWÎ) n"2 

<Pï ip{p)ip(q) 

and, for small i > 0, 

4 

where dojip(p,q) is the distance w.r.t. (pn~2go. Therefore, 

2 1 

«t(p) ~ « o ( p ) = <Po{p)n-2 liro.(Gt{p,q) - G0{p,q))n-2. 
q^p 

Now Proposition II.2.1 implies the claim. 
(ii) Since 

9E,i = \xi\2gt on Wt,i 

for t > 0 and 
4 

9£,i = N V O ~ 2 # O on W0,i 

by (1.1.5), 

i 
n - 2 

1 
2 - n " - 2 

ät,i(p) = lim |a;,(p)| 2"\xi(q)\ ^ Gt(p,q) - an\xi(p) - Xi(q)\2 " 
q^p 

for i > 0 and 

i 
2~n 2~n 2-n\ ™-2 

äo,i(p) = lim |a;,(p)| 2 \xi{q)\ 2 G0{p,q) - an\xi(p) - Xi(q)\ 

Hence, the first inequality in (ii) is a consequence of Corollary II.2.3. 
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To prove the second inequality, we make use of Proposition II 
Then, with A = |a?i(p)| < ô\ and b = , ) •.,, we have 

q—ì-p 

-an\xi(p) - Xi{q)\2-n)~2. 

Since, for A and b as above, 

2 - n 

GN,x,b(xi(p),Xi(q)) = a „ ^ 
fcez \xi(p)\2k+1\xi(q)\ 

(cp. the proof of Lemma II.2.4), we arrive at 

n 

ät,i(p) < 2an\xt(p)\2-nJ2(\x*(P)\~k - \xi(P)\ 
k=i 

for f2 < |a;j(p)| < ô\. Observing that for |a;,(p)| < öi, 

n 

fe=i 
n 

< \Xl(p)\2-nj2(\^(p)\-k-öi\xi(p)\-ky 
fe=i 

n 

= ( l - < J i ) 2 - n | a ; i ( p ) | 2 - n j ; | a ; i ( p ) | f c ( n - 2 ) 
fc=i 

( l - ^ ) 2 - " 

l-\xi{p)\n-2 

(1 - 61)
2~n 

< 
- 1 - 8^-2 

and using that by (i), 

®t,i -> «o,i in C°°({ôi < \xi\ < 1}) as t -> 0 

the second inequality of (ii) follows. q.e.d. 
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II.3 Consequences for the I?—geometry of the modul i 
space BQ 

In this section, we shall study implications of the asymptotic behavior 
of the canonical metric Qt for the geometry of the moduli space B$ of 
scalar positive locally conformally flat structures w.r.t. the L2—metric 
f) induced by our canonical metrics (cf. §1.3). 

We consider the locally conformally flat structures C< and C^A given 
in §11.1 and define the tangent vectors Xt and X^Y at [Ct] on B^ for 
t G (0,1) and Y G so(n), where so(n) is the Lie algebra of SO(n), by 

Xt = - ^ [C t ] a n d Xt,Y = " j ^ [Ct,exp(rY)] 
T = 0 

We are going to estimate the length of the vectors Xt and X^Y w.r.t. 

Theorem II.3.1. As t ->• 0, 

(i) t)(Xt,Xt) = Oa) and 

(ii) t)(Xt,Y,Xt,Y) = 0 ( - ^ ) for each Y G | iogt | 2 som . 

Proof, (i) Let the homeomorphisms <&t T : Mt —> Mf+T be given by 

i i 
* o *«,T(p) = fi-ft + ̂ M r i l + Kt + r)*-**] 

( l - t 2 ) | œ i ( p ) | 

for p G Wtjj C Mt, i = 1, 2, and 

2 

$ * , T ( P ) = P for p G M 0 \ l J { | a ; j | < 1}. 

We set 
X* := -£**t,T9t+T 

T = 0 

One checks that on WH t.'ii 

Xt = -T—i — T d r ? 
i2(i2 - l)r? 

and therefore 

< a2xt,a2
txt >s t=< Xt,X* > 9 t = T — 

t i l Ì2 Hrf 
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with ri = \xi\. Clearly, 

2 

Xt = 0 on M0\\J{\xi\<l}. 
i=l 

Using Theorem II.2.7(ii), it follows that 

l«?Xt|IÌ2(flt) 
*( 

2 

< 2 CbC""-1
1 r«- 3dr 

t ( i - t 2 ) 2 

- 0 ( 1 , 

as t —> 0, where d/z^j is the volume element of QE,Ì- NOW, choosing 
convenient diffeomorphism <J>t;T : M t —>• M t + T , near $<)T, we conclude 
that 

2 
P

0, -J^tVßt+T 
T = 0 

P0* «I ^ . r S t + r 

2 d * 

i2(0t) 
2 

r = 0 

T = 0 

i2( f l0 

i2( f l0 

< 2 H V 2 
tA.t||£,2(flt) 

as t —> 0, where P0t : S2(M) -> k e r ^ n S ^ (M, gt) denotes the L2(g t)-orthogonal 
projection. 

(ii) We fix y G so(n) and define the homeomorphisms ^t,r '• Mt —> 
Mt,exp(rY) by 

x\ o wt T(p) = exp T — - — - — Y xi(p) 
V I l o g t I 

for p G {t < \xi\ < 1} C Mt and 

2 

^t,r(p)=P for p G M 0 \ ( J { | o ; i | < 1}. 
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r=0 

One checks that 

( logl^G?)!, A 
X2 ° ^t,r{P) = exp r — — — Y x2{p) 

for p G {t < \xi\ < 1}. Thus, ^t,r is indeed a homeomorphism. We set 

d 

and assume without loss of generality that 

Y = (Yij) with Yjj = Æ2iÆij - ÆuÆ2j. 

Then, on {t < \XJ\ < 1}, 

2£2 

Xt,Y = 7j—-—dridé» 
|logi|ri 

where r\ = \x\\ and xi = (xn,... ,xin) with x n = ^cosö and x\2 
£sinö, and 

<(4xt,Y>atXt,Y >st = <Xt,Y,Xt,Y >gt 

v-2 

| logt 12r\ 
2 

| logt |2 

Using again Theorem II.2.7(ii), we arrive at 

H2xt,Ylli2(0t) = °^]^^) 

as t —> 0, from which we derive the claim as in the proof of (i). q.e.d. 

An immediate consequence of the last theorem is 

C o r o l l a r y I I . 3 . 2 . The curve t G (0,1) i—> [Ct] G BQ on the moduli 
space BQ of scalar positive locally conformally flat structures has finite 
length w.r.t. t). In particular, (B^t)) is not complete, q.e.d. 
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