J. DIFFERENTIAL GEOMETRY
54 (2000) 139-176

A LOCAL PROOF OF PETRI'S CONJECTURE AT
THE GENERAL CURVE

HERB CLEMENS

Abstract

A proof of Petri’s general conjecture on the unobstructedness of linear sys-
tems on a general curve is given, using only the local properties of the
deformation space of the pair (curve, line bundle).

1. Introduction

Let Ly denote a holomorphic line bundle of degree d over a compact
Riemann surface Cy. The Petri conjecture stated that, if Cy is a curve
of general moduli, the mapping

Ho : H° (Lo) ® H° (WC’O ®L(\)/) — H° (WC’O)

isinjective. Later, this assertion was given a more modern interpretation
making it a central question in the study of curves and their linear
series—what is now called Brill-Noether theory.

To recap the modern formulation we proceed as in [1]. Let C(gd)

denote the d-th symmetric product of Cy and let A C Céd) x Cy denote
the tautological divisor. Let

Pr =P (H" (L)) .

For the projection
pe: C\Y x €y = CLY
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and exact sequence

0—0 -0 O(A)%Océd)xco(A)‘ — 0,

i xco cixa A

one has that
o =1 (0.0,

Applying the derived functor Rp, o Opry ¢, to the above exact sequence
as in (2.6) of [1], one obtains an exact sequence

0 = Np, o) = Opr ® H'(O¢,) — Opr (1) @ H' (Ig) — 0,
0

where N4\ p denotes the normal bundle of A in B. So the dual of the
kernel of 1y above is exactly
]P’T> '

Via the standard short exact sequence of normal bundles, Petri’s

1
1 (Moncgo

conjecture becomes the assertion

H! (NP*\céd)> =0

that is, the deformation theory of linear series is unobstructed at a curve
of general moduli.

There are several proofs of Petri’s conjecture, proofs via degenera-
tion by Gieseker [7] and Eisenbud-Harris [6] and a proof via specializa-
tion to the locus of curves on a general K3-surface due to Lazarsfeld
[11] (see also [12]). However the only proof based on properties of the
infinitesimal deformation of the general curve, as opposed to some spe-
cialization of it, is a proof for r < 2 by Arbarello and Cornalba in [1].
In conversations concerning his joint work with Cornalba, Arbarello ex-
plained to the author the viewpoint of [2] that there should exist a
generalization to higher order of the following result (which appears
both in [2] and [1]):

Let

Dn (LO)

denote the sheaf of holomorphic differential operators of order < n on
sections of the line bundle Ly. (If

Ly = Oc,
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we denote this sheaf simply as ©,.) The first-order deformations the
pair (Lg, Cy) are in natural one-to-one correspondence with the elements

¢ € H' (D1 (Lo))

in such a way that a section sy of Ly deforms to first order with the
deformation ¢ if and only if the element

4 (s0) € H' (Lo)

is zero.

Furthermore he pointed out that an appropriate higher-order gen-
eralization of this fact and a simple Wronskian argument would imme-
diately yield a “local” proof of Petri’s general conjecture at the general
curve (see §4 below). The purpose of this paper is to carry out that
generalization.

The general idea of the proof is to use the Kuranishi theory of (curvi-
linear) C°°-trivializations of deformations of complex manifolds as it
applies to the total space the dual line bundle LJ. Roughly speaking,
if we denote the ¢-disk as A and are given a C'*°-trivialization

F,=(o,m): M — My x A

of a deformation M /A of a complex manifold My, Kuranishi associated
to this situation a power series

E=Cit+ 62+,

where each ¢; is a (0, 1)-form with coefficients in (a subsheaf of) the tan-
gent bundle of My. F, is not allowed to be an arbitrary C*°-isomorphism
over A. The relevant restriction is that trajectory of each point on My
must be holomorphic, that is,

0_1 ((II()) g M

must be a holomorphic disk for each zy € M. This is of course just
a restriction on the choice of trivialization; it implies no restriction
on the deformation M/A. For such a trivialization, the holomorphic
functions f on M have a very nice form; namely we can write power-
series expansions

foF V= fo+ fit+ fot> + ...
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such that the holomorphicity condition
Ouf=0
becomes just

@t — &) (fo+ it + fot2+...) =0

Although later on we will actually need to consider a slightly more
general case in the body of this paper, it is perhaps helpful as an intro-
duction to give the line of reasoning of the paper in the case in which
M, happens to be the total space of a holomorphic line bundle

q():L(\)/—>C()

over a compact Riemann surface Cjy. One easily sees that the defor-
mation is a deformation of holomorphic line bundles if and only if the
Kuranishi data ¢ are invariant under the action of the C*-action on
LY. In fact, if x denotes the (1,0) Euler vector field on L associated
with the natural C*-action on the line bundle, this is just the condition

[x.&1=0

for all j, that is, that the ij can be written everywhere locally in the
form

(1) 9 (@) - x + 45 (8) -7z

where « and § are (0, 1)-forms on Cy and 77, is a lifting of a (1, 0)-vector-
field 7¢ on Cy such that

[X, T L] =0.
(The “associated” or “compatible” Kuranishi data for the deformation

of Cy is just given by fjc = - 7¢.) Sections s of L are just functions f
on Ly for which

LX(f):f7

where L, denotes Lie differentiation with respect to the vector field x.
Suppose now we have a line-bundle deformation (L/A,C/A) of
(Lo, Cp) with compatible trivializations

o : C— Oy,
A LY = Ly,
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and a section s of I whose zeros are given by
o~ (zeros (s0)).

