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VALUATIONS ON MANIFOLDS AND RUMIN

COHOMOLOGY

Andreas Bernig & Ludwig Bröcker

Abstract

Smooth valuations on manifolds are studied by establishing
a link with the Rumin-de Rham complex of the co-sphere bun-
dle. Several operations on differential forms induce operations on
smooth valuations: signature operator, Rumin-Laplace operator,
Euler-Verdier involution and derivation operator. As an applica-
tion, Alesker’s Hard Lefschetz Theorem for even translation invari-
ant valuations on a finite-dimensional Euclidean space is general-
ized to all translation invariant valuations. The proof uses Kähler
identities, the Rumin-de Rham complex and spectral geometry.

Introduction

Let V be an n-dimensional vector space and denote by K(V ) the
space of compact convex sets in V . A convex valuation on V is a
map Ψ : K(V ) → R with the following property (Euler additivity):
if K1, K2, K1 ∪ K2 ∈ K(V ), then

Ψ(K1 ∩ K2) + Ψ(K1 ∪ K2) = Ψ(K1) + Ψ(K2).

By Hadwiger’s theorem, the space of motion invariant and continuous
(with respect to Hausdorff topology) valuations is a valuation space of
dimension n + 1. In contrast to this, the space Val(V ) of translation
invariant continuous valuations is an infinite-dimensional Fréchet-space.
The algebraic structures underlying this space were studied by Alesker
using deep representation-theoretic tools. There is a natural GL(V )-
action on Val(V ). The subspace of GL(V )-smooth vectors is denoted by
Valsm(V ). From his Irreducibility Theorem, Alesker deduces in [6] that
a smooth valuation can be represented by integration of a differential
form on the co-sphere bundle against conormal cycles of compact convex
sets. He also defined and studied smooth valuations on an arbitrary
manifold [6], [7], replacing convex sets (which would not make sense on
an arbitrary manifold) by differentiable polyhedra.
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In this paper, we work in a slighly different setting, namely that of
an analytic-geometric category C in the sense of [18]. The definition
of such a category is recalled in Section 1. We denote by Cb(M) the
subset of relatively compact sets in C(M). The conormal cycle of a set
X ∈ Cb(M) is denoted by cnc(X). If M is endowed with a Riemannian
metric, then nc(X) denotes the normal cycle of X (compare [10]).

Definition 0.1.

• A C-valuation on a real-analytic manifold M is a map Ψ : Cb(M) →
R such that

Ψ(X ∪ Y ) + Ψ(X ∩ Y ) = Ψ(X) + Ψ(Y ); X, Y ∈ Cb(M).

• A C-valuation Ψ is called smooth if there exist a smooth differential
n − 1-form ω on S∗M and a smooth n-form φ on M such that

Ψ(X) = Ψ(ω,φ)(X) := cnc(X)(ω) +

∫

X

φ

for all X ∈ Cb(M).

We refer to [7] for equivalent conditions and for further information
on smooth valuations. The space of smooth valuations on M is denoted
by V∞(M).

A given smooth valuation can be represented by different pairs (ω, φ).
Our first main theorem describes the kernel of the map (ω, φ) 7→ Ψ(ω,φ)

in terms of the Rumin operator D : Ωn−1(S∗M) → Ωn(S∗M). The
definition of this second-order differential operator is recalled in Section
1.

Theorem 1. Let M be an oriented real-analytic manifold of dimen-
sion n and Ψ : Ωn−1(S∗M) ⊕ Ωn(M) → V∞(M), (ω, φ) 7→ Ψ(ω,φ) the
map introduced above. Then (ω, φ) ∈ ker(Ψ) if and only if

1) Dω + π∗φ = 0 and
2)

∫

S∗

pM
ω = 0 for all p ∈ M .

Here π : S∗M → M is the canonical projection and S∗
pM = π−1(p).

In the important case where M is a real vector space, the φ-part is
not needed (Corollary 1.6). The condition Dω = 0 is then equivalent
to saying that, up to some vertical form, ω is d-closed, while the second
condition means that the de Rham cohomology class of ω is trivial. The
kernel of the map ω 7→ Ψ(ω,0) is thus generated by vertical and exact
forms.

We have stated Theorem 1 for smooth C-valuations. However, as the
proof will show, it also holds for other kinds of smooth valuations. This
is the case for convex valuations (on a real vector space V ) and valua-
tions on differentiable polyhedra on an arbitrary manifold [7]. What is
needed is that the considered class of sets is large enough to admit local
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variations. Therefore the proof does not work for valuations on poly-
topes (but one can use a density argument to show that the analogous
statement still holds).

