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THE STRUCTURE OF NONCOMMUTATIVE
DEFORMATIONS

ELr HAWKINS

Abstract

Noncommutatively deformed geometries, such as the noncom-
mutative torus, do not exist generically. I showed in a previous
paper that the existence of such a deformation implies compatibil-
ity conditions between the classical metric and the Poisson bivec-
tor (which characterizes the noncommutativity). Here I present
another necessary condition: the vanishing of a certain rank 5 ten-
sor. In the case of a compact Riemannian manifold, I use these
conditions to prove that the Poisson bivector can be constructed
locally from commuting Killing vectors.

1. Introduction

The notion of a noncommutative deformation is not uncommon in
contemporary mathematics. Quantum mechanics can be viewed as a
noncommutative deformation of classical mechanics. Quantum groups
are noncommutative deformations of Lie groups. The Podles spheres and
other quantum group homogeneous spaces are deformations. The non-
commutative torus is a deformation of a torus. F-theory is a bivariant
K-theory constructed from equivalence classes of deformations. Strict
and formal deformation quantization are two mathematical settings for
studying deformations.

If the starting point of a noncommutative deformation is a geometrical
space, then it is natural to try to view the deformation geometrically.
At best, we can try to promote a l-parameter family of algebras to a
1-parameter family of noncommutative geometries. In [14], I showed
that this is not always possible. There are obstructions to deforming
integration, 1-forms, or a metric.

Any noncommutative deformation of a smooth manifold is charac-
terized by a Poisson structure (geometrically, an antisymmetric bivector
field). These obstructions are expressed in the language of Poisson geom-
etry. In particular, the necessary condition for deformation of 1-forms is
the existence of a flat, torsion-free “contravariant connection”. The first
main result (Sec. 2) in this paper is an obstruction to deforming higher
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degree differential forms. This obstruction is a tensor Mlzfnk which I call
the “metacurvature” of the flat, torsion-free contravariant connection.

The most general fully fledged example of a noncommutative geomet-
ric deformation was given by Connes and Landi [8]. Their construction
applies to a compact Riemannian manifold with a torus group acting by
isometries. An invariant Poisson structure on the torus determines the
deformation. This raises the question of how much more general is the
most general deformation.

Using all the available obstructions, I show in Section 6.1 that a
noncommutative deformation of a compact Riemannian manifold cor-
responds to a Poisson structure that can be expressed locally in terms
of commuting Killing vectors. Globally, the Poisson structure is induced
by an invariant Poisson structure on a group of isometries of a covering
space. Using this structure, I sketch a generalization of the Connes-
Landi construction. This construction indicates that my obstructions
are not only necessary but sufficient conditions for the existence of a
noncommutative geometric deformation.

One of my obstructions is a condition for deforming integration into a
trace on the noncommutative algebras. This is independent of the other
obstructions, so it is possible to consider the other obstructions alone.
Classifying the solutions to this weaker set of conditions is more difficult
in general, but I investigate the simplest case of 2 dimensions and find
that the only solutions are a flat torus with a constant Poisson bivector
and a round sphere with the Poisson structure associated to the Podles
“standard” sphere. The latter case corresponds to a noncommutative
geometric deformation constructed by Dabrowski and Sitarz; this exam-
ple satisfies a weakened version of Connes’ axioms for noncommutative
geometry.

In the remainder of this section, I present further background. In
Section 2, I derive the metacurvature tensor as the obstruction to the
existence of a differential graded Poisson algebra; I prove a formula for
the metacurvature in the simplest case (a symplectic manifold). In Sec-
tion 3, I use this formula to classify noncommutative deformations of
compact 2-dimensional Riemannian manifolds, temporarily disregard-
ing integration. In Section 4, I reformulate the obstruction regarding
integration. In Section 5, I present several lemmata showing how the
metacurvature and related structures behave in a symplectic realization.
These are tools for the proofs in Section 6 where I show that the Poisson
bivector for a deformation of a compact Riemannian manifold can be de-
composed locally into products of Killing vectors. Globally, I construct
a symmetry group from such a Poisson structure and show how any such
Poisson structure can be constructed. After some more background, in
Section 7.3, I sketch the construction of a geometric deformation for
any compatible Poisson structure on a compact Riemannian manifold.
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Finally, in Section 8, I give a few simple examples of such Poisson struc-
tures on Riemannian manifolds.

1.1. Notation. C*°(M) will denote the space of smooth (infinitely dif-
ferentiable), C-valued functions on a smooth manifold M. T'(M,V)
will denote the space of smooth sections of a vector bundle V' over M.
(M) == T'(M,NPT* M) will denote the space of smooth differential
p-forms, and finally, QP (M, V') will denote the space of smooth p-forms
with coefficients in V.

When discussing deformations directly, it is necessary to use complex
functions and sections. However, the connections and brackets that I
work with all preserve real sections.

I will mostly use index-free notation for tensors. However, it is oc-
casionally necessary to resort to index notation. In index notation, a
vertical bar denotes a covariant derivative, and a comma denotes a par-
tial derivative. Summation is implicit over any repeated index.

If F is a foliation of M, then T'F denotes the tangent bundle to the
foliation; this is a bundle over M. The differential forms along F are
Q(F) :=T(M,NT*F).

A vector field acts on functions as a directional derivative operator,
as in X (f). Multivectors (vectors, bivectors, et cetera) are sections of
the exterior powers A*T'’ M of the tangent bundle. I will use the symbol
4 to denote not only the contraction of a vector into a differential form,
but also the contraction of a multivector into a differential form. This
is such that, for instance, (X AY)1e=Y 1(X 2¢) =€(X,Y,...). An
exponent on a form or multivector always denotes an exterior power.

1.2. Lie Algebroids. Several of the principal structures that I use here
are unified by the concepts of a Lie algebroid and a connection with
respect to a Lie algebroid.

Definition 1.1. A Lie algebroid is a vector bundle V over a smooth
manifold M with a vector bundle homomorphism ¢ : V. — T'M (the
anchor map) and a Lie algebra structure on I'(M, V') such that:

1) For v,w € T'(M,V) and f € C*(M)

[Ua fw] = f [vvw] + Lv(f)w;

2) The anchor map intertwines the V-bracket with the Lie bracket of
vector fields

(Lo Lw] = UPRTIE

The tangent bundle is itself a Lie algebroid with the identity as an-
chor map. A Lie algebra is precisely a Lie algebroid over a point. The
holomorphic tangent bundle of a complex manifold is a Lie algebroid.
The tangent bundle to a foliation is a Lie algebroid; the anchor being
the inclusion map into T'M.
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The most important Lie algebroid here is the cotangent bundle to a
Poisson manifold. In this case, I denote the anchor as # : T*M — T M,
it is defined by

(#a)' = 1.
The bracket is the Koszul bracket which I denote as [ -, - ]r; it is

uniquely defined by the defining properties of a Lie algebroid and the
condition that

The usual notion of a connection for a vector bundle naturally gener-
alizes to Lie algebroids.

Definition 1.2. A connection on a vector bundle W with respect to
a Lie algebroid V is a map V from sections of V to first order differential
operators on I'(M, W) such that for any f € C>*(M), v € T'(M, V), and
we (M, W):
vaw = f va
and

Vo(fw) = fVow + ty(fw.

The definition of curvature for such a connection is formally identical
to the usual definition:

K(u,v) :=VyVy = Vo Vi = Vi -

It is simple to check that the definitions imply this is a tensor; specifi-
cally, it is a section of A2V* @ End(W).
In particular, if W =V, then we can define torsion as

T(v,w) := Vyw — Vv — [v,w].

This is also a tensor, a section of A2V* ® V. The connections of this
kind appearing in this paper are all torsion-free.

Definition 1.3. Given a foliation F, a partial connection on F is
a connection on T'F with respect to T F. Given a Poisson manifold, a
contravariant connection [10, 21] is a connection with respect to 7% M;
I denote a contravariant connection as D.

1.3. Deformations and Previous Results. Let A4y be an algebra.

Definition 1.4. A deformation of Ay is an algebraic extension of the
form,

0—hA—AL Ag—0
where £ is a central multiplier of A, and for a € A,

ha=0 = a € hA.
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This definition is the weakest possible one for the purposes of this
paper; it is essentially equivalent to the definition I gave in [14]. One
could easily replace the last assumption with the simpler but marginally
more restrictive condition that A is not a zero-divisor:

ha =0 = a=0.
If Ag = C*°(M), then we should think of A as the algebra of smooth

functions on a larger noncommutative space. This is a sort of noncom-
mutative cobordism.

If A is a deformation of C°°(M), then this definition allows us to
extract a Poisson bracket from the commutator in A. This must satisfy
the Jacobi identity and is given geometrically by a Poisson bivector,
7 € T(M,N2TM).

I now summarize my principal results from [14].

Let € € Q"(M) be a volume form. If integration by € on M can be
smoothly deformed to a trace, then 7 and € must satisfy the compati-
bility condition

(1.1) d(mse) =0.
If Q' (M) and the gradient map d : C°(M) — Q!(M) can be smoothly

deformed, then there exists a flat, torsion-free contravariant connection
D on M.

If M has a Riemannian metric and this is extended into a deformed
real spectral triple, then the above contravariant connection must be
compatible with the metric in the sense that the contravariant derivative
of the metric is 0. This condition can be motivated in other ways, but it
requires a sufficiently well defined notion of noncommutative geometry.
In fact I will give an improved derivation if this condition in Section 6.

For a given metric and Poisson structure there exists a unique torsion-
free contravariant connection compatible with the metric. I call this the
metric contravariant connection. In this way, the last two conditions can
be restated as: The metric contravariant connection is flat.

In the next section I will motivate and define one more condition.
Given a flat, torsion-free contravariant connection, there exists a rank 5
tensor which I call the metacurvature. If there exists a deformation of
differential forms in all degrees, then the metacurvature must be 0.