Rescaling A in the fiber direction we arrive at a trivialization of the
deformation LY of Ly for which s is constant, that is,

§ =80 A\

We call such compatible trivializations of Cy and L§ “adapted” to the
section s.

Of course we have twisted the almost complex structure on Cy and
Ly to achieve this trivialization. To keep track of this twisting, we
consider only “Schiffer-type” deformations C' of Cj, for which the twist
in almost complex structure is given almost everywhere by a gauge
transformation, that is, by a power series

B=pit+ Bt +...,

where the f; are C*-vector-fields of type (1,0) on Cy — {p} and mero-
morphic in a small analytic neighborhood of p. Then we take

el -1 _

¢ = B (0co)

(see [5]) and get a compatible trivialization of LY /A by lifting the §; to
vector fields 8 on Ly with

] =0

with the same meromorphic property near g ! (p). Holomorphicity of a
section s becomes the condition

(31 (e (1)) =0
on the power series

f=fo+ fit+ fot? + ...

representing s as a function on Ly x A. That is, the condition is simply
that the pull-back of f via the gauge transformation is a power series
whose coeflicients are meromorphic sections of L.
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If we have a holomorphic section s of L whose restriction to sp has
simple zeros Dy, and if 8 is zero in a small analytic neighborhood of

D =zero(s) CC
then there is a C*°-automorphism
P:CoyxA—Cyx A
defined over A such that:

1. ® is holomorphic in a small analytic neighborhood of D U {p}.

2.
® ({zo} x A)

is a holomorphic disk for each zg € Cy.

$oF, (D) =Dy x A.

The rough (imprecise) idea is that trivialization ® o F,, can also be
considered to be of Schiffer type for some vector field

7:71t+72t2+....

~ lifts to a vector field ¥ associated to a Schiffer-type trivialization of
the deformation LY /A of L§ which is adapted to the section s. Since
by construction s corresponds to the “constant” power series

fo+0-t+0-2+...,
we have the equation

(1 ("= (f0)) ) =0,
that is,
(2) Bry.e= ] (fo) =0,

It is in this way that we produce elements of H' (D, (Lg)) for all
n > 0 which must annihilate sections sg of Ly which extend to sections
of L. (The difficulty is of course that the elements of H' (D, (L))
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depend on the choice of sg. To remedy this we will eventually have to
replace the deformation C'/A of Cy with the deformation

P/A = P (H (/)
of P (H? (Lg)) and replace L with O (1).)
As one of the simplest concrete examples, let

B C
T+ 71

with linear holomorphic coordinate z on C. For a C**°-function p sup-
ported on {z : |z| < 1/8} and identically 1 on {z: |z| < 1/16}, let

Co

_r.9
/61 - P 82’7
5j = 0, 7>1

This is a non-trivial deformation since, to first order it is given by the
generator

— (p B
¢y (; . %> c H! (TCO)-

For Ly we can take the line bundle of degree 2 given by the divisor
14++v-1 3+3v-1
{20 22)

with corresponding section sg. Let s be some extension of the section
sg. For a trivialization

F,:C = Cyx A

associated to the above Kuranishi data, the zero set D = D’ + D" of
the section s is given by two power series

14++v/-1
:T—I—alt—l—...,

343y
=Y

z = aft)
VARES b(t) +bit+...,

since the deformation of (almost) complex structure is zero near Dy. So
near D’ we recursively solve for

D (2,1) = (a' (z,1) ,t)
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such that

and similarly near D" for

P (z,t) = (b (2,¢),t)

such that
3+3v-1
V(b (1), 1) = +T
Near {0} x A we take
B (z,t) = (1)

and then extend ® to a family of diffeomorphism on all of Cyy by a C*
patching argument. For the new trivialization

PoF,:C—=ChxA

the divisor D giving the line bundle L is “constant” so that the pull-back
of sy via the product structure gives rise to a compatible trivialization
of L.

The Petri proof will follow from doing this process (for a line-bundle
deformation of Ly for which all sections extend) for every Schiffer-type
variation of a generic curve Cy. We show that the set of equations (2)
we obtain implies that the higher y-maps

st : ker () — H® <ng2) =H! <Tg;’1>

are all zero. As Arbarello-Cornalba-Griffiths-Harris showed twenty years
ago, this implies Petri’s conjecture.

We shall use Dolbeault cohomology throughout this paper. In par-
ticular, the sheaf ®,, (Lg) has both a left and a right O¢,-module struc-
ture and we define

AY (D, (Lo)) = AG @0, Dn (Lo)

where A% is the sheaf of C®°-(0,4)-forms. Also the context will hope-
fully eliminate any confusion between two standard notation used in this
paper, namely the notation L and Ly for line bundles and the notation

LF=IL,0...0L,
N e/

k—times
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where L, denotes Lie differentiation with respect to a vector field 7.
The author wishes to thank E. Arbarello, M. Cornalba, P. Griffiths,
and J. Harris for the original concept and general framework of this
paper, and E. Arbarello and M. Cornalba in particular for many helpful
conversations without which this work could not have been completed.
Also he wishes to thank the referee and R. Miranda for ferreting out
an elusive mistake in a previous version of this paper, E. Casini and
C. Hacon for help with the rewrite (especially for pointing me toward
Lemma 2.6), and the Scuola Normale Superiore, Pisa, Ttalia, for its
hospitality and support during part of the period of this research.

