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POLAR ACTIONS ON SYMMETRIC SPACES

Andreas Kollross

Abstract

We study isometric Lie group actions on symmetric spaces ad-
mitting a section, i.e., a submanifold that meets all orbits orthog-
onally at every intersection point. We classify such actions on the
compact symmetric spaces with simple isometry group and rank
greater than one. In particular, we show that these actions are
hyperpolar, i.e., the sections are flat.

1. Introduction and main results

An isometric action of a compact Lie group on a Riemannian mani-
fold is called polar if there exists a connected immersed submanifold Σ
that intersects the orbits orthogonally and meets every orbit. Such a
submanifold Σ is then called a section of the group action. If the sec-
tion is flat in the induced metric, the action is called hyperpolar. Our
main result is a classification of polar actions on compact symmetric
spaces with simple isometry group and rank greater that one. This
classification shows that these actions are in fact all hyperpolar.

One may think of the elements in a section as being canonical forms,
representing the orbits of the group action uniquely up to the action of
a finite group, the Weyl group. This point of view may be illustrated by
the example of the orthogonal group O(n) acting on the space of real
symmetric n×n-matrices by conjugation, where the subspace of diagonal
matrices is a section. Another motivation comes from submanifold ge-
ometry, in particular from the theory of isoparametric submanifolds and
their generalizations [44], [45]. The orbits of polar actions have many
remarkable geometric properties; for instance, the principal orbits of po-
lar representations are isoparametric submanifolds of Euclidean space.

However, the history of the subject probably starts with an applica-
tion in topology. Bott [5] and Bott and Samelson [6] considered the
adjoint action of a compact Lie group on itself and on its Lie alge-
bra [5], and more generally, the isotropy action of a compact symmetric
space [6]. The motivation of Bott and Samelson to study these actions
was that they are “variationally complete”, which made it possible to
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apply Morse theory to the space of loops in the symmetric space. Con-
lon [11] proved that hyperpolar actions on Riemannian manifolds are
variationally complete, referring to the sections as K-transversal do-
mains. Hermann [27] found another class of examples; namely, if H
and K are both symmetric subgroups of a simple compact Lie group G,
then the action of H on the symmetric space G/K is hyperpolar. It
was shown much later [21] that actions on compact symmetric spaces
are variationally complete if and only if they are hyperpolar.

Conlon [12] observed that s-representations are hyperpolar, and later
on Dadok [13] obtained a classification of irreducible polar representa-
tions. The classification shows that the connected components of the or-
bits of a polar representation agree with the orbits of an s-representation
after a suitable identification of the representation spaces. Reducible
polar representations were classified by Bergmann [1].

Cohomogeneity one actions, i.e., actions whose principal orbits are
hypersurfaces, are a special case of independent interest. Cohomogene-
ity one actions on spheres were classified by Hsiang and Lawson [29].
Later Takagi [43], D’Atri [14], and Iwata [31] classified cohomogeneity
one actions on CPn, HPn and OP2, respectively.

Szenthe [42], Palais and Terng [38] investigated fundamental prop-
erties of polar actions on Riemannian manifolds. Heintze, Palais, Terng
and Thorbergsson [24], [25] obtained structural results for hyperpolar
actions on compact symmetric spaces, and studied relations to polar
actions on infinite dimensional Hilbert space and involutions of affine
Kac-Moody algebras. They showed in particular [25] that compact
Riemannian homogeneous spaces admitting a hyperpolar action with a
fixed point are symmetric.

In [33], the author gave a classification of hyperpolar actions on the
irreducible compact symmetric spaces, the main result being that these
actions are orbit equivalent to the examples found by Hermann if the
cohomogeneity is ≥ 2.

Podestà and Thorbergsson [39] classified polar actions on the com-
pact symmetric spaces of rank one. The first result on polar actions on
irreducible symmetric spaces of higher rank, without assuming flatness
of the sections, was obtained by Brück [7], who showed that on these
spaces, polar actions with a fixed point are hyperpolar. Podestà and
Thorbergsson [40] proved that polar actions on compact irreducible ho-
mogeneous Kähler manifolds are coisotropic and classified coisotropic
and polar actions on the real Grassmannians G2(Rn) of rank two. It
turned out that all polar actions on these spaces are hyperpolar.

This approach was further pursued by Biliotti and Gori [3], who
classified coisotropic and polar actions on the complex Grassmanni-
ans Gk(Cn). The classification of coisotropic actions on the compact
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irreducible Hermitian symmetric spaces was recently completed by Bil-
iotti [2], showing in particular that polar actions on these spaces are
hyperpolar, which led Biliotti to conjecture that this holds for all com-
pact irreducible symmetric spaces.

The present work extends the classification of polar actions to all ir-
reducible symmetric spaces of type I, i.e., to the compact symmetric
spaces with simple isometry group, confirming the conjecture of Biliotti
for these spaces. We show that polar actions on the symmetric spaces
of type I and higher rank are hyperpolar. That is, they are of coho-
mogeneity one or orbit equivalent to the examples found by Hermann.
Our main result can be stated as follows.

Theorem 1. Let M be a compact symmetric space of rank greater
than one whose isometry group G is simple. Let H ⊂ G be a closed
connected non-trivial subgroup acting polarly on M . Then the action
of H on M is hyperpolar, that is, the sections are flat in the induced
metric. Moreover, the sections are embedded submanifolds.

Type π−1(H) M̃

A III-II SU(2n−2k−1)×SU(2k+1) SU(2n)/Sp(n)
A III-II S(U(2n−2)×U(1)×U(1)) SU(2n)/Sp(n)
A III-II S(U(2n − 2) × U(1)) SU(2n)/Sp(n)

A III-III SU(k) × SU(n − k) SU(n)/S(U(ℓ)×U(n−ℓ)), (k, ℓ)6=
(

n
2 , n

2

)

BD I-I G2 × SO(n − 7) SO(n)/SO(2) × SO(n − 2), n ≥ 7
BD I-I Spin(7) × SO(n − 8) SO(n)/SO(2) × SO(n − 2), n ≥ 8
BD I-I Spin(7) × SO(n − 8) SO(n)/SO(3) × SO(n − 3), n ≥ 8
BD I-I G2 × G2 SO(14)/SO(2) × SO(12)
BD I-I G2 × Spin(7) SO(15)/SO(2) × SO(13)
BD I-I Spin(7) × Spin(7) SO(16)/SO(2) × SO(14)
BD I-I Spin(7) × Spin(7) SO(16)/SO(3) × SO(13)

C I-II SU(n) Sp(n)/Sp(k) × Sp(n − k)
C II-II Sp(a + b) Sp(a + b + 1)/Sp(a) × Sp(b + 1)
C II-II Sp(a + b) × U(1) Sp(a + b + 1)/Sp(a) × Sp(b + 1)

D4 I-I’ G2 SO(8)/U(4)
D I-III SO(2n − 2) SO(2n)/U(n)
D III-I SU(n) SO(2n)/SO(k) × SO(2n − k), k < n

D III-III’ SU(n) SO(2n)/α(U(n))

E II-IV SU(6) E6/F4

E II-IV SU(6) · U(1) E6/F4

E III-II Spin(10) E6/SU(6) · Sp(1)
E VII-VI E6 E7/SO′(12) · Sp(1)

Table 1. Hyperpolar subactions of Hermann actions.
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In [33], the hyperpolar actions on irreducible compact symmetric
spaces were only determined up to orbit equivalence. In the present
work, we obtain the complete classification of connected Lie groups act-
ing polarly without fixed points on the symmetric spaces of higher rank
with simple isometry group. For actions with fixed points the complete
classification follows immediately from Corollary 6.2 and Lemma 2.6.

Theorem 2. Let M = G/K be a connected compact symmetric space
of rank greater than one, whose isometry group is simple. Let H ⊂ G
be a closed connected proper subgroup such that the H-action on G/K
is polar, non-trivial, non-transitive, and without a fixed point. Then

(i) either H ⊂ G is maximal connected (and as described in Theo-
rem A of [33])

(ii) or the universal cover of the symmetric space M̃ and the conju-
gacy class of the subgroup H ⊂ G are as given by Table 1, where
π : Isom(M̃) → G is the covering map, and there exists a connected
subgroup H0 ⊂ G whose Lie algebra h0 ⊂ g is the fixed point set
of an involution of g and such that the H0-action on G/K has the
same orbits as the H-action.

The first column of Table 1 indicates a connected subgroup H0 of G
containing H; see Table 3 and the remarks there. By α we denote a non-
trivial outer automorphism of SO(2n) of order two, given by conjugation
with an element from O(2n) \ SO(2n). The proofs of Theorems 1 and 2
are completed and summarized on pp. 469–479.

Combining Theorem 1 with the results of [39] and Corollary D of [23],
we obtain the following result on sections and Weyl groups of polar
actions. The Weyl group WΣ = NH(Σ)/ZH(Σ) is a quotient group of

the group ŴΣ as defined in Lemma 5.1.

Corollary 1. Let H be a connected compact Lie group acting polarly
on a compact symmetric space M with simple isometry group. Then a
section Σ of the H-action on M is isometric to a flat torus, a sphere
or a real projective space. The group ŴΣ acting on the universal cover
of Σ is an irreducible affine Coxeter group in case Σ is flat, or a finite
Coxeter group of Euclidean space restricted to a sphere in case Σ is
non-flat.

In particular, the Weyl groups of such polar actions can be described
by connected Dynkin diagrams of affine type (in the hyperpolar case) or
Dynkin diagrams of the finite type (in the polar, non-hyperpolar case).

This article is organized as follows. We start by setting up termi-
nology and notation. We then review examples and known results on
polar actions. In Section 3 we recall some facts about symmetric spaces
and their totally geodesic submanifolds; in particular, we give a char-
acterization of maximal totally geodesic submanifolds and obtain an
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upper bound on the dimension of totally geodesic submanifolds locally
isometric to a product of spheres.

In Section 4, we recall a criterion that reduces the problem of deciding
whether an action on a symmetric space is polar or not to a problem
on the Lie algebra level. In Section 5, we prove Splitting Theorem 5.2,
which says that if a section Σ of a polar action admits a local splitting
Σ̃ = Σ̃1 × Σ̃2 such that the Weyl group acts trivially on one factor Σ̃2,
then the symmetric space is locally a Riemannian product M × Σ̃2. As
a consequence, we show that the section of a polar action on a compact
irreducible symmetric space is locally isometric to a product of spaces
of constant curvature. This observation is crucial for our classification
since it implies an upper bound on the cohomogeneity, reducing the
classification problem to a finite number of cases.

In Section 6, we introduce another main tool by collecting various
sufficient conditions for actions to be polarity minimal, which means
that the restriction to a closed connected subgroup with orbits of lower
dimension is either non-polar or trivial. This is of essential importance
since it enables us to restrict our attention at first to maximal subgroups
of the isometry group. In many cases we are able to show that the action
of a maximal connected subgroup is non-polar and polarity minimal,
thereby excluding all of its subgroups.

In the remaining part of the paper, the classification is carried out.
We start with the maximal connected subgroups in the isometry group
of a symmetric space. In Section 7, we consider Hermann actions, i.e.,
actions of symmetric subgroups of the isometry group. We show that
actions of cohomogeneity ≥ 2 are polarity minimal and determine orbit
equivalent subactions. We then consider maximal connected subgroups
in the isometry group of classical symmetric spaces, which are given
by irreducible representations of non-simple groups. It turns out that
they are either non-polar and polarity minimal or of cohomogeneity
one. In Section 9 we study actions of simple irreducible subgroups in
the classical groups. In Section 10, we consider actions on the excep-
tional symmetric spaces. It turns out that the actions of non-symmetric
maximal subgroups are non-polar and polarity minimal.

It then remains to study subactions of cohomogeneity one and tran-
sitive actions. Since we do not have an a priori proof that these actions
are polarity minimal, it is necessary to descend from maximal connected
subgroups H1 ⊂ G acting with cohomogeneity ≤ 1 to further subgroups

G ⊃ H1 ⊃ H2 ⊃ . . . ,

where Hn+1 ⊂ Hn is maximal connected, until we arrive at an action
which is polarity minimal.

Acknowledgements. I would like to thank Ernst Heintze, Mamoru
Mimura, Chuu-Lian Terng, and Gudlaugur Thorbergsson for helpful
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discussions and comments; I am especially indebted to Burkhard Wilk-
ing for providing a crucial step in the proof of the Splitting Theorem 5.2
and for pointing out an error in an earlier version of this paper.

2. Preliminaries and examples

An isometric action of a compact Lie group G on a Riemannian man-
ifold is called polar if there exists a connected immersed submanifold Σ
such that Σ meets all G-orbits and the intersection of Σ with any G-
orbit is orthogonal at all intersection points. Such a submanifold Σ is
called a section for the G-action on M . In particular, the actions of
finite groups and transitive actions are special cases of polar actions,
the section being the whole space or a point, respectively.

Note that we do not require the section to be an embedded submani-
fold, generalizing the definitions of [38] and [11]. However, it turns out
by our classification that on symmetric spaces of type I, the sections
are flat and therefore closed embedded submanifolds by Corollary 2.12
of [24].

The dimension of Σ equals the cohomogeneity of the G-action and
hence the tangent space TpΣ at a regular point p ∈ Σ coincides with
the normal space Np(G · p) at p of the orbit through p. From this, it
follows that any two sections are mapped isometrically onto each other
by some group element. It has been proved in [38] that sections are
totally geodesic.

In the special case where the sections are flat in the induced metric,
the action is called hyperpolar. Examples for hyperpolar actions are
given by the action of a compact Lie group on itself by conjugation,
where the sections are the maximal tori. More generally, the action of
an isotropy group of a symmetric space is hyperpolar, the sections being
the flats of the symmetric space.

For a polar action, one can define the Weyl group by considering the
normalizer of a section, i.e., of all group elements which map the section
onto itself, this group acts on the section by isometries and the Weyl
group is defined by factoring out the kernel of this action.

Definition 2.1. Let M be a Riemannian manifold on which the com-
pact Lie group G acts polarly with section Σ. The (generalized ) Weyl
group WΣ = WΣ(M, G) is the group NG(Σ)/ZG(Σ), where NG(Σ) =
{g ∈ G | g ·Σ = Σ} and ZG(Σ) = {g ∈ G | g · s = s for alls ∈ Σ} are the
normalizer and centralizer of Σ in G, respectively.

Two Riemannian G-manifolds are called conjugate if there exists an
equivariant isometry between them. In particular, the actions of two
conjugate subgroups of the isometry group of a Riemannian manifold
are conjugate. To study isometric actions on a Riemannian manifold,
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it suffices to consider conjugacy classes of subgroups in the isometry
group.

Two isometric actions of two Lie groups G and G′ on a Riemannian
manifold M are called orbit equivalent if there exists an isometry of
M which maps G-orbits onto G′-orbits; they are called locally orbit
equivalent if there is an isometry mapping connected components of G-
orbits onto connected components of G′-orbits. Obvious examples of
orbit equivalent actions are given by various groups acting transitively
on spheres, e.g., the actions of SO(4n), SU(2n), U(2n), and Sp(n) on
R4n are all orbit equivalent.

We use the term subaction for the restriction of an action of a group G
to a subgroup H ⊆ G; in case the H-orbits coincide with the G-orbits,
the H-action is called an orbit equivalent subaction.

A normal subgroup N of a compact Lie group G = G′ · N acting
isometrically on a Riemannian manifold is called inessential if the G-
action restricted to G′ is orbit equivalent to the G-action. An isometric
action of a compact connected Lie group G on a Riemannian manifold
M is called orbit maximal if any other isometric action of any other
compact connected Lie group G′ such that every G-orbit is contained
in a G′-orbit is either orbit equivalent or transitive on M .

An immersed submanifold M in a symmetric space N is said to have
parallel focal structure if the normal bundle ν(M) is globally flat and
the focal data is invariant under normal parallel translation; that is, for
every parallel normal field v on M , the rank of dηv(x) is locally constant
on M , where the end point map η : NM → N, v 7→ exp(v) is defined to
be the restriction of the exponential map to the normal bundle ν(M),
see [45]. The principal orbits of a polar action on a symmetric space
have parallel focal structure [19].

A submanifold with parallel focal structure is called equifocal if the
normal bundle ν(M) is abelian. That is, exp(ν(M)) is contained in some
totally geodesic flat subspace of N for each point x ∈ M . The principal
orbits of hyperpolar actions on symmetric spaces of compact type are
equifocal submanifolds, see [45], Theorem 2.1. Our Theorem 1 shows
that submanifolds with parallel focal structure which arise as principal
orbits of polar actions on symmetric spaces of higher rank with sim-
ple compact isometry group are in fact equifocal. We conjecture that,
more generally, submanifolds with parallel focal structure in irreducible
compact symmetric spaces of higher rank are equifocal, hence of codi-
mension one or homogeneous by the result of Christ [9].

2.1. Notation. We will frequently use the following notational con-
ventions for compact Lie groups and their representations. We view the
classical Lie groups SO(n), SU(n), and Sp(n) as matrix Lie groups as
described in [26], Ch. X, § 2.1. We assume that reducible subgroups of
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the classical groups are standardly embedded, e.g., by SO(m) × SO(n)
we denote the subgroup

(2.1)

{(

A
B

)∣

∣

∣

∣

A ∈ SO(m), B ∈ SO(n)

}

⊂ SO(m + n).

We write H1 ⊗H2 for the Kronecker product of two matrix Lie groups.
When we write G2, we refer to an irreducible representation by orthog-
onal 7 × 7-matrices; similarly, Spin(7) stands for a matrix Lie group
which is the image of the 8-dimensional spin representation of Spin(7).
By Rn, Cn, Hn we will denote the standard representation of O(n), U(n)
or Sp(n), respectively.
2.2. Polar representations. A well known class of examples for po-
lar actions is given by polar representations on Euclidean space. Since
the sections of polar actions are totally geodesic, they are linear sub-
spaces in the case of polar representations and polar representations are
therefore automatically hyperpolar. Polar representations are of impor-
tance for our classification since they occur as slice representations of
polar actions. Let M be a Riemannian G-manifold, and let Gp be the
isotropy subgroup at p. The restriction of the isotropy representation
to Np(G · p) is called the slice representation at p. Slice representations
are a fundamental tool for the study of Lie group actions since they
provide a means to describe the local behavior of an action in a tubular
neighborhood of an orbit by a linear representation.

Slice Theorem 2.2. Let M be a Riemannian G-manifold, let p ∈ M ,
and let V = Np(G ·p) be the normal space at p to the G-orbit through p.
Then there is an equivariant diffeomorphism Ψ of a G-invariant open
neighborhood around the zero section in the normal bundle G ×Gp V →
G/Gp onto a G-invariant open neighborhood around the orbit G · p such
that the zero section in G ×Gp V is mapped to the orbit G · p. The
diffeomorphism Ψ is given by the end point map which maps any normal
vector vq ∈ Nq(G · p) to its image under the exponential map expq(vq).

Proof. See e.g., [32], p. 3. q.e.d.

It is an immediate consequence of the Slice Theorem 2.2 that the slice
representation and the G-action on M have the same cohomogeneity.
Slice representations are particularly useful for our classification since
the polarity of an action is inherited by its slice representations.

Proposition 2.3. Let M be a Riemannian G-manifold. If the action
on N is polar, then for all p ∈ M the slice representation at p is polar
with TpΣ as a section, where Σ is the section of the G-action on M
containing p.