Using Theorem 1, we will introduce several operations on smooth val-
uations. First of all, the natural involution on S∗M induces an involu-
tion, called Euler-Verdier involution, on the space of smooth valuations
on M (it was previously studied by Alesker [7]). If M is endowed with
a Riemannian metric, there are three more operators acting on smooth
valuations. They are induced by the signature operator, the Laplace
operator and the Lie derivation with respect to the Reeb vector field
on S∗M . This last operator, called derivation operator and denoted
by L, was studied in the Euclidean case by Alesker [3]. In this case,
LΨ(K) = d

dt

∣

∣

t=0
Ψ(K + tB), where K + tB denotes the tube of radius

t around a compact convex set K (compare Proposition 3.4).
Before we state our second main theorem, we need to recall a result of

McMullen. A translation invariant valuation on an n-dimensional vector
space V is called homogeneous of degree k if Ψ(tK) = tkΨ(K) for all
compact convex sets K and all t > 0. With Valk(V ) being the subspace
of valuations of degree k, McMullen’s result is the decomposition

Val(V ) =
n

⊕

k=0

Valk(V ).

It is easily checked that L decreases the degree of a valuation by 1.

Theorem 2 (Hard Lefschetz Theorem). Let n
2 < k ≤ n. Then

L
2k−n : Valsmk (V ) → Valsmn−k(V )

is an isomorphism. In particular, L : Valsmk (V ) → Valsmk−1(V ) is injec-

tive for k ≥ n+1
2 and surjective for k ≤ n+1

2 .

In the special case of even translation invariant valuations (a valuation
is even if Ψ(−K) = Ψ(K) for all K), the theorem was proved by Alesker
using representation theory of GL(V ). He also gave the name Hard
Lefschetz theorem, stressing the formal analogy with the Hard Lefschetz
Theorem for compact Kähler manifolds. Our proof shows that there is
more than just an analogy, since it relies on the geometry of the Kähler
manifold V × (V \ {0}) and the Kähler identities on it.

Let G be any subgroup of O(V ). We denote by ValG(V ) the space
of G-invariant, translation invariant valuations and by Valsm(V )G the
space of smooth G-invariant, translation invariant valuations.

Corollary 0.2.

1) Let G be any subgroup of O(V ). Then

L
2k−n : Valsmk (V )G → Valsmn−k(V )G

is an isomorphism for n
2 < k ≤ n.
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2) Suppose G is compact and acts transitively on S(V ). Then ValGk(V)

is finite-dimensional and hG
k := dim ValGk (V ) satisfy the Lefschetz

inequalities

hG
k ≤ hG

k+1 for k <
n

2
and

hG
k = hG

n−k for 0 ≤ k ≤ n.

The finite-dimensionality of ValGk (V ) and the equality in the second
part were obtained by Alesker [1], [5]. The inequality was conjectured
by Alesker [5] and proved under the additional assumption −Id ∈ G.

The paper is organized as follows. In Section 1, we introduce smooth
valuations on manifolds. We recall the definition of an Analytic-Geo-
metric Category and the normal cycle construction. Then we prove
Theorem 1 and state some corollaries. In Section 2, we study several
natural operations on smooth valuations: Euler-Verdier involution, sig-
nature and Laplace operator, and derivation operator. The relation
between translation invariant smooth valuations on a finite-dimensional
Euclidean space V and translation invariant differential forms on the
sphere bundle SV is the subject of Section 3. We also recall some
results of McMullen and Alesker concerning translation invariant valu-
ations. The proof of Theorem 2 is contained in Section 4.

Acknowledgements. This paper has grown out of a Research-in-Pairs
stay at Oberwolfach in March 2003. We would like to thank the MFO
for their hospitality and the friendly and fruitful atmosphere. We thank
J. Fu and S. Alesker for pointing out mistakes in an earlier version of this
paper. The first named author was supported by grant SNF 200020-
105010/1 and wishes to thank the Schweizerischer Nationalfonds.

1. Valuations on manifolds

The following definition is taken from [18].

Definition 1.1. An analytic-geometric category C is a set of pairs
(M, X) such that

1) M is a real-analytic manifold and X a subset of M ;
2) for fixed M , the set C(M) := {X ⊆ M : (M, X) ∈ C} is a Boolean

algebra which contains M ,
3) if (M, X) ∈ C then (M × R, X × R) ∈ C;
4) for each proper analytic map f : M → N and X ∈ C(M), f(X) ∈

C(N);
5) if X ⊆ M , (Ui) an open covering of M , then X ∈ C(M) if and

only if X ∩ Ui ∈ C(Ui) for each i;
6) the bounded sets in C(R) are exactly finite unions of bounded

intervals.
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The basic example of an analytic-geometric category is that of sub-
analytic sets, but there are many others. The reader who is not fa-
miliar with analytic-geometric categories may think of subanalytic sets
throughout this paper.