2. Deformations of manifolds and differential operators

2.1 Review of formal Kuranishi theory

We begin with a brief review of the Newlander-Nirenberg-Kuranishi
theory of deformations of complex structures (see [10], [9], IL.1 of [8], or
[4]). Let

(3) M-S A={tcC:|t| <1}

be a deformation of a complex manifold My of dimension m. Since we
are doing formal deformation theory, all calculations will actually take
place over the formal neighborhood of 0 in A. However, convergence
will not be an issue in anything that we do since we will always be
working from a situation in which we are given a geometric deformation
and deriving consequences in the category of formal deformations.

Definition 2.1. A C*°-diffeomorphism
F,=(o,m): M — My x A
will be called a trivialization of the deformation M /A if
0|y, = tdentity

and
o~ (x0)
is an analytic disk for each zg € M.

The next four lemmas are standard from formal Kuranishi theory:
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Lemma 2.1. Let
T,
denote the complezification of the real cotangent bundle of My. Given
any triviolization Fy, the holomophic cotangent bundle of My under the
C*°-isomorphisms
M, =2 M,

mduced by F, corresponds to a subbundle
T C T3
If
a0 4 701 Tj\‘/[o — T]%/}g D T](\)/}i
are the two projections, the retriction
Rl Ve
s an isomorphism for small t so that the composition

1,0 (”1’0)_1

1,0 7% 0.1
TM0 — 1y —>TM’O,

gives o C°-mapping
1,0 0,1
g(t) : TMO - TMO

which determines the deformation of (almost) complex structure.

Thus, at least formally, we can write

¢(t) = Zi>0 &it'

with each &; € A(]]\Z,l() (T1,0), that is, each &; is a (0, 1)-form with coeffi-
cients in the holomorphic tangent bundle 77 o of Mj.

Lemma 2.2. FEvery relative complez-valued C°° -differential form
w on M/A of type (0,q) corresponds on a (formal) neighborhood of My

to a form
* oo =7
704 <(Fa_1) (w)> = E i w; '

M()XA

on

and so, working modulo t, gives a holomorphic family

ZOO i
Wy 1= =0 wwt .
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of C%°-forms. This correspondence is a formal isomorphism

AL
0,
( )g : {f} - AM% ® C[[t]].-
If we have two different trivializations o and o', we have a formal iso-
morphism

-1
Gry=)go((O)a) .
Lemma 2.3. For any C*-function f on M write

foF; = Z:,:O i tP
and define as above o
fo = Zi,j:O fiot".
Further define
Dy (fo) 1= (0 = 32 96) (£o)
=Y dnfiot =3 & (i)

i=0,j=1
Then
()g 00 =Dyo (),
and
Dy =Gl 0DyoGY,.
Also

fo o Fy
is holomorphic on M if and only if

D, (f,) = 0.

We next ask which sequences &; € A%! (T} ) come from a trivial-
ization of a deformation (3). Before answering this question, we need
to make precise the various actions of an element ¢ € A% (T} 4) on
> AP (My). For any ¢ we write the action via contraction as

€,
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and “Lie differentiation” as

Lei=(&|)od+ (-1 do(]).

The sign is so chosen that, writing any element of A%* (T1,0) locally as
a sum of terms

{=N®x
for some closed (0, k)-form 7 and x € A% (T} ). Then
Lg =7N® LX‘
(Warning: Since, as an operator on A% (My), Lse = fL¢, one has
[0, L] = I : A% (Mp) — AV (11y)

however the identity does not hold as an operator on AP? (M) for
p>0.)
Also we compute

LeLg— (—1)%8md8 [,
degqj-deg®’ (- —
=(71® Ly) (T ® Lyy) = (=1)"F7ET (7 @ L) (7 ® Ly)
=77 (LXLX/ — LX/LX)
:ﬁﬁ,L[X,X’} .
So, using this local presentation for
¢ € A% (Tyg), € € A% (Tyy),

we can define '
[€,¢'] =i [x,X'] € A% (T ).
Lemma 2.4. The almost complex structures given on a coordinate
neighborhood Wy in My by the the (0, 1)-tangent distributions

( o Zi:l Zz it 8le0>

are integrable, that is, come from a deformation/trivialization of My as
in Definition (2.1), if and only if, for

N o ARl i
f = Zi:l Zk,l dUWO A h’z,kt a’l)%[/ 3
0

we have

o = 516,
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Proposition 2.5. Two trivializations F, and Fy of the same de-
formation (3) are related by a holomorphic automorphism ¢ of M/A,
that is, there is a commutative diagram

M 5 M
lo ld,
My = My
if and only if ) )
D, = D,

Proof. One implication is immediate from the definitions of D, and
Dy, For the other, the equality

§o =&
implies that the differential of the C'**°-automorphism
¢:=(o,m) o(oym): M = M

preserves the (1,0)-subspace of the (complexified) tangent space and
therefore ¢ is holomorphic. q.e.d.

2.2 Gauge transformations

We begin now with a deformation
M/A

of My and let

oo MY My x A

be a trivialization with associated Kuranishi data

€o-

Suppose that we have a one-real-parameter group of diffeomorphisms
(I)SZM()XA—)M()XA

defined over A such that

F,=®,0F, : M 7% My x A
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is a trivialization for each (sufficiently small) s and, for each xg € My,

Dyl (201 xa

is a real-analytic family of complex-analytic embeddings of A in My x A.
Then, as for example in §2 of [4], there is then associated a vector field

B+B
where
p= Zj>0 Bt
and each f3; is a C®-vector field of type (1,0) on My, such that, for
g=go+git+...,
on My x A we have
(4) go by = e+ (g).