2. Metacurvature

Suppose that 0 — Q2" — QF Z Q*(M) — 0 is a deformation of
Q*(M), the differential graded algebra of differential forms.! Because
2*(M) is graded commutative, the graded commutator vanishes,

0= [0'7 p] =0 /\,0_ (_)degadegpp/\o_

'If we use differential forms with some fall-off condition, then the conclusions will
be the same.
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for o, p € Q*(M). For o, p € 0¥, this implies that [5, p] € h€2*. Because
of this we can (try to) define a generalized Poisson bracket on Q*(M)
by
(2.1) {P(5),P(p)} =P ([0.0),
for any 4, p € Q0.

Definition 2.1. A differential graded Poisson algebra is a graded
vector space Q* with 3 operations: d, A, and { -, - }, such that:

o d:QF — OQF! s linear and a differential: d? = 0.

e (2", A) is an associative, graded-commutative algebra.

o (", {-,-}) is a graded Lie algebra, i.e., {-, -} is bilinear, degree
0, antisymmetric

(2.2) {00} = —(=)¥87%80{p o},
and satisfies the graded Jacobi identity,

(2.3) {{o, 0}, A} = {o. {p, A}} — (=) *879E2{p, {0, \}}.

e (0*,d, ) is a differential graded algebra, i.e., it also satisfies the
Leibniz identity,

(2.4) d(oc Ap)=do Ap+ (=) Adp.

o (0*,d,{-,-}) is a differential graded Lie algebra, i.e., it also sat-
isfies the Leibniz identity

(2.5) d{o, p} = {do, p} + ()87 {0, dp}.
o (WA, {-,-}) is a (graded) Poisson algebra, i.e., it also satisfies
the product identity?

(26)  {o.p AN} = {o.p} AN+ (2)9ETELp A (A},

Theorem 2.1. Equation (2.1) defines a bracket on Q*(M), which
makes it a differential graded Poisson algebra.

Proof. Of course, Q*(M) has the structure of a differential graded
commutative algebra. We need to check the claims pertaining to the
Poisson bracket. It is quite straightforward to check that ©Q* with the
commutator satisfies Def. 2.1 (except for graded commutativity). If the
Poisson bracket is well defined, then it will inherit these identities from
the commutator.

Let 6,p € QF, 0 = P(6), and p = P(p); we need to check that
{o,p} =P (ilh[&, p]) is uniquely determined by o and p. The only way
to change 6 without changing ¢ is to add something of the form Dy
However, X R

(6 + B3, 5] = 6, 5] + KA, )

2The terms “Leibniz identity” and “product identity” are usually synonymous.
However, I am using them differently here in order to make a lexical distinction
between (2.5) and (2.6).
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which is only changed by an element of h?Q*. Therefore the bracket
{0, p} is well-defined in o, and by symmetry, in p. q.e.d.

In degree 0, these structures make C>°(M) a Poisson algebra. Hence
M is in particular a Poisson manifold.

This generalized Poisson bracket should not be confused with the
Koszul bracket. The Koszul bracket can be naturally extended to dif-
ferential forms, but it is quite different from a Poisson bracket. The
Koszul bracket is of degree —1 and is uniquely determined by ; the
Poisson bracket is of degree 0 and is not determined by m. For exam-
ple, if a, 3 € QY (M), then [a,f]r = —[3,a]r € QY(M) but {a, B} =
{8,a} € *(M).

Differential forms with the Koszul bracket form a type of differential
Gerstenhaber algebra (the terminology varies); this satisfies identities
very similar to those of a differential graded Poisson algebra, but the
degree shift in the bracket changes some signs. Grabowski [12] has
constructed a bracket which is determined by 7 and extends the ordinary
Poisson bracket; it is a graded Lie bracket (without any degree shift) but
does not satisfy the Leibniz or product identities. On the other hand,
several authors (e.g., [17]) have considered brackets which only fail to
satisfy the Leibniz identity (2.5).

The product identities (2.6) for two functions and a 1-form imply that
the Poisson bracket of a function f € C*°(M) and a 1-form a € Q1(M)
is given by a contravariant connection D on T*M as

{f7 Oé} = Ddfa-
The Jacobi identity (2.3) for two functions f,g € C*°(M) and a 1-form
a € Q1 (M) imply that D is flat:
K(df, dg)a = Ddedga — ’Dngdfa — D[dﬁdg]ﬁa
= {f7 {gaa}} - {g’ {fa O[}} - {{fvg}va} =0.

The Leibniz identity (2.5) for two functions implies that D is torsion-free:

T(dfv dg) = Ddfdg - Ddgdf - [df, dg]w
= Dyrdg — Dagdf — d{f, g} = 0.

The contravariant connection on 7% M naturally extends to the ex-
terior powers, A¥T* M. This is compatible with the exterior product in
the obvious way, and so the product identity (2.6) implies that the Pois-
son bracket of a function f € C*>°(M) and differential form o € Q*(M)
is given by D as

{f,0} = Dgso.
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Now consider the identities involving the bracket of two 1-forms. The
product identity (2.6) for f € C*°(M) and «, 8 € Q1 (M) reads

{fa,B} = [, B} + an{[, B}
The Leibniz identity (2.5) is in this case

d{f,a} ={df,a} + {f,da}.
These identities uniquely determine the Poisson bracket of two 1-forms.
However, there is still one identity to be satisfied: the Jacobi identity,

?
= Da{B,7} — {DarB,7} — {Das, B}-
Without assuming that this is satisfied, we can consider the properties

of the right hand side of eq. (2.7).

Theorem 2.2. A flat, torsion-free contravariant connection deter-
mines a tensor M;ﬂn symmetric in the contravariant indices and anti-
symmetric in the covariant indices, such that

(28)  M(df,B,7) ={/, {8,723} = {f. 84 —{{F: 2}, B}

if M is viewed as a trilinear map from 1-forms to 2-forms.
Definition 2.2. M is the metacurvature.

Proof. Begin by taking eq. (2.8) as the definition of some trilinear
map, and note that the right hand side of eq. (2.8) is explicitly symmetric
in # and y. We need to check that it is C>°(M)-linear in either of these
arguments. For any g € C*°(M),

M(df,98,v) — g M(df,5,7)
+{f,6 7 {97} = {78 Mg v} = B {9, {71}
=BA{figh0 +{F g3 =g {f 73D
=0.
The first two steps use the product identities; the last step uses the lower

degree Jacobi identity (the flatness of D).
Now, consider the Jacobi identity

0= {{fvg}v dh} - {fﬁ {g’ dh}} + {gv {f7 dh}}

Applying d to this equation and using the Leibniz identities for d shows
that

M(df,dg,dh) = {f,{dg,dh}} — {{f,dg},dh} — {{f,dh},dg}

is symmetric under the exchange of f and g. Since it is C®°(M)-linear
in dg it must also be C°°(M)-linear in df. This shows that the right
hand side of eq. (2.8) is indeed given by a C°°(M)-trilinear map from
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1-forms to 2-forms. Such a map is equivalent to a tensor M;zzk such that
i
M(a, B,7)im = M, i Biv. q.e.d.
Theorem 2.3. The following are equivalent:

1) A generalized Poisson bracket making Q*(M) a differential graded
Poisson algebra.

2) A Poisson structure on M and a flat, torsion-free contravariant
connection with M = 0.

Proof. We have already seen that the first structure determines the
second.

The product identity, {fo,p} = f{o,p} + 0 A Dgp, shows that a
generalized Poisson bracket {o, p} is first order differential in both ar-
guments, so it can be constructed in a coordinate chart. Let x° be the
coordinates. Decomposing a differential form in these coordinates sim-
ply means writing it as a sum of products of functions and the basis
1-forms dx’. So, we can compute any bracket using the product identity
(2.6) and the fundamental brackets:

{f. 9},
{f,da'} = Dyda’,

and
{da',d2’} = d (Dgpida?) .

This bracket satisfies all the product identities (2.6) because these are
consistent with associativity. It satisfies the Leibniz identities (2.5) be-
cause they are consistent with the product identities.

This leaves the Jacobi identities (2.3). Using the coordinate decom-
position and the product identities, any Jacobi identity reduces down to
the Jacobi identities involving functions and exact 1-forms. These are
satisfied because 7 is Poisson, D is flat, M = 0, and

{{df,dg},dn} —{df,{dg,dn}} — {dg,{df,dn}} = —d[M(df,dg,dh)]
= 0.

q.e.d.

If the Poisson bivector 7 is invertible, then its inverse is a symplectic
2-form. In that case the flat, torsion-free, contravariant connection D
is related to a flat, torsion-free, covariant connection V by #D,0 =

V#a#ﬂ-
Theorem 2.4. If 7 = w™!, then
(2.9a) Mj?* = D'DIDkE,,,

(2.9b) = —W“iﬂbjﬂCkwdlwemwc‘lec.
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Proof. Consider any point x € M. Because V is flat, any vector
in T, M extends to a V-constant vector field in a neighborhood of z.
Equivalently, any covector in Ty M extends to a D-constant 1-form in a
neighborhood of x. Because of this and symmetry, in order to compute
M at z, it is sufficient to compute M (o, o, @) for any 1-form o € Q1 (U)
with Da = 0 defined over some neighborhood U > =.

Because Da = 0, we have {f,a} = 0 for any f € C>°(M). Using this,
we compute

{fdgva} - f{dg,Oé} +dg A {f,Oé} - f{dgva}
= f<{dgva} - d{gva}) - _f {gada}
= —fDygda = —Dyqgdc

which shows that {3, a} = —Dgda for any 3 € QL(U).
Onuly the first term of (2.8) survives in

M(df,a, ) = {f,{a,a}} = Dgr{e,a} = —DgrDydor.
Because M is just a tensor, this gives
M(a,a,a) = —D%da.

The vector field #a is covariantly constant (V#a = 0) so the Lie
derivative is equal to the covariant derivative, Ly, = V4,. Applying
this to w gives,

Vipow = Lyqw = d(Fa 1w) = do.

The map # naturally extends to differential forms # : A*T*M —
NTM, as in #w = —m. Because 7 is inverse to w, its derivative can be
rewritten as Vy,w = #flv#oﬂr.

This gives the expressions,

(2.10) M(a,a,a) = —D2# 'Vyam
(2.11) = D34 ln=D3w.
This gives eq. (2.9a). To rewrite eq. (2.10) in terms of V, consider
#M (o, 0, 0) = —#D2# ' Vyor = Vi, 7.
This gives eq. (2.9b). q.e.d.