Fix an analytic-geometric category C and an oriented, real-analytic
manifold M . Let Cb(M) be the set of relatively compact subsets X ∈
C(M).

Definition 1.2. A C-valuation on M is a map

Ψ : Cb(M) → R

with the following property (Euler additivity): if X, Y ∈ Cb(M), then

Ψ(X ∩ Y ) + Ψ(X ∪ Y ) = Ψ(X) + Ψ(Y ).

If it is clear from the context that we are considering convex or C-
valuations, we will just write valuation.

Without further assumptions, not much can be said about valua-
tions. In the case of convex valuations, one classically has two types of
assumptions. The first one is continuity in the Hausdorff topology. The
second one is invariance under the group of Euclidean motions or some
sufficiently large subgroup (e.g., the group of translations or rotations).

In the case of C-valuations on an arbitrary oriented real analytic n-
dimensional manifold M , we will make throughout the paper the hy-
pothesis that Ψ is smooth in the sense defined below.

Let us introduce some notation first. The co-sphere bundle S∗M of
M is the quotient (T ∗M \ {0})/R+. It will be convenient to consider
S∗M as the set of pairs (p, P ) with p ∈ M and P ⊂ TpM an oriented
hyperplane. The conormal cycle cnc(X) of X ∈ Cb(M) was constructed
in [10]. It is an integral Legendrian n − 1-cycle on S∗M .

Definition 1.3. A valuation Ψ is called smooth if there exist a
smooth differential n− 1-form ω on S∗M and a smooth n-form φ on M
such that

Ψ(X) = cnc(X)(ω) +

∫

X

φ

for all X ∈ Cb(M).

The vector space of smooth valuations on M is denoted by V∞(M).

Example.

• If M is endowed with a real-analytic metric, then one can define a
sequence of Lipschitz-Killing invariants Ψ0(X), . . . ,Ψn(X) of X ∈
Cb(M). They are smooth valuations (compare [9]).

• Let M = V be an Euclidean vector space with W ⊂ V a linear
k-subspace. Define a valuation Ψ on Cb(V ) by setting Ψ(X) =
volk((πW )∗1X), where πW : V → W denotes orthogonal projection
and (πW )∗1X is the push-forward of the characteristic function of
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X to W , i.e., the constructible function on W given by w 7→
χ(π−1

W (w)∩X). Then Ψ is a non-smooth valuation. Indeed, let U
be a k-dimensional linear subspace and X the unit ball in U . Then
Ψ(X) = | cos(W, U)| (compare e.g., [4]) but the map Grk(V ) →
R, U 7→ | cos(W, U)| is clearly not smooth.

• Let V be an Euclidean vector space and G a compact subgroup
of O(V ) acting transitively on the unit sphere S(V ). Then each
continuous G-invariant, translation invariant valuation is smooth
([3], Corollary 1.1.3 and [6]).

Let ω be a smooth n − 1-form on S∗M and φ a smooth n-form on
M . The valuation X 7→ cnc(X)(ω) +

∫

X
φ will be denoted by Ψ(ω,φ).

By definition, we get a surjective linear map

Ψ : Ωn−1(S∗M) ⊕ Ωn(M) → V∞(M), (ω, φ) 7→ Ψ(ω,φ).

The kernel of Ψ is not trivial. For instance, if ω is an exact form, then
Ψ(ω, 0) = 0, since conormal cycles are closed. Similarly, if ω vanishes
on the contact distribution, then Ψ(ω, 0) = 0, since conormal cycles
are Legendrian. Our first main theorem characterizes the kernel of Ψ.
Before proving it, we have to recall some facts about Rumin cohomology
[17].

Let (N, Q) be a contact manifold of dimension 2n−1. For simplicity,
we suppose that there exists a global contact form α, i.e., Q = kerα.
This global contact form is not unique, since multiplication by any non-
zero smooth function on N yields again a contact form. However, the
following spaces only depend on (N, Q) and not on the particular choice
of α:

Ωk := Ωk(N);

Ik = {ω ∈ Ωk : ω = α ∧ ξ + dα ∧ ψ, ξ ∈ Ωk−1, ψ ∈ Ωk−2};

J k = {ω ∈ Ωk : α ∧ ω = dα ∧ ω = 0}.

Since dIk ⊂ Ik+1, there exists an induced operator dQ : Ωk/Ik →

Ωk+1/Ik+1.