We let
FgZ:Flz(I)loFUZM—)M()XA.

Then by (4) we have for any C*°-function ¢ on M that
(5) 98 = els (90) -

If ¢ denotes the Kuranishi data for the trivialization F§, then by
direct computation
%s

= [0 :
as [ ) /6:| + [57 gs]
(See for example Lemma 2.10 of [4].) On the other hand, if we define

bl — 1
(6) < -—W(Waﬁ])
and the action

(7) & =P (&) = 1O+,
one also has by direct computation that

agsﬁ _

9s [5’/8] +[57€sﬂ]'
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(See for example §3 of [4]. Compare with §3 of [5].) The conclusion is
that {5 is the Kuranishi data for the trivialization Fy for all s and so,
in particular

&8

is the Kuranishi data for the trivialization I} = Fjg.

So the group of vector fields 5 acts on the Kuranishi data associated
to the deformation M/A. This action corresponds to the change of the
given trivialization by a C*°-automorphism

(8) q)g:M()XA—)M()XA

defined over A.

Lemma 2.6. i)
(") (9 —¢) (e7") =0 - &s.

i1) Given a function

Js=>_ Jat'

on My x A, the function
feoFps

is holomorphic on M if and only if
(0=¢€) (e7" () = 0.

Proof. 1) This assertion is implicit in (5) but, as a check, we will do
it by direct comptation.

(eLB) (0-¢) (e_LB) =d+ [eLﬁ,g] (e_LB) —elP 1.
If we can show the identity
(9) [0, e8] = 5 0els,
the lemma will follow from Lemma 2.3 since, by definition,
&5 = 1(6) + 5.

To see (9) we prove by induction that

@.6 =3, ( e ) (18, D" [9.8] £

7
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Inductively
(0.8 =[9.8] - 8" + 8- [9,8"]
=0, ~6”+6< (5)wrp

s (L0 )R -/3“*)

Now use the identity
(()=Cz))-(0)
T r—1 T
Thus

[5’ (ZZOZO %)] DI B ( . ) (8. )"~ [3,8] 5
DI e R |

0o ,BZ
={g o0 (Zz’:O 7,_') .

i)
[9.¢" 0 c™]
Wa eLB] o e—LB + eLB o [5’ e—LB]

g+ els o G_go e_L37

so that

e’ o (g —§&)o e~lh = — (Cﬁ + (eLB ofo e_LB)) .
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Suppose now that we have two trivializations

F, : M— MyxA,
F. @ M— MyxA

of a given deformation

M/A.

Then
FpoF;!

is a C'*°-diffeomorphism of My x A and so can be realized as the value at
s = 1 of a one-parameter group of diffeomorphisms which restrict to an
analytic family of analytic embbeddings of {z} x A for each zy € Mj.
Thus referring to the notation of Lemma 2.3 above we have that there
is a C*°-vector field & of type (1,0) such that

(10) 9o = el (ga’)

D, = el obg oel—x,

2.3 Schiffer-type deformations

We now consider a special class of deformations of My, those for which
the change of complex structure can be localized at a union Ay of
codimension-one subvarieties on My. We let

(11) e A <T]}42> ® tC[[1]

be a vector field which is

i) meromorphic in an analytic neighborhood (Uy x A) of the set
(A() X A) on (M() X A),

11) C™ on (M() — A()) x A.
Using Lemma 2.6 for the case in which we first take

(12) Fy: (Mo — Ag) x A) = ((Mo — Ag) x A)
in 2.2 as the identity map, we define a deformation Mgz/A of My by the
integrable Kuranishi data

(13) &g 1= <p-

Notice that {g = 0 in a neighborhood of Ay X A so {g corresponds to a
trivialization (

0'5,71’)
Fﬁ : Mﬁ — M() X A
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with

Fs: (05)" (Ug) = Uy x A
an analytic isomorphism. Denote
(14) Dy = 5‘76 =0 — .

We call Ay the center of the Schiffer-type deformation.
Let
Ag = (05)7" (Ag) C Mj.

From 2.2, Lemma 2.6 and the above we conclude:
Lemma 2.7.
fﬁ [e] Fﬁ
is analytic on Mg if and only if
gMo (e_LB (fﬁ)) = 0.

In fact, for any divisor By supported on Ag, By has a unique exten-
sion to a divisor

By
on Mg which is supported on Ag. We denote by

Cg,

the vector space of functions fy which are C* on (My — Ag) and mero-
morphic on Uy and for which

By + div (f())

is effective on Uy. Then:

Lemma 2.8. i) A meromorphic function f on Mg with
Bg + div (f)
effective is a formal sum
o0 .
Joi=Jos =3y Tl

such that each fg; € Cp, and

(5 - Zj:l gﬁ’jtj) <ZZO fﬁ,iﬂ) =0
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i) The meromorphic functions on Mg with
Bg + div (f)
effective are given by the kernel of the mapping

OMO (OO . A())

e H° (O, (00 - Ag)) @ C[[1]] — H° ( O, (Bo)

) ® C[[t]] -
ii1) If
7 A() — M()
is the inclusion map and R denote the image of the map

(7 Ony (Bo) @ (C[[]) 5" (H" (O, (Bo) @ T[]

then fo € H® (O, (Bo)) extends to a global section of Oy, (Bg) if and
only if _
[8, e_LB] (f()) € R.