This means that for a symplectic manifold, M = 0 if and only if 7 is
quadratic in the locally affine structure defined by the flat connection.

Equation (2.9a) suggests an analogue of the Bianchi identity for the
metacurvature. In the symplectic case, the metacurvature is the third
contravariant derivative of the symplectic 2-form. In general, it behaves
as if it is the third derivative of a 2-form.

Proposition 2.5. DZM,%% 1s totally symmetric in the contravariant

mdices.
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Proof. 1t is sufficient to prove that DiMik = pi MikL
We can rewrite eq. (2.8) slightly as

M(df,ﬁ,’}/) :Ddf{ﬂﬂ}_{pdfﬁﬁ}— {ﬁ,Ddf"}’}

Formally, this expresses M as the contravariant derivative of the Pois-
son bracket on two 1-forms. The proof of the symmetry of the second
derivative is formally the same as if { -, - } were a C>°(M)-bilinear map.

q.e.d.

3. 2 Dimensions

Suppose that a Riemannian manifold is deformed into a noncommuta-
tive geometry. In particular, assume that differential forms are deformed
in a way that is compatible with the metric. By the results of [14] and
Thm. 2.3, this means that the metric contravariant connection is flat
and has vanishing metacurvature, M = 0.

Dabrowski and Sitarz [9] have constructed an interesting example of
noncommutative geometry on the Podle$ “standard” sphere, a noncom-
mutative deformation of S?. This is particularly interesting because it
satisfies some (but not all) of Connes’ axioms for noncommutative ge-
ometry. Because of this, the homological and spectral dimensions are
not 2 and there is no trace corresponding to integration on S2.

A spectral triple satisfying all of Connes axioms has a canonical trace
that plays the role of integration. If a Riemannian manifold is smoothly
deformed through such spectral triples, then the volume form and Pois-
son structure must satisfy the compatibility condition (1.1). However,
this condition is quite independent of the conditions for the deformation
of differential forms. This independence, and the Dabrowski-Sitarz ex-
ample, suggest that it would be interesting to set aside eq. (1.1). This
makes the analysis much more difficult in general, but it is tractable in
2 dimensions.

Theorem 3.1. Let M be a compact, connected, 2-dimensional Rie-
mannian manifold with a nonzero Poisson structure. Suppose that there
exists a deformation of differential forms compatible with the metric.
Then M 1is either a torus with a constant metric and Poisson bivector
or a sphere with constant curvature and the Poisson structure corre-
sponding to the Podles standard sphere.

Proof. We need to solve the conditions that the metric contravariant
connection be flat and M = 0. By assumption, the Poisson bivector
7 is not identically 0, therefore there is (at least) an open submanifold
Y= {xr e M| n(x)#0}.

Where 7 does not vanish, it is invertible, so 3 is symplectic. Over 3,
# intertwines D with a covariant connection V and the metric ds® with
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another metric ds'?; the metric tensors are related by
il gh.
The facts that D is flat, torsion free, and compatible with ds? imply that
V is the Levi-Civita connection of ds’? and is flat.

A bivector in 2 dimensions has only one independent component, so
we can write 7 in the form

g7 =7

-1
T = hé

where h is a scalar function and ¢ € Q%() is the volume form of ds'2.
The relationship between the metrics is therefore a conformal rescaling,
gij = h~2gi;.

By direct computation,

Tie=—h""

is (the restriction of) a continuous function on a compact manifold;
therefore it is bounded and there is a constant A such that 0 < A < |A|
over X.

Because (3, ds’?) is flat, we can cover it with Cartesian coordinate
charts. By Thm. 2.4, M = 0 implies that 7 is quadratic in any Cartesian
chart. Since the volume form ¢’ is constant, this just means that A is a
quadratic function in any Cartesian chart.

Let u: [0,L) — X be a ds? geodesic of length L. The function hfu(t)]
is quadratic and because t is bounded, there exists another constant B
such that,

0 < A <|hfu(t)]] < B.
The length of u in ds? is finite:

L gt
/0 R < A%

This implies that v has an endpoint 1 € M, and
1
lim ———— = |(7 2¢€)(z1)| > B~L
t—L [hfu(t)]|
So w(z1) # 0 and x1 € X, thus u can be continued through ¢t = L, and
therefore (X, ds'?) is geodesically complete.

Let X be the universal covering of a connected component of . This
is geodesically complete, flat, and simply connected, therefore it is iso-
metric to the Euclidean plane. We can choose Cartesian coordinates x
and y over ¥ such that

h = a+ bx? + ey’
The Gaussian curvature of ds? is
IR =hV?h — (Vh)?
=2a(b+ ¢) — 2b(b — ¢)x? + 2¢(b — ¢)y>.
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Of course, the curvature of a compact surface is bounded, so this must
be bounded. In other words, the z? and y? terms must vanish, hence
c=b.

There are now two possibilities. If b = 0, then ds? is flat. Because
h = a is constant, it does not diverge even at infinity, hence m does not
vanish anywhere on M, and ¥ = M. In this case M is a flat, compact
Riemannian surface, therefore it is a torus, and 7 = a~'e~! is constant.

If b # 0, then it must have the same sign as a (so that h does not
vanish). By the above formula, the curvature is the constant 4ab > 0,

so M must be a sphere. The metric is

ds® = (a + b[z* + %)) "2(dz?® + dy?).
We can put this in a more standard form if we use the complex coordinate

a\1/2 .
Ci= (&) @+ iy)
ds* = (ab)~*(1 + ¢¢)~2d¢ dC.

The Poisson bracket is given by,

[.C} = 2i{a.y} = 2ih = 2ai(1 + 0.

This is the Poisson structure which corresponds to the Podles standard
sphere. q.e.d.

4. Divergence

In [14] I derived d(m ~ €) = 0 as a compatibility condition between a
Poisson structure and volume form. The result of this section allows this
condition to be restated in terms of a contravariant connection. I present
this here partly because it facilitates the simplest proof of Lem. 5.4, but
I am stating a much more general theorem than I really need, because
it may be of independent interest.

Given a contravariant connection D and a differential form o € QP (M),
we can define a “contravariant divergence” D - o € QP~1(M) by

) Dl .
(D 0)1112...Zp_1 =D Qjiy.ip_1-

Theorem 4.1. For any torsion-free contravariant connection, D,
there exists a vector field ¢ € T'(M,TM) such that for any o € Q*(M)

(4.1) D-oc=¢-20—do

where 00 := wado —d(mw30) is the Koszul-Brylinski codifferential [1, 15]
used in Poisson homology. In particular, for a € QY(M)

(4.2) D-a=¢1a—7-da
and for a volume form e € Q"(M),
(4.3) ¢ple=—d(me)

if and only if De = 0.
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Proof. We first note that for any f, g € C>°(M)
D-(fdg) = fD-dg+{g. f}

This gives the product identity
D-d(fg)=fD-dg+gD-df

meaning that D - d is a first order differential operator and is equivalent
to some vector field ¢ € I'(M,TM) as D - df = ¢(f).
Now,

D-(fdg) = ¢ (fdg) —n(df,dg)
which implies eq. (4.2).
Let 0 € QP(M) and X € T'(M,AP~1TM). The contravariant exterior
derivative can be expressed as

—[X, 7] =DAX.
This is dual to the Koszul-Brylinski codifferential:
(X710 =(—)PX 100+ 0(X 20).
We can also write this in terms of the contravariant divergence
(DANX)20=D-(X10)+(-)PX2(D-0)
= (=) X 2(¢-0) = 6(X 20) + (=)’ X 2(D0).

From these we can solve for X 2 (D - o) and prove the general result.
The special case of a volume form e € Q" (M) follows from the sim-

plification de = —d(m 2 €). Because € € Q2"(M), D -e =0 if and only if

De = 0. q.e.d.

The last result here shows that if De = 0 then ¢ is a modular vector
(see [15, 24]). The operator ¢ is the boundary operator defining Poisson
homology. The modular class in Poisson homology is determined by the
Poisson structure alone. It is easy to construct D to give ¢ any desired
value, but unless ¢ belongs to the modular class, there cannot exist a
volume form compatible with D.

5. Realizations

Metacurvature is rather difficult to compute in general. It is only
defined when D is flat and torsion-free, but these are highly nontrivial
conditions. In principle, it is possible to write an explicit formula for
the metacurvature of a metric contravariant connection, but this would
be hopelessly complicated. Only in the symplectic case is the metacur-
vature easy to compute and understand. For this reason, my strategy
for analyzing the condition M = 0 on a Poisson manifold is to relate the
Poisson manifold to a symplectic manifold. Fortunately, there is a well
established way of doing this: symplectic realization.
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Definition 5.1. A Poisson map is a smooth map of Poisson manifolds
@ : M1 — Moy such that the pull-back of functions intertwines the
Poisson brackets,
e {f gt ={¢"f, ¥ gh.
A (local) symplectic realization of a Poisson manifold M is a Poisson
map ¢ : M — M with M symplectic. A symplectic realization is full
if it is a submersion.

There are variations on this definition in the literature [23, 22]. It
is common to assume that ¢ is a surjective submersion and a complete
Poisson map. However, I will not need such properties, and I do not
want to assume a priori the global integrability necessary to satisfy
them. Instead, I will use full local realizations as a tool for studying the
local differential geometry of a Poisson manifold.

Given a symplectic realization, the preimages of points in M are the
leaves of a foliation F. The symplectic orthogonal subbundle

TFt :={veTM|ww,w)=0vYw e TF}

is integrable and thus defines another foliation, F*.
The symplectic foliation S of a Poisson manifold is defined by its
tangent distribution. The tangent fiber over z € M is

17,8 :=Im#, CT, M.

In general, the symplectic foliation is only a singular foliation, but over
any open region where rk 7 is constant, S is a regular foliation and T'S
is actually a bundle. Define the set of regular points M,e; to be the
union of open sets over which rk 7 is constant.

Definition 5.2. An isotropic realization is a full symplectic realiza-
tion such that F c F+ .

If ¢ : M — M is an isotropic realization, then M is of minimal
dimension and Im ¢ C M,e.. In this case, the symplectic leaves in M
are the images of the F'-leaves, and the F'-leaves are precisely the
preimages of the symplectic leaves.