Similarly, dJ k ⊂ J k+1 and the restriction of d to J k yields an oper-
ator dQ : J k → J k+1.

In the middle dimension, there is a further operator, which we will
call the Rumin operator, which is defined as follows. Let ω ∈ Ωn−1.
There exists ξ ∈ Ωn−2 such that d(ω + α ∧ ξ) ∈ J n, and this last form,
which is unique, is denoted by Dω. It can be checked that D|In−1 = 0,
hence there is an induced operator D : Ωn−1/In−1 → Jn.
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The Rumin complex of the contact manifold (N, Q) is given by

0 → C∞(N)
dQ
→ Ω1/I1 dQ

→ . . .
dQ
→ Ωn−2/In−2 dQ

→ Ωn−1/In−1 D
→ Jn

dQ
→

dQ
→ Jn+1

dQ
→ . . .

dQ
→ J2n−1 → 0.

The cohomology of this complex is called Rumin cohomology and
denoted by H∗

Q(N, R). By [17], there exists a natural isomorphism
between Rumin cohomology and de Rham cohomology:

(1) H∗
Q(N, R)

∼=
−→ H∗

dR(N, R).

In the middle dimension, this isomorphism can be described as fol-
lows. Let [ω] ∈ Hn−1

Q (N, R). Then Dω = 0, which means that there

exists a unique form ω′ = ω + α ∧ ξ with dω′ = 0. Then ω′ defines an
element [ω′] ∈ Hn−1

dR (N, R).
Let us return to our special situation where N = S∗M . The contact

plane at a point (p, P ) is given by (dπp)
−1(P ) (here π : S∗M → M is

the natural projection). We fix a global contact form α, i.e., a 1-form
whose kernel is the contact distribution.

Proof of Theorem 1.
1) Suppose Dω + π∗φ = 0 and

∫

S∗

pM
ω = 0 for all p ∈ M . There

exists a unique form ω′ = ω + α ∧ ξ such that dω′ = Dω. Note that
Ψ(ω,φ) = Ψ(ω′,φ).

Let p ∈ M and U ⊂ M be a contractible neighborhood of p. Let
X ∈ Cb(M) with X ⊂ U . Fix ψ ∈ Ωn−1(U) with dψ = φ on U .

Since X ⊂ U , we have

[[∂X]] = π∗ cnc(X),

[cnc(X)] = χ(X)[[S∗
pM ]] ∈ Hn−1,dR(S∗U) where p ∈ U.

It follows that

Ψ(ω,φ)(X) = Ψ(ω′,φ)(X)

= cnc(X)(ω′) +

∫

X

φ

= cnc(X)(ω′) +

∫

X

dψ

= cnc(X)(ω′ + π∗ψ).

By assumption d(ω′ + π∗ψ) = 0 on U . Therefore

cnc(X)(ω′ + π∗ψ) = χ(X)

∫

S∗

pM

(ω′ + π∗ψ) = χ(X)

∫

S∗

pM

ω = 0.

By Euler-additivity of Ψ(ω,φ) we obtain that Ψ(ω,φ)(X) = 0 for all
X ∈ Cb(M), i.e., (ω, φ) ∈ ker(Ψ).
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2) Let us now suppose that Ψ(ω,φ) = 0. We first want to show that
Dω = −π∗φ. By replacing ω with ω+α∧ξ if necessary, we may assume
that Dω = dω. We set η := iT Dω, where T is the Reeb vector field
associated to α. Then Dω = α ∧ η.

Given a smooth vector field V on M , there exists a canonical lift V c

on S∗M (i.e., dπ(V c) = V ), which is called complete lift (compare [19]).
If Φt : M → M, t ∈ R denotes the flow generated by V , then dΦt induces
a contactomorphism Φ̃t on S∗M by sending (p, P ) to (Φt(p), dΦt

p(P )).

For fixed (p, P ) ∈ S∗M , we obtain a curve t 7→ (Φt(p), dΦt
p(P )) in S∗M

which starts in (p, P ) and which is defined for sufficiently small t. The
derivative at t = 0 of this curve is the complete lift of V to the point
(p, P ) ∈ S∗M .

Now let V be real-analytic and X ∈ Cb(M). Then, for small t, the
conormal cycle of Xt = Φt(X) is the same as the image of the conormal

cycle of X under Φ̃t (compare [11]), i.e.,

cnc(Φt(X)) = (Φ̃t)∗ cnc(X).