Proof. This was proved in [38], Theorem 4.6. Although in [38] the
sections are assumed to be embedded submanifolds, the proof is still
valid if one requires the sections only to be immersed. q.e.d.
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We use the term effectivized slice representation to describe the repre-
sentation of the isotropy group with the effectivity kernel factored out.
Let us recall some known results about polar representations.

Definition 2.4. Let G be a compact Lie group and let K be a closed
subgroup. By

χ(G, K) = AdG|K ⊖ AdK

we denote the equivalence class of the isotropy representation of the ho-
mogeneous space G/K, i.e., the restriction of the adjoint representation
of G to K acting on a K-invariant complement of k in g. In the special
case of a symmetric pair (G, K), see below, the (equivalence class of
the) representation χ(G/K) is called an s-representation.

A compact subgroup K of a Lie group G is called symmetric subgroup
if there exists an involutive automorphism of G such that Gσ

0 ⊆ K ⊆ Gσ,
where Gσ and Gσ

0 denote the fixed point set of σ and its connected com-
ponent, respectively. A pair (G, K), where G is a Lie group and K a
symmetric subgroup, is called a symmetric pair. Any Riemannian glob-
ally symmetric space M has a homogeneous presentation G/K, where G
is the isometry group of M such that K is a symmetric subgroup of G.
Conversely, if (G, K) is a symmetric pair, then G/K endowed with a
G-invariant metric is a Riemannian globally symmetric space, see [26].

It is well known that the adjoint representations of compact Lie
groups, and more generally s-representations, are polar. As far as con-
cerns the geometry of the orbits, the converse is also true.

Theorem 2.5 (Dadok). A representation ρ : G → O(n) of a compact
Lie group is polar if and only if it is locally orbit equivalent to an s-
representation, i.e., the connected components of its orbit agree with the
orbits of an s-representation after a suitable isometric identification of
the representation spaces.

Proof. The proof given in [13] relies on a classification of the irre-
ducible polar representations. See [17] for a conceptual proof in case
the cohomogeneity is ≥ 3. See [34] for an alternative proof, where a
similar classification strategy as in the present work is used. q.e.d.

It is shown in Theorem 3.12 of [24] that irreducible polar represen-
tations of cohomogeneity ≥ 2 are orbit maximal when restricted to a
sphere around the origin. For irreducible s-representations of cohomo-
geneity ≥ 2, orbit equivalent subgroups were determined in [18]. We
state the result below.

Lemma 2.6. Let G be a connected simple compact Lie group and
let K be a connected symmetric subgroup such that rk(G/K) ≥ 2. Let
H ⊆ K be a closed connected subgroup. Then χ(G, K) and χ(G, K)|H
are orbit equivalent if and only if either H = K or the triple (G, K, H)
is as given in Table 2.
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G K H Range

SO(9) SO(2) × SO(7) SO(2) × G2

SO(10) SO(2) × SO(8) SO(2) × Spin(7)
SO(11) SO(3) × SO(8) SO(3) × Spin(7)

SU(p + q) S(U(p) × U(q)) SU(p) × SU(q) p 6= q
SO(2n) U(n) SU(n) n odd

E6 U(1) · Spin(10) Spin(10)

Table 2. Orbit equivalent subactions of polar representations.

2.3. Hyperpolar actions on symmetric spaces. If H, K are two
symmetric subgroups of the compact Lie group G, then the action of H
on G/K is hyperpolar [27]. Slightly more generally, if H is a subgroup
of G such that its Lie algebra h ⊂ g is the fixed point set of an involution
of g, then the action of H on the symmetric space G/K is hyperpolar,
and we call such actions Hermann actions. In the special case H = K,
we have the isotropy action of the symmetric space and the sections
are just the flats of the symmetric space. It was shown in [33] that all
hyperpolar actions on irreducible symmetric spaces of compact type are
of cohomogeneity one or orbit equivalent to Hermann actions.

All fixed-point free Hermann actions on the symmetric spaces of type I
are given by Table 3. Here α denotes the non-trivial diagram auto-
morphism of SO(2n) given by conjugation with a matrix from O(2n) \
SO(2n) and τ an order three diagram automorphism of Spin(8). The
type of the Hermann action indicated in the first column refers to the
type of the symmetric subgroups involved as given in Table 4, e.g.,
the symbol A I-II refers to the action of H on G/K, where G/H =
SU(2n)/SO(2n) is of type A I and G/K = SU(2n)/Sp(n) is of type A II;
whereas for the action of K on G/H we use the notation A II-I. For the
conjugacy classes of connected symmetric subgroups in simple compact
Lie groups, see [33], 3.1.1 and 3.1.2. The cohomogeneity of the actions
is given in the last column.

Hyperpolar actions on compact symmetric spaces have the remark-
able property that they lift under certain Riemannian submersions to
actions which are again hyperpolar, cf. [24].

Proposition 2.7. Let G be a compact simple Lie group and let K ⊂
G be a symmetric subgroup, M = G/K the corresponding symmetric
space, and H a closed subgroup of G. Then the H-action on M is
hyperpolar if and only if the H × K-action on G is hyperpolar.

Proof. See [24], Proposition 2.11. q.e.d.
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Type H G K Coh.

A I-II SO(2n) SU(2n) Sp(n) n−1

A I-III(k ≤ ⌊n
2 ⌋) SO(n) SU(n) S(U(k) × U(n − k)) k

A II-III(k ≤ n) Sp(n) SU(2n) S(U(k)×U(2n − k))
⌊

k
2

⌋

AIII-III(k≤ℓ≤⌊n
2 ⌋) S(U(k)×U(n−k)) SU(n) S(U(ℓ)×U(n−ℓ)) k

BD I-I(k≤ℓ≤⌊n
2 ⌋) SO(k)×SO(n−k) SO(n) SO(ℓ)×SO(n−ℓ) k

C I-II(k ≤ ⌊n
2 ⌋) U(n) Sp(n) Sp(k)×Sp(n−k) k

C II-II(k≤ℓ≤⌊n
2 ⌊) Sp(k)×Sp(n−k) Sp(n) Sp(ℓ)×Sp(n−ℓ) k

D I-III(k ≤ n) SO(k)×SO(2n−k) SO(2n) U(n)
⌊

k
2

⌋

D III-III’ U(2n) SO(4n) α(U(2n)) n−1

D4I-I’(k≤ℓ≤3) Spin(k)·Spin(8−k) Spin(8) τ(Spin(ℓ)·Spin(8−ℓ)) k−1

E I-II Sp(4)/{±1} E6 SU(6)·Sp(1) 4

E I-III Sp(4)/{±1} E6 Spin(10)·U(1) 2

E I-IV Sp(4)/{±1} E6 F4 2

E II-III SU(6)·Sp(1) E6 Spin(10)·U(1) 2

E II-IV SU(6)·Sp(1) E6 F4 1

E III-IV Spin(10)·U(1) E6 F4 1

E V-VI SU(8)/{±1} E7 SO′(12)·Sp(1) 4

E V-VII SU(8)/{±1} E7 E6·U(1) 3

E VI-VII SO′(12)·Sp(1) E7 E6·U(1) 2

E VIII-IX SO′(16) E8 E7·Sp(1) 4

F I-II Sp(3)·Sp(1) F4 Spin(9) 1

Table 3. Hermann actions.

It can be shown using Proposition 4.1 that polar actions on compact
symmetric spaces have this lifting property only if they are hyperpolar.
In particular, if we lift the known polar actions on symmetric spaces to
the groups, we do not obtain any examples of polar actions besides the
hyperpolar ones. Another remarkable property of hyperpolar actions is
that they are orbit maximal on irreducible symmetric spaces of compact
type.

Proposition 2.8. Let M = G/K be a connected irreducible symmet-
ric space of compact type and H ⊂ L ⊂ G be closed connected subgroups.
If the H-action on M is hyperpolar, then the L-action on M is transitive
or orbit equivalent to the H-action.

Proof. See [23], Corollary D. q.e.d.
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The non-orbit maximal examples of polar actions found by Podestà
and Thorbergsson [39] show that Proposition 2.8 does not directly gen-
eralize to polar actions, see below. However, it is a consequence of our
classification that polar actions on symmetric spaces of rank ≥ 2 with
simple compact isometry group are orbit maximal.

2.4. Polar actions on rank one symmetric spaces. Polar actions
on rank one symmetric spaces have been classified by Podestà and Thor-
bergsson [39]. The hyperpolar, i.e., cohomogeneity one, actions on these
spaces had before been classified in [29], [43], [14] and [31]. The re-
sults can be summarized as follows. The classification of polar actions
on spheres (and real projective spaces) follows from [13], since every
polar action on the sphere is given as the restriction of a polar rep-
resentation to the sphere. The isotropy representations of Hermitian
symmetric spaces of real dimension 2n + 2 induce polar actions on CPn

and all polar actions on CPn are orbit equivalent to actions obtained in
this fashion. Similarly, all polar actions on HPn come from isotropy rep-
resentations of products of quaternion-Kähler symmetric spaces, with
the additional restriction that all factors but one must be of rank one.
While all these polar actions arise from polar actions on the sphere, the
actions on the Cayley plane OP2 = F4/Spin(9) do not have such an
interpretation. The maximal connected subgroup SU(3) · SU(3) ⊂ F4

acts polarly on the Cayley plane with cohomogeneity two. The groups
Sp(3) · Sp(1), Sp(3) · U(1), Sp(3) and Spin(9) act with cohomogeneity
one. In addition, there are three polar actions of cohomogeneity two
with a fixed point of the following subgroups of Spin(9):

Spin(8), SO(2) · Spin(7), Spin(3) · Spin(6).

In particular, polar actions on rank one symmetric spaces are not orbit
maximal in general.

3. Symmetric spaces and their totally geodesic submanifolds

In the following we will collect some useful facts about symmetric
spaces and their totally geodesic submanifolds. Sections of polar actions
are totally geodesic submanifolds and it will be shown in Theorem 5.4
that the sections of a non-trivial polar action on an irreducible compact
symmetric space are locally isometric to Riemannian products whose
factors are spaces of constant curvature. We give an upper bound on
the dimension of such submanifolds in Lemma 3.3. For the proof of
Theorem 5.4, which is essentially a consequence of the Splitting The-
orem 5.2, we will need the characterization of totally geodesic hyper-
surfaces in reducible symmetric spaces given in Corollary 3.5, because
the Weyl group of a polar action is generated by reflections in totally
geodesic hypersurfaces. We will conclude this section by recalling a well
known characterization of maximal subgroups in the classical groups.
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Every symmetric space M may be presented as G/K, where G is the
isometry group of M and K is a symmetric subgroup of G. Conversely,
if (G, K) is a symmetric pair, then G/K is a symmetric space if it is
equipped with an appropriate metric. A Riemannian manifold is an
irreducible Riemannian symmetric space of compact type if and only if
it is isometric to

• either G/K, where G is a simple, compact, connected Lie group
and K a symmetric subgroup of G (symmetric space of type I ),

• or a simple, compact, connected Lie group equipped with a biin-
variant metric (symmetric space of type II ).

The local isometry classes of the symmetric spaces of type I are given
by Table 4. By SO′(2n) we denote the image of a half-spin representa-
tion of Spin(2n).

Type G/K Rank Dimension

A I SU(n)/SO(n) n − 1 1
2(n − 1)(n + 2)

A II SU(2n)/Sp(n) n − 1 (n − 1)(2n + 1)
A III SU(p + q)/S(U(p) × U(q)) min(p, q) 2pq
BD I SO(p + q)/SO(p) × SO(q) min(p, q) pq
C I Sp(n)/U(n) n n(n + 1)
C II Sp(p + q)/Sp(p) × Sp(q) min(p, q) 4pq
D III SO(2n)/U(n) ⌊n

2 ⌋ n(n − 1)
E I E6/ (Sp(4)/ {±1}) 6 42
E II E6/SU(6)·Sp(1) 4 40
E III E6/Spin(10)·U(1) 2 32
E IV E6/F4 2 26
E V E7/ (SU(8)/ {±1}) 7 70
E VI E7/SO′(12)·Sp(1) 4 64
E VII E7/E6·U(1) 3 54
E VIII E8/SO′(16) 8 128
E IX E8/E7·Sp(1) 4 112
F I F4/Sp(3)·Sp(1) 4 28
F II F4/Spin(9) 1 16
G G2/SO(4) 2 8

Table 4. Symmetric spaces of type I.

The global isometry classes of symmetric spaces are described by the
following theorem, which will be needed for the proof of the Splitting
Theorem 5.2.

Theorem 3.1. Let M be a simply connected Riemannian symmetric
space with decomposition M = M0 ×M1 × . . .×Mt into Euclidean and
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irreducible parts. Define G = V × I(M1)0 × . . . × I(Mt)0 where V is
the vector group of pure translations of the Euclidean space M0. Define
∆ = V × ∆1 × . . . × ∆t where ∆i (i > 0) is the centralizer of I(Mi)0
in I(Mi). Then G is the group generated by all transvections of M , and
∆ is the centralizer of G in I(M). In particular, the symmetric spaces
covered by M are just the manifolds M/Γ where Γ is a discrete subgroup
of ∆.

The group ∆i is trivial if Mi is noncompact, and finite if Mi is com-
pact. In particular, the discrete subgroups of ∆ are just the subgroups
Γ ⊆ ∆ with discrete projection on the vector group V .

Proof. See [48], Ch. 8, Sec. 3. q.e.d.

Totally geodesic submanifolds of symmetric spaces correspond to Lie
triple systems.

Proposition 3.2. Let M be a Riemannian globally symmetric space
and let p0 ∈ M . Let G = I(M)0 and let K = Gp0

. Let g = k ⊕ p,
where k is the Lie algebra of K, and where we identify p = Tp0

M as
usual. Let σ∗ : g → g be the automorphism of g which acts on k as idk
and on p as −idp. The totally geodesic submanifolds of M containing
p0 are in one-to-one correspondence with the Lie triple systems s ⊆ p;
i.e., if s ⊆ p is a Lie triple system, then exp(s) ⊆ M is a totally geodesic
submanifold and, conversely, if S ⊆ M is a totally geodesic submanifold,
then Tp0

Σ ⊆ p is a Lie triple system.
Moreover, for any Lie triple system s ⊂ p, define g′ = s + [s, s] and

k′ = [s, s]; then g′ is the Lie subalgebra of g generated by s, g′ is invariant
under σ∗ and k′ = g′∩k. Let G′ and K ′ be the connected Lie subgroups of
G with Lie algebras g′ and k′, respectively. Then (G′, K ′) is a symmetric
pair and G′ acts transitively on exp(s).

Proof. See [26], Ch. IV, § 7. q.e.d.

Lemma 3.3. Let (G, K) be a symmetric pair such that M = G/K is
a Riemannian symmetric space of compact type and let Σ ⊆ M be a to-
tally geodesic submanifold whose universal cover is a product of spheres.
Then dim(Σ) ≤ rk(G) + rk(K).

Proof. Let (GΣ, KΣ) be the symmetric pair corresponding to Σ; we
have gΣ = g1

Σ ⊕ . . . ⊕ gm
Σ , where gi

Σ
∼= so(ni + 1). Let kiΣ ⊆ gi

Σ such that
kiΣ

∼= so(ni). Let g = k⊕ p as usual. By Proposition 3.2, we may assume
kiΣ ⊆ k. Now choose maximal abelian subalgebras ai ⊆ gi

Σ as follows. If

ni is even, then rk(kiΣ) = rk(gi
Σ) and we may choose ai = ak

i ⊆ kiΣ. If ni is

odd, then we may choose ai ⊆ gi
Σ such that ai = a

p
i ⊕ak

i where a
p
i ⊆ p is

one-dimensional and ak
i ⊆ kiΣ. Let ak =

⊕m
i=1 ak

i and ap =
⊕

ni≡1(2) a
p
i .

Then we have dim(Σ) = 2 · dim(ak) + dim(ap). Since ak ⊕ ap is an
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abelian subalgebra of g and ak is an abelian subalgebra of k, it follows
that dim(Σ) ≤ rk(G) + rk(K). q.e.d.

The estimate on the dimension given by the Lemma above is not
optimal in all cases. See [8] for classifications of totally geodesic sub-
manifolds in symmetric spaces.

The following theorem, which characterizes maximal totally geodesic
submanifolds of reducible symmetric spaces, is an analogue of Theo-
rem 15.1 in [15], which characterizes maximal subalgebras of semisimple
Lie algebras. We give a proof which is similar to the proof in [15].

Theorem 3.4. Let S be a connected simply connected symmetric
space with decomposition S = S0 × S1 × . . . × Sk such that S1, . . . , Sk

are irreducible and S0 is of Euclidean type. Let V be a maximal totally
geodesic submanifold of S, (i.e., if there is a totally geodesic submanifold
W such that V ⊆ W ⊆ S then either V = W or W = S). Let p =
(p0, . . . , pk) ∈ V . Then either there is an index i ∈ {0, . . . , k} and a

totally geodesic submanifold Ṽ ⊂ Si such that

V = S0 × . . . × Si−1 × Ṽ × Si−1 × . . . × Sk,

or there are two factors Si and Sj (i 6= j) and a map φ : Si → Sj which
is an isometry up to scaling such that

V =
k

∏

ℓ=1

ℓ6=i,j

Sℓ × {(x, φ(x))|x ∈ Si}.

Proof. Let G = I(S) and let K = I(S)p such that g = k ⊕ p is a
Cartan decomposition associated with the symmetric space S = G/K.
Let Gi = I(Si) and let Ki = I(Si)pi

such that gi = ki ⊕ pi are Cartan
decompositions corresponding to the irreducible factors Si = Gi/Ki.
Since V is a totally geodesic submanifold, we have that ν = TpV ⊆ p is
a Lie triple system by Proposition 3.2. Obviously, the projection πi(ν)
onto each of the summands pi is again a Lie triple system. Now there
are two cases:

Either there is an index i ∈ {0, . . . , k} such that pri(V ) 6= Si, where
pri : S → Si denotes the canonical projection onto Si. Then pri(V )
is a totally geodesic submanifold in Si and there is a maximal totally
geodesic submanifold Ṽ ⊂ pi containing pri(V ). Thus, S0× . . .×Si−1×

Ṽ × Si−1 × . . .× Sk is a totally geodesic submanifold of S containing V
and which is, by maximality, equal to V .

Or πi(ν) = pi for all i = 0, . . . , k, where the Lie algebra epimorphisms
πi : g → gi are given by the canonical projections. In this case, it follows
that there are at least two indices i, j ∈ {0, . . . , k} such that pi and pj

are both not contained in ν. Define ν∗ = ν ∩ (pi ⊕ pj) 6= ν. This is a Lie
triple system in p, since it is the intersection of two Lie triple systems.
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Hence,
⊕k

ℓ=0

ℓ6=i,j

pℓ ⊕ ν∗ is a Lie triple system in p which contains ν and is

different from p; thus, by maximality, is the tangent space TpV .
It remains now to study the Lie triple system ν∗ ⊂ pi ⊕ pj . By

Proposition 3.2, it follows that the Lie algebra g′ = ν∗⊕[ν∗, ν∗] generated
by ν∗ is the Lie algebra of a group G′ ⊂ Gi × Gj acting transitively on
the totally geodesic submanifold V ∗ of Si ×Sj , which is the exponential
image of ν∗ ⊂ T(pi,pj)(Si × Sj).