5.1. Realizations and Connections. Recall that for a foliated mani-
fold, a foliated chart is a coordinate chart with two types of coordinates:
transverse and leafwise. This is such that any leaf in the coordinate
neighborhood is identified with a subset where the transverse coordi-
nates are constant. The leafwise coordinates are thus coordinates along
the leaf and the transverse coordinates are coordinates on the set of
leaves.

On a symplectic manifold, a contravariant connection is equivalent to
a covariant connection; they are intertwined by the map #. In general,
if M is a Poisson manifold with a symplectic realization ¢ : M — M,
the composed map #¢* : Q1 (M) — I'(M,TM) plays the role that #
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does in the symplectic case. This gives a correspondence between the
contravariant geometry of M and geometry on the leaves of F*.

Let n = dimM and 2N = dim M. Thus dimF = 2N — n and
dim F+ = n.

Lemma 5.1. Let ¢ : M — M be a full symplectic realization. If D
1s a contravariant connection on M, then there exists a unique partial
connection ¥V on F* such that, for a, 8 € QY (M),

(5'1) #@*(Daﬁ) = V#gp*a(#@*ﬁ)'

If D s flat or torsion-free, then so 1s V. If D is flat and torsion-free
then around any point of M, there exists an F*-foliated coordinate chart
such that V is the trivial partial connection given by partial derivatives.

Proof. First, observe that for a € Q'(M), the pullback ¢*a € QY(M)
is normal to the distribution TF. Therefore #¢*a € T'(M,TF').
Sections of this form span T'(M,TF1) as a C*°(M)-module, therefore
eq. (5.1) effectively defines VxY for all X,Y € I'(M,TF"1) because
(5.1) is consistent with the product rule.

The definition of a Poisson map, and the identity d{f, g} = [df, dg|»
imply that ¢* intertwines Koszul brackets. This then shows that for
a, € Q{(M),

[#* o, #¢" 8] = #[p* o, ¢" Blz = #¢*[a, Bx-

This identity implies that the torsions and curvatures of D and V are
intertwined by #@*. Therefore if D is flat or torsion-free, then so is V.
Around any point of M, there exists a neighborhood U C M such
that the leaves of F1 |y are simply connected and the leaf space U/F+
is Hausdorff and contractible. The flat, torsion-free partial connection
V is precisely equivalent to a locally affine structure on each leaf of F=.
Because each leaf of F|y is simply connected, it can be identified as
an open subset of an affine space (of dimension n). These form a bundle
of affine spaces over U/F*. Because U/F' is contractible, it can be
identified with an open subset of R?V~" and there exists a trivialization
of the bundle of affine spaces. Together, this gives an identification of U
with an open subset of R2V~" x R™. This is the desired foliated chart.
q.e.d.

Definition 5.3. A cotangent curve [11] is a curve (u,&) : R D [ —
T*M such that #£(t) = 4(t). A cotangent geodesic [10] is a cotangent
curve such that

(5.2) Dt = 0.

Lemma 5.2. Let ¢ : M — M be a full symplectic realization, and D
a contravariant connection on M.



THE STRUCTURE OF NONCOMMUTATIVE DEFORMATIONS 401

1) Any curve v : I — M in an F*-leaf descends to a unique cotan-
gent curve (u,&) : I — T*M such that u = p ov and v(t) =
#@;(t)(g(t))-

2) For any cotangent curve (u,&) and tg € I, there exists such an
FL-curve v, defined over a neighborhood of ty.

3) (u,§) is a cotangent geodesic if and only if v is a geodesic in an
FL-leaf.

Proof. By assumption, ¢ is a submersion. This implies that
#u  TopaopM — Tony M

is injective. Its image is Im #@f}(t) = Tv(t)]-ﬂ.

To construct (u,&) from v, let u := @ o v; £ is uniquely defined by
o(t) = #Pot) (&£(t)) because o(t) € TF*.

For the second claim, we must first choose a point in the preimage
o Hu(tp)). Integrating v(t) = #gof)(t)(g(t)) then defines v(t) in a neigh-
borhood of tg.

The third claim follows from the definition of the lifted partial con-
nection; the identity V0 = #¢5(D¢£) identifies the geodesic equations
for v and (u,§). q.e.d.

For the remainder of this section, D is a flat and torsion-free con-
travariant connection and ¢ : M — M is a (local) full symplectic real-
ization.

Definition 5.4. A flat F'-foliated chart is one where the induced
partial connection V is given trivially by partial derivatives. Let us say
that a tensor on M is F*-constant (or linear, or quadratic, or polyno-
mial) if in any flat F L_foliated chart it is constant (linear, quadratic,
polynomial) in the leafwise coordinates along F=.

In fact, (although I won’t need to prove it) a tensor is F+-polynomial
if this is satisfied for some flat F+-foliated atlas. These concepts really
only depend upon the partial connection V. The reason is that V ex-
tends to a flat partial connection on 7'M with respect to F, and this
is unique modulo linear changes. This fact is related to the existence of
a natural flat partial connection on the conormal bundle to a foliation.

Lemma 5.3. M = 0 if and only if the Poisson bivector @ of M is
FL-quadratic.

Proof. Around any point of M, consider a flat foliated chart in a
neighborhood U. With the symplectic structure of M, the trivial con-
nection (partial derivatives) defines a flat, torsion-free contravariant con-
nection on U. Consider the metacurvature M of U, and its relationship
to the metacurvature M of M.
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The definition of a Poisson map states that ¢* intertwines Poisson
brackets of functions. The relationship between D and V means that
©* QM) — Q*(U) intertwines the Poisson brackets of functions
and 1-forms. The product and Leibniz identities then imply that ¢*
intertwines all these generalized Poisson brackets of differential forms.

The definition of the metacurvature then shows that metacurvatures
are intertwined as follows: For a, 3,7 € Q'(M),

(5.3) " [M(a, 8,7)] = M(¢"a, "3, 0*).

Now, assume that M = 0. This implies that 0 = M(«, 3,7) for any
«, B,y normal to F. Because U is symplectic, we can actually compute
M from the third derivative of the Poisson bivector 7 on U. Equation
(2.9b) shows that the assumption M = 0 is equivalent to the vanishing
of all third derivatives of T with respect to leafwise coordinates in this
chart. In other words, 7 is Fr-quadratic in this chart. However, since
this works for any flat chart around any point, we can say that 7 is
Ft-quadratic. q.e.d.

Lemma 5.4. If there exists ¢ € Q"(M) such that d(m 2 €) = 0 and
De = 0, then the symplectic volume form zmw’ € Q*N(M) is Ft-
constant.

Proof. Again, around an arbitrary point of M, consider a flat F*-
foliated chart. For any o € Q!(M), the pull-back of its contravariant
divergence is a divergence with the partial derivative connection 0:

P (D-a)=0-(#¢ ).

In the notation of Thm. 4.1, d(7J¢€) = 0 and De = 0 mean that ¢ = 0.
By eq. (4.2), for any f € C*°(M), D-df = 0. Lifting this to M, we have

(5.4) 0=¢"(D-df) =0 (#¢"df).
Now,
(Fe*df) 2 % = d(*f) A 1)'
is exact, so
= d |(#o*df) 2 %y
=0 (#"df) %]T + 8#¢*df%-

The first term vanishes by eq. (5.4). At any point of M, #p*df can
give any vector in TFL. Therefore the symplectic volume form “]JV—A,] is
Ft-constant. q.e.d.

Corollary 5.5. If M = 0 and there exists ¢ € Q" (M) with De = 0
and d(m 1 €) = 0, then the symplectic form on M is F*-polynomial.
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Proof.

q.e.d.

Lemma 5.6. If D is compatible with a metric ds*> on M, then there
exists a unique flat metric ds" (with the same signature) on the leaves
of F* such that,

(5.5) (#o o, #0"B) = ¢"[(a, B)]

where (-, ) is the ds'? inner product on TF* and (-, -) is the ds?
inner product on T*M.

Proof. This expression clearly defines an inner product on every fiber
of TFL. As above, D determines a flat partial connection V along F=.
Because of the way the metrics and connections are intertwined, the V
derivative of the lifted metric ds’? vanishes.

Along any leaf of 7+, V becomes simply a (flat) connection, and ds’
a metric. This connection is the Levi-Civita connection, thus the metric
is flat. q.e.d.

6. Riemannian Manifolds

A noncommutative deformation of differential forms is characterized
by a contravariant connection for which the torsion, curvature, and
metacurvature vanish. In [14] I showed that if a Riemannian manifold
is deformed into a real spectral triple, then the contravariant connection
is compatible with the metric. I will now briefly present a more ro-
bust derivation of this condition, using a much weaker notion of spectral
triple. I expect that this compatibility condition can be derived from
any concrete notion of noncommutative geometry.

Recall that a spectral triple (A, H, D) consists of a Hilbert space H, an
involutive algebra of bounded operators 4, and a self-adjoint unbounded
operator D, such that the commutator of D with any element of A is
bounded.

The geometry of a Riemannian manifold M can be encoded alge-
braically in a spectral triple. Let A = C3°(M), let D be any Dirac-type
operator, and let H be the Hilbert space of square-integrable sections of
the bundle on which D acts. The metric can be recovered because of
the identity
where f € C§°(M) and (-, -) is the metric pairing. A spectral triple is
in this sense a generalization of a Riemannian manifold.

Differential forms can be constructed from a spectral triple (see [5]
and Sec. 7.1). In particular, },(A) is the A-bimodule generated by
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bounded operators of the form da := [D,al, for a € A. In the above
example, Q},(A) = Q}(M).

Now suppose that there exists a smooth noncommutative deformation
of a spectral triple describing a Riemannian manifold. Suppose that
the differential forms constructed from this deformation are a smooth
deformation of the differential graded algebra 2§(M). We have seen in
Section 2 that this deformation of Qf(M) is described to leading order
by a Poisson structure and a contravariant connection D with 0 torsion,
curvature, and metacurvature.

To see how this contravariant connection is related to the metric,
consider the simple identity

(6.1) [a, ([D, )] = [a, [D, b]] [D, b] + D, 8] [a, [D, b]].