Since Ψ(ω,φ) = 0, we obtain

0 =
d

dt

∣

∣

∣

∣

t=0

Ψ(ω,φ)(Φ
t(X))

=
d

dt

∣

∣

∣

∣

t=0

cnc(Φt(X))(ω) +
d

dt

∣

∣

∣

∣

t=0

∫

ΦtX

φ

=
d

dt

∣

∣

∣

∣

t=0

(Φ̃t)∗ cnc(X)(ω) +

∫

X

LV φ

= cnc(X)

(

d

dt

∣

∣

∣

∣

t=0

(Φ̃t)∗ω

)

+

∫

X

LV φ

= cnc(X)(LV cω) +

∫

X

LV φ.

Now suppose that X ⊂ U for some open contractible set U ⊂ M . As
above, ∂[[X]] = π∗ cnc(X).

We denote by iV the contraction of a differential form with V . Using
Cartan’s formula LV = diV + iV d, we get LV φ = diV φ and therefore
∫

X
LV φ = cnc(X)(π∗iV φ).
Using Cartan’s formula again we see that

LV cω = diV cω + iV cdω = diV cω + α(V c)η − α ∧ iV cη.

Since ∂ cnc(X) = 0 and cnc(X)xα = 0 we deduce that

(2) cnc(X)(α(V c)η + π∗iV φ) = 0

for all X ∈ Cb(M) with X ⊂ U and all real-analytic vector fields V on
M .

By approximation, equation (2) even holds for all smooth vector fields
V .
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Recall that an n − 1-dimensional linear subspace E of T(p,P )S
∗M

is called Legendrian if α and dα vanish on E. Equivalently, E is a
Lagrangian subspace of the contact plane. We call E regular if dπ(p,P )

∣

∣

E
is injective. The set of regular Legendrian subspaces is dense in the space
of all Legendrian subspaces.

Let X ⊂ Cb(M) of dimension n, with smooth boundary ∂X and such
that X ⊂ U . The conormal cycle of X is given by integration over the
canonically oriented n − 1-dimensional manifold C := {(x, T o

x∂X) : x ∈
∂X} ⊂ S∗M .

Fix a point (p, P ) ∈ S∗M with p ∈ U . Let E be an oriented, regular
Legendrian subspace of T(p,P )S

∗M . Since E is regular, we can choose
X as above in such a way that (p, P ) ∈ C and T o

(p,P )C = E.

Choose a smooth vector field V on M in such a way that V (p) 6∈ P
and a smooth cutoff-function f ∈ C∞(U) with f(p) = 1. The definition
of the complete lift implies that α((fV )c) = (f ◦ π)α(V c).

It follows that

(3) cnc(X)(f ◦ π · (α(V c)η + π∗iV φ)) = 0.

Letting the support of f shrink to the point p, we obtain that (α(V c)η
+π∗iV φ)(E) = 0. By density of regular Legendrian spaces, this equation
even holds for all Legendrian spaces E.

Let ξ ∈ T ∗
p M with ker ξ = P . Then α|(p,P ) = cπ∗ξ for some real c 6= 0.

Since φ|p ∈ ΛnT ∗
p M , we have ξ ∧ φ = 0 and therefore ξ(V )φ = ξ ∧ iV φ.

Taking pull-backs, we obtain α(V c) ∧ π∗φ = α ∧ π∗iV φ. We multiply
both sides by dα and obtain 0 = dα ∧ α ∧ π∗iV φ. This implies that the
restriction of π∗iV φ to the contact plane at (p, P ) is primitive.

By definition of D, dα ∧ Dω = 0. It follows that the restriction of η
to the contact plane is primitive.

Now we use the following lemma, whose proof is given below.

Lemma 1.4. Let (V, Ω) be a symplectic vector space of dimension
2m. Let L : Λ∗V ∗ → Λ∗+2V ∗ denote the associated Lefschetz operator
(i.e., multiplication by Ω). Let β ∈ ΛkV ∗, k ≤ m be primitive (i.e.,
Lm−k+1β = 0). If β vanishes on all isotropic k-dimensional linear
subspaces of V then β = 0.

Since the restriction of α(V c)η +π∗iV φ to the contact plane at (p, P )
is primitive and vanishes on all Lagrangian subspaces, it has to vanish.
Since this is true for all (p, P ), we obtain that α(V c)η+π∗iV φ is vertical,
i.e.,

α ∧ (α(V c)η + π∗iV φ)|(p,P ) = 0.

From α ∧ η = Dω and α(V c) ∧ π∗φ = α ∧ π∗iV φ, we deduce that

α(V c)(Dω + π∗φ)(p,P ) = 0.
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By assumption, V (p) /∈ P , which implies that α(p,P )(V
c) 6= 0. There-

fore (Dω + π∗φ)(p,P ) = 0. Since this is true for all (p, P ) ∈ S∗M , we
have Dω + π∗φ = 0.