We show that g′ ∩ gi is an ideal in gi: Let x ∈ gi, y ∈ g′ ∩ gi. There is
a z ∈ g′ such that πi(z) = x, and it follows that [x, y] = [z, y] ∈ g′ ∩ gi.
By the same argument, g′ ∩ gj is an ideal in gj .

Let us assume for the moment that i, j 6= 0. Since πi(ν) = pi and
πj(ν) = pj , we have that πi(g

′) = gi and πj(g
′) = gj , since Si and

Sj are irreducible symmetric spaces. Since they are the Lie algebras
of isometry groups of irreducible symmetric spaces, the gi are either
simple or the direct sum of two isomorphic simple ideals hi ⊕ hi (in case
Si is of type II). Therefore the ideal g′ ∩ gi is either zero, equal to gi

or equal to hi. The last case is impossible, since g′ has to be invariant
under the action of the Cartan involution of hi ⊕ hi, which is given by
(x, y) 7→ (y, x); the case g′ ∩ gi = gi is also impossible, since pi is not
contained in ν∗. Now we can show that gi and gj are isomorphic: Let
x ∈ gi. Then there is a an element y ∈ gj such that (x, y) ∈ g′; but this
element is uniquely defined, since otherwise gj would have a non-trivial
intersection with g′. The map gi → gj we defined in this way is easily
seen to be a Lie algebra isomorphism, and the subalgebra g′ is given
by the diagonal embedding of g′ → g′ ⊕ g′ ∼= gi ⊕ gj . It remains to
be shown that the spaces Si and Sj are isometric up to scaling: This
follows from the requirement that the Cartan involution corresponding
to gi ⊕ gj = (ki ⊕ kj) ⊕ (pi ⊕ pj) must leave the diagonally embedded
subalgebra g′ invariant and is thus of the form (x, y) 7→ (σ(x), σ(y)),
where σ is an involution of gi

∼= gj .
Finally, assume i = 0, j ∈ {1, . . . , k}. This case can be included in

the above proof if we further split p0 into the direct sum of g′ ∩ p0 plus
a complementary subspace. Then one is again in the situation that g

can be written as a direct sum of ideals, all of which have either trivial
intersection with the Lie algebra generated by ν or are contained in this
Lie algebra. Then the same type of argument leads to the contradiction
that an abelian Lie algebra is isomorphic to one of g1, . . . , gk. q.e.d.

Corollary 3.5. Let S be a connected simply connected symmetric
space with decomposition S = S0 × S1 × . . . × Sk such that S1, . . . , Sk

are irreducible and S0 is of Euclidean type. Let H be a totally geodesic
hypersurface of S. Let p = (p0, . . . , pk) ∈ H. Then there is an index

i ∈ {0, . . . , k} and a totally geodesic hypersurface H̃ ⊂ Si such that

H = S0 × . . . × Si−1 × H̃ × Si−1 × . . . × Sk.
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Proof. Obviously, a totally geodesic hypersurface is a maximal totally
geodesic submanifold, so we may apply Theorem 3.4. Irreducible non-
flat symmetric spaces are at least of dimension two; thus the second
possibility in the assertion of Theorem 3.4 does not occur here, since
this would lead to submanifolds of codimension at least two. q.e.d.

The following facts on the maximal connected subgroups of the classi-
cal groups can be proven by standard arguments from the representation
theory of compact Lie groups, see e.g., [16]. It should be remarked that
some of subgroups of SO(n), SU(n) or Sp(n) given by irreducible repre-
sentations of simple groups of corresponding (real, complex or quater-
nionic) type are not maximal connected; see [16] for complete lists of
inclusions.

Proposition 3.6. Let K be a connected proper subgroup of SO(n).
Then there is an automorphism α of SO(n) such that α(K) is contained
in one of the following subgroups of SO(n):

(i) SO(k) × SO(n − k), 1 ≤ k ≤ n − 1
(ii) SO(p) ⊗ SO(q), pq = n, 3 ≤ p ≤ q
(iii) U(k), 2k = n
(iv) Sp(p) · Sp(q), 4pq = n 6= 4,

or K is a simple irreducible subgroup K = ̺(H) ⊂ SO(n), where H is
a simple compact Lie group and ̺ is an irreducible representation of H
of real type such that deg ̺ = n.

Proposition 3.7. Let K be a connected proper subgroup of SU(n).
Then there is an automorphism α of SU(n) such that α(K) is contained
in one of the following subgroups of SU(n):

(i) SO(n)
(ii) Sp(m), 2m = n
(iii) S(U(k) × U(n − k)), 1 ≤ k ≤ n − 1
(iv) SU(p) ⊗ SU(q), pq = n, p ≥ 3, q ≥ 2,

or K is a simple irreducible subgroup K = ̺(H) ⊂ SU(n), where H is
a simple compact Lie group and ̺ is an irreducible representation of H
of complex type such that deg ̺ = n.

Proposition 3.8. Let K be a connected proper subgroup of Sp(n).
Then there is an automorphism α of Sp(n) such that α(K) is contained
in one of the following subgroups of Sp(n):

(i) U(n),
(ii) Sp(k) × Sp(n − k), 1 ≤ k ≤ n − 1
(iii) SO(p) ⊗ Sp(q), pq = n, p ≥ 3, q ≥ 1,

or K is a simple irreducible subgroup K = ̺(H) ⊂ Sp(n), where H is
a simple compact Lie group and ̺ is an irreducible representation of H
of quaternionic type such that deg ̺ = 2n.
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4. Criteria for polarity

The following is a generalization of the criterion for hyperpolarity
given in [24]. Note that we do not require the sections to be embed-
ded submanifolds here. Hyperpolar actions are characterized by the
property that the Lie triple system ν in Proposition 4.1 is abelian.

Proposition 4.1. Let G be a connected compact Lie group, K ⊂ G
a symmetric subgroup, and let g = k + p be the Cartan decomposition.
Let H ⊆ G be a closed subgroup. Let k be the cohomogeneity of the
H-action on G. Then the following are equivalent.

(i) The H-action on G/K is polar w.r.t some Riemannian metric
induced by an Ad(G)-invariant scalar product on g.

(ii) For any g ∈ G such that gK lies in a principal orbit of the H-action
on G/K, the subspace ν = g−1NgK(H ·gK) ⊆ p is a k-dimensional
Lie triple system such that the Lie algebra s = ν ⊕ [ν, ν] generated
by ν is orthogonal to Ad(g−1)h.

(iii) The normal space NeK(H · eK) ⊆ p contains a k-dimensional Lie
triple system ν such that the Lie algebra s = ν ⊕ [ν, ν] generated
by ν is orthogonal to h.

Proof. Let g ∈ G be such that gK lies in a principal orbit of the
H-action on G/K. Then the action of g−1Hg on G/K has a principal
orbit containing eK and the equivalence of (i) and (ii) follows from [20],
Proposition, p. 193.

Assume now that condition (i) holds. Let Σ be a section of the
polar H-action on G/K such that eK ∈ Σ. Let ν = TeKΣ ⊆ p, let
s = ν ⊕ [ν, ν], and let S be the connected subgroup of G corresponding
to s. Since S acts transitively on Σ, there is an element s ∈ S such
that the point sK lies in a principal orbit of the H-action on G/K.
Now it follows from (ii) that Ad(s−1)h is orthogonal to the Lie algebra
generated by s−1NsK(H · sK), which coincides with s. Since Ad(s−1)
leaves s⊥ invariant, we have that h is orthogonal to s and (iii) follows.

We will now show that if (iii) holds, then Σ = exp(ν) ⊆ G/K meets
the orbits orthogonally. Let sK ∈ Σ, where s is an arbitrary element
of the Lie group S corresponding to the Lie algebra generated by ν.
The tangent space of the H-orbit through sK is orthogonal to TsKΣ
if and only if s−1hs ⊥ ν. But since the adjoint representation of G
restricted to S leaves the orthogonal complement of s invariant, s−1hs
is perpendicular to s. Thus the H-action on G/K is polar. q.e.d.

As an immediate consequence of this criterion, the problem of classi-
fying polar actions on G/K is reduced to a problem on the Lie algebra
level. We conclude this section with the simple observation that a polar
action restricted to an invariant totally geodesic submanifold is polar.
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Lemma 4.2. Let G be a compact Lie group acting polarly on a con-
nected Riemannian manifold N . Let M ⊆ N be a connected totally
geodesic submanifold which is invariant under the G-action. Then the
G-action on M is polar.

Proof. Let Σ ⊆ N be a section of the G-action on N . Let Σ0 be a
connected component of Σ∩M . Then the totally geodesic submanifold
Σ0 ⊆ M obviously meets the G-orbits in M orthogonally at every in-
tersection point. Furthermore, since M is connected, any two orbits of
the G-action on M can be joined by a shortest geodesic that meets the
principal G-orbits orthogonally and is hence contained in Σ after con-
jugation with a group element. This geodesic is now also contained in
M , since M is totally geodesic. This proves that Σ0 meets all G-orbits
in M . q.e.d.

5. Sections and Weyl group actions

Let us first recall some known properties of the Weyl group.

Lemma 5.1 (Thorbergsson, Podestà). Let M be a simply connected
symmetric space on which a compact, connected Lie group G acts polarly
and nontrivially. Let Σ be a section of the polar action and let p ∈ Σ
be such that the orbit through p is singular. Then there is a totally geo-
desic hypersurface H in Σ passing through p and consisting of singular
points; moreover, there exists a non-trivial element g ∈ WΣ which fixes
H pointwisely.

The set of singular points in Σ is a union of finitely many totally
geodesic hypersurfaces {Hi}i∈I in Σ; the Weyl group WΣ is generated by

reflections in the hypersurfaces {Hi}i∈I . Let Σ̃ be the universal covering
of Σ and let {Pj}j∈J be the collection of all lifts of all the totally geodesic

hypersurfaces {Hi}i∈I in Σ. Let ŴΣ be the subgroup of the isometry

group of Σ̃ which is generated by the reflections in the hypersurfaces
{Pj}j∈J . Then ŴΣ is a Coxeter group and WΣ is a quotient group

of ŴΣ.

Proof. See [39], Lemma 1A.4 or [19], Section 2.3 for a more general
statement. q.e.d.

The following splitting theorem is a generalization of Lemma 1A.2
in [39], where Σ̃1 is a point and the hypothesis is equivalent to a trivial
Weyl group action. We consider the weaker hypothesis that the section
of a polar action is locally a product such that the Weyl group acts
trivially on one factor.

Splitting Theorem 5.2. Let N be a compact connected Riemann-
ian symmetric space on which a connected compact Lie group G acts
polarly. Assume the universal covering Σ̃ of a section Σ decomposes as
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a Riemannian product Σ̃ = Σ̃1×Σ̃2 and the action of ŴΣ on Σ̃ descends
to an action on Σ̃1 such that

w · (p, q) = (w · p, q) for all w ∈ ŴΣ, p ∈ Σ̃1, q ∈ Σ̃2.

Then the universal cover of N is a Riemannian product isometric to M̃×
Σ̃2, where M = G · Σ1 and Σ1 is the image of Σ̃1 under the covering
map Σ̃ → Σ.

Proof. Let Σ be a section and p ∈ Σ be an arbitrary point of this
section. For i = 1, 2, let Σi = Σi(p) be the totally geodesic submanifolds

of Σ corresponding to Σ̃i (uniquely determined by Theorem 3.1) such
that p ∈ Σi.

First we show that the isotropy group Gp acts trivially on TpΣ2.
Consider the slice representation of Gp on V = Np(G · p) which is polar
by Proposition 2.3, with section TpΣ = TpΣ1 ⊕ TpΣ2. Now consider
the Weyl group W ′ of this polar linear representation; it coincides with
(WΣ)p. Its representation space decomposes into a sum of irreducible
modules and one trivial module and the section TpΣ decomposes ac-
cordingly, see [13]. It follows from the hypothesis that W ′ acts trivially
on the linear subspace TpΣ2. Since irreducible polar representations
have irreducible Weyl groups, it follows that Gp acts trivially on TpΣ2.

We will now show that the set M(p) = G·Σ1 is an embedded subman-
ifold of N . By the Slice Theorem 2.2 there is an equivariant diffeomor-
phism Ψ of a G-invariant open neighborhood around the zero section
in the normal bundle G×Gp V → G/Gp onto a G-invariant open neigh-
borhood around the orbit G · p such that the zero section in G×Gp V is
mapped to the orbit G · p. The diffeomorphism Ψ is given by the end
point map which maps any normal vector vq ∈ V = Nq(G · p) to its
image under the exponential map expq(vq).

Since Σ2 is a totally geodesic submanifold of N , we have expp(TpΣ2)=
Σ2. The subspace TpΣ1 ⊆ V is fixed by the Weyl group W ′ of the slice
representation and hence fixed by Gp. Hence the orthogonal comple-
ment S of TpΣ2 in V is a linear subspace invariant under the polar
representation of Gp on V . Therefore, S defines a smooth subbundle of
the normal bundle G ×Gp V .

But since TpΣ1 is the section of the Gp-representation on S, we have
S = Gp · TpΣ1. From the fact that Ψ is an equivariant diffeomorphism
it follows now that the elements of the subbundle defined by S are
mapped into the set G · Σ1. This shows that, in a neighborhood of p,
the subset M(p) = G ·Σ1 ⊆ N is a smooth submanifold of codimension
dim(Σ2). Thus we see that the symmetric space N is foliated by the
totally geodesic submanifolds {g ·Σ2(p)}g∈G, p∈Σ with integrable normal
bundle whose integral manifolds are given by {M(p)}p∈Σ.
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It follows from Theorem A of [4] that the universal cover Ñ of N is

topologically a product diffeomorphic to M̃ × Σ̃2 such that the projec-
tion of Ñ on the factor Σ̃2 is a Riemannian submersion. We have just
shown that the horizontal distribution of this Riemannian submersion is
integrable. Since the sectional curvature of N is nonnegative, it follows
from Theorem 1.3 of [46] that the fibers of this Riemannian submer-

sion are totally geodesic. We conclude that Ñ is a Riemannian product
isometric to M̃ × Σ̃2. q.e.d.

Corollary 5.3. Let N be an irreducible Riemannian symmetric space
of compact type on which a compact Lie group G acts polarly and non-
trivially. Then the G-action on N has a singular orbit.

Proof. Assume there is no singular orbit. Then by Lemma 5.1, the
Weyl group WΣ acts trivially on Σ. Hence it follows from Splitting
Theorem 5.2 that Ñ is a Riemannian product M̃ × Σ̃, where M is a
G-orbit. But this is a contradiction to the irreducibility of N . q.e.d.

The following theorem is a generalization of Proposition 1B.1 of [39],
where it was proved that the section of a polar action on a compact
rank one symmetric space has constant curvature.

Theorem 5.4. Let N be an irreducible compact simply connected
symmetric space on which a compact Lie group G acts polarly and non-
trivially with section Σ. Then Σ is covered by a Riemannian product of
spaces that have constant curvature.

Proof. Let Σ̃ = Σ̃1 × Σ̃2 be a decomposition of the universal covering
Σ̃ of Σ such that Σ1 is a Riemannian product of spaces of constant cur-
vature and Σ2 is either a point or a Riemannian product of irreducible
symmetric spaces of non-constant curvature. The section Σ contains a
union of finitely many totally geodesic hypersurfaces {Hi}i∈I such that
the Weyl group WΣ is generated by the reflections in the hypersurfaces
{Hi}i∈I . In view of Corollary 3.5, and since it is well known that the
only irreducible symmetric spaces containing totally geodesic hypersur-
faces are those of constant curvature, it is clear that the hypothesis of
Splitting Theorem 5.2 is fulfilled and we conclude that Σ2 is a point.
q.e.d.

It follows from Theorem 5.4 and Lemma 3.3 that the cohomogene-
ity of a polar action on an irreducible symmetric space G/K is less or
equal rk(G) + rk(K). For hermitian symmetric spaces G/K the upper
bound on the cohomogeneity can be further improved; see Proposi-
tion 5.5 below. These dimension bounds are essential for our classifica-
tion, since they reduce the classification problem to a finite number of
cases.
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Proposition 5.5. Let H be a compact Lie group acting polarly on a
compact Kähler manifold M . Then the cohomogeneity of the H-action
on M is less or equal rk(H).

Proof. By the Equivalence Theorem [30], see also Theorem 1.4 in [40],
the cohomogeneity of the H-action is equal to the difference between
the rank of H and the rank of a regular isotropy subgroup of H. q.e.d.

We have the following lower bounds on the dimension of groups acting
polarly on the classical symmetric spaces.

Proposition 5.6. Let H be a connected compact Lie group acting
polarly and non-trivially on a symmetric space M . Assume 3 ≤ k ≤
n − 3, 2 ≤ ℓ ≤ n − 2 and let d = dim(H).

(i) If M = Gk(Rn), then d ≥ 2n − 9.
(ii) If M = Gℓ(Cn), then d ≥ 3n − 7.
(iii) If M = Gℓ(Hn), then d ≥ 6n − 16.

(iv) If M = SO(n)/U(n
2 ), then d ≥ n2

4 − n.

(v) If M = SU(n)/SO(n), then d ≥ n2

2 − n.

(vi) If M = SU(n)/Sp(n
2 ), then d ≥ n2

2 − 2n.

(vii) If M = Sp(n)/U(n), then d ≥ n2.

Proof. Follows from Proposition 5.5 in case of the spaces Gℓ(Cn),
SO(n)/U(n

2 ), and Sp(n)/U(n), which are Hermitian symmetric, and
from Theorem 5.4 and Lemma 3.3 otherwise. q.e.d.

6. Polar subactions

In this section, we will introduce our main tool for classifying polar
actions through studying slice representations. The basic observation
is the following maximality property of linear polar actions, see [35],
Theorem 6.

Theorem 6.1. Let G ⊂ SO(n) be a closed connected subgroup which
acts irreducibly on Rn and non-transitively on the sphere Sn−1 ⊂ Rn.
Let H ⊆ G be a closed connected subgroup 6= {e} that acts polarly on Rn.
Then the H-action and the G-action on Rn are orbit equivalent.

The proof of the above theorem relies on [41]. As an immediate
consequence of Theorem 6.1, we have the following, cf. [7], Theorem 2.2.

Corollary 6.2. Let X be a strongly isotropy irreducible Riemannian
homogeneous space. Assume a connected compact Lie group H acts po-
larly on X such that the H-action has a one-dimensional orbit H ·p or a
fixed point p ∈ X. Then the space X is locally symmetric. Furthermore,
X is a rank-one symmetric space or the action of H is orbit equivalent
to the action of the connected component of the isotropy group of X
at p.
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Proof. Assume first that p ∈ X is a fixed point of the H-action on X.
Let K be the connected component of the isotropy group of p. The
isotropy representation of K on TpX restricted to H is polar by Propo-
sition 2.3. If the action of K on the unit sphere in TpX is transitive,
then the space X is rank-one symmetric. If K does not act transitively
on the sphere, then the linear H-action on TpX is orbit equivalent to
the K-action by Theorem 6.1. In particular they have the same coho-
mogeneity; hence the K-action on TpX is polar. It now follows that
the principal orbits of the H-action agree with those of the K-action
on X and the orbit equivalence of the two actions follows from Propo-
sition 4.1, since the principal orbits of a hyperpolar action determine
all other orbits. In case X is compact, the symmetry follows from [35],
since then one may assume that X is a homogeneous space of a simple
compact Lie group, see [47], Chapter I.1. Non-compact strictly isotropy
irreducible Riemannian homogeneous spaces are symmetric by [47].