Proof. 1) The assertion is immediate from Lemma 2.3.
ii) Again by Lemma 2.61) occurs exactly when fg lies in

Cp, @ C[[t]] Nimage (HO (Oar, (00 - Ag)) @ C[[E]] eL—6> Coo-ay @ C[[t]]) .

iii) follows from Lemma 2.7 and the cohomology exact sequence
associated to the short exact sequence

OMO (OO . A())

— 0.
OMO (BO)

0— OMO (B()) — OMO (OO . A()) —

2.4 Gauge transformation on Schiffer-type trivializations

Next suppose we wish to change our trivialization

(o3.7)

FﬁlMﬁ i} M()XA

by an allowable C'*°-automorphism
g
M 8 — MO X A
— 1®
My % Myx A

defined over A. That is
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1. such that ® preserves Ay X A as a set
2. is holomorphic on Uy x A.

3. @ restricts to an analytic embedding of each disk {zo} x A.

To calculate the Kuranishi data for G, we proceed as in 2.2. We can
assume that ® = &y for a family ®, as in 2.2. We can further assume
that @] Uoxa 18 a real analytic family of complex analytic maps. Let
K= Z‘;‘;l k;t/ denote the C™ -vector field of type (1,0) such that the
family @, is associated to

s(k+F).

Then by (10) for F, = Fg and F,,, = G we have

Computing, using (7) and (9),

eL” OﬁgoeL—” = eL" o (5—%) oe
B

= elvo (eL5 0do eL—B) oel-n,
Thus we conclude that g,/ is holomorphic if and only if
Dty (€57 0 e (1)) = 0.
Lemma 2.9. For a power series
9= ZZO git’
on My x A, go G is holomorphic on Mg if and only if

Daty (" 0 P~ (g)) = 0.
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3. Deformations of line bundles and differential operators

3.1 The y-maps

Let Xy be a complex manifold and let Ly be a holomorphic line bundle
on Xy. Let
D (Lo) ,Dn (Lo)

denote the sheaf of (holomorphic) differential operators, respectively
the sheaf of differential operators of order < n, on (sections of) the line
bundle Ly. Whenever

H? (D5, (L)) =0

we have a natural exact sequence
H' (D), (Lo)) = H (D1 (Lo)) — H' (8" Tx,) — 0,

where the second last map is induced by the symbol map on differential
operators. So there exists natural mappings

(15) A" H' (9, (Lo)) — Hom (H® (Lo) , H' (Lo))
and
(16) Mn+1 gl (S”+1TX0) N Hom (HO (LO) ,Hl (Lo)) )

image "

(In the next chapter we will establish Petri’s conjecture on generic curve
Cy by establishing that the mappings (16) are zero for n > 0 and Xy =
Cy.)

Suppose now that we are given a deformation
(17) L5 x5 A

of the pair (Lg, X¢). We consider C'*°-sections of L as C*°-functions on
the dual line bundle LY. These functions f are characterized by the
properties

x(f) =1,
(18) % () =0,

where y is the (holomorphic) Euler vector-field associated with the C*-
action on LY.
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3.2 Trivializations of deformations of line bundles

We next claim that, given a trivialization o of the deformation X/A
and given a line bundle L/ X we can make compatible trivializations

v PEREED gy A

lq 1 (qo,1d.)
(19) x =7 xyxA

iy l

A - A

of the deformation LY /X of L /Xy as in Lemma 2.1 but with the addi-
tional property that each fiber of the trivialization respects the structure
of holomorphic line bundles, that is, if we denote by 7 = 7, the lifting of
% induced by the trivialization of X/A, then 7 = 7 for the deformation
LY of Ly is obtained as a lifting of 7, such that

(20) [T, x] = 0.

To see that this is always possible, let {IW} be a covering of X by
coordinate disks and {WW;} the restriction of this covering to Xy. We
construct a C* partition-of-unity {pw,} subordinate to the induced
covering of Xy. Recall that L is given with respect to the trivialization
o by holomorphic local patching data

g (@) = g (@)
= " (wg)exp (30 ¥ (wo) 1)

>0
where zy = o (z) and

gwv' (x)
g"oWs (zo)

ww’ J —
Zj>0 a¥™" (zo) t! = log
Notice that, if V, W, and W’ are three open sets of the cover which have
non-empty intersection, then, for all 7 > 0,

vw ww'! _ Vvw!
aj —|—aj —aj .

Define the mapping
L— L(]
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over Wy x A by

(21) (x,v) — <:Jc0,exp <ZW/ pw; (o) <Zj>0 a;"W’ (z0) tj)) -v> .

This map is well defined since, over V N W we have

9" (@) = g% o) exp (30 @™ (z0)¥).

and so

gvW (z) - exp (ZW/ W} (z0) <Zj>0 a,}fVW’ (@0) tj>)
S e (5, 5% ()
cexp (30, owg (o) (3 ™ (o) V)
=g"°"0 (z9) exp <ZW pw; (%0) Zj>o (a}/ Tty W/) (zo0) tj)

_ VoW vw! J
=977 (wo) exp <ZW, pw (o) Zj>0 ay™ (zo) b > -

Referring to Lemma 2.3 our deformation/trivialization (19) is given
by

¢ e A% <TLg)
for which

(22) Ly& = Ly = 0.