The second statement follows from
∫

S∗

pM
ω = Ψ(ω,φ)({p}) = 0. q.e.d.

Proof of Lemma 1.4. Fix a compatible complex structure I on V . Let
e1, . . . , em, f1 = Ie1, . . . , fm = Iem be a symplectic base of V . The dual
Lefschetz operator Λ of β ∈ ΛkV ∗ is given by

Λβ(v1, . . . , vk−2) =

m
∑

i=1

β(ei, fi, v1, . . . , vk−2), v1, . . . , vk−2 ∈ V.

The condition Lm−k+1β = 0 is equivalent to Λβ = 0. Note that Λβ = 0
implies β = 0 in the case k > m.

Let us prove the statement of the lemma by induction on m, the case
m = 1 being trivial.

In the case m > 1, we denote the linear span of e1, f1, . . . , em−1, fm−1

with the induced symplectic structure by V ′.
Let e∗1, f

∗
1 , . . . , e∗m, f∗

m ∈ V ∗ denote the dual base. We can write β
uniquely as

β = β1 + β2 ∧ e∗m + β3 ∧ f∗
m + β4 ∧ e∗m ∧ f∗

m

with β1 ∈ ΛkV ′∗, β2, β3 ∈ Λk−1V ′∗, β4 ∈ Λk−2V ′∗.
The equation Λβ = 0 is equivalent to Λ′β2 = 0, Λ′β3 = 0, Λ′β4 = 0

and Λ′β1 + β4 = 0, where Λ′ denotes the dual Lefschetz operator of V ′.
If E′ is an isotropic k−1-dimensional subspace of V ′, then E′∧em and

E′ ∧ fm are isotropic k-dimensional subspaces of V . Since β vanishes
by assumption on such spaces, the induction hypothesis implies that
β2 = β3 = 0.

For i = k−1, . . . , m−1, the vectors e1, . . . , ek−2, ei +em, fi−fm span
an isotropic subspace of V . Since β vanishes on it, we get

β1(e1, . . . , ek−2, ei, fi) − β4(e1, . . . , ek−2) = 0.

Now we sum over i = k − 1, . . . , m − 1, use Λ′β1 + β4 = 0 and get

(m − k + 2)β4(e1, . . . , ek−2) = 0.

The choice of the symplectic base e1, f1, . . . , em−1, fm−1 of V ′ be-
ing arbitrary, the primitive element β4 vanishes on k − 2-dimensional
isotropic subspaces of V ′. By induction hypothesis β4 = 0 and thus
Λ′β1 = 0. Since β vanishes on k-dimensional isotropic subspaces of V ′,
the induction hypothesis implies that β1 = 0 and thus β = 0. q.e.d.

Corollary 1.5. If Dω + π∗φ = 0, then r :=
∫

S∗

pM
ω ∈ R is indepen-

dent of p ∈ M and
Ψ(ω,φ) = rχ

where χ denotes Euler characteristic.
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Proof. Let U be a contractible open subset of M . Write φ = dψ with
ψ ∈ Ωn−1(U). Since dπ∗φ = 0 and α ∧ π∗φ = 0, we have π∗φ ∈ J n.
Therefore Dπ∗ψ = dπ∗ψ = π∗φ on U .

From Theorem 1 we deduce that the valuations Ψ(ω,φ) and Ψ(ω+π∗ψ,0)

agree for subsets of U . From D(ω + π∗ψ) = 0 we deduce that d(ω +
π∗ψ +α∧ ξ) = 0 for some ξ ∈ Ωn−2(U). Since U is connected, the value
∫

S∗

pM
(ω + π∗ψ + α ∧ ξ) =

〈

[ω + π∗ψ + α ∧ ξ], [S∗
pM ]

〉

is independent of

p ∈ U (by Stokes’s theorem). But the last two terms do not contribute
to the integral. Hence r :=

∫

S∗

pM
ω is independent of p ∈ U and, since

M is connected, independent of p ∈ M .
Let us prove the second assertion. By Fu’s generalization of the

Gauss-Bonnet-Chern theorem, χ is a smooth valuation, say χ = Ψ(ω′,φ′)

with Dω′ + π∗φ′ = 0 and
∫

S∗

pM
ω′ = 1 (compare [10], 1.5. and 1.8.).

From Theorem 1 we deduce that Ψ(ω,φ) = Ψ(rω′,rφ′) = rχ. q.e.d.

Corollary 1.6. If M is not compact, we can write each smooth val-
uation Ψ as Ψ = Ψω := Ψ(ω,0) for some ω ∈ Ωn−1(S∗M).

Proof. Suppose that Ψ = Ψ(ω,φ). Let ψ ∈ Ωn−1(M) with dψ = φ.
Then dπ∗ψ = π∗φ ∈ J n, i.e., Dπ∗ψ = π∗φ. Theorem 1 implies that
Ψ(ω,φ) = Ψ(ω+π∗ψ,0). q.e.d.

Let G be any group acting by C-diffeomorphisms on M . There is
an induced action on V∞(M), given by (gΨ)(X) := Ψ(g−1(X)). The
subspace of G-invariant valuations is denoted by V∞(M)G.

Also, there is an induced G-action on S∗M , given by (g, (p, P )) 7→
(gp, dpg(P )), which leaves the contact distribution invariant. Given g ∈
G, we set εg = 1 if g preserves the orientation of M and ε = −1
otherwise. We let G act on Ω∗(S∗M) by (g, ω) 7→ εgg

∗ω. Then G
commutes with dQ and D. Similarly, we let G act on Ω∗(M) by (g, φ) 7→
ε∗gφ.

Proposition 1.7. Let Ψ(ω,φ) ∈ V∞(M)G. Then Dω + π∗φ is G-
invariant.

Proof. If Ψ(ω,φ) is G-invariant, then Ψ(ω,φ)(gX) = Ψ(ω,φ)(X) for all
X ∈ Cb(M) and all g ∈ G.

Since cnc(gX) = εgg∗ cnc(X) and [[gX]] = εgg∗[[X]], we obtain
Ψ(ω,φ)(gX) = εgΨ(g∗ω,g∗φ)(X). It follows that Ψ(g∗ω,g∗φ) = εgΨ(ω,φ).
From Theorem 1 we deduce that

D(εgg
∗ω − ω) + π∗(εgg

∗φ − φ) = 0

for all g ∈ G, i.e., Dω + π∗φ is G-invariant. q.e.d.

We remark that the G-invariance of Ψω does not imply the G-in-
variance of ω. For instance, let ω := π∗x1dx2 . . . dxn on S∗

R
n. Then
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Ψω(X) = voln(X) for all X ∈ Cb(R
n). In particular, Ψω is invariant

under Euclidean motions. However, ω is not invariant.

2. Operations on valuations

2.1. Euler–Verdier involution. The Euler–Verdier involution of
smooth valuations was introduced by Alesker [7]. It can easily be de-
scribed in terms of the contact geometry. The map s which changes
the orientation of (p, P ) ∈ S∗M is an involution on S∗M preserving the
contact structure. It induces an involution s∗ on Ωn−1/In−1.

Theorem 2.1. There exists a unique involution σ : V∞(M) →
V∞(M) such that the following diagram commutes:

Ωn−1(S∗M) ⊕ Ωn(M)
((−1)ns∗,(−1)nid)

−→ Ωn−1(S∗M) ⊕ Ωn(M)
Ψ ↓ Ψ ↓

V∞(M)
σ

−→ V∞(M)

Proof. If σ exists, then σΨ(ω,φ) = Ψ((−1)ns∗ω,(−1)nφ) is unique.
Let us show that this defines σ. If Ψ(ω,φ) = 0, then by Theorem 1

Dω+π∗φ = 0 and
∫

S∗

pM
ω = 0. It follows that D(−1)ns∗ω+π∗(−1)nφ =

0 and, since s∗[[S
∗
pM ]] = ±[[S∗

pM ]],
∫

S∗

pM
s∗ω = ±

∫

S∗

pM
ω = 0. There-

fore Ψ((−1)ns∗ω,(−1)nφ) = 0. q.e.d.

2.2. Signature operator and Laplacian. From now on, we suppose
that (M, 〈·, ·〉) is a Riemannian manifold. It will be more convenient to
work with SM instead of S∗M . On SM , there exists a canonical global
1-form α defined by α|(p,v)(X) = 〈v, π∗X〉 for all X ∈ T(p,v)SM . Here
π : SM → M is the natural projection map. The Riemannian metric
induces a contactomorphism between S∗M and SM . If X ∈ Cb(M),
then the image of the conormal cycle of X under this contactomorphism
is the normal cycle nc(X), an integral Legendrian n − 1-cycle on SM .

Given forms ω ∈ Ωn−1(SM) and φ ∈ Ωn(M), the valuation Ψ(ω,φ)

defined by X 7→ nc(X)(ω) +
∫

X
φ is smooth. Theorem 1 now reads as

follows.