Now assume p ∈ X is such that dim(H · p) = 1. If H · p is a regular
orbit, it follows that a section Σ ⊂ X is a totally geodesic hypersurface
and hence X is locally isometric to a space of constant curvature. As-
sume now that H · p is a singular orbit, hence the slice representation
of Hp on Np(H · p) is nontrivial and polar by Proposition 2.3. However,
since Tp(H · p) is one-dimensional, the isotropy representation of Hp

on TpX = Tp(H · p) ⊕ Np(H · p) is polar. It now follows from Theo-
rem 6.1 that the irreducible isotropy representation of M at p is orbit
equivalent to the reducible Hp-action on TpM , a contradiction. q.e.d.

In particular, we may restrict our attention to actions without fixed
point in the following. The full classification of connected Lie groups
acting polarly with a fixed point on the irreducible symmetric spaces
of higher rank follows immediately from Lemma 2.6. As the proof of
Corollary 6.2 shows, one obtains the same result also under the weaker
hypothesis that the linear action of H on the tangent space TpX is
polar.

Let G be a connected compact Lie group acting isometrically on a
Riemannian manifold. We say the action of G on M is polarity minimal
if there is no closed connected subgroup H ⊂ G which acts nontrivially
and polarly on M and such that the H-action is not orbit equivalent
to the G-action. Note that a polarity minimal action can be polar
or non-polar. We give various sufficient conditions for an orthogonal
representation to be polarity minimal in the following proposition.

Proposition 6.3. Let ρ : G → O(V ) be a representation of the com-
pact connected Lie group G. Then ρ is polarity minimal if one of the
following holds.

(i) The representation ρ is irreducible of cohomogeneity ≥ 2.
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(ii) The representation space V is the direct sum of two equivalent G-
modules.

(iii) The representation space V contains a G-invariant submodule W
such that the G-representation on W is almost effective, non-polar,
and polarity minimal.

Proof. Part (i) is a just a reformulation of Theorem 6.1. Assume
now V is the direct sum of two equivalent G-modules; then the repre-
sentation ρ restricted to any closed connected subgroup H ⊆ G which
acts nontrivially on V will have two equivalent nontrivial submodules;
it then follows from [33], Lemma 2.9 that H acts non-polarly on V ;
this proves part (ii). To prove part (iii), assume there is a closed con-
nected subgroup H of G acting polarly on V . Since the G-action on the
subspace W is non-polar and polarity minimal, it follows that H acts
trivially on W . But W is an almost effective representation, thus H
acts trivially on all of V . q.e.d.

While we do not have an a priori proof that polar actions on irre-
ducible compact symmetric spaces of higher rank are orbit maximal,
the following proposition gives various sufficient conditions under which
one can show that certain non-polar actions are polarity minimal. In
fact, this is our main tool to exclude subactions, and it will be used
frequently in the sequel.

Lemma 6.4. Let G be compact Lie group and K ⊂ G be symmetric
subgroup such that M = G/K is an irreducible symmetric space and let
H ⊂ G be a closed subgroup. The action of H on M is non-polar and
polarity minimal if there is a non-polar polarity minimal submodule V ⊆
Np(H · p) of the slice representation at p such that one of the following
holds.

(i) M is Hermitian symmetric and dim(V ) > rk(H).
(ii) dim(V ) > s(M), where s(M) is the maximal dimension of a totally

geodesic submanifold of M locally isometric to a product of spaces
with constant curvature, cf. Lemma 3.3.

(iii) V ⊆ p = TpM (where g = k ⊕ p as usual such that k is the Lie
algebra of K = Gp) contains a Lie triple system corresponding to
an irreducible symmetric space of nonconstant curvature, e.g., an
irreducible symmetric space of higher rank.

(iv) The isotropy group H ∩K acts almost effectively on V and rk(H ∩
K) = rk(H).

Proof. Assume a closed connected subgroup U ⊆ H acts polarly
on M . Consider the isotropy group at Up of the U -action on M . Since
Up ⊆ Hp, the action of Up on the normal space Np(U · p) leaves the
subspace V invariant. By Proposition 2.3, the slice representation of Up

on Np(U · p) is polar; in particular, the Up-action on V is polar. Since
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the action of Hp on V is polarity minimal and non-polar, it follows that
the action of the connected component (Up)0 on V is trivial. Hence
V is contained in the section of the polar Up-action on Np(U · p), and
thus V is tangent to a section Σ of the U -action on M ; in particular,
dim(Σ) ≥ dim(V ). Part (i) now follows from Lemma 5.5. Parts (ii)
and (iii) follow from Theorem 5.4. If rk(H ∩ K) = rk(H) and H ∩ K
acts almost effectively on V , then any closed subgroup U ⊆ H with
dimU > 0 will have an intersection U ∩ K ⊆ H ∩ K of positive di-
mension with K; but U ∩ K acts on V non-polarly since V is polarity
minimal; this proves (iv). q.e.d.

7. Hermann actions of higher cohomogeneity

In the remaining part of the paper, we will carry out the classification.
We begin with subactions of Hermann actions whose cohomogeneity
is ≥ 2.

To study actions of reducible groups on the Grassmannians we will
need the following technical lemma. Let us first introduce some nota-
tion. Let G ⊆ Gℓ(n, R). Let V be a linear subspace of Rn. Then we
define the normalizer of V in G as NG(V ) = {g ∈ G | g(V ) = V }, and
similarly by ZG(V ) = {g ∈ G | g|V = idV } the centralizer of V in G.
Clearly, NG(V ) is a subgroup of G, and since the elements of NG(V )
leave V invariant, the group NG(V ) acts on V . The kernel of this
representation is the normal subgroup ZG(V ) ⊆ NG(V ). The group
NG(V ) is the isotropy subgroup GV of the G-action on the Grassman-
nian Gdim V (Rn) of (dimV )-dimensional linear subspaces in Rn.

Lemma 7.1. Let H ⊂ SO(n) be a closed connected proper subgroup.

(i) If for any 8-dimensional subspace V ⊆ Rn the natural action of
the connected component of NH(V )/ZH(V ) on V is equivalent to
the 8-dimensional spin representation of Spin(7) or the standard
representation of SO(8), then n = 8 and H ∼= Spin(7).

(ii) If for any 7-dimensional subspace V ⊆ Rn the natural action of
the connected component of NH(V )/ZH(V ) on V is equivalent to
the 7-dimensional irreducible representation of G2 or the standard
representation of SO(7), then either n = 7 and H ∼= G2 or n = 8
and H ∼= Spin(7).

Proof. We first show that in both cases the group H acts transitively
on the unit sphere in Rn. Let p, q ∈ Rn be two unit vectors and let
V be linear subspace of Rn containing p and q such that V is 8- or
7-dimensional, respectively. Then it follows from the hypothesis that
NH(V )/ZH(V ) acts transitively on the unit sphere in the space V ; thus
there is an element in H which maps p to q. This shows that H acts
transitively on the unit sphere in Rn and hence the pair (H, n) is one of
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the following, see Table 7 in [36].

H U(m) SU(m) Sp(ℓ)·Sp(1) Sp(ℓ)·U(1) Sp(ℓ) Spin(7) Spin(9) G2

m≥2 m≥2 ℓ≥2 ℓ≥2 ℓ≥2
n 2m 2m 4ℓ 4ℓ 4ℓ 8 16 7

It is easy to see that the first five groups do not have the property de-
scribed in the hypothesis. For the groups Spin(7) and G2 the statement
is either trivial or follows from the well known fact S7 = Spin(7)/G2.

It remains the case of H = Spin(9) acting on R16. To prove the
assertion for dimV = 8, it suffices to exhibit an isotropy subgroup
of the Spin(9)-action on G8(R16) not containing Spin(7) as a Lie sub-

group. First choose an 8-dimensional subspace Ṽ ⊂ R16 such that the
subgroup Spin(8), acting by a representation equivalent to the sum of

the two half-spin representations on R16, stabilizes Ṽ . Since Spin(8) ⊂
Spin(9) is maximal connected, it coincides with the connected com-
ponent of the isotropy group HṼ of the H-action on the Grassman-

nian G8(R16). Thus the H-orbit through Ṽ is 8-dimensional. We will

determine the slice representation of the H-action at Ṽ . The group
(

HṼ

)

0
∼= Spin(8) acts on the tangent space TṼ G8(R16) by the tensor

product of the two half-spin representations of Spin(8). By Weyl’s di-
mension formula, this representation contains an irreducible summand
which is 56-dimensional and must therefore coincide with the normal
space NṼ (H · Ṽ ). This shows that Ṽ lies in a singular orbit of the H-

action on G8(R16). By [28], the principal isotropy subgroups of this
slice representation are finite and we conclude that for generic sub-
spaces V ⊂ R16 the group NH(V )/ZH(V ) is finite.

Similarly, to prove the assertion for H = Spin(9) and dimV = 7,

choose a 7-dimensional subspace Ṽ ⊂ R16 such that Spin(7) ⊂ Spin(9)

stabilizes Ṽ . Using an analogous argument as in the case k = 8, we
see that the 48-dimensional slice representation at Ṽ of the H-action
on G7(R16) has finite principal isotropy subgroups, and hence for a
generic 7-dimensional subspace V ⊂ R16 the group NH(V )/ZH(V ) is
finite. q.e.d.

Lemma 7.2. Let H, G, K be as in the following table, where 2 ≤
k, ℓ ≤ n

2 .

H G/K

S(U(k) × U(n − k)) SU(n)/S(U(ℓ) × U(n − ℓ))

SO(k)×SO(n − k) SO(n)/SO(ℓ)×SO(n − ℓ)

Sp(k)×Sp(n − k) Sp(n)/Sp(ℓ)×Sp(n − ℓ)

Let U be a connected subgroup of H. Then the action of U on G/K
is polar if either U = H or U is conjugate to one of the following
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subgroups, where in each case the U -action on G/K is orbit equivalent
to the H-action. In particular, the U -action on G/K is hyperpolar.

U G Range

G2 × G2 SO(14) ℓ = 2

G2 × Spin(7) SO(15) ℓ = 2

Spin(7) × Spin(7) SO(16) ℓ = 2, 3

G2 × SO(n − 7) SO(n) ℓ = 2, n ≥ 9

Spin(7) × SO(n − 8) SO(n) ℓ = 2, 3, n ≥ 10

SU(k) × SU(n − k) SU(n) (k, ℓ) 6=
(

n
2 , n

2

)

Proof. To prove the lemma, we compute certain slice representations,
cf. Section 2.3 in [33]. We assume in the following that the maximal
reducible groups are standardly embedded as block diagonal matrices,
cf. (2.1). Assume first k ≤ ℓ. We compute a slice representation of the
action of H = SO(k) × SO(n−k) on G/K = SO(n)/SO(ℓ) × SO(n−ℓ).
The connected component of the isotropy group is the group (H∩K)0 =
SO(k) × SO(ℓ − k) × SO(n − ℓ); it acts on the normal space

NeK(H · eK) =











0 0 M
0 0 0

−M t 0 0





∣

∣

∣

∣

∣

∣

M ∈ Rk×n−ℓ







⊂ so(n)

by the tensor product of the two standard representations of the first
and the last factor, i.e., SO(k) ⊗ SO(n − ℓ). Assume U ⊆ H is a
closed subgroup acting polarly on G/K. By Lemma 2.6 the connected
component of the isotropy group U ∩ K of the U -action must contain
the product of the first and last factor L = SO(k) × SO(n − ℓ) ⊂
H ∩ K, except possibly in cases k = 2, 3 and n − ℓ = 7, 8, which
will be treated below. Since this argument also holds for any conjugate
subgroup hUh−1, h ∈ H, it follows that U contains hLh−1, for all
h ∈ H, and hence U contains the subgroup generated by {hxh−1 | h ∈
H, x ∈ L}, which is the minimal normal subgroup of H containing L
and we conclude H = U .

Using an analogous argument in the case of H = S(U(k)×U(n− k))
acting on G/K = SU(n)/S(U(ℓ) × U(n − ℓ)), we see that the only
polar subaction is the action of U = SU(k) × SU(n − k), except in
the case of U = SU(k) × SU(k) acting on G/K = SU(2k)/S(U(k) ×
U(k)), where the slice representation of the U -action is non-polar, see
Lemma 2.6. The same argument also works for the actions on the
quaternionic Grassmannians and for the case ℓ ≤ k.

It remains to study the case where a slice representation of the U -
action is given by the first three rows of Lemma 2.6. It follows from
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Lemma 7.1 that this can only happen if U is obtained from H by replac-
ing an SO(7)-factor with G2 or replacing an SO(8)-factor with Spin(7).
A dimension count shows that the actions obtained in this fashion are
orbit equivalent to the respective H-action. q.e.d.

Action type Effectivized slice representation Kernel

A I-II SU(n) × SU(n)/∆SU(n) U(1)

A I-III SO(n)/SO(k)×SO(n − k)

A II-III, k even Sp(n)/Sp
(

k
2

)

×Sp
(

n − k
2

)

A II-III, k odd Sp(n − 1)/Sp
(

k−1
2

)

×Sp
(

n − k+1
2

)

U(1)

A III-III SU(k + n − ℓ)/S(U(k) × U(n − ℓ)) SU(ℓ − k)

BD I-I SO(k + n − ℓ)/SO(k)×SO(n − ℓ) SO(ℓ − k)

C I-II SU(n)/S(U(k) × U(n − k)) U(1)

C II-II Sp(k + n − ℓ)/Sp(k)×Sp(n − ℓ) Sp(ℓ − k)

D I-III, k even SU(n)/S
(

U
(

k
2

)

×U
(

n − k
2

))

U(1)

D I-III, k odd SU(n − 1)/S
(

U
(

k−1
2

)

× U
(

n − k−1
2

))

U(1)

D III-III’ SO(4n − 4)/U(2n − 1)

D4 I-I’ , k=ℓ=3 G2/SO(4)

E I-II F4/Sp(3) · Sp(1)

E I-III Sp(4)/Sp(2) × Sp(2)

E I-IV SU(6)/Sp(3) Sp(1)

E II-III SU(6)/S(U(2)×U(4)) Sp(1)

E II-IV Sp(4)/Sp(3) × Sp(1)

E III-IV F4/Spin(9)

E V-VI SU(8)/S(U(4) × U(4))

E V-VII SU(8)/Sp(4)

E VI-VII SU(8)/S(U(2) × U(6))

E VIII-IX SO(16)/U(8)

F I-II Sp(3)/Sp(2) × Sp(1) Sp(1)

Table 5. Slice representations of Hermann actions.

Theorem 7.3. Let G be a connected simple compact Lie group and
let H and K be two non-conjugate connected symmetric subgroups of
G such that the cohomogeneity r of the H-action on G/K is ≥ 2. Let
U ⊆ H be a closed connected nontrivial subgroup acting polarly on G/K.
Then the action of U on G/K is orbit equivalent to the hyperpolar H-
action on G/K.
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Furthermore, U 6= H if and only if U is as described in Lemma 7.2
or the triple (U, G, K) is one of

(SU(2n − 2k − 1) × SU(2k + 1), SU(2n), Sp(n));

(SU(n), Sp(n), Sp(k) × Sp(n − k));

(SU(n), SO(2n), SO(k) × SO(2n − k)), k < n;

(SU(n), SO(2n), α(U(n)));

(Spin(10), E6, SU(6) · Sp(1));

(E6, E7, SO′(12) · Sp(1)).

Proof. To prove the theorem, we use the explicit knowledge of slice
representations of Hermann actions as given in Tables 3 and 5. The first
table is a list of all Hermann actions (i.e., a list of all pairs (H, K) of
non-conjugate symmetric subgroups of the simple compact Lie groups
G up to automorphisms of G); Table 5 contains information about one
irreducible slice representation of each action; slice representations of
Hermann actions are s-representations by Lemma 11.1 and so each rep-
resentation is described by a symmetric space G′/K ′ whose isotropy
representation χ(G′, K ′) is equivalent to the slice representation on the
Lie algebra level; in the third column, the (local isomorphism type of
the) kernel of the slice representation is given. It is straightforward to
determine these slice representations for actions on the classical sym-
metric spaces; for the exceptional symmetric spaces one may use the
technique described in Remark 10.1, cf. also [33], Prop. 3.5. Note that
actually two different actions are given in each row of the table, i.e., the
action of H on G/K and the action of K on G/H; they have the same
isotropy subgroups and slice representations.

Assume now that H and K are symmetric subgroups of the simple
compact Lie group G, and U ⊆ H is a closed connected subgroup acting
polarly on G/K and such that the hyperpolar action of H on G/K is
of cohomogeneity r ≥ 2. The subactions of the types A III-III, BD I-I,
and C II-II were treated in Lemma 7.2.

The slice representations given by the table are irreducible and non-
transitive on the sphere, since we assume the cohomogeneity is ≥ 2.
Thus we may apply Theorem 6.1. The isotropy group of the U -action
at p = eK ∈ G/K is Up = U ∩ Hp. The representation of Hp = H ∩ K
on the normal space Np(H · p) restricted to Up occurs as a submodule
in the slice representation of Up on Np(U ·p), and is therefore polar. By
Theorem 6.1, the Up-action on V = Np(H · p) is either orbit equivalent
to the Hp-action or trivial.

We first show that the slice representation of Hp restricted to Up is
non-trivial. If it is trivial, then V is contained in the tangent space of
a section through p and we obtain a contradiction with Theorem 5.4,
since V ⊂ g is a Lie triple system corresponding to a totally geodesic
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submanifold of G/K which is isometric to an irreducible symmetric
space of higher rank; see the proof of Lemma 11.1. We may therefore
assume the Up-action on V is locally orbit equivalent to the irreducible
polar representation of Hp. From Table 5, we see that we may assume
the slice representation of Hp on V is not equivalent to one of the first
three items in Lemma 2.6, except in the case of A I-III, which will be
treated separately.

Then it follows that the group Up contains the (component of the)
isotropy group Hp or a subgroup as described in the 4th, 5th, and 6th
item of Lemma 2.6. In these cases there exists a uniquely determined
connected subgroup L ⊂ Hp which is minimal with respect to the prop-
erty that the L-action on V is orbit equivalent to the Hp-action. Note
that this argument actually shows that for any h ∈ H also hUh−1 con-
tains the subgroup L ⊂ Hp, and hence U contains all groups h−1Lh

conjugate to L in H. We conclude that U contains the subgroup L̂ gen-
erated by

{

hℓh−1 | ℓ ∈ L, h ∈ H
}

, i.e., the minimal normal subgroup
of H containing L. (In the first three items of Lemma 2.6, an orbit
equivalent subgroup is only unique up to conjugation.)