A commutator such as [a,[D,b]] corresponds to a generalized Poisson
bracket such as {f,dh}. At first order in &, the identity (6.1) gives

{f,(dh,dh)} = 2(dh,{f,dh}) = 2(dh, Dgrdh),

but this is simply the condition that the contravariant derivative of the
metric is 0. Since D is torsion-free, this means that D is (by definition)
the metric contravariant connection.

Together with the compatibility with the volume form, this gives the
following notion of compatibility:

Definition 6.1. For the purposes of this paper, I will say that a
metric and Poisson structure are compatible if

1) The metric contravariant connection D is flat.

2) The metacurvature (of D) vanishes: M = 0.

3) The Poisson structure is compatible with the Riemannian volume
form:

d(mae) =0.

6.1. Local Structure. In this subsection, M is a compact, connected
Riemannian manifold with a metric tensor g;; and a compatible Poisson
structure 7. The analysis here is based on repeatedly applying two sim-
ple principles: A continuous function on a compact manifold is bounded,
and a bounded polynomial is constant.
The local norm of the Poisson bivector 7 is defined by
’7‘(‘2 = %ﬂijﬂklgikgﬂ.

This is a continuous function and M is compact, so there is also a global
norm,

:= max|7(x)|.
]| := max]r ()]
The norm of any multivector or differential form is defined analogously.

Dual to the inclusion TFL C TM, there is a restriction map
Q" (M) — Q(FL) =DM, NT*FL).
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Locally, this gives the pull-back of a differential form to each leaf of 7 -
Let wo € Q%(F1) be the restriction of the symplectic form w € Q?(M).

Lemma 6.1. For any local full realization of M, wy is F+-constant.

Proof. The cotangent geodesic flow is given by a smooth vector field
on T* M. The geodesic equation (5.2) preserves the norm |£(t)], so the
geodesic flow is tangent to the sphere subbundles,

{¢eT"M| ¢ =C},

which are compact for each C' > 0. This is thus a complete vector field
and integrates to give a complete cotangent geodesic (u,§) : R — T* M
through any point in 7% M.

For any tq € R, there exists a symplectic realization ¢ : M — M
over u(tg). By Lem. 5.6, this defines flat Riemannian metrics on the
Flleaves in M. By Lem. 5.2, (u, §) lifts to a geodesic v in the F-leaf
over u. The pull-back of the local norm || to M is

¢*|m| = |wol,

the norm of wy with respect to the flat metric on F1-leaves. By Cor. 5.5,
w, and thus wp and |wp|? are FL-polynomial. This means that

|7 (u(t))]? = wo(v(t))[”
is a polynomial for ¢ ~ to. Hence, |7(u(t))|? is a polynomial for all ¢ € R.
This polynomial is bounded by ||7||?, therefore it is constant. Through
every point of M there are cotangent geodesics passing in any direction

tangent to the symplectic foliation S, therefore |7| is S-constant.

Now, for any symplectic realization, this shows that |wy| = ¢*|7| is
FL-constant. Because wy is F-polynomial, this is enough to prove that
wo is F+-constant. q.e.d.

Lemma 6.2. Around any regular point xg € Myeg (with tkm(xg) =:
2m) there erxists an S-foliated chart with leafwise coordinates {x®}2™,
and transverse coordinates {2*}"_3™ such that:

1) The components of m are constant in this coordinate system.

2) The metric is of the form

(6.2) ds* = g, (dz® — A%dz*)(da’ — A%dzﬁ) + gé;ﬁdzo‘clzﬁ3

with chzb and gi‘ﬁ independent of x. A% is polynomial in x, and for
fized z and o, A% are the components of a Hamiltonian vector field
in the symplectic leaf.

Proof. First consider any S-constant function Z, defined over a neigh-
borhood of xy. This means that #dZ = 0. A direct calculation shows
that 0 = D;dZ; + D;dZ; (see |14, eq. (6.4)]). This is the analogue
of Killing’s equation. If ¢ is an isotropic realization, then #d(¢*Z) is
tangent to F* and restricts to a Killing vector in each F=* leaf. Any
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two such functions Poisson-commute and thus define commuting Killing
vectors. Note that ¢*Z is Fr-constant.

Let ¢ : M — M be an isotropic realization over xg, with M small
enough that the leaf space M/F*L is Hausdorff, connected, and simply
connected. Let {2}"22™ be a system of coordinates on M /FL, or the
equivalent F+-constant functions on M.

Define? E(a) = #d2" € (M, TF) for o =1,...,n—2m. These are
mutually commuting Killing vectors in the leaves of F+. They form a
basis for T'F because

E) N NEm—2m) = # (le VANEEIAN dz”_Qm)

is nonvanishing.

Let 7 C M be a smooth transversal to = (intersecting o ~!(x0));
this is parametrized by the z’s. Choose {e(,) 2m o I(T,TF), a ba-
sis of the orthogonal complement of TF C TF* (along 7) such that
w(e(q); €v)) are constant. Extend these vectors to a neighborhood of
7 by requiring that they be Ft-constant: 0 = Ve(,). These are (in
particular) mutually commuting Killing vectors in the leaves of F.

Because wg is F-constant, the partial connection V preserves the
subbundle TF = kerwy C TF+ and the vectors £() are orthogonal to
TF everywhere. Because {¢(q)} 72m are Killing vectors spanning TF,
any derivative orthogonal to T'F must vanish, so

(@) €(@)] = Ve @) = Ve €@ = 0.

So, we have a basis of mutually commuting vectors tangent to F=
near 7. Exponentiating these, we can construct coordinates {x® Z’Ql,
{y~ Zajm, and {z“ ij in a neighborhood of 7 such that % = €(q)
and 3y = €(a)-

This is an F+-foliated chart with transverse coordinates z®. It is also
an F-foliated chart with transverse coordinates x® and z®. To put this
another way, the z’s parametrize the set of F'-leaves, the x’s parame-
trize the set of F-leaves in each F1-leaf, and the 3’s are coordinates on
each F-leaf, as depicted in the figure.

Because the £(,)’s are orthogonal to the e(,’s, the FL leaf metric
takes the form

ds? = g ydatdzb + g'aﬂdyo‘dyﬂ.
Because these are Killing vectors, the components g/, and g/, 5 are func-

tions of the z’s alone. This shows that this is a flat F'-foliated chart.
The y-y-components of w vanish because F is isotropic. The z-y-

components vanish because (by definition) F= is symplectically orthog-

onal to F. By definition, £,y -~ w = dz® With this in mind, the

31 am using parentheses to emphasize that the index is not a tensor index.
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z //
Figure 1. In this sketch, the planes represent F--leaves;
the lines represent F-leaves.

symplectic form reduces to
W= %wabdxa A da® + Wagdx™ N d2P + dy® A dz®.

The first term is wp, and therefore wq;, = w(e(a), e(b)) is constant.

The Poisson bivector 7 on M is of course given by inverting this
symplectic form. The Poisson bivector on Im ¢ C M is given by the x
and y components of 7, but of those, only the z-z-components may be
nonzero. Thus the nonzero part of 7 is 7, which is the inverse matrix
of w,p and is constant in these coordinates.

The metric on Imyp C M is constructed by using w to lower the
indices of the contravariant form of ds’?. This gives

ds® = ¢"Uweadr® + weadz®) (wapdx® + wdgdzﬁ) + ¢ *Pdzdz".
This is of the form (6.2) with

Al = %W

Because w is closed and wy constant, wgadz® is exact. Therefore A% is
a Hamiltonian vector field in the sense claimed. q.e.d.

These results can be restated in purely geometric terms:

1) The symplectic foliation S is a Riemannian foliation [16] of M.
That is, the metric descends to a well-defined transverse metric
géﬁ' This is a metric on the leaf space, to the extent that the leaf
space is meaningful.

2) The induced leaf metric g!b is flat, thus the leaves are locally affine
and in this sense the symplectic form is constant on each leaf.
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3) Locally, S looks like a bundle of symplectic affine spaces. Flow-
ing orthogonally to S defines a connection V (for which A% is
the potential). The structure Lie algebra is that of polynomial
Hamiltonian vector fields on R?™.

Corollary 6.3. The regular symplectic leaves, with their induced Rie-
mannian geometry, are geodesically complete.

Proof. We can compute |7™| explicitly from the above coordinate
expressions. It is S-constant.

Suppose that u : [0,1) — M is an incomplete, inextensible geodesic
in a regular 2m-dimensional leaf. Because M is compact and |u| is con-
stant, this extends continuously to « : [0,1] — M. The point u(1) does
not lie on the leaf, thus rk 7[u(1)] < 2m and |7"[u(1)]| = 0. However,
|7™[u(t)]] is constant and nonzero for ¢t € [0, 1), contradicting the conti-

nuity of |7"™|. Therefore there does not exist an incomplete, inextensible
geodesic. q.e.d.
The extrinsic curvature of S is K := %Vdsﬁ. This is a section of

TS @ T*S ® N*S, where N*S is the conormal bundle to §. This is
easily computed for the metric form (6.2):

Koo = % (ngﬂ + Aaa,b + Aba,a)

where Latin indices are lowered with the leaf metric ggb. Commas denote
partial derivatives.

Lemma 6.4. A% depends only linearly on the x’s (i.e., it is S-linear).
Proof. First, consider the trace of the extrinsic curvature:

(tr K)a = K%a = %gﬁlbg(!bya + A&a.

The last term vanishes because A% is Hamiltonian. So K¢, is constant

along S. (This is actually a coordinate-independent statement; the foli-
ation determines a canonical flat partial connection of N*S along S.)

The components Rg.q of the Riemann tensor parallel to S can be
computed from the extrinsic curvature:

Rabcd = KacaKbda - KadaKbca'
The trace of this is

(6.3) 90°90 Rapea = tr K? — (tr K)? = Ko K™ — K%, K5

The last term is S-constant. This does not necessarily extend to a
continuous function beyond M,e;. However, (6.3) is bounded in terms
of the norm of the Riemannian curvature of M. This means that K
must be bounded. Since A is polynomial in x, so is K and it must be
independent of x.