We call a trivialization satisfying (19)-(22) a trivialization of line
bundles. We say that the trivializations A of LY/A and o of X/A
are compatible if they make the diagram (19) commutative. By an
elementary computation in local coordinates, sections

0,1
& eA Ly & TLX
associated to a trivialization of line bundles lie in a subspace
0,1
A g ALE)/ ® TL(\)/
comprising the the middle term of an exact sequence

(23)  0— gt <Ag(i) ®cCx = A—qp! (Ag(i ® TX0> =0,
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that is,
(24) A= A% (D1 (L))
Notice that the first form
&1 € AL (D1 (Lo))

must be O-closed by the integrability conditions in Lemma 2.4. Tts
cohomology class in
H' (D1 (Lo))

is the first-order deformation of the pair (Xy, Lo) given by (17) (see [1]).
Its symbol is just the element of H' (Tx,) giving the Kodaira-Spencer
class for the compatible first-order deformation of the manifold Xj.

Lemma 3.1. i) If X is a Riemann surface Cy, the space of all (for-
mal) deformation/trivializations of the pair (curve, line bundle) taken
modulo holomorphic isomorphisms over A, is naturally the space of
power series in t with coefficients &; € A%’; (D1 (Ly)) .

ii) In general, a (formal) holomorphic section of L is a power series

§ = ZZ tisi

with coefficients s; which are C'*°-sections of Ly such that

ZZO (0si) ' — me & (s;) 1" = 0.

i=0,j=1

ii1) Suppose
J e HO(L)

has divisor D such that
Dy=D-Xg

18 smooth and reduced. Then there is a trivialization
F,: X - Xy x A

such that
0_1 (DO) = Da

and a unique o-compatible trivialization

Fy: LY = Lf x A
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such that
F=1JooA
where
Jo= f’XO .
We call the trivialization Fy adapted to the section f.

Proof. i) By (23) and Lemma 2.4 all integrability conditions vanish
automatically.

ii) is immediate from Lemma 2.3.

iii) Let N be a tubular neighborhood of Dy in X. On N use a
partition-of-unity argument as in §5 of [3] to construct a C*° -retraction

v:N = NN D

such that each fiber is an analytic polydisk. Cover N as above by
coordinate disks {W'}. For each Wy = WN X, which meets Dy construct
a holomorphic projection

’U_1 (WO N D()) — W,
which takes
(WnNnD)— (WynDy).

Again as in §5 of [3], use a C*™-partition-of-unity argument to “average”
these local projections to obtain a projection

x:N—= NNXgy
such that
VoM =PV

and such that, for each xzy € Dy,

2ly=1(20)

is holomorphic. s gives a projection ¢ in some neighborhood D such
that
D =0""(Dy).

Extend by a partition of unity argument to obtain ¢ : X — X and the
corresponding trivialization F, = (o, 7).
Now let
Ly = Ox, (Do) ,
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and suppose D is given by local defining functions. Then, on each slice
U_l (xO) s

zg € Dy, the invertible holomorphic functions

W
ZWy © 0

fit together to give an invertible C**°-function on W C N so that
by = zw o Iy 1
2Wo
is an invertible C'°-function on Wy x A. If W € N put
hw = 1.
So for patching data

g (@) = Y g™ (o)t
= "o exp (32, 0" (o) )
we have
ww! J— —
Zj>0 a?™" (o) t’ = log hyy+ — log hwy .
The o-compatible trivialization F constructed in (21) is given in this
case by

(z,v) — (:Jco,exp (ZW/ pw; (wo0) (log by — log hW)) : v> .

So, under this trivialization, 2y corresponds to the section of LY x A
given over (xg,t) € Wy x A by (v,t) where

:& < , 1 h ,). F_l
! ZWoFU_IeXp ZW/pWO($O)(Og W) (ZV[/O o )

= exp (3, pwy (w0) (log b)) - 2w
Now replace A with
A
exp (L pwg (w0) (log hayr) ) - A




PETRI’S CONJECTURE AT THE GENERAL CURVE 165

3.3 Schiffer-type deformations of line bundles

We next wish to consider a very special type of line bundle deformation.
Our aim is to be able to apply Lemmas 2.7-2.8 to a case in which My =
Ly is the total space of a line bundle and the holomorphic functions
under consideration are the holomorphic sections of Lg. Let Xg/A be
a Schiffer-type deformation as in 2.2. That is, referring to (5), suppose
that X3/A is given by Kuranishi data

Lg_l
&k = —— (B Ls))
B

for some divisor
A() C Xy.

Let
Ap

denote the extension of Ay to a divisor on Xjg.
Let L/ X3 be a deformation of Ly/Xy. By Lemma 2.9 and (21) there
are compatible trivializations

Fg : Xﬁ-}X@XA,
Fy @ LV = L{ xA.

We need that F = Fg for some lifting 3 of A to a vector field on LY x A
for which

[B,x] = 0.

Lemma 3.2. i) Suppose that Ly is trivial over a neighborhood of
Ao and that the mapping

induced by the exact sequence
0 — Ox, — Ox, (00 Ag) =

is surjective. Then there is a lifting

g
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of B to a vector field on Ly x A which is meromorphic above
Ag
and otherwise C*° such that FB is a trivialization of LV.
ii) Referring to i), suppose that
L= 0x, (D)
and
Do Fy (D) =Dy x A,
where Dy 1s the zero-scheme associated to a holomorphic section
f() : LE)/ — C.

Suppose further that @ is holomorphic in a neighborhood of Ay X A.
Then there is a lifting ® of ® so that the section

foodo Fj
18 a holomorphic section of L.