Subgroups of codimension one. Let us first consider the case where
U ⊂ H is a subgroup of codimension one, i.e., H = U · U(1), then we
have that either U acts transitively on the H-orbit through p, in which
case the U -action and the H-action are orbit equivalent, or U acts with
cohomogeneity one on the orbit H · p, in which case we arrive at a
contradiction since a section Σ through p of the U -action contains the
flat section Σ0 of the H-action, on whose tangent space TpΣ0 the Weyl
group of the irreducible slice representation still acts irreducibly when
restricted to the Weyl group of the Up-representation. So Σ would be
either flat, contradicting Proposition 2.8, or an irreducible symmetric
space of dimension r + 1 and rank r ≥ 2, which does not exist.

Subactions of Hermann actions on exceptional symmetric
spaces. Assume the subgroup U ⊂ H acts polarly on the symmetric
space G/K. One can see from Table 3 that the group H has either one
or two simple factors if it is semisimple, or it is the product H = H ′·U(1)
of a one-dimensional abelian and a simple factor. Since U contains
the nontrivial normal subgroup L̂ of H, it follows that U = H if H
is simple; if H = H ′ · U(1), then U contains H ′ (since dim L̂ > 1)
and the U -action is orbit equivalent to the H-action by the argument
above, since then U ⊂ H is a subgroup of codimension one. In those
cases where H is a product of two simple factors, comparison of the
Tables 4 and 5 shows that in each case, except for H = SU(6) · SU(2),

G/K = E6/Spin(10)·U(1), the normal subgroup L̂ contains both simple
factors of H and it follows that H = U . Consider the action of H =
SU(6) · SU(2) on G/K = E6/Spin(10) · U(1); in this case it follows
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from the data given in Table 5 only that L̂ contains the SU(6)-factor
of H. An explicit calculation as described in Remark 10.1 shows that the
embedding of the connected component of the isotropy group (H∩K)0 =
U(1)·SU(4)·SU(2)·SU(2) into H = SU(6)·SU(2) is such that the SU(2)-
factor in the kernel of the slice representation lies in the SU(6)-factor
of H, and the other SU(2)-factor of (H∩K)0, which acts nontrivially on
the slice, coincides with the SU(2)-factor of H. From this it follows that
the actions SU(6) or SU(6) · U(1) on G/K have a slice representation
with two equivalent nontrivial modules, and are therefore not polar.

Subactions of Hermann actions on classical symmetric spaces.
The cases A I-II, A II-III, C I-II, D I-III, D III-III’, and D4 I-I’ can be
handled in a similar way as the subactions on the exceptional spaces.
One can see from Table 5 that L̂ contains every simple factor of H. For
the case of D4 I-I’, i.e., subactions of Spin(5) ·Spin(3) ∼= Sp(2) ·Sp(1) on
SO(8)/SO(3)× SO(5), the slice representation was explicitly computed

in [33], p. 592-593, and it follows that L̂ is not contained in one of the
simple factors of H, thus H = U .

It remains to study the case A I-III. For the slice representation of
this action there are in some cases orbit equivalent polar subgroups as
given in the first three items of Lemma 2.6; otherwise the argument is
as above. Assume H = SO(n), G = SU(n), K = S(U(k) × U(n − k)),
where (n, k) = (9, 2), (10, 2) or (11, 3). Let us first consider the H-action
on G/K. The connected component of the isotropy subgroup at eK is
SO(k)×SO(n−k). It follows that U must contain the group given in the
right column of the table in Lemma 2.6, and it follows from Lemma 7.4
below that either U = H or U ⊆ Hp, but in the latter case the U -action
on G/K has a fixed point. Finally, consider the K-action on G/H, i.e.,
assume a closed connected subgroup U ⊂ K = S(U(k) × U(n − k))
acts polarly on SU(n)/SO(n); it follows by the arguments above that U
contains a subgroup L conjugate to SO(2)×G2, if K = S(U(2)×U(7)),
or SO(k) × Spin(7), if K = S(U(k) × U(8)); all possibilities for the
group U are given by Lemma 7.4. It follows that the slice representation
V |Up ⊕χ(K, U)|Up of the U -action on G/H is non-polar by [1] if U does
not contain both simple factors of K; thus the codimension of U in K
is at most one and we conclude that the U -action is orbit equivalent to
the K-action.

To prove the last part of the theorem, one can easily determine all
proper closed subgroups U of H whose action on G/K is orbit equivalent
to the H-action on G/K by using the information from Table 5. q.e.d.

For the proof of Theorem 7.3 we used the following simple lemma.

Lemma 7.4. For the following inclusions of compact Lie groups A ⊂
B ⊂ C, the intermediate subgroups B are unique in the following sense:
If B′ ⊂ C is a closed connected subgroup such that A $ B′ $ C, then
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B′ = B.

G2 ⊂ SO(7) ⊂ SU(7);

Spin(7) ⊂ SO(8) ⊂ SU(8);

SO(k) × G2 ⊂ SO(k) × SO(7) ⊂ SO(7 + k), k ∈ N;

SO(k) × Spin(7) ⊂ SO(k) × SO(8) ⊂ SO(8 + k), k ∈ N.

Proof. It is easily checked in each case that the representation χ(C, A)
splits into the irreducible modules χ(B, A) and χ(C, B)|A. Note that
χ(SU(7), SO(7))|G2

is equivalent to the irreducible 27-dimensional rep-
resentation of G2 and χ(SU(8), SO(8))|Spin(7) is equivalent to the irre-
ducible 35-dimensional representation of Spin(7), cf. Table 1, p. 364
of [16]. q.e.d.

8. Actions of non-simple irreducible groups

In the following, we will assume that G is a simple classical compact
Lie group G = SO(n), SU(n) or Sp(n) and K is a symmetric subgroup
such that rk(G/K) ≥ 2. We will classify all closed connected subgroups
H ⊂ G such that H acts polarly on G/K.

The symmetric quotient spaces of the simple classical compact Lie
groups of rank ≥ 2 that are not locally isometric to one of the Grass-
mannians Gk(Rn), Gk(Cn), Gk(Hn) are the following:

(8.1)

SO(2m)/U(m), m ≥ 5;
SU(m)/SO(m), m ≥ 3, m 6= 4;
SU(2m)/Sp(m), m ≥ 3;
Sp(m)/U(m), m ≥ 3.

(Note that SO(8)/U(4) is locally isometric to G2(R8), SU(4)/SO(4) is lo-
cally isometric to G3(R6) and Sp(2)/U(2) is locally isometric to G3(R5),
cf. [26], Ch. X, §6.4). In the sequel we will refer to these spaces as
“structure spaces” since they can be interpreted as: a space of complex
structures on R2n, spaces of real or quaternionic structures on Cn or
C2m, respectively, and a space of complex structures on Hn.

We will first consider the maximal subgroups H1 ⊂ G; for classical
groups G, they are given by Propositions 3.6, 3.7, and 3.8. Note that
for SO(n) the subgroups (i) and (iii), for SU(n) the subgroups (i), (ii),
(iii) and for Sp(n) the subgroups (i) and (ii) are symmetric, and thus
the actions of these groups are Hermann actions. The remaining types
of subgroups are either given by tensor product representations or are
simple irreducible subgroups. We will also study certain subactions of
cohomogeneity one or transitive Hermann actions

Henceforth we will refer to the following maximal connected sub-
groups of the classical Lie groups (cf. Section 3) as (maximal) tensor
product subgroups:
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(8.2)

H = SO(p) ⊗ SO(q) ⊂ G = SO(pq), p ≥ 3, q ≥ 3;
H = SU(p) ⊗ SU(q) ⊂ G = SU(pq), p ≥ 3, q ≥ 2;
H = SO(p) ⊗ Sp(q) ⊂ G = Sp(pq), p ≥ 3, q ≥ 1;
H = Sp(p) ⊗ Sp(q) ⊂ G = SO(4pq), p ≥ 2, q ≥ 1.

Proposition 8.1 (Tensor product groups on “structure spaces”).
Let G be a simple compact classical Lie group, let H1 be a maximal ten-
sor product subgroup of G as in (8.2), let K be a structure subgroup as
in (8.1), and let H ⊆ H1 be a closed connected subgroup acting nontriv-
ially on G/K. Then the H-action on G/K is not polar.

Proof. There are a few exceptions remaining not excluded by Propo-
sition 5.6:

(8.3)
H = SU(3) ⊗ SU(2) acting on SU(6)/Sp(3) = G/K;

SU(4) ⊗ SU(2) acting on SU(8)/Sp(4);
Sp(3) ⊗ Sp(1) acting on SO(12)/U(6).

We will apply Lemma 6.4 to show that none of the actions 8.3 can
have a polar subaction. We use the information collected in Table 2 of
[35] to determine slice representations. In the case of the H = SU(3)⊗
SU(2)-action on G/K = SU(6)/Sp(3), a slice representation is AdSO(3)⊗
AdSU(2), which is polar. However, an explicit calculation shows that
the normal space to a regular orbit is not a Lie triple system; thus by
Proposition 4.1, the action is not polar. Now let U ⊂ H be closed
connected proper subgroup acting polarly on G/K. By Theorem 6.1
and Lemma 2.6, the above slice representation restricted to (U ∩ K)0
is either trivial, leading to a contradiction by Proposition 5.6 since the
slice is 9-dimensional, or equivalent to the action of H ∩ K, in which
case U must contain SO(3)·SU(2). But since SO(3) ⊂ SU(3) is maximal
connected we have that the U -action on G/K has a fixed point and is
non-polar by Corollary 6.2.

Let us consider the SU(4) ⊗ SU(2)-action on SU(8)/Sp(4). A slice
representation is AdSO(4) ⊗AdSU(2), which is non-polar [1] and polarity
minimal, hence we may apply Lemma 6.4 (ii). For the Sp(3) ⊗ Sp(1)-
action we find a slice representation P2(Sp(3)) ⊗ R2 of Sp(3) ⊗ U(1),
which is also non-polar [13] and polarity minimal; hence Lemma 6.4 (ii)
also applies in this case. q.e.d.

Proposition 8.2. Let H1 ⊂ G and G/K be as in Table 6 and let
H ⊆ H1 be a closed connected subgroup acting nontrivially on G/K.
Then the H-action on G/K is not polar.

Proof. None of the subgroups H1 ⊂ G fulfills the lower bound on
its dimension given in Proposition 5.6, except the action of S((U(2) ⊗
U(3)) × U(2)) on SU(8)/Sp(4). However, an explicit calculation shows
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Type H1 G/K Range

A III-I S((U(p)⊗U(q))×U(1))
SU(pq+1)
SO(pq+1)

p≥3, q≥2

A III-II S((U(2r+1)⊗U(2s+1))×U(1))
SU(4rs+2r+2s+2)
Sp(2rs+r+s+1)

r, s≥1

A III-II S((U(2p)⊗U(q))×U(2))
SU(2pq+2)
Sp(pq+1)

p≥1, q≥3

A III-II S((U(2r+1)⊗U(2s+1))×U(3))
SU(4rs+2r+2s+4)
Sp(2rs+r+s+2)

r, s≥1

C II-I (SO(p)⊗Sp(q))×Sp(1)
Sp(pq+1)
U(pq+1)

p≥3, q≥1

D I-III SO(2r+1)⊗SO(2s+1)
SO(4rs+2r+2s+2)

U(2rs+r+s+1)
r, s≥1

D I-III (SO(2p)⊗SO(q))×SO(2)
SO(2pq+2)
U(pq+1)

p≥2, q≥3

D I-III (SO(2r+1)⊗SO(2s+1))×SO(3)
SO(4rs+2r+2s+4)

U(2sr+r+s+2)
r, s≥1

Table 6. Certain subactions of cohomogeneity one or
transitive Hermann actions on “structure spaces”.

that the cohomogeneity of this action is 12, hence this action is non-
polar and polarity minimal by Lemma 3.3. q.e.d.

Proposition 8.3 (Tensor product subgroups on Grassmannians).
Let G, H, K be as in (8.4). Assume n = 2, . . . , ⌊pq

2 ⌋ in cases (a), (b),
(c). In case (d), assume that n = 2, . . . , 2pq and n ≥ 3 if q = 1.
Assume further that in case (d) pq 6= 2. Then the action of H on G/K
is non-polar and polarity minimal, i.e., any nontrivial action of a closed
connected subgroup U ⊆ H on G/K is non-polar.
(8.4)

H = G/K = Range
(a) SO(p)⊗SO(q), SO(pq)/SO(n)×SO(pq−n), p≥3, q≥3;
(b) SU(p)⊗SU(q), SU(pq)/S(U(n)×U(pq−n)), p≥3, q≥2;
(c) SO(p)⊗Sp(q), Sp(pq)/Sp(n)×Sp(pq−n), p≥3, q≥1;
(d) Sp(p)⊗Sp(q), SO(4pq)/SO(n)×SO(4pq−n), p≥2, q≥1.

Proof. We use the slice representations which were explicitly deter-
mined in Section 2.3 of [33]. In each case, one finds a non-polar, polarity
minimal, and almost effective submodule of the slice representation; by
Lemma 6.3 (iii) this implies that the slice representation is polarity min-
imal. But then Lemma 6.4 (iii) shows that the U -action is non-polar,
since the normal space NeK(H · eK) contains a Lie triple system corre-
sponding to an irreducible symmetric space of non-constant curvature
in each case, as can be seen from the explicit description of the normal
spaces in [33]. q.e.d.
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Proposition 8.4. Let H1 ⊂ G and G/K be as in Table 7 and let
H ⊆ H1 be a closed connected subgroup acting nontrivially on G/K.
Then the H-action on G/K is not polar.

Type H1 G/K Range

A III-III S((U(p)⊗U(q))×U(1)) Gk(Cpq+1) p≥3, q≥2, 2≤k≤⌊pq+1
2 ⌋

BD I-I SO(p) ⊗ SO(q) Gk(Rpq+1) p≥3, q≥3, 3≤k≤⌊pq+1
2 ⌋

BD I-I Sp(p) ⊗ Sp(q) Gk(R4pq+1) p≥2, q≥1, 3≤k≤⌊ 4pq+1
2 ⌋

C II-II (SO(p)⊗Sp(q))×Sp(1) Gk(Hpq+1) p≥3, q≥1, 2≤k≤⌊pq+1
2 ⌋

A III-III SO(p) ⊗ Sp(q) Gℓ(C2pq) p≥3, q≥1, ℓ = 2, 3

BD I-I U(p) ⊗ U(q) G3(R2pq) p≥3, q≥2

Table 7. Certain subactions of cohomogeneity one or
transitive Hermann actions on Grassmannians.

Proof. Consider the first four items in Table 7. By Lemma 11.2,
the corresponding Hermann action (indicated in the first column) has
a totally geodesic orbit isometric to Gk(Cpq), Gk(Rpq), Gk(R4pq), and
Gk(Hpq), respectively, on which H acts. It follows from Proposition 8.3
and Lemma 4.2 that H acts non-polarly except if p = 3, q = 1, k = 2
in case of the fourth action; however, in this case the normal space of
a principal orbits is not a Lie triple system and H1 acts non-polarly by
Proposition 4.1; closed proper subgroups of H1 are excluded by Propo-
sition 5.6 (iii).

Let us now consider the last two items of Table 7. Assume H acts
polarly and nontrivially on G/K. Then the H-action has a singular orbit
by Corollary 5.3. As can be seen from Table 10, the almost effective
slice representation of the H1-action on G/K occurs also as a submodule
of the isotropy representation χ(H1, H1 ∩ K) of the H1-orbit H1 · eK.
Thus the H-action on G/K is non-polar by Proposition 6.3 (ii). q.e.d.

9. Subactions of simple irreducible groups

We will now study simple irreducible maximal subgroups of the clas-
sical groups acting on the classical symmetric spaces. We start with
actions on the spaces (8.1).

Proposition 9.1 (Simple irreducible groups on “structure spaces”).
Let G be a simple compact classical Lie group SO(n), SU(n) or Sp(n)
and let ρ : H → G be an irreducible representation of corresponding
(real, complex or quaternionic) type where H is a simple compact Lie
group and such that ρ(H) is a maximal connected subgroup of G. Let
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K ⊂ G be a subgroup as in (8.1) such that rk(G/K) ≥ 2. Then the
action of any closed subgroup of ρ(H) on G/K is non-polar except for
the Hermann actions of subgroups conjugate to Spin(7) ⊂ SO(8) on
SO(8)/U(4).

Proof. For the spaces SU(n)/SO(n) and Sp(n)/U(n) this follows di-
rectly from Lemmata 2.7, 2.8 of [33] and Proposition 5.6.

Let us consider the spaces SO(n)/U(n
2 ), n ≥ 8. By Proposition 5.6

we have that dim(H) ≥ n2

4 −n if H acts polarly on SO(n)/U(n
2 ). Hence

ρ is a representation as described in Lemma 2.6 (i), (iv) of [33] and all
possibilities for ρ are given in the table of [33], Lemma 2.8 (i). However,
all of these subgroups ρ(H) ⊂ SO(n) are excluded by the dimension
bounds given in Proposition 5.6, except Spin(7) ⊂ SO(8).

For the spaces SU(n)/Sp(n
2 ), n ≥ 3, it follows from Proposition 5.6

that dim(H) ≥ n2

2 − 2n for a group H acting polarly on SU(n)/Sp(n
2 ).

Thus ρ is a representation as in Lemma 2.6 (ii), (iv) of [33] and all
such representations ρ are given by the table in [33], Lemma 2.8 (ii).
However, none of the simple groups there fulfills the necessary condition
on its dimension given by Proposition 5.6. q.e.d.

We also need to consider certain subactions of cohomogeneity one or
transitive actions.

Lemma 9.2.

(i) Let k ∈ {1, 2, 3}. Let H be a simple compact connected Lie group
and let ρ : H → SO(2n−k) be an irreducible representation of real
type such that ρ(H) ⊂ SO(2n−k) is maximal connected. Then any
closed subgroup of ρ(H)×SO(k) acts non-polarly on SO(2n)/U(n),
except if ρ is equivalent to the 7-dimensional irreducible represen-
tation of G2 and k = 1.

(ii) Let k ∈ {1, 2, 3}. Let H be a simple compact connected Lie group
and let ρ : H → SU(2n − k) be an irreducible representation of
complex type such that ρ(H) ⊂ SU(2n − k) is maximal connected.
Then any closed subgroup of S((ρ(H) ⊗ U(1)) × U(k)) acts non-
polarly on SU(2n)/Sp(n).

(iii) Let H be a simple compact connected Lie group and let ρ : H →
SU(n) be an irreducible representation of complex type such that
ρ(H) ⊂ SU(n) is maximal connected. Then any closed subgroup of
S((ρ(H) ⊗ U(1)) × U(1)) acts non-polarly on SU(n)/SO(n).

(iv) Let H be a simple compact connected Lie group and let ρ : H →
Sp(n) be an irreducible representation of real type such that ρ(H) ⊂
Sp(n) is maximal connected. Then any closed subgroup of ρ(H)×
Sp(1) acts non-polarly on Sp(n)/U(n).

Proof. The proof is almost literally the same as the proof of Propo-
sition 9.1. For the cases (i) and (ii), we may use the tables in parts (i)



POLAR ACTIONS ON SYMMETRIC SPACES 461

and (ii) of Lemma 2.8 in [33]. The only representations not excluded by
this argument are the 8-dimensional spin representation of Spin(7) and
the 7-dimensional representation of G2. However, in case of the actions
of Spin(7) × SO(2) and G2 × SO(3) on SO(10)/U(5), the normal space
at a principal orbit is not a Lie triple system, and hence these actions
are non-polar by Proposition 4.1. Closed connected subgroups of these
groups can be shown to act non-polarly by the same argument or are
excluded by Proposition 5.6. The action of G2 on SO(8)/U(4) is orbit
equivalent to the action of Spin(7) on SO(8)/U(4). The statements (iii)
and (iv) follow directly from Lemmata 2.7 and 2.8 of [33]. q.e.d.