Theorem 2.2. Let (M, g) be a real-analytic Riemannian manifold of
dimension n and Ψ : Ωn−1(SM) ⊕ Ωn(M) → V∞(M), (ω, φ) 7→ Ψ(ω,φ).

Then (ω, φ) ∈ ker(Ψ) if and only if Dω + π∗φ = 0 and
∫

SpM
ω = 0 for

all p ∈ M .

Proof. Immediate from Theorem 1. q.e.d.

The metric on M induces a natural metric on SM , called the Sasaki
metric [19]. We get an induced metric on differential forms on SM and
a duality operator ∗ : Ωk(SM) → Ω2n−1−k(SM) such that ω ∧ ∗ξ =
〈ω, ξ〉α ∧ dαn−1.
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Following Rumin [17], we denote by δQ := (−1)k ∗ dQ∗ (k 6= n) and
D∗ := (−1)n ∗ D∗ the dual operators of dQ and D.

Theorem 2.3. There exists a unique operator S : V∞(M)→V∞(M),
called signature operator, such that the following diagram commutes

Ωn−1(SM) ⊕ Ωn(M)
(∗D+∗◦π∗,0)

−→ Ωn−1(SM) ⊕ Ωn(M)
Ψ ↓ Ψ ↓

V∞(M)
S

−→ V∞(M)

Proof. If S exists, it is uniquely given by SΨ(ω,φ) = Ψ∗Dω+∗π∗φ for

all ω ∈ Ωn−1(M) and φ ∈ Ωn(M).
This is a well-defined operator. Indeed, if (ω, φ) ∈ kerΨ, then ∗(Dω+

π∗φ) = 0 by Theorem 2.2. q.e.d.

The Rumin-Laplace operator ∆Q acts on Ωk/Ik for 0 ≤ k ≤ n − 1

and on J k for n ≤ k ≤ 2n − 1 by

∆Q =















(n − k − 1)dQδQ + (n − k)δQdQ 0 ≤ k ≤ n − 2
(dQδQ)2 + D∗D k = n − 1
DD∗ + (δQdQ)2 k = n

(n − k)dQδQ + (n − k − 1)δQdQ n + 1 ≤ 2n − 1.

We set ∆ := (−1)nS2 : V∞(M) → V∞(M) and call ∆ the Laplacian
acting on (smooth) valuations.

Proposition 2.4. The following diagram commutes:

Ωn−1(SM) ⊕ Ωn(M)
(∆Q+D∗◦π∗,0)

−→ Ωn−1(SM) ⊕ Ωn(M)
Ψ ↓ Ψ ↓

V∞(M)
∆
−→ V∞(M)

Proof. By Theorem 2.2, Ψ(dQδQ)2ω = 0. Therefore,

S2Ψ(ω,φ) = SΨ∗Dω+∗π∗φ = Ψ∗D∗Dω+∗D∗π∗φ = (−1)nΨ∆Qω+D∗π∗φ.

q.e.d.

2.3. Derivation operator. Let T be the Reeb vector field on SM ,
i.e., α(T ) = 1 and LT α = 0, where LT is the Lie derivative.

Theorem 2.5. There exists a unique operator L : Ωsm (M) →
Ωsm(M), called derivation operator, such that the following diagram
commutes:

Ωn−1(SM) ⊕ Ωn(M)
(LT +iT π∗,0)

−→ Ωn−1(SM) ⊕ Ωn(M)
Ψ ↓ Ψ ↓

V∞(M)
L

−→ V∞(M)
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Proof. Note first that D and LT commute. For, if ω ∈ Ωn−1, then
Dω = d(ω + α ∧ ξ) = α ∧ η and, since LT and d commute, we get
d(LT ω + α ∧ LT ξ) = α ∧ LT η. This shows that DLT ω = LT Dω.

If the operator L exists, then LΨ(ω,φ) = ΨLT ω+iT π∗φ. We have to
show that this is a well-defined operator.

If Ψ(ω,φ) = 0, then Dω+π∗φ = 0 by Theorem 2.2. Let ξ ∈ Ωn−2(SM)
be such that Dω = d(ω + α ∧ ξ). Then

LT ω + iT π∗φ = LT (ω + α ∧ ξ) − LT (α ∧ ξ) + iT π∗φ

= iT Dω + diT (ω + α ∧ ξ) − α ∧ LT ξ + iT π∗φ

= diT (ω + α ∧ ξ) − α ∧ LT ξ

and thus ΨLT ω+iT π∗φ = 0. q.e.d.

3. Translation invariant valuations on Euclidean spaces

Let Val(V ) be the space