Proof. i) Since L is trivial near Ay, we can lift 5 to a vector field 8
commuting with x and meromorphic near Ag by a patching argument
as in 3.2. Any two liftings differ by a vector field

- Y
ax = ,eixt’,
where the a; are fuctions on Xy which are meromorphic near Ay and
C*™® elsewhere. Given that modulo ¢"

(25) LV = L%

we use the surjectivity hypothesis in the statement of the lemma to
choose a1 and achieve (25) modulo ¢"**.

ii) The deformation Xg is trivial in a neighborhood of Ay x A, so
we can choose a lifting ® of ® which is holomorphic near Ay x A and
extend by a partition-of-unity argument. Referring to Lemma 3.1iii),
P’ o Fj = (0',7) and the adapted trivialization (o, ) are related by

!
azeba

for some C'*-function b on Xy x A. Now set

S =o',
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3.4 Differential operators and basepoint-free systems

Suppose now that
H® (L)

is basepoint-free. Let Py = P (H (Lg)) and let

[ ]P()XX()-}]P)(),
p - ]P()XX()-}X()

be the two projections. Let
Lo (1) = " Op, (1) ® p* Ly.
Then by the Leray spectral sequence there are natural isomorphisms

pelo (1) = Lo ® HO (Lg)",

(26) 7k (Eo (1)> = H* (L) ® H® (Lg)" .

There is a tautological section

(@7)  Joe B (Lo (1)) = H* (Lo) ® HO (Lo)" = Bnd (H° (L))

given by the identity map on H® (Lg). Furthermore

(28) P (fo)

is given by the tautological homomorphism
H (Ly) ® Ox, — L.

Also one eagsily shows by induction using the Euler sequence that

H' (D, (O, (1)) =0

for all 2 > 0, so also
Rip®, (Lo (1)) =0

T (e () = (p ().

There is a natural map

B p D (Lo (1)) = Da (puLo (1))
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and
D, (p*io (1)> = D, (Lo® H® (Lo)")
D, (Lo) ® End (H® (Ly)) .
Now via the trace map we have a canonical splitting
End (H° (Ly)) = C-1® End’ (H° (Ly)),
where End® denotes trace-zero endomorphisms. Notice that

D =k <p*@n (EO (1))) =Dy, (Lo) ®1®D,_1 (Lo) ® End® (H° (Lo))

so we have that
96 = Ox,

and we have the exact sequence

) 0— @;1 — ©;z+1
29
T (5 (Tx,) ©11) @ (5™ (Tx,) © End® (H® (Lg))) — 0

is exact.

3.5 Extendable linear systems

Suppose now that the assumptions of 3.4 and Lemma 3.2 continue to
hold and that, for some line bundle extension

L/Xg

of L()/X(),
7y (L)

is locally free over A. Let

S
Let
Dy C TPy x X,
D C PAXAXﬁ
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be the incidence divisors for the respective linear systems. The sec-
tion fy of Lo (1) defined in (27) has divisor Dy. For each holomorphic

trivialization

T :Pa — Py x A,
(30) . ’
T :O]P’A (—1) — O]po (—1) X A,

let
Pr o P(EV (—1)) %1@@3(—1)) x A,
Fr : LY(-1) = L{(-1) x A
be the trivializations induced by T and the trivializations
Fg @ Xg— Xox A,
Fg : LY = Ly xA
defined in Lemma 3.2. We denote the infinitesimal automorphism of
LY (=1) x A = (p*Ly @ v*Opy (—1)) x A

induced by § on p* Ly and the identity on v*Op, (—1) as

Br.
If we change T in (30) to T’, then
(31) e i = ¢~ lor (T’ o T‘l)* :
Next, since
Fr (D) - (Po x {zo})
is a hyperplane for each zy € Xy by basepoint-freeness, we can build a
C*°-diffeomorphism
@TZ(]ID()XX())XA—)(]P)()XX())XA
such that
(DT (FT (D)) = D() X A,
and such that the diagram

Pa xa X5 T (B x Xo) x A

- 1

F
Xﬁ —6> X()XA
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is commutative, where the vertical maps are the standard projections
and such that the restriction of ®7 o Fr to each fiber of the left-hand
projection is a linear automorphism of projective spaces. Further we
can suppose that ®7 is holomorphic over Fﬁ_ LUy x A). Let

GT == (DT o FT.
Then, by Lemma 3.1iii), there is a Gp-compatible trivialization
Gr=®roFr: LY (-1) = LY (-1) x A

such that o

f=JooG
is a holomorphic section of L (1) with divisor D. Since the restriction
of &1 to fibers of p are assumed to be a holomorphic automorphism of
O (—1) on the corresponding projective spaces, the infinitesimal auto-
morphism of Ly (—1) x A is given by

ir € p~tak, (st ((£5) V) s i),
Thus, by Lemma 2.9,
(32) [5, e Tir o e_LﬁT} <f0> =0.
Notice that, if

e Opy (=1) x A = Op, (=1) x A
is any holomorphic automorphism, we also have
(34) [5, et oe Lo o e_LWT] (fg) = 0.
Next, using (29) and (34), we need to analyze the elements

[5, etoe i o e_LWT] € Zn>0 H' (D)) "

= Zn>0 H" (D, (Lo)) ® End (H® (L)) t".

Applying this element to p, fo, by (34) we obtain that

Px [5, edoe M o e_LiT} <P*f0)

(3) 0 1
=0¢ Zn>0 Hom (H® (Lo) , H (L)) t".
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Theorem 3.3. Suppose that all assumptions of 8.3-3.5, in particu-
lar, the hypotheses of Lemma 3.2, hold. Suppose further that, by varying
of B in 3.3 in such a way that all these assumptions continue to hold,
the coefficients to t"*1 in all expressions

B, 4]

generate H' (ST (Tx,)) for each n > 0. (For ezample we allow the
divisor Ay to move.) Then the maps
Hom (H® (L), H' (L))

unt g (Sn+1TXO) N : .
image [

are zero for all n > 0.