We will now consider the maximal simple irreducible subgroups of
the classical groups SO(n), SU(n), Sp(n), given by irreducible repre-
sentations of the real, complex, or quaternionic type, respectively, and
their actions on the corresponding Grassmannians Gk(Kn), K = R, C
or H, of higher rank. A necessary condition for polarity on the di-
mension of these subgroups is given by Propositions 5.6 and 5.5. The
irreducible representations of simple compact Lie groups whose degrees
are sufficiently low can be obtained from Lemma 2.6 of [33], see also
the tables in Lemma 2.8 and the Appendix of [33]. These representa-
tions are given by Table 8; the column marked with kmax indicates the
maximal rank k ≤ ⌊n

2 ⌋ for which the necessary condition for polarity of
an action on Gk(Kn) given by Proposition 5.6 is fulfilled. We only list
such representations of complex or quaternionic type where kmax ≥ 2
and representations of real type where kmax ≥ 3, since polar actions
on G2(Rn) have been classified in [40]. It turns out that there are no
such representations of complex or quaternionic type.

Group Highest Weight Degree Type Description kmax

A2 (1, 1) 8 real adjoint 4
B3 (0, 0, 1) 8 real Spin(7) 4
B4 (0, 0, 0, 1) 16 real F II 4
C3 (0, 1, 0) 14 real A II 3
F4 (1, 0, 0, 0) 26 real E IV 3
G2 (1, 0) 7 real Aut(O) 3

Table 8. Representations of low degree.

Subactions of Ad(SU(3)) on G3(R8) and G4(R8). The group H =
SU(3) acts on its Lie algebra h by the adjoint representation Ad: H →
SO(h) and we obtain a subgroup Ad(SU(3)) ⊂ SO(8) by identifying h

with R8. We will study the actions of this group on the Grassmannians
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Gk(R8), k = 3, 4. Any closed connected proper subgroups of SU(3)
are of dimension ≤ 4 by Table 3 of [33] and are thus excluded by
Proposition 5.6.

The maximal connected subgroup SO(3) ⊂ SU(3) leaves a 3-dimen-
sional subspace of R8 invariant, thus it is the connected component of an
isotropy subgroup of the Ad(SU(3))-action on G3(R8). The slice repre-
sentation contains the irreducible 7-dimensional representation of SO(3)
and is hence non-polar [13].

Consider now the subgroup S(U(1)×U(2)) ⊂ SU(3). The action of H
on h = R8 restricted to S(U(1)×U(2)) leaves the 4-dimensional linear
subspace corresponding to s(u(1)+u(2)) ⊂ h invariant. Thus, the max-
imal connected S(U(1)×U(2)) coincides with the connected component
of the stabilizer of the H-action on G4(R8). Its slice representation
contains an 8-dimensional irreducible representation of S(U(1)×U(2))
which is non polar [13] and the H-action on G4(R8) is polarity minimal
by Lemma 6.4 (ii).

Subactions of Spin(7) on G3(R8) and G4(R8). The subgroup Spin(7)
of SO(8) gives rise to a Hermann action since its Lie algebra is the fixed
point set of an involution of so(8).

Subactions of Spin(9) on G3(R16). The action on G3(R16) was shown
not to be polar in [33], the slice representation being equivalent to a 16-
dimensional non-polar irreducible representation of Sp(1) · Sp(2). Thus
by Lemma 6.4 (ii), no subaction of the Spin(9)-action on G3(R16) is
polar.

Subactions of Spin(9) on G4 (R16). Consider the subgroup H0 =
Spin(4) · Spin(4) ⊂ Spin(8) ⊂ Spin(9). Its action on R16 leaves a four-
dimensional subspace V invariant. Since H0 ⊂ Spin(9) is a subgroup of
maximal rank, it is easy to check that no other connected subgroup of
Spin(9) containing H0 leaves V invariant, and thus H0 is the connected
component of an isotropy subgroup of the Spin(9)-action on R16. The
slice representation is equivalent to the sum of two 12-dimensional irre-
ducible modules and is easily seen to be non-polar and polarity minimal.

Subactions of Sp(3) on G3(R14). An isotropy subgroup of the Sp(3)-
action on G3(R14) is

SO(3) · U(1) ⊂ U(3) ⊂ Sp(3).

Its 16-dimensional slice representation does not contain any trivial sub-
module and is therefore non-polar by [1]. Any proper subgroups of
Sp(3) can be excluded by Proposition 5.6.

Subactions of F4 on G3(R26). The maximal connected subgroups of
maximal rank in H1 = F4 are, see [37], Chapter 1, § 3.11.

(9.1) Sp(3) · Sp(1), SU(3) · SU(3), Spin(9)
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We will determine a slice representation for the H1-action on G3(R26).
According to [15], Table 25, p. 199, the subgroup Spin(9) acts on R26

by the direct sum of the 9-dimensional standard representation, the
16-dimensional spin representation, and a one-dimensional trivial rep-
resentation. Thus, if we further restrict this representation to the maxi-
mal connected subgroup Spin(7) ·SO(2) of Spin(9), a three-dimensional
subspace W is left invariant and it follows that Spin(7) · SO(2) is con-
tained in an isotropy subgroup (H1)W of the H1-action on G3(R26).
The subgroup Spin(7) · SO(2) ⊂ F4 is of maximal rank and it can be
deduced from Table 25 of [15] that none of the groups in (9.1) leaves
a three-dimensional subspace of R26 invariant. Hence Spin(7) · SO(2) is
the connected component of the isotropy subgroup (H1)W and the slice
representation is, by a dimension count, equivalent to R7 ⊕ 2 · R2 ⊗ R8,
where Spin(7) acts on R8 by the spin representation, and therefore the
action of F4 on G3(R26) is non-polar and polarity minimal by Proposi-
tion 6.3 (ii) and Lemma 6.4 (ii).

Subactions of G2 on G3(R7). This is a cohomogeneity one action and
its subactions will be treated in Section 12.

10. Polar actions on the exceptional spaces

In this section we will study those isometric actions on the excep-
tional symmetric spaces of compact type which are subactions neither
of Hermann actions nor of cohomogeneity one actions. It will turn out
that none of these actions is polar.

The maximal connected subgroups of the simple compact Lie groups
were determined in [15], Tables 12 and 12a, p. 150–151, and Theo-
rem 14.1, p. 231. By Theorem 5.4 and Lemma 3.3, the cohomogeneity
of a polar action on a symmetric quotient G/K of a simple Lie group G is
at most rk(G)+rk(K). By Proposition 5.5, this estimate can be further
improved for Hermitian symmetric spaces, for which the cohomogeneity
is at most rk(G). From this it follows by using the classification of sym-
metric spaces, see Table 4, that a group acting polarly on a symmetric
quotient G/K with rk(G/K) ≥ 2 of one of the simple exceptional Lie
groups G = E6, E7, E8, F4, G2 is at least of dimension 16, 47, 96, 20,
4, respectively. (We do need not consider the Cayley plane F4/Spin(9),
since it is of rank one.) First we would like to recall a method to describe
certain subgroups of a (semi)simple compact Lie group in terms of the
root system, which is particularly useful for our purposes, see [22], § 8.3
and [37], Ch. 1, § 3.11.

Remark 10.1 (Borel-De Siebenthal theory). Let G be a connected
compact simple Lie group. A subgroup H ⊂ G is called a subgroup of
maximal rank if rk(H) = rk(G), i.e., H contains a maximal torus T of G.
Consider the root space decomposition gC = g0 +

∑

α∈R gα, where g0
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is the complexification of the maximal abelian subalgebra of g tangent
to T . Since the Lie algebra hC contains g0, it is a g0-stable subspace of
gC, and it follows that hC = g0 +

∑

α∈S gα where S ⊂ R is a subset of
the root system. Conversely, from suitable subsets S ⊂ R, one may con-
struct the Lie algebra of a subgroup H ⊂ G of maximal rank, see [37],
Chapter 1, § 3.11. In particular, one can obtain all maximal connected
subgroups of maximal rank by such a construction. These are obtained
by deleting certain vertices from the extended Dynkin diagram, see [37]
for details. The classification of all such subgroups up to conjugation
by automorphisms of G is given in Table 5, p. 64 of [37] or in Table 12,
p. 150 of [15], see also [22].

Now assume H and K are both subgroups of maximal rank in G.
Then we can use the above description to obtain information about the
H-action on the homogeneous space G/K, and in particular, to compute
an isotropy algebra together with its slice representation. In fact, we
may assume by conjugation of K with a suitable element from G that
both H and K contain a maximal torus T of G. Then hC = g0+

∑

α∈S gα

and kC = g0 +
∑

α∈S′ gα for some subsets S, S′ of the root system R. In
particular, the complexified isotropy algebra (h∩ k)C of the H-action on
G/K at eK is spanned by the Cartan algebra g0 and the root spaces
corresponding to the roots in the intersection S ∩ S′; hence it follows
that H∩K is also a subgroup of maximal rank in G. On the other hand,
the complexified normal space (h⊥ ∩ k⊥)C of the H-orbit through eK is
spanned by the root spaces corresponding to the roots in R \ (S ∪ S′).
Since T is also a maximal torus of H ∩ K, the roots in R \ (S ∪ S′) are
exactly the weights of the slice representation of H ∩ K on the normal
space h⊥ ∩ k⊥. It follows [32] that the H-orbit through eK is a singular
orbit, since T acts nontrivially on h⊥∩k⊥, in fact, the slice representation
does not have any trivial submodules, since the complexified normal
space is spanned by root spaces corresponding to non-zero roots. In the
special case H = K, one obtains the isotropy representation χ(G, K)
by this method.

Note that if a subgroup H ⊆ G is a fixed point set of an inner
automorphism σ of G, i.e., σ(x) = gxg−1, it is a subgroup of maximal
rank, since the element g = exp(X), X ∈ g, lies in a maximal torus
T of G and it follows that hC = g0 +

∑

{α|X∈ker α} gα where g0 is the

complexified Lie algebra of T . (Conversely, if a subgroup of maximal
rank is the fixed point set of an automorphism, then the automorphism
is inner.)

Let H and K be two subgroups of maximal rank with common max-
imal torus T as above. If both groups are fixed point sets of involutions
i.e., H = Gσ, K = Gτ , then it follows that the involutions σ and τ
commute, since they both act as either plus or minus identity on the
root spaces of g. This shows that if σ and τ are two inner involutions
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of a simple compact Lie group G, then τ is conjugate to an involution
which commutes with σ, cf. [10].

10.1. Symmetric spaces of E6. The maximal connected non-sym-
metric subgroups of E6 of dimension ≥ 16 are SU(3) · SU(3) · SU(3)

and G1
2 · A

2
2
′′
, see [15]. (The upper indices denote the Dynkin index of

subgroups and the primes are used to distinguish non-conjugate sub-
groups of the same Dynkin index). By a dimension count, no closed
subgroup of these groups acts polarly on the spaces E6/(Sp(4)/{±1}),
E6/SU(6) · Sp(1) or E6/Spin(10) · U(1).

It remains to determine the polar actions on E6/F4. We start with
the group H1 = SU(3)·SU(3)·SU(3). The subgroup SU(3)·SU(3)·SU(3)
is constructed from the extended Dynkin diagram of E6 as follows, cf.
Remark 10.1.

b b b b br

b

b

1 2 3 4 5

6

0

The vertices numbered 1, . . . , 6 correspond to the simple roots α1, . . . , α6

of E6 and the vertex with number 0 represents α0, where −α0 is the
maximal root. Now the group H1 = SU(3) · SU(3) · SU(3) arises from
the extended Dynkin diagram if one deletes the central vertex 3, i.e., it is
the regular subgroup whose simple roots are α1, α2, α4, α5, α6, α0. The
subgroup F4 ⊂ E6 is the fixed point set of the diagram automorphism
σ of E6 which maps α1 7→ α5, α2 7→ α4, α4 7→ α2, α5 7→ α1 and
leaves α3 and α6 fixed. This automorphism σ also leaves α0 fixed, since
−α0 = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6, see [37], Chapter 1, § 3.11.
It follows that σ also acts on H1, i.e., trivially on one SU(3)-factor (the
one whose simple roots are α6, α0) and by interchanging the other two
SU(3)-factors. Thus, H1 ∩ F4 is the fixed point set Hσ

1 and is hence
isomorphic to SU(3) · ∆SU(3), where the ∆SU(3)-factor is diagonally
embedded into two of the SU(3)-factors of H1. Let us determine the slice
representation of the H1-action on M . It is a submodule of χ(E6, H1)
restricted to H1 ∩ F4. The real 54-dimensional isotropy representation
χ(E6, H1) is, after complexification,

(10.1)
(

b b b b b b⊗ ⊗
1 1 1 )

⊕
(

b b b b b b⊗ ⊗
1 1 1 )

,

see [47], Corollary 13.2; i.e., the isotropy representation is equivalent to
the action of SU(3) ·SU(3) ·SU(3) on C3⊗C3⊗C3 by the tensor product
of the standard representations. If we restrict this representation to the
subgroup SU(3) · ∆SU(3), it splits into the irreducible modules (C3 ⊗
Sym2C3) and (C3 ⊗Λ2C3), where the first SU(3)-factor acts on C3 and
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the ∆SU(3)-factor acts on Sym2C3 or Λ2C3, respectively. A dimension
count shows that the real 36-dimensional slice representation of the
H1-action is equivalent to the first irreducible summand, hence it is
non-polar [13] and polarity minimal. We conclude that the H1-action
on G/K is non-polar and polarity minimal by Lemma 6.4 (ii).

Now consider subactions of H1 = G1
2 · A2

2
′′

on G/K = E6/F4. We
determine a slice representation of the H1-action on G/K. First ob-
serve that F4 contains the subgroup G1

2, according to Table 39 of [15],
p. 233. Since the subgroup F4 ⊂ E6 has Dynkin index 1, it follows
that G1

2 ⊂ E6 also has Dynkin index 1, see [15], Ch. I, § 2. By Table 25
of [15], p. 200, there is only one conjugacy class of subgroups isomorphic
to G2 of Dynkin index 1 in E6, and it follows that an isotropy subgroup
(H1)x of the H1-action on G/K contains G1

2. The homogeneous space
G/H1 is strongly isotropy irreducible, see [47], Theorem 3.1, p. 66; and
its isotropy representation decomposes into 8 equivalent 7-dimensional
irreducible modules when restricted to G2. Thus the dimension of the
normal space Nx(H1 · x) to the H1-orbit through x is a multiple of 7.
The only possibility is a 21-dimensional slice representation which splits
into 3 irreducible 7-dimensional modules when restricted to G1

2. By [13]
and [1], such a representation is non-polar and it is polarity minimal by
Lemma 6.3, part (i) or (ii), and hence we can apply Lemma 6.4 to show
that no closed subgroup H ⊆ H1 acts polarly on G/K.

10.2. Symmetric spaces of E7. The only maximal connected non-
symmetric subgroup of dimension ≥ 47 is H1 = F1

4 · A
3
1
′′
, see [15]. By

Lemma 3.3 and Proposition 5.5, respectively, no closed subgroup of H1

acts polarly on E7/(SU(8)/{±1}) or on E7/E6 · U(1).
Let us determine an isotropy subgroup of the H1-action on G/K =

E7/SO′(12)·Sp(1). First observe that h1 contains a subalgebra spin(9) ⊂
f4 ⊂ h1. By Table 25 of [15], p. 201, there is only one conjugacy class of
subalgebras isomorphic to spin(9) in e7 and it follows that, after conjuga-
tion, this subalgebra coincides with the subalgebra spin(9) ⊂ spin(12) ⊂
k. Thus there is an isotropy subgroup (H1)x of the H1-action on G/K
whose Lie algebra contains spin(9) as a subalgebra. The 64-dimensional
isotropy representation of E7/SO′(12) · Sp(1) decomposes into 4 copies
of the 16-dimensional spin representation when restricted to Spin(9).
Thus the dimension of an orbit H1 · x is a multiple of 16 and it fol-
lows by a dimension count that the Lie algebra of (H1)x is isomorphic
to spin(9) ⊕ a1. The 32-dimensional slice representation at the point x
is the sum of two modules equivalent to the 16-dimensional spin rep-
resentation of Spin(9), hence it is non-polar and polarity minimal and
thus by Lemma 6.4, the H1-action is non-polar and polarity minimal.

Now consider the action of H1 = F1
4 ·A

3
1
′′

on G/K = E7/E6 ·U(1). By
Table 25 of [15], p. 201, there is only one conjugacy class of subgroups
isomorphic to F4 in E7 and it follows that an isotropy subgroup (H1)x
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of the H1-action on G/K contains F4. The space G/H1 is strongly
isotropy irreducible, see [47], Theorem 3.1, and its isotropy representa-
tion decomposes into 3 equivalent 26-dimensional irreducible modules
when restricted to F4. This shows that the dimension of the normal
space Nx(H1 ·x) is a multiple of 26, and it follows by a dimension count
that the connected component of the isotropy subgroup (H1)x is iso-
morphic to F4 · U(1). Thus the slice representation is non-polar and
polarity minimal, and we can apply Lemma 6.4 (i) to show that no
closed subgroup H ⊆ H1 acts polarly on G/K.

10.3. Symmetric spaces of E8. The maximal connected subgroups
of E8 whose dimension is at least 96 are symmetric. Hence any po-
lar actions on the symmetric spaces E8/SO′(16) and E8/E7 · Sp(1) are
subactions of Hermann actions.

10.4. Actions on F4/Sp(3) · Sp(1). All maximal connected subgroups
of F4 whose dimension is at least 20 are symmetric. Thus any polar
action on the space F4/Sp(3) ·Sp(1) is a subaction of a Hermann action.

10.5. Actions on G2/SO(4). The maximal connected subgroups of G2

are

(10.2) SO(4), SU(3), A28
1 ,

where A28
1 is a maximal connected subgroup in G2 of type A1, cf. [15].

If the group H acting on M = G2/SO(4) is contained in SO(4), then the
action has a fixed point. The group SU(3) acts with cohomogeneity one
on M . The only closed connected subgroup H ⊂ SU(3) of dimension ≥
4 is S(U(1) × U(2)) ∼= U(2), whose action on M has a fixed point.
Subgroups of rank one are ruled out by a dimension count.

11. Subactions of hyperpolar actions

To complete the classification, it remains to study subactions of co-
homogeneity one and transitive actions. We will need the following lem-
mata to study subactions of Hermann actions. The first lemma shows
that the slice representations of a Hermann action are s-representations.