This shows that Ayq 4+ Apa,q is independent of x, which implies that
A¢ is linear in z. q.e.d.
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This shows that the structure group of V reduces to ISp(2m,R),
the group of affine symplectomorphisms? of R*™. This is very much
like the geometry of a Kaluza-Klein model (see the review [25]). In a
Kaluza-Klein model, Yang-Mills (gauge) theory is realized geometrically
by a bundle of homogeneous spaces of the gauge group. The Yang-
Mills Lagrangian (gauge curvature squared) is recovered as a term of
the Einstein-Hilbert Lagrangian (Riemannian scalar curvature). Here,
ISp(2m, R) plays the role of the gauge group and V the gauge connec-
tion.

The curvature of V is

w = Ab — Al g+ ALAG, — ABAG,

This should be thought of as a vector field (over R?*™) valued 2-form
(over the leaf space).

Lemma 6.5. In some neighborhood of any reqular point where rk m =
2m, there exist 2m commuting Killing vectors {X A}jgl which span T'S.
The Poisson bivector can be expressed as

(6.4) =18 X, A X5

HAB

where the matriz 1s constant and nondegenerate.

Proof. The scalar curvature R of M can be computed in terms of the
transverse metric, the leaf metric, and V. The only term of R which is
not necessarily S-constant is the Yang-Mills term

—31F? = g0 g s Fls.
Because R is bounded, F gﬁ must be bounded. However, F gﬁ must be
polynomial in z, and therefore it is independent of x.

In other words, the curvature is translation valued. This means that
locally, by a gauge (coordinate) transformation, A% can be made inde-
pendent of x. With such a coordinate choice, all components of the
metric (6.2) are independent of z. This means that the basis vectors in
x-directions are commuting Killing vectors. Let {X A}/%Zl be this basis;
that is, X4 = 0% and X¢ = 0. The components of 7 in this coordinate
system become the components of 7 in this basis. Renaming these as
148, we have eq. (6.4). g.e.d.

The final step is to show that Lem. 6.5 implies that the decomposition
(6.4) exists in a neighborhood of any point, not just any regular point.
To do this, I will view Killing vectors as coming from a larger bundle. Let
V be the Levi-Civita connection on M. If X € I'(M,TM) is a Killing
vector, then VX is antisymmetric (with respect to the metric), so X and

VX together form a section of the bundle iso(TM) := TM & A>T M;

4ISp stands for “inhomogeneous symplectic group”.
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moreover, the second derivative can be expressed in terms of X and the
Riemann tensor.
Based on this, define a connection on iso(7M) by

Vy (X, w) = (VyX —w(Y), Vyw — R(Y, X))

where Y € I'(M,TM) and (X,w) € I'(M,iso(TM)). If X is a Killing
vector then 0 = %(X , VX). Conversely, any V-constant section is given
by a Killing vector in this way.

Let 2m be the maximum rank of 7.

Theorem 6.6. Over any simply connected open subset of M, 7w is
giwen by 2m commuting Killing vectors as

m =3P X4 A X5

with constant coefficients IAB. The set {(Xa,VXa)} 3™, is a basis of
V-constant sections of a flat subbundle V C iso(T'M).

Proof. This proof consists of repeatedly applying another simple prin-
ciple: If a continuous section vanishes over some neighborhood of any
regular point, then it vanishes over M,¢; and by continuity it vanishes
over M. This can be applied to any property that can be expressed as
the vanishing of a continuous section.

Let xy € M;eg be an arbitrary regular point. By Lem. 6.5, in some
neighborhood U 3 zp, we have the decomposition (6.4). From this, we
can construct X4 := (X4, VX4) and
(6.5) 7=1i8X, A X5
over U. Because each X4 is a Killing vector, 0 = vX A, and so

0= V7.
This 7 € T'(U, A?iso(T'M)) is made up of three components; the first is
7 itself, and the others are sections of TM ® so(T M) and A% s0(T M),
where so(TM) := N*T M.

A priori, 7 is only defined over U, and appears to depend upon a

choice of decomposition. However, observe that
ij .1 (. 4 jli i 17\ _ AB yi v
Ap =3 (F‘k—ﬂ‘k — T ) =1I XilXBUc
and
J i i AR i .
By = All]|k + Ry, =11 X,l4|kX1]9|z
are the other components of 7. Obviously, A and B are well defined
tensors over M. Although B is not explicitly a section of A?s0(T'M),
it is over U; by continuity, it is over M.

So, we can define @ € I'(M, A?iso(TM)) as the global section with
components w, A, and B. This satisfies 0 = V7 over U; by continuity,
this is true over M.
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This implies that 7 has constant rank (which must be 2m). It thus
spans a subbundle V' C iso(T’M). Over U, the decomposition (6.5)
shows that the sections {XA}jgl span V. Since 0 = %XA, the restric-
tion of V to V is flat over U; by continuity, it is flat over M.

Any V-constant section of V over U is a constant linear combina-
tion of {f( A}jzl; its T M-component is the same linear combination of
{X A}jzl. Therefore, the T'M-components of V-constant sections of V
over U are mutually commuting Killing vectors; by continuity, this is
true over any domain in M.

Now forget the X4 and X4 used above. Over any simply connected
open set, there exists a basis {f( A}jgl of V-constant sections of V.
In this basis, 7 has constant components, II*Z. Defining X4 as the
T M-component of X 4, this gives the desired decomposition of 7. q.e.d.

6.2. Global Structure.

Theorem 6.7. Let M be a connected, compact Riemannian I\n/amfold
with a compatible Poisson structure. There exists a covering M and a
Lie group G of isometries of M such that:

1) M is the quotient M /T by a discrete, cocompact subgroup I' C G.

2) The Poisson structure on M is induced by an Adg-invariant bivec-
tor I € N%g, where g is the Lie algebra of G.

3) The span of I1 (in g) densely generates a connected abelian normal
subgroup T < G.

4) T'NT = {e} and the subgroup TT C G generated by I' and T 1is
dense.

Proof. Choose some (arbitrary) base point in M. Let I' be the ho-
lonomy group for the flat bundle V' C iso(T'M), regarded as a discrete

group. I' is a quotient of the fundamental group, so we can define M
as the covering of M with covering group I'. Let G; be the (Lie) group
of isometries of M that preserve the Poisson structure (i.e., Poisson
isometries).

By construction, I' € G1, M = M/I', and V is globally flat over M.
So, the Killing vectors X4 exist globally, and 7 = %HAB X4 N Xp over

M.

Since the Killing vectors X 4 commute, the decomposition shows that
they preserve m. Hence, they are elements of the Lie algebra of Gj.
Let T C G; be the Lie subgroup densely generated by {X4} 3™ . This
is abelian because the X 4’s commute. Because 7 is Gi-invariant, I is
Adg,-invariant and 7" is normal.

Define G as the closure of the subgroup T'I' C G1. Because G C (G is
a closed subgroup, it is a Lie group. By construction I' C G and T < G.
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The definition of I' implies that the adjoint action of I' on T is a
faithful representation. Because T is abelian, the vectors X4 are T-
invariant. Therefore I'NT = {e}.

For some arbitrary point z € M, let H, C G C Isom(M) be the
subgroup leaving = fixed. Because M (and hence M) is Riemannian
(with positive definite metric) H, is compact. Let O, be the closure
of the symplectic leaf through the image of x in M. This is naturally
identified with the double quotient H,\G/I'. Because M is compact,
O, must be compact and so G/T" is compact. In other words, I' C G is
cocompact. q.e.d.

Note that an Adg-invariant bivector in A%g is the same thing as a
bi-invariant (left and right invariant) bivector field on G. In fact [22,
Thm. 10.4] a bi-invariant Poisson structure always comes from an abelian
normal subgroup in this way.

Theorem 6.8. Let M be any Riemannian or pseudo-Riemannian
manifold. If M is some covering of M, and G is a Lie group acting
by isometries on M such that M is the quotient ova by a subgroup of
G, then any Adg-invariant Poisson bivector I € A%g induces a Pois-
son structure on M which is compatible with the metric in the sense of

Definition 6.1.

Proof. Obviously, II induces a G-invariant Poisson structure on Mv,
but M is the quotient of M by a subgroup of G, so this induces a
Poisson structure on M. The compatibility g)nditions in question are
all local, so it is sufficient to check them on M.

By Theorem 10.4 of [22], II spans an abelian ideal t C g. So II €
A%t. This means that the Poisson structure on M can be written as
%HABX A N Xp where {X4} is a basis of commuting Killing vectors
spanning t.

The volume condition is straightforward to check (£ denotes the Lie
derivative):

d(m €)= ATIPA[( X4 A Xp) S ¢€)
=P X4 0 (Lxye) — LTIAP (X4, Xpl 0e=0

because the vectors X 4 preserve the volume form and commute.
Some contravariant connection D is defined by

Do =T*P (X4 1a)Lx,B,

for any a, 3 € Q'(M). This is compatible with the metric because the
X 4’s are Killing vectors.
It is sufficient to compute the torsion using exact 1-forms. Noting
that
Dypdh = IB X 4(£)d[Xp(h)],
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we have
T(df,dh) = Dasdh — Dapdf — d{f, h}
= T*B[X4(f)d(Xph) + d(Xaf)Xp(h) — d(Xaf Xph)]
=0.

This shows that this D is in fact the metric contravariant connection.

Again, let t be the abelian Lie algebra spanned by {X 4}. Given any
regular point zg € M, any covector at zy extends to a t-invariant 1-
form in a neighborhood of zy. Let v be such a t-invariant 1-form. Its
contravariant derivative vanishes, Dy = 0. Consequently, K («, 3)y =0
and so K = 0 at zg. The curvature vanishes at every regular point,
therefore K = 0 everywhere.

The first expression for D generalizes to give the Poisson bracket of a
function and a differential form,

{f.o} =T"BX4(f)Lx,0.

The Leibniz identity (2.5) then implies that the bracket of two 1-forms
must be,

{a, B} =TI'BLx a A Lx, .

Again, let v be a t-invariant 1-form on some neighborhood of z.
These formulze show that any generalized Poisson bracket of + with a
function or 1-form must vanish. Thus by eq. (2.8), M (df, 3,~v) = 0. This
shows that M = 0 at xg, hence at every regular point, hence everywhere.

q.e.d.