Proof. Let i
ps [57 et oe o 6_%}
n

denote the coefficient of t”. Notice that the operators in e? and e~ 147
are O-th order operators so that, referring to (29), there is an element

oy € 8" (Tx,) ® End® (H® (Lo))

symbol ((p* [5, e Hr o e_L;YT]>TL+1)

is given by a formula

(36) (987 ®@1) @0 € 8" (Tx,) @ (8™ (Tx,) ® End® (H° (L)),

such that

where
_ Y
B = Zj>0 Bt
Let
Ay € End® (H° (Ly))

be such that }
et =1+ At+....

Then
(37)

symbol (p* [57 eAoelir o e—LaT} — Dy [57 e~ Lir o e—L&T] )
n+l1 n+1

=0+ (087 ® A4y).

171
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Using (36) and (37) and the hypothesis that the elements
oprTt

generate
H! (Sn+1TXO) :

by varying 8 and A; we have that the elements

symbol (p* [5, eAoe lir o e_L&T] )
n+1
generate
§"HH(Tx,) @ (8" (Tx,) @ End® (H® (Lo)))

for each n > 0.
Thus, by (29) and (34), the map "' given by

H' <@n+1 <E0(1))> - %;((’;)))
D — D<f0>

is zero for all n > 0. Moreover, in particular the image of

B (o (10 0)) = 5, 1 (1)
lies inside the image of the map
(38) Do H Orxx)t" = > H (io (1)) "
o = o« ( fo) :
But, under the identifications in 3.4,
Px (f 0)
is the tautological map
H® (Ly) ® Ox, — L.
So applying p. (38) becomes

Zn>0 Hl (OXO) " — Zn>0 Hom (HO (LO) 7H1 (LO)) t".
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Since _ _
P [8, e_LBT} = [8, e_LB} ®1,
we conclude that the map

[5, e‘Lé] ® H (Lo) > Y Hom (H"(Lo) , H' (Lo)) ¢"

takes values in the image of (38). So finally the hypothesis that the
elements

Byt
generate H' (S"T! (Ty,)) gives the theorem. q.e.d.

4. Brill-Noether theory

In this last section we give a simple application of Theorem 3.3 to
Brill-Noether theory. From now on we assume that X is a generic
compact Riemann surface Cy. We choose

A() = {:E()}
in §2-3 where zq is a general point of Cy, and let
Cg/A

denote the family of Schiffer-type deformation associated to some vector

field
_ Y
’6 o Zj>oﬁjt ’

where each ; is meromorphic with poles in some neighborhood Uy of
xg. Since Cfy is generic, there exists a line-bundle deformation

L/Cs
such that
HY (L) = HY (L)
is surjective. We wish to apply Theorem 3.3 to conclude that the maps
™+ are all zero for n > 0.

Lemma 4.1. Let 81 range over all vector fields such that the Kodaira-
Spencer class

A
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generates the kernel of the map

H' (Tgy) = H' (T, (o)) -

(1)

generate the kernel of the map

Then the elements

H <Sk+1TCO> S H! (Sk+1TCO ((k +1) xg)) .

Proof. Let z be a local analytic coordinate for Cy centered on xj.
We trivialize our Schiffer-type variation of Cy so that

_pr9
/Bl_zaza

where p is a C°°-function on Cy such that
i) p is supported on an arbitrarily small neighborhood of g,
ii) in a smaller neighborhood Uy of zy,

a_
p=71—|—a0—|—...—|—akzk.

(& ()

represents the symbol of [5, L’Ej’l}. By varying the choice of the a; in

So

the definition of p we can therefore obtain symbols which generate the
image of
SM Ty (K + 1) 20)
Sk—l—lTCO

in H' (S"1T¢,).  qed.

Now if zy varies over a dense subset of Cy, the elements of kernel of
H (5170, ) — H' (85T, (o))

generate H' (SkHTCO). So we conclude by Theorem 3.3:
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Theorem 4.2. If Cy is a curve of general moduli and H° (L) is
basepoint-free, the mapping

Hom (H° (L) ,H' (Ly))

Yok image i’

WasEy-e <Sk+1TCO) o

given in 8.1 must be the zero map for k > 0.

To see that Petri’s conjecture follows from Theorem 4.2, we reason
as in §9 of [2]. Namely we consider the dual mappings

i ker gy — H® <w(k)jl)
(inductively defined beginning with the zero map
po1: HY (Lo) ® H (wey ® Ly) — {0}).
Petri’s conjecture asserts that, for our Cy of general moduli, the mapping
po = HY (Lo) ® H (we, ® Ly) — H' (wep)

which is of course simply the multiplication map, is injective. To see
that this follows from Theorem 4.2, let {s;} denote a basis for H° (Lg).

Suppose now that
1o (Z 5 ® ti> = 0.

Z(dsi)ti S HO (w%o)
is well-defined, giving the mapping 1, etc. Since, by Theorem 4.2,
successive maps p, are the zero map we have, for any local trivialization
of Ly and local coordinate z near a general point zy on Cj, the local
system of (pointwise) equations

Then the element

dksi
;ti (o) Tk (o) =0
for all k, which is clearly impossible unless all the #; (x¢) are zero.
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