Lemma 11.1 (Slice representations of Hermann actions). Let G be
a connected simple compact Lie group and let σ, τ be two involutive
automorphisms of G. Let K = Gσ

0 be the connected component of the
fixed point set of σ and let H1 = Gτ

0 be the connected component of
the fixed point set of τ . Consider the H1-action on G/K. Then the
exponential image S = expeK(NeK(H1 · eK)) of the normal space to the
orbit through eK is a totally geodesic submanifold locally isometric to a
symmetric space Gσ◦τ/Gσ ∩Gτ , whose isotropy representation is on the
Lie algebra level equivalent to the slice representation of the H1-action
on G/K at eK.
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Proof. The Lie algebra g of G admits the two decompositions

(11.1) g = k ⊕ p = h1 ⊕ m1,

where p and m1 are the −1-eigenspaces of σ∗ and τ∗, respectively. The
normal space NeK(H1 · eK) = p ∩ m1 ⊆ p is a Lie triple system and
k ∩ h1 ⊕ p ∩ m1 is the Lie algebra generated by p ∩ m1; the isotropy
algebra at eK of the H1-action on G/K is just h1 ∩ k and its action
on the normal space p ∩ m1 agrees on the Lie algebra level with the
isotropy representation of Gσ◦τ/Gσ ∩Gτ , which is locally isometric to S
by Proposition 3.2. q.e.d.

In the special case where the two involutions defining a Hermann
action commute (possibly after conjugation), the action has a totally
geodesic orbit. The pairs of involutions on the compact simple Lie
groups for which this is the case have been determined in [10]. By
Lemma 4.2, a polar subaction also acts polarly on this totally geodesic
orbit.

Lemma 11.2 (Subactions of Hermann actions with commuting invo-
lutions). Let G, K, and H1 be as in Lemma 11.1. Assume in addition
that σ ◦ τ = τ ◦ σ. Let H ⊆ H1 be a closed connected subgroup acting
polarly on M = G/K. Then the H1-orbit H1 ·eK = H1/H1∩K through
eK ∈ M is a totally geodesic submanifold and H acts polarly on the
symmetric space H1 · eK ∼= H1/H1 ∩ K.

Proof. Since σ and τ commute, we have the direct sum decomposition

(11.2) g = (k ∩ h1) ⊕ (k ∩ m1) ⊕ (p ∩ h1) ⊕ (p ∩ m1).

Consider now the H1-action on the symmetric space G/K. We can
identify p with the tangent space TeKG/K. Then h1 ∩ p is the tangent
space of the H1-orbit through the point eK. Using the Cartan relations
for the decompositions (11.1), it is easy to verify that h1 ∩ p is a Lie
triple system. Hence, the H1-orbit through eK is totally geodesic by
Proposition 3.2. Clearly, the action of H leaves all H1-orbits invariant
and the polarity of the H-action on H1 · eK follows from Lemma 4.2.

q.e.d.

The following lemma is just a simple reformulation of the criterion
for polarity given by Proposition 4.1 in the special case of subaction of
a Hermann action; it is, however, useful in particular to study polar
actions on the exceptional spaces since it enables us to test for polarity
on a subspace.

Lemma 11.3. Let G, K, H1, H and M = G/K be as in Lemma 11.1.
Assume the group H acts transitively on the H1-orbit through eK. Then
the action of H on G/K is polar if and only if the action of H ∩ K
on S = expeK(NeK(H1 ·eK)) is polar and [ν, ν] ⊥ h, where ν ⊆ m1∩p is
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a normal space to a principal orbit of the slice representation of H ∩K
on m1 ∩ p.

12. Subactions of cohomogeneity one and transitive actions

To finish the proof of our classification result, it remains to consider
subactions of cohomogeneity one and transitive actions. Note that polar
actions on the real Grassmannians G2(Rn) of rank two were completely
classified in [40], and we will not consider any spaces locally isometric to
them here. We may also ignore all actions with a fixed point, since they
are known to be hyperpolar by Corollary 6.2, see also [7], Theorem 2.2.

Proof of Theorems 1 and 2. Let G be a connected simple compact Lie
group and let K be a symmetric subgroup such that rk(G/K) ≥ 2.
Assume the closed connected subgroup H ⊂ G acts polarly on M =
G/K.

We have already completed the classification in the case where G is
an exceptional Lie group, hence it remains the case where G is one of
the classical Lie groups SO(n), n ≥ 7, SU(n), n ≥ 3, or Sp(n), n ≥ 2.
Then H is contained in one of the maximal connected subgroups of G
as described in Propositions 3.6, 3.7, and 3.8. Thus at least one of the
following holds:

• H is contained in a maximal tensor product subgroup (8.2) of G.
• H is contained in maximal connected simple irreducible subgroup

of G.
• H is contained in a symmetric subgroup of G.

If the first possibility holds, then the result follows from Propositions 8.1
and 8.3 except if M is a Grassmannian and the tensor product subgroup
acts with cohomogeneity one on M . The second possibility was studied
in Section 9, except for subactions of cohomogeneity one or transitive
actions. In the case where H is contained in symmetric subgroup H1

of G, i.e., the H-action on M is a subaction of a Hermann action,
the result follows from Theorem 7.3, under the assumption that the
cohomogeneity of the H1-action on M is ≥ 2. Thus it remains the case
where H is a proper closed connected subgroup of H1 ⊂ G such that
H1 acts on M with cohomogeneity ≤ 1.

It will turn out that all polar actions on G/K are hyperpolar, hence
it follows from Corollary 2.12 of [24] that the sections are embedded
submanifolds.

Subactions of “exceptional” cohomogeneity one and transitive
actions. Let us first consider the case where the H1-action on M =
G/K is not of Hermann type. These cohomogeneity one and transitive
actions were determined in [33], Theorem A and [36], respectively. We
only consider the cases where G/K is symmetric of rank ≥ 2; these
actions are given in Table 9.
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H1 G K Coh.

G2 SO(7) SO(5) × SO(2) 0

G2 SO(7) SO(4) × SO(3) 1

Spin(9) SO(16) SO(14) × SO(2) 1

Sp(n) · Sp(1), n ≥ 2 SO(4n) SO(4n−2) × SO(2) 1

SU(3) G2 SO(4) 1

Table 9. “Exceptional” cohomogeneity one and transi-
tive actions.

We examine these actions case by case. Assume first H ⊂ G2 is
acting on G2(R7) or G3(R7). Then H is contained in one of the max-
imal connected subgroups (10.2). Under the 7-dimensional irreducible
orthogonal representation of G2, the first two groups SO(4) and SU(3)
are mapped to reducible subgroups of SO(7), and thus the H-action
is in this case a subaction of a Hermann action. If H is contained in
SU(3), then the H-action is a subaction of a cohomogeneity one Her-
mann action of type BD I-I and will be treated on page 475. The third
group can be excluded by Lemma 3.3.

Let us now consider subgroups of Spin(9), acting on G2(R16). The
maximal connected subgroups of SO(9) are, see Proposition 3.6 and [15]:

SO(8), SO(7) × SO(2), SO(6) × SO(3),

SO(5) × SO(4), SO(3) ⊗ SO(3), A60
1 .

Let H1 ⊂ Spin(9) such that π(H1) ⊂ SO(9) is one of the above, where
π : Spin(9) → SO(9) is the double cover. We need to consider the image
of H1 under the spin representation δ : Spin(9) → SO(16). We have
δ(Spin(8)) ⊂ SO(8) × SO(8) and δ(Spin(7) · Spin(2)) ⊂ U(8), thus any
subgroups of these are contained in symmetric subgroups of SO(16);
the remaining subgroups can be excluded by a dimension count, see
Lemma 3.3.

We do not need to consider subactions of the Sp(n) · Sp(1)-action
on G2(R4n) = SO(4n)/SO(4n − 2) × SO(2), since polar actions on
these spaces have been completely classified by Podestà and Thorbergs-
son [40].

The last item in Table 9 was treated in Section 10.

Subactions of cohomogeneity one and transitive Hermann ac-
tions. It now remains to study subactions of cohomogeneity one and
transitive Hermann actions. These Hermann actions are listed in Ta-
ble 10. The column marked with Gστ

Gσ∩Gτ indicates (the local isome-
try type of) the symmetric space Gστ/Gσ ∩ Gτ whose isotropy rep-
resentation is equivalent to one slice representation of the Gσ-action
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Type Gσ G Gτ Coh. Gστ

Gσ∩Gτ

A I-III SO(p + 1) SU(p + 1) S(U(p) × U(1)) 1
SO(p+1)
SO(p)

A III-II S(U(2n − 1)×U(1)) SU(2n) Sp(n) 0
Sp(n−1)×U(1)
Sp(n−1)×U(1)

A III-II S(U(2n − 2)×U(2)) SU(2n) Sp(n) 1
Sp(n)

Sp(n−1)×Sp(1)

A III-II S(U(2n − 3)×U(3)) SU(2n) Sp(n) 1
Sp(n−1)×U(1)

Sp(n−2)×U(1)×Sp(1)

A III-III S(U(a+b)×U(1))) SU(a+b+1) S(U(a)×U(b+1)) 1
S(U(a+1)×U(b))

S(U(a)×U(1)×U(b))

BD I-I SO(a+b) SO(a+b+1) SO(a)×SO(b+1) 1
SO(a+1)×SO(b)
SO(a)×SO(b)

C I-II Sp(p)×Sp(1) Sp(p + 1) U(p + 1) 1
U(p+1)

U(p)×U(1)

C II-II Sp(a + b)×Sp(1) Sp(a+b+1) Sp(a)×Sp(b + 1) 1
Sp(a+1)×Sp(b)

Sp(a)×Sp(1)×Sp(b)

DI-III SO(2n−1) SO(2n) U(n) 0
U(n−1)
U(n−1)

DI-III SO(2n−2)×SO(2) SO(2n) U(n) 1
U(n)

U(n−1)×U(1)

DI-III SO(2n−3)×SO(3) SO(2n) U(n) 1
U(n−1)

U(n−2)×U(1)

E II-IV SU(6)·Sp(1) E6 F4 1
Sp(4)

Sp(3)·Sp(1)

E III-IV Spin(10)·U(1) E6 F4 1
F4

Spin(9)

F I-II Sp(3)·Sp(1) F4 Spin(9) 1
Sp(3)·Sp(1)

Sp(2)·Sp(1)·Sp(1)

Table 10. Cohomogeneity one and transitive Hermann actions.

on G/Gτ (and of the Gτ -action on G/Gσ) by Lemma 11.1. (The pre-
sentation may be non-effective; in particular for transitive actions the
space Gστ/Gσ ∩ Gτ is a noneffective presentation of a zero-dimensional
space.) We only have to consider actions on symmetric spaces of rank ≥
2.

AIII-I. Consider the action of H1 = S(U(p)×U(1)) on G/K = SU(p+
1)/SO(p + 1), p ≥ 2. Assume a closed connected subgroup H ⊂ H1

acts polarly on G/K. Then H is contained in some maximal connected
subgroup H2 of H1. By Theorem 2.1 of [33], either H2 = SU(p) or
H2 = S((H ′

2⊗U(1))×U(1)) where H ′
2 is a maximal connected subgroup

of SU(p), see Proposition 3.7. In the case of the SU(p)-action on G/K,
an explicit calculation shows that the normal space to a principal orbit
is not a Lie triple system, thus the SU(p)-action on G/K is non-polar by
Proposition 4.1. Thus we may restrict our attention to the second case,
where we may further assume that H ′

2 ⊂ SU(p) is irreducible, since oth-
erwise the H-action is a subaction of a Hermann action whose cohomo-
geneity is ≥ 2. Assume first H ′

2 = SO(p). Then the H-action on G/K is
non-polar by Corollary 6.2, since the H2-action has a one-dimensional
orbit. Now assume H ′

2 = Sp(p/2), p ≥ 4; then one isotropy group
is U(p/2) and the slice representation is the adjoint representation of
SU(p/2) plus the standard representation of U(p/2), see Table 5, which
is non-polar and polarity minimal [1]. The normal space NeKH2 · eK
contains a Lie triple system corresponding to an irreducible symmetric
space of higher rank, thus the H2-action on G/K is non-polar and polar-
ity minimal by Lemma 6.4 (iii). Subgroups of S(U(p/ℓ)⊗U(ℓ))×U(1))
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are excluded by Proposition 8.2, simple irreducible maximal connected
subgroups H2 ⊂ SU(p) by Proposition 9.2 (iii).
AIII-II. Let H be a closed connected subgroup of H1 = S(U(2n−k)×
U(k)), k = 1, 2, 3 acting on G/K = SU(2n)/Sp(n), n ≥ 3. It is well
known [36] that the action of H = SU(2n − 1) is transitive on G/K.

We will now study actions of closed connected subgroups H in H2 =
S((H ′

2 ⊗ U(1)) × U(k)). The cases where H ′
2 ⊂ SU(2n − k) is a simple

irreducible or tensor product subgroup are excluded by Lemma 9.2 and
Proposition 8.2. Thus it remains to consider the case where H ′

2 is a
symmetric subgroup of SU(2n− k). Assume H ′

2 = SO(2n− k); if k = 1
then SO(2n − 1) acts on the symmetric space M = SU(2n)/Sp(n),
homogeneously presented as M = SU(2n − 1)/Sp(n − 1); an isotropy
subgroup of this action is H2 ∩K = U(n− 1), its slice representation is
equivalent to the adjoint representation of SU(n− 1) plus the standard
representation on Cn−1 = R2n−2, see Table 5. This representation is
non-polar [1] and polarity minimal by Proposition 6.3, and hence the
H2-action on G/K is non-polar and polarity minimal by Lemma 6.4 (iii),
since the normal space contains an irreducible Lie triple system of higher
rank. If k = 2 or k = 3, then a slice representation of the H2-action
on G/K contains a module equivalent to the isotropy representation
of HPn−1 or HPn−2 restricted to U(n− 1)× Sp(1) or U(n− 2)× Sp(1),
respectively. This representation contains two equivalent modules and
the H-action is thus non-polar and polarity minimal by Lemma 6.4 (iii),
except if n = k = 3, a case which can be handled by explicit calculations
using the criterion in Proposition 4.1.

If k = 2 and H ′
2 = Sp(n−1), then the H2-action has a one-dimensional

orbit and the action of any closed subgroup H ⊆ H2 on G/K is non-
polar by Corollary 6.2. Thus we are left with the case where H ′

2 =
U(2n− k − ℓ)×U(ℓ). We may assume k + ℓ ≤ 3 since otherwise the H-
action on G/K is a subaction of a Hermann action of cohomogeneity ≥
2, which were already treated in Section 7. If k = ℓ = 1 then we obtain
the cohomogeneity one actions of H = S(U(2n− 2)×U(1)×U(1)) and
S(U(2n−2)×U(1)) on G/K, we have already seen that no further closed
proper subgroup of these groups acts polarly. In case k+ ℓ = 3, we have
to consider closed connected subgroups H of H2 = S(U(2n−3)× (H ′′

2 ⊗
U(1))), where H ′′

2 ⊂ SU(3) is a maximal connected subgroup. Since
there are a number of subgroups H ⊆ H2 acting with cohomogeneity
two (in these cases all slice representations are polar), we have to exclude
them by explicit calculations using Proposition 4.1.

In case n = k = 3 there are additional maximal connected subgroups,
i.e.,

H2 = {(zA, z−1α(A)) | A ∈ SU(3), z ∈ C, |z| = 1} ⊂ S(U(3) × U(3)),

where α ∈ Aut(SU(3)), see Theorem 2.1 of [33]. If α is an outer auto-
morphism, e.g., given by complex conjugation, then the H2-action has a
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one-dimensional orbit and is non-polar and polarity minimal by Corol-
lary 6.2. If α is an inner automorphism, then a stabilizer component
is U(1) · SO(3), and the 9-dimensional slice representation is equivalent
to R3 ⊕ C1 ⊗ R3, hence non-polar [1] and polarity minimal by Propo-
sition 6.3 (iii). Thus the H2-action on G/K is non-polar and polarity
minimal by Lemma 6.4.

AII-III. Consider the action of H1 = Sp(n) on the space G/K =
SU(2n)/S(U(2n − 2) × U(2)), n ≥ 2. Let H ⊆ H1 be a closed con-
nected subgroup acting polarly on G/K. The H1-orbit H1 · eK ∼=
Sp(n)/Sp(n − 1) × Sp(1) is totally geodesic and H acts polarly on this
orbit by Lemma 11.2, the action being non-transitive by [36]. The H-
action on H1 · eK has a singular orbit by Corollary 5.3 and we may
assume by conjugation of H in H1 that eK lies in a singular orbit.
From Table 10 we read off that the slice representation of the H1-action
on G/K is equivalent to the isotropy representation of the symmetric
space H1 · eK = H1/H1 ∩ K. Thus the nontrivial slice representa-
tion of the H-action on H1 · eK, which is a submodule of the isotropy
representation of H1/H1 ∩ K, also occurs as a submodule of the slice
representation of H1 on G/K restricted to H ∩ K. We conclude that
the slice representation of the H-action on G/K contains two nontrivial
equivalent modules and is hence non-polar by [33], Lemma 2.9.

Consider the action of H1 = Sp(n) on G/K = SU(2n)/S(U(2n −
3) × U(3)), n ≥ 3. Let H ⊆ H1 be a closed connected subgroup acting
polarly on G/K. Then H is contained in a maximal connected sub-
group H2 of H1 = Sp(n). We may assume that H2 is irreducible, since
otherwise the H-action is a subaction of a Hermann action with coho-
mogeneity ≥ 2. If H2 = U(n), then H2 is contained after conjugation
in S(U(n) × U(n)) ⊂ SU(2n) and the H-action is also a subaction of a
Hermann action of cohomogeneity ≥ 2. The actions of maximal con-
nected subgroups of type SO(q) ⊗ Sp(p/q) have been treated in Propo-
sition 8.4. The actions of simple irreducible subgroups ρ(H), where
ρ : H → Sp(n) is an irreducible representation of quaternionic type,
have been excluded in Section 9.

AIII-III. Consider the action of H1 = S(U(a + b)×U(1)) on the com-
plex Grassmannian G/K = SU(a+b+1)/S(U(a)×U(b+1)), a ≥ b ≥ 1,
a+b ≥ 3. Assume H ⊂ H1 is a closed connected subgroup acting polarly
on G/K. First note that the action of SU(a+ b) on G/K is orbit equiv-
alent to the H1-action. Now assume H ⊆ H2 = S((H ′

2 ⊗ U(1)) × U(1))
is a closed connected subgroup acting polarly on G/K, where H ′

2 ⊂
SU(a + b) is a maximal connected subgroup. We may assume that the
standard representation of SU(a + b) restricted to H ′

2 acts irreducibly
on Ca+b, since otherwise H2 is contained in a subgroup of G conjugate
to S(U(k)×U(a+ b+1−k)) for 2 ≤ k ≤ a+ b−1 and the H2-action on
G/K is a subaction of a Hermann action of cohomogeneity ≥ 2, which
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have already been treated in Section 7. It follows from Lemma 11.2 that
the orbit H1 · eK is a totally geodesic submanifold of G/K isometric
to SU(a + b)/S(U(a) × U(b)) on which H acts polarly.