These two results show that in the case of a compact Riemannian
manifold, a Poisson structure is compatible with the metric if and only
if it is induced in this way from a bi-invariant Poisson structure on a
group.

Theorem 6.7 thus shows how to construct all examples of compatible
Poisson structures. They are classified by triples (G, ', II) of a Lie group,
a cocompact discrete subgroup and a bi-invariant Poisson structure, such
that I' and the span of II densely generate G.

Whenever the metacurvature obstruction vanishes, the de Rham com-
plex of differential forms becomes a differential graded Poisson algebra.
This is precisely the natural sufficient condition for the generalized Pois-
son brackets to descend to de Rham cohomology. It is thus natural to
ask what this gives in the cases we have been considering. The answer
is disappointingly trivial.

Proposition 6.9. If M is a compact Riemannian manifold with
a compatible Poisson structure, then the induced Poisson bracket on
de Rham cohomology is 0.
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Proof. Firstly, using the Leibniz identity (2.4), we can extrapolate to
an explicit formula for the generalized Poisson bracket of two differential
forms o, p € Q*(M),

{U, p} = HABﬁXAJ A ﬁXBp.
If o and p are closed, then this can be rewritten as

{o,p} =TI"Bd(X 4 10) Nd(Xp 2 p)
= d[(XA .| O') A [,XBp].

The last expression in brackets is just a contraction of p with Do €
Q(M,TM). In this way, the formula descends to M. If o, p € Q*(M)
are closed forms on M, then Do € Q*(M,TM) and so {o, p} is exact.

q.e.d.

There is no obvious reason for the bracket on cohomology to vanish
in greater generality; this question can be considered for any Poisson
manifold that has a contravariant connection with vanishing torsion,
curvature, and metacurvature. Unfortunately, the only other examples
that I describe in this paper are S? and R? (in Sections 3 and 9); in
those cases the bracket on cohomology vanishes simply because the co-
homology is trivial.

7. Spectral Triples

I have shown that the compatibility conditions of Definition 6.1 are
necessary for the existence of a deformed noncommutative geometry
which respects differential forms and integration. I have not shown if
these conditions are sufficient. As I shall explain, this appears to be
essentially true provided that the Poisson structure is itself suitably
integrable.

I have tried to be as general as possible by not tying my arguments
to a specific notion of noncommutative geometry more than necessary.
In order to discuss the sufficiency of my compatibility conditions, it is
appropriate to be a bit more concrete now.

7.1. Differential Forms. Connes [5] has given a very general recipe
for constructing a differential graded algebra of “noncommutative differ-
ential forms” Q7,(A) from a spectral triple (A, H, D). Given the Dirac
operator and algebra of smooth functions on a compact spin manifold,
this recovers the differential forms:

QpC=(M)] = @ (M).

The construction applies provided that the commutator of D with any
element of A is bounded. It begins by building a universal differential
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graded algebra from A. Let Q%(A) = A and Q'(A4) C A® A the kernel
of the multiplication map A ® A — A. The differential begins with

d:0%A) - QYA), a—1®a—a®]l.

Finally, Q¥(A) is the k-fold tensor product of Q'(A) over A, and d is
defined in general by the Leibniz identity. Note that QF(A) c A®k+D),

The formula ag ® a1 ® - - - ®ap — agDa1D ... Day defines a map from
A®E+1) to operators. Restricting this to Q2F(A) gives a representation
by bounded operators p : Q*(A) — L(H). The kernel of p is neither a
differential nor graded ideal. Instead define Jy C ker p C Q2*(.A) as the
subspace spanned by homogeneous elements; then J := Jy + dJp is a
differential graded ideal. Finally, Qp(A) := Q*(A)/J.

This doesn’t require a spectral triple that could be reasonably re-
garded geometrically. For example, we could take D = 0, in which case

Q8(A) = A and Q57%(A) = 0.

7.2. Axioms. In [6], Connes presented a system of axioms for a real
spectral triple. This is the most completely and restrictively defined
notion of noncommutative geometry. For reference, I summarize the
axioms here. See [13] for the most detailed discussion.

An n-dimensional real spectral triple consists of: H a Hilbert space; A
a *-algebra of bounded operators; D an unbounded self-adjoint operator;
J an antiunitary operator; and v a Zs-grading operator. These satisfy
the following axioms.

Dimension: The resolvent (D +14)~! is a compact operator contained
in the ideal £ (H).

Smoothness: For any a € A, the commutator [D, a| is bounded. Both
a and [D,a] are in the domain of any power of the derivation § defined
by é(a) == [|D] d].

Reality: For any a,b € A, a® := Ja*J~ ! commutes with b. J? =
+1, JD = £DJ, and Jv = £vJ, with the signs depending upon the
dimension n modulo 8.

First order: For any a,b € A, a°® commutes with [D, b].

Finiteness: The common domain H, of all powers of D is a finitely
generated, projective A-module. There is an A-valued pre-Hilbert mod-
ule inner product such that for a € A, 1, x € Heo,

Try, (a{¥]X)1.| DIT") = (la[x)2.

Orientation: -~ is self-adjoint and commutes with A. If n is even
then vD = —D-~; if n is odd then v = 1. There exists a Hochschild
cycle ¢ € Z,(A, A ® A°P) such that p(c) = ~ for the representation
p:Z(A AR AP) — L(H) defined by

plag @bP Ra; ® -+ ® ap) = apb®®[D, aq]...[D,ay].
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Poincaré duality: The Kasparov product with the K-homology class
[D] € KR"(A® A°P)
is an isomorphism:

@a[D] : K. (A) == K*(AP) = K*(A).

7.3. Converse Construction. If a noncommutative deformation of
the geometry of M exists, then we must have in particular a noncommu-
tative deformation of the algebra of smooth functions on M. Whether
this exists is a more fundamental issue than compatibility with geometry,
and in a way it is a separate question.

The results of Section 6.2 show that a compatible Poisson structure
comes from a homogeneous Poisson manifold G/T". This is the model
that everything is constructed from. Assuming that G/T" can be suitably
deformed, I will sketch the construction of real spectral triples for a
deformation of M.

I will focus on real spectral triples, so it is necessary to assume that
M is a spin manifold. I assume that M is a compact, Riemannian
spin manifold with a I'-covering M, I' C G is a discrete, cocompact
subgroup, II € A%g is an invariant Poisson bivector, and the action of G
on M extends to the spinor bundle. In order to satisfy the last condition,
we might need to replace G with some finite covering.

A geometric deformation of M exists if there is a suitable G-equiv-
ariant deformation of G/I". I will not only assume that there exists a
deformation B of C>°(G/T"), but also:

1) B is a dense subalgebra of sections of a continuous field, B, of
C*-algebras over an interval.

2) There is an action of G on B which extends the action of G on
C>®(G/T), i.e., this is an equivariant deformation. As a deforma-
tion of G-modules, this is trivial.

3) For every value of the parameter h, let By C By, be the image of B
in Bp. This is precisely the domain of the action of the universal
enveloping algebra of g on By,

4) There exist G-invariant tracial states 75, : B — C.

It is elementary to construct a deformation of G with respect to I1. In
some cases, the techniques of Rieffel [19] can then be used to construct
a deformation of G/T". However, it is not clear whether G/I" can be
suitably deformed in general.

7.3.1. Algebra. In preparation for constructing the deformed algebras,
we can re-express M as

M= MJT = M xgG/T.

This means that the algebra of smooth functions C*°(M) is naturally
identified with the G-invariant C°°(G/T’)-valued smooth functions on
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M:

Cx(M) = C®(M,C®[G/T])C.
The (right) action of g € G is defined by the pullback by the right action
of g~! on M and the left action of g on G/T.

We can mimic this construction in the noncommutative case substi-
tuting By, for C>°(G/T"). There is still a right action of G on By. The
right action of g € G on COO(MV , By, is given by simultaneously applying
the action of g on B, and pulling back by the action of g~! on M. With
this action, we can define the algebra

Ap = C™(M, Bp)C.

This generalizes the “twisting by a torus” construction of Connes and
Landi [8] (see also [7]).

7.3.2. Hilbert Space. Let S — M be the spinor bundle. The Ap-
module .
HY :=T(M, S ® Bp)®

is an analogue of the smooth sections of S over M, but in order to
construct a spectral triple we need a Hilbert space analogous to the
L?-sections of S. For this, we need an inner product.

The inner product of spinors comes fundamentally from a bundle ho-
momorphism

S®S — A"T*M.

For two spinor sections ¥, ¢ € I'(M, S), the local inner product is ¥y €
Q"(M). Integrating this over M gives the Hilbert inner product.

Now, for two G-invariant sections

¥, p € T(M, S @ Bp)®

the local inner product is ¢ € Q”(Mv , Br)C. If we apply the G-invariant
trace, this becomes

() € A(M)E.
It would be a mistake to try to integrate this over M, since it does not
fall off at all. Instead note that

Q" (M) c Q' (M)" = QM (M).
With this identification, we can integrate over M and define the Hilbert
inner product as

W g = /M w(§9).

It is worth observing how this gives the correct inner product at A = 0.
In that case, ¥ can already be identified with an n-form on M. There
is a singular foliation of M by the images of the G orbits. The trace 7
averages 1) over each of these leaves, which does not change the integral

over M.
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7.3.3. Dirac Operator. The Dirac operator of M is defined on sec-
tions of S. This extends trivially (and G-equivariantly) to sections of
S ® By over M. Restricting to G-invariant sections defines the Dirac
operator Dy on Hp.

Identifying the algebras C*°(G/T") and By as G-modules induces a
unitary map from L?(M, S) to Hp which intertwines the Dirac oper-
ators. This is thus an isospectral deformation. We can identify the
Hilbert spaces and regard the Dirac operator as constant. Because this
is isospectral, the dimension axiom is trivially satisfied.

7.3.4. Real Structure. The classical real structure is given by an an-
tilinear bundle automorphism C : S — S. Combining this with the
involution on Bj gives the real structure C'® * on S ® Bj, and hence on
Hp.

This leads to the obvious Ap-bimodule structure on Hpy. The various
signs remain the same as in the commutative case. The first order axiom
is easy to verify.