Assume first that H ′
2 is an irreducible symmetric subgroup of SU(a+

b), hence conjugate to either SO(a+b) or Sp(a+b
2 ). However, in the first

case, the isotropy subgroup of the H2-action at eK is S(O(a) × O(b)) ·
U(1) and its slice representation is equivalent to (Ra ⊗ Rb) ⊕ (Ra ⊗
C1). Thus it is non-polar [1] and polarity minimal by Lemma 6.3. It
follows from Table 10 that the normal space contains a Lie triple system
corresponding to a totally geodesic submanifold isometric to CPa, thus
the H2-action is non-polar and polarity minimal by Lemma 6.4 (iii),
since a ≥ 2. Let us now consider the case where a + b is even and H ′

2 is

conjugate to Sp(a+b
2 ), and hence a + b ≥ 4. The group H acts polarly

on the totally geodesic H1-orbit H1 · eK ∼= SU(a + b)/S(U(a) × U(b)),
which is of rank b. If b ≥ 2, then the reducible slice representation is
non-polar and polarity minimal by [1], and the H-action is non-polar
and polarity minimal by Lemma 6.4. If b = 1, then H2 acts transitively
on the orbit H1 · eK, but an explicit calculation using Proposition 4.1
shows that the H2-action on G/K is non-polar. Let H ⊂ H2 be a proper
closed subgroup; then H acts non-transitively on H1 · eK by [36]. If
the H-action on G/K is polar, then also the H-action restricted to
H1 · eK ∼= CPa is polar by Lemma 4.2 and it has a singular orbit
H · p by Corollary 5.3. The normal space p ∩ m1, see Lemma 11.1, of
the H1-action on G/K contains a submodule that is equivalent to the
slice representation at p ∈ H1 · eK of the H-action on H1 · eK after a
U(1)-factor is removed from both representations. Since both modules
belong to the polar slice representation of the H-action on G/K, it
follows from [1] that H is at most three-dimensional, a contradiction
with Proposition 5.5.

Now assume H ′
2 is a non-symmetric irreducible maximal connected

subgroup of Sp(a + b). It follows from what we have shown so far that
this can only happen if rk(H1 · eK) = b = 1. Assume H ′

2 = SO(p) ⊗
Sp(q); then the H2-action on H1 · eK is non-polar and polarity minimal
by Proposition 8.3. If H ′

2 is a simple irreducible maximal connected
subgroup of Sp(a + b), then it follows from the results of Section 9 that
the action of H2 on G/K is non-polar and polarity minimal, since if
the action of H ′

2 on Gk(Ha+b) for 2 ≤ k ≤ a + b − 2 is excluded by
Proposition 5.6, then also the action of H2 on Gk(Ha+b+1) is excluded
by a dimension count.

BDI-I. Let H1 = SO(a + b), G/K = SO(a + b + 1)/SO(a)× SO(b + 1),
a + b ≥ 6, a ≥ b ≥ 1. Assume H ⊂ H1 is a closed connected subgroup
acting polarly on G/K. Without loss of generality we may assume that
H ⊆ SO(a + b) acts irreducibly on Ra+b, since otherwise the H-action
on G/K is a subaction of a Hermann action of cohomogeneity ≥ 2, see
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Section 7. By Lemma 11.2, the H1-orbit H1 · eK is a totally geodesic
submanifold isometric to SO(a + b)/S(O(a)×O(b)) and H acts polarly
on H1 · eK (the action may be transitive).

We do not need to consider the case where rk(H1 · eK) = b = 1, since
polar actions on G2(Ra+2) were completely classified in [40]. Hence we
may assume b ≥ 2. Let us first consider the cases where H ⊂ H1 is not
a symmetric subgroup. Then it follows from what we have shown so far
and [36] that we have one of the following:

• H = G2, a + b = 7, b = 2, 3;
• H = Spin(7), a + b = 8, b = 2, 3, 4;
• H = Spin(9), a + b = 16, b = 2;
• H = Sp(n) · Sp(1), a + b = 4n, b = 2;
• H = U(n), a + b = 2n.

In the case of the G2-actions, an explicit calculation using Proposi-
tion 4.1 shows that the actions are non-polar; subgroups (10.2) of G2

are either reducible or are excluded by a dimension count. The actions
of Spin(7) are orbit equivalent to the SO(8)-action in case b = 2, 3; in
case b = 4 the action can be shown to be non-polar by an explicit cal-
culation. Subgroups of Spin(7) are either contained in groups treated
below or ruled out by a dimension count. The actions of Spin(9) and
Sp(n) · Sp(1) can be excluded by replacing K with the conjugate sub-
group K ′ = SO(3) × SO(a), the actions on H1 · eK

′ have already been
shown to be non-polar and polarity minimal. Assume now H = U(a+b

2 ).
The slice representation of the H-action at eK, as can be seen from
Tables 5 and 10, contains a module equivalent to the representation

of U
(

⌊a
2⌋

)

×U
(

⌊ b
2⌋

)

on C⌊a
2
⌋ ⊗C⌊ b

2
⌋ ⊕C⌊a

2
⌋, which is non-polar [1] and

polarity minimal by Lemma 6.3 since ⌊a
2⌋ ≥ 2.

C I-II. Let H be closed connected subgroup of H1 = Sp(p)×Sp(1) act-
ing polarly on G/K = Sp(p + 1)/U(p + 1), p ≥ 2. We first observe that
the actions of Sp(p) and Sp(p)×U(1) are not orbit equivalent to the
H1-action; since the normal space at a regular orbit is not a Lie triple
system, these actions are non-polar by Proposition 4.1. Now assume
H ⊆ H2 = H ′

2 × Sp(1), where H ′
2 is a maximal connected subgroup

of Sp(n). We may assume H ′
2 ⊂ Sp(n) acts irreducibly on Hn, since

otherwise H2 is a subgroup of Sp(p + 1 − k) × Sp(k), 2 ≤ k ≤ p − 1,
see Section 7. Consider the action of H2 = U(p) × Sp(1) on G/K;
then the slice representation of the isotropy subgroup U(p) × U(1) is
equivalent to the isotropy representation of Sp(p)/U(p) plus Cp ⊗ C1.
This representation is non-polar [1] and the action of H2 on G/K is
polarity-minimal by Lemma 6.4 (iii). If H2 = ρ(H ′

2) × Sp(1), where
ρ : H ′

2 → Sp(p) is an irreducible representation of the simple compact
Lie group H, then the H-action on G/K is non-polar by Lemma 9.2.
Tensor product subgroups H ′

2 have been excluded in Proposition 8.2.
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C II-II. Let H1 = Sp(a+b)×Sp(1) and let G/K = Sp(a+b+1)/Sp(a)×
Sp(b + 1), a ≥ b ≥ 1, a + b ≥ 3. First observe that the action of
Sp(a + b) on G/K is orbit equivalent to the H1-action. Now assume
H ⊂ H2 = H ′

2 × Sp(1) is a closed connected subgroup acting polarly
on G/K, where H ′

2 ⊂ Sp(a + b) is a maximal connected subgroup.
We may assume that H ′

2 ⊆ Sp(a + b) acts irreducibly on Ha+b, since
otherwise the H-action on G/K is a subaction of a Hermann action of
cohomogeneity ≥ 2, which were examined in Section 7. It follows from
Lemma 11.2 that the H1-orbit H1 · eK is a totally geodesic submanifold
isometric to Sp(a + b)/Sp(a) × Sp(b) on which H acts polarly.

Assume H ′
2 is an irreducible symmetric subgroup of Sp(a + b), hence

conjugate to U(a+ b). However, the isotropy subgroup of the H2-action
at eK is U(a)×U(b)×Sp(1), its slice representation contains two equiv-
alent modules; thus it is non-polar and polarity minimal by Lemma 6.3,
parts (ii) and (iii). The normal space contains a Lie triple system cor-
responding to a totally geodesic submanifold isometric to HPa, hence
the H2-action is non-polar and polarity minimal by Lemma 6.4 (iii).

Now assume H ′
2 is a non-symmetric irreducible maximal connected

subgroup of Sp(a+b) acting polarly on H1·eK = Sp(a+b)/Sp(a)×Sp(b).
It follows from what we have shown so far that this can only happen if
rk(H1 · eK) = 1, i.e., b = 1. Assume H ′

2 = SO(p)⊗Sp(q). Then the H2-
action on H1 · eK is non-polar and polarity minimal by Proposition 8.3.
If H ′

2 is a simple irreducible subgroup of Sp(a + b), then it follows from
the results of Section 9 that the action of H2 on G/K is non-polar and
polarity minimal, since if the action of H ′

2 on Gk(Ha+b) for 2 ≤ k ≤
a + b − 2 is excluded by Proposition 5.6, then so is the action of H2 on
Gk(Ha+b+1).

DI-III. Let H be a closed connected subgroup of SO(n − k) × SO(k),
k = 1, 2, 3 acting on G/K = SO(2n)/U(n), n ≥ 3. We first study
actions of closed connected subgroups H in H2 = H ′

2 × SO(k). The
cases where H ′

2 ⊂ SO(2n − k) is a simple irreducible or tensor product
subgroup were excluded by Lemma 9.2 and Lemma 8.2. Let us consider
the case where H ′

2 is a symmetric subgroup of SO(2n−k). If k = 2 and
H ′

2 = U(n−1), then the H-action has a fixed point. Thus it remains the
case where H ′

2 = SO(2n−k−ℓ)×SO(ℓ). We may assume k+ℓ ≤ 3 since
otherwise the H-action on G/K is a subaction of a Hermann action of
cohomogeneity ≥ 2, see Section 7. If k = ℓ = 1 then we obtain the
cohomogeneity one action of H = SO(2n− 2) on G/K; we have already
seen that no closed proper subgroup of this group acts polarly. In the
case where k+ℓ = 3, an explicit calculation using Proposition 4.1 shows
that the actions of SO(2n − 3) and SO(2n − 3) × SO(2) on G/K are
non-polar; we have already excluded any closed subgroups of these two
groups.
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In case n = 3 there is an additional maximal connected subgroup,
i.e., ∆SO(3) = {(g, g) | g ∈ SO(3)} ⊂ SO(3)× SO(3), but its action has
a fixed point.

DIII-I. Let H be a closed connected subgroup of H1 = U(n) acting
polarly on the symmetric space G/K = SO(2n)/SO(n − 3) × SO(3),
n ≥ 3. It follows from Theorem 2.1 in [33] that the conjugacy classes of
maximal connected subgroups H2 in U(n) are exhausted by SU(n) and
H ′

2 ⊗ U(1), where H ′
2 runs through the maximal connected subgroups

of SU(n); see Proposition 3.7. We observe first that the action of SU(n)
is orbit equivalent to the U(n)-action. Now assume H ⊂ H ′

2 ⊗ U(1).
We do not need to consider reducible subgroups H ′

2 since they lead to
subactions of Hermann actions with cohomogeneity ≥ 2, which were
treated in Section 7. Also, if H ′

2 = SO(n), then the same argument
as in Proposition 8.3 shows that the action is non-polar and polarity
minimal. If H ′

2 = Sp(n/2), then H2 is contained in Sp(n/2) · Sp(1)
and the action of any closed subgroup H ⊆ H2 was shown not to be
polar in Proposition 8.3. Assume now H ′

2 is a tensor product sub-
group SU(p) ⊗ SU(n/p). Then the action of H is non-polar according
to Proposition 8.4. Finally, let H ′

2 be given by an irreducible represen-
tation ρ : H ′

2 → SU(n) where H ′
2 is a simple compact Lie group; these

actions were excluded in Section 9.

E II-IV. Let H ⊆ H1 = SU(6) · Sp(1) be a closed connected subgroup
acting on G/K = E6/F4. Then H is contained in one of the maximal
connected subgroups of SU(6) · Sp(1). By [10], we may assume the
involutions of E6 corresponding to H1 and K commute such that the
totally geodesic H1-orbit through eK is isometric to SU(6)·Sp(1)/Sp(3)·
Sp(1) ∼= SU(6)/Sp(3), see Lemma 11.2. The slice representation is
equivalent to the isotropy representation of Sp(4)/Sp(3) · Sp(1), and
this shows that the Sp(1)-factor is inessential for the H1-action. Now
assume H ′

2 ⊆ SU(6) is a symmetric subgroup and H ⊆ H2 = H ′
2 · Sp(1)

is a closed connected subgroup. If H ′
2 = Sp(3), then the H-action on

G/K has a fixed point. If H ′
2 = SO(6), then the connected component

of an isotropy subgroup is U(3) × Sp(1) and its slice representation is
equivalent to the adjoint representation of SU(3) plus χ(Sp(4), Sp(3)×
Sp(1))|U(3)×Sp(1), see Tables 5 and 10; it is non-polar [1] and polarity
minimal by Proposition 6.3. Hence the H2-action on G/K is non-polar
and polarity minimal by Lemma 6.4 (iii).

Now assume H ′
2 is one of the groups S(U(k) × U(6 − k)), k = 1, 2, 3.

If k = 3, then (H2 ∩ K)0 ∼= Sp(1) · U(1) · Sp(1) · Sp(1) and the slice
representation is equivalent to

χ(Sp(2), Sp(1) × Sp(1)) ⊕ χ(Sp(4), Sp(3) × Sp(1))|Sp(1)·U(1)·Sp(1)·Sp(1),

where both modules are polar, but their sum is non-polar, see [1]. Using
the results of [1], it can be directly verified that this representation is
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polarity minimal, and it follows that the H2-action on G/K is non-polar
and polarity minimal by Lemma 6.4. If k = 2, then (H2 ∩K)0 ∼= Sp(2) ·
Sp(1) · Sp(1) and the corresponding slice representation is equivalent to

χ(Sp(3), Sp(2) × Sp(1)) ⊕ χ(Sp(4), Sp(3) × Sp(1))|Sp(2)·Sp(1)·Sp(1),

hence non-polar by [1] and polarity minimal by Proposition 6.3 (ii). The
H2-action on G/K is non-polar and polarity minimal by Lemma 6.4.
Finally, if k = 1 then H2 acts transitively on the H1-orbit through
eK, and the group (H2 ∩ K)0 ∼= U(1) × Sp(2) × Sp(1) acts polarly on
expeK(NeK(H2 · eK)) ∼= HP3 by [39], cf. Lemma 11.1; however, an
explicit calculation shows that [ν, ν] 6⊥ h2, where ν ⊂ m1 ∩ p is the
tangent space to a section of the H2 ∩ K-action, and hence the H2-
action and the orbit equivalent action of SU(5) · Sp(1) are non-polar by
Lemma 11.3. The actions of S(U(1) × U(5)) and S(U(1) × U(5)) · U(1)
are non-polar since the slice representations at eK are non-polar. Any
other closed subgroups of H2 = S(U(1)×U(5)) · Sp(1) are contained in
the groups treated above or excluded by Proposition 5.6.

E IV-II. Consider now closed connected subgroups H of H1 = F4 acting
polarly on E6/SU(6) · Sp(1). It follows from Lemma 3.3 that dim(H) ≥
28. By [15], the only closed connected subgroup of F4 of sufficient
dimension is Spin(9). By conjugation, the subgroup H = Spin(9) ⊂ F4

can be chosen such that the connected component of the isotropy group
(H∩K)0 is Sp(2)·Sp(1)2 ∼= Spin(5)·Spin(4), see Table 10. From Table 10
one sees further that the slice representation restricted to (H ∩ K)0 is
equivalent to the isotropy representation of Sp(3)/Sp(2) ·Sp(1) plus the
isotropy representation of Sp(4)/Sp(3) ·Sp(1) restricted to Sp(2) ·Sp(1),
hence it is non-polar by [1].

E III-IV. Let H be a closed connected subgroup of H1 = Spin(10)·U(1)
acting polarly on G/K = E6/F4. Let us first show that the action
of Spin(10) on G/K is non-polar. Assume the converse, i.e., the action
of H = Spin(10) on G/K = E6/F4 is polar. Since this action is of co-
homogeneity two, it follows from Proposition 2.8 that the sections are
locally isometric to a two-sphere. The H1-orbit through eK is totally
geodesic by Lemma 11.2 and locally isometric to S9 × S1, where the S1-
factor is the orbit of the U(1)-factor in H1 = Spin(10) · U(1); hence it
is totally geodesic in G/K. It follows from the decomposition (11.2)
that TeKS1 ⊥ TeK(H · eK), hence TeKS1 ⊂ TeKΣ, where Σ is a sec-
tion of the H-action on G/K containing eK. Since the Lie algebra of
the U(1)-factor in H1 = Spin(10) · U(1) is contained in TeKΣ ⊂ p, it
follows by Proposition 3.2 that this U(1)-factor acts on Σ as a group of
transvections. Now, since this U(1)-action commutes with the H-action,
it follows that any two points of Σ which lie in the same U(1)-orbit are of
the same orbit type with respect to the H-action on G/K. In particular,
all singular orbits of the H-action on G/K intersect Σ in the U(1)-orbit
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that is covered by a great circle of Σ̃ ∼= S2, since all reflection hyper-
surfaces {Pj}j∈J have to be invariant under the U(1)-action induced

on Σ̃, see Lemma 5.1. However, the U(1)-action on Σ, which is isomet-
ric to RP2 or S2, has at least one fixed point p ∈ Σ. It follows that this
point p ∈ G/K lies in a regular orbit of the H-action on G/K, but is left
fixed by the U(1)-factor of H1 = Spin(10) · U(1). Hence the connected
component of the isotropy subgroup (H1)p is a subgroup L ·U(1), where
L ⊂ Spin(10) is 20-dimensional — a contradiction, since the principal
isotropy subgroup is Spin(7).

Now we may assume that the group H acting polarly on G/K is
contained in H ′

2 · U(1), where H ′
2 is a maximal connected subgroup

of Spin(10). It follows from Lemma 3.3 that dim(H) ≥ 16. This implies
that H ′

2 is one of the following, see Proposition 3.6:

Spin(9), Spin(8) · SO(2), Spin(7) · Spin(3), Spin(6) · Spin(4), U(5).

The actions of these groups are non-polar and polarity minimal by
Lemma 6.4 (iv). If H ′

2 = Spin(9), then the H-action can also be shown
to be non-polar by Corollary 6.2.

E IV-III. Assume H is a closed connected subgroup of F4 acting polarly
on G/K = E6/Spin(10)·U(1). Proposition 5.5 implies dim(H) ≥ 28. By
[15], the only maximal connected subgroups H ⊂ F4 of dimension ≥ 28
is Spin(9). It follows from Table 10 that the action of Spin(9) leaves a
point fixed.

F II-I. Let H be a closed connected subgroup of H1 = Spin(9) acting
polarly on G/K = F4/Sp(3) · Sp(1). Lemma 3.3 implies dim(H) ≥ 20.
The only closed connected subgroups of Spin(9) of dimension ≥ 20 are
Spin(8), Spin(7) · SO(2) and Spin(7).

The subgroup H = Spin(8) ⊂ Spin(9) may be chosen such that
(H1 ∩ K)0 = Sp(2) · Sp(1) ∼= Spin(5) · Spin(3). The group H acts
with cohomogeneity one on the orbit H1 · eK, which is covered by
Spin(9)/Spin(5) · Spin(4). With our choice of the subgroup Spin(8) ⊂
Spin(9), the slice representation of the H-action on G/K at eK is equiv-
alent (on the Lie algebra level) to the representation of Sp(2) · Sp(1) ∼=
Spin(5) · Spin(3) on H2 ⊗H H1 ⊕ R5, hence it is non-polar by [1].

The action of Spin(7) · SO(2) has an isotropy subgroup whose con-
nected component is isomorphic to Spin(5) · SO(2) · SO(2) ∼= Sp(2) ·
U(1) ·U(1) and whose slice representation is R5 ⊗R2 ⊕χ(Sp(3), Sp(2) ·
Sp(1))|Sp(2)·U(1), hence it is non-polar [1]. This also shows that the
Spin(7)-action is non-polar. q.e.d.
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