7.3.5. Smoothness. The action of Dj, on T'(M, S®B;)¢ can be rewrit-
ten partly in terms of the Lie algebra g. The common domain of all
powers of Dy, is simply H® = I'(M, S ® Bp,)“. The finiteness axiom can
be checked from this. Smoothness follows similarly.

7.3.6. Differential Forms. Let C;°(M, B,) denote the algebra consist-
ing of smooth Bp-valued functions that are bounded in all derivatives.
This should be thought of as a tensor product of Co°(M) with By. With
D ® 1 and the Hilbert Bx-module L?(M, S ® By) this forms a spectral
triple (in a slightly generalized sense). The algebra of noncommutative
differential forms is simply

o1 [CO(M, By)] = Qf (M, By).

Let p : Q*[Cgo(ﬂ)] — Lp, [L%(M, S @ By)] be the representation
used in the construction. The image consists of bounded-adjointable op-
erators which act locally over M. The same is true for the representation
p2 : U (Ap) — L(Hp). Consequently, ker po = ker p; N Q*(Ap). This
means that Qp, (Ap) is the differential-graded subalgebra of €} (M, By)
generated by Ap in degree 0. Thus

Qp, (An) = Q" (M, By).

With this, it is clear that the differential graded algebra Qp, (Ap) is
smoothly deformed from Q*(M).

7.3.7. Orientation. By construction, the volume form é € Q"(M)
is G-invariant. This means that it can be identified with e ® 1 €
Q"(M, By)¢ = Qp, (Ar). Viewing this as an equivalence class in 2" (Ay),
some element of this class should be the Hochschild cycle with image ~

as required by the orientation axiom.
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7.3.8. Poincaré Duality. This axiom is essentially impossible to check
at this level of generality. It depends upon the stability of K-theory un-
der the deformation from C*°(M) to Ajp. This is not a general property,
but there is a strong tendency for K-theory to be preserved in deforma-
tions, see [20].

It is certainly plausible that Poincaré duality will be preserved in an
isospectral deformation which preserves K-theory. For example, if the
dimension is even, we can consider the intersection product of even K-
theory classes which are determined by idempotents e, e’ € Mat,, (Ap).
Varying h, the intersection product should vary continuously, but it is
an integer and thus constant.

8. Examples

8.1. Torus. The only compact example in two dimensions is a flat torus
with a constant symplectic structure. In this case, G is the 2-torus and
I" is trivial. The construction of the deformed geometry is the canonical
example of noncommutative geometry.

More generally, any antisymmetric n X n-matrix II defines a com-
patible Poisson structure on a flat n-dimensional torus, and there is a
corresponding noncommutative torus deformation. The group G is T"
in this case. Although II may be degenerate, the dimension of the group
T < G may still be larger than rkII. A simple example is R3/Z3 with
7= 0y A (0 ++/20;). This is the effect I referred to in defining 7" to be
densely generated by the span of II.

8.2. Flat Manifolds. Let M = T* = R*/Z* be the 4-dimensional
torus with coordinates x!, 22 y',%? (on R*) and symplectic form w =
dz!' A dy' 4 dz? A dy?. The mapping

St <x17y17m27y2) = (ylv —.%'1,.%'2 + %7y2)

preserves w and generates a free action of Z4 on M. Define M := M /Z,.

The abelian group of Poisson isometries generated by the span of 11
is the full group of translations, T%. The covering group is I' = 74
generated by s. The group generated by these is the semidirect product
G = Z4 x T%; the generator s € Z4 acts on T by a quarter rotation
in the z'-y!-plane. In this case, M is of the locally homogeneous form
M= H\G/T with H~T =~ 7,.

As always, we should construct a noncommutative deformation by
first deforming the homogeneous model G//I' = T4. This gives a non-
commutative 4-torus. The algebra By, is generated by 4 unitaries Uy, Us,
V1, and V5 with the relations

Ui = 6<27r)2ihV1 Uy,
UV, = e My505,
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and all other pairs of generators commuting. Corresponding to s is the
automorphism s* defined by: s*(Uy) = Vi, s* (V1) = Uy L, s*(Us) = iUy,
and s*(V3) = Va. Ay, is the s*-invariant subalgebra of By.

This example is reminiscent of the classification of flat manifolds: Any
flat compact Riemannian manifold is of the form M = T"/I" with I" a
finite group of free isometries of the flat torus (see [4]). If there exists
a constant I'-invariant Poisson structure on T", then this descends to a
Poisson structure on M. Choosing M = T", we can take G = T' x T"
and this is another locally homogeneous example M = I'\G/I'. The
standard quantization of T™ is equivariant under all linear transforma-
tions preserving the Poisson structure, therefore this gives a deformation
of M.

In general, if M is a compact Riemannian manifold with a compatible
symplectic structure, then it is flat and it must be of this form.

8.3. Heisenberg Manifolds. The Heisenberg group H is the group of
real 3 x 3 matrices of the form
1 =z =z
0 1 y

0 01
Let A C H be the subgroup of matrices with integer entries. The 3-
dimensional nil-manifold (or “Heisenberg manifold”) is Nil® := H/A.

Let 6 be an irrational number. The Poisson bivector

T = (9, + 60,) A O,

is bi-invariant on H. In particular it is A-invariant and defines a Poisson
structure on Nil®. This is a regular Poisson structure. The leaves of the
symplectic foliation are dense. Nil® is the total space of a circle bundle
over the torus T?; the symplectic foliation is the inverse image of a
Kronecker foliation of the torus.

Obviously Nil> = H /A describes Nil® in the desired form, but this
is not the minimal description as in Thm. 6.7. The universal covering
H is not the minimal covering of Nil®> with the Poisson bivector given
by global Killing vectors. Instead, we can take M = H/Z where Z is
embedded in H as the subgroup of matrices

OO =
O = O
= O W\

with z € Z.
The covering group is I' = A/Z =2 7Z2. The image of II in the Heisen-
berg Lie algebra is 2-dimensional, spanned by

010 0 01
0 0 ) and [O O O
000 000
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This generates an abelian subgroup of Poisson isometries 7' = R x T!.

This covering manifold M is itself a group G = H/Z because Z < H.
Both I' and T are contained in the group of right translations. In fact
TT C G is dense. This is easiest to see by looking at the quotient
G/T! = R2. T maps injectively to the integer lattice Z? C R2. T maps
to a 1-dimensional subgroup, a line of irrational slope. Together, these
densely generate R2.

As a Poisson manifold, Nil® is homogeneous. The left action of G
on Nil®> = G/Z? preserves the Poisson structure. However, it is not
homogeneous as a Riemannian manifold. A compatible Riemannian
metric is given by any right-invariant metric on G. This cannot be
left-invariant as well.

Rieffel constructed an equivariant deformation quantization of Nil®
in [18]. In fact, this was one of the very first examples of strict defor-
mation quantization. The other Heisenberg manifolds discussed there
are simply finite quotients of Nil®. They can be seen as locally homo-
geneous examples subordinate to Nil®. Chakraborty and Sinha [3] have
constructed and analyzed spectral triples for these examples.

9. Conclusions

With the assumptions I have made about what constitutes noncom-
mutative geometry, I have shown that noncommutative deformations are
remarkably restricted.

The reader might wonder if the analysis here was all necessary. After
all, the conclusion of Thm. 6.6 is quite simple. The reason for the com-
plexity of the proof is that compactness leads to great simplification, but
in a very indirect way. The noncompact solutions of the compatibility
conditions are more complicated. For instance, consider 3-dimensional
Euclidean space with Cartesian coordinates x, ¥y, z, and a Poisson bracket
defined by {z,y} = 1, {z,2} = y, and {y,z} = —z. This satisfies the
compatibility conditions, but the Poisson bivector cannot be decom-
posed into products of Killing vectors. This example can be noncom-
mutatively deformed, which suggests that there does not exist another
local obstruction that would have simplified the analysis in Section 6.1.

Another criticism is that my compatibility conditions are too restric-
tive. Although I think that my assumptions are well founded, some
variation is possible. Different assumptions may lead to weaker con-
clusions, but I think that this has been a suitable starting point. The
techniques I have used here may be useful for analyzing other scenarios.

The Dabrowski-Sitarz example of a spectral triple for the Podles
sphere is an example of noncommutative geometry where the orientation
axiom is not satisfied. This is partly because the homological dimension
of the Podles sphere is 0 rather than 2. This sudden dimension drop
is related to the fact that integration cannot be smoothly deformed to
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a trace. This example strongly suggests that it would be interesting to
discard my compatibility condition 0 = d(m ~ €) between the Poisson
structure and volume form. Unfortunately, this condition played a key
role in the simplifications leading to the main results here. Nevertheless,
the technique of using symplectic realizations to tame the metacurvature
still applies. There may be other tricks that would make this problem
tractable.

Some constructions of noncommutative differential forms on the fuzzy
sphere and quantum groups have avoided these obstructions by using dif-
ferential forms that do not correspond to classical differential forms. In-
stead of deforming 1-forms, they deform 1-forms plus some other “junk”.
This approach seems unpleasantly ad hoc to me, but it is probably still
possible to analyze this situation with my techniques.

The construction of spectral triples on noncommutatively deformed
spaces is an active area of research. Theses examples are interesting,
but in my view they cannot be considered as deformed geometries. For
instance, the spectral triple for SU4(2) constructed by Chakraborty and
Pal [2] treats SU4(2) as a quantum group in its own right, rather than
as a deformation of SU(2).

Physically, these results rule out the idea of noncommutatively de-
formed 4-dimensional space-time. At the same time, they spell out a
possible structure for noncommutative extra dimensions.

I have essentially classified noncommutative deformations of compact
Riemannian manifolds in terms of the structure (G,T',II) where G is a
Lie group, I' C G is discrete and cocompact, I € A%g is an invariant
Poisson structure, and G is densely generated by I' and the Lie algebra
ideal spanned by II. What is missing is a better understanding of this
structure. For example, the Lie algebra g is certainly not semisimple
(it has a nontrivial ideal) but in all the examples that I know of, g is
actually nilpotent; it is not apparent whether g is always nilpotent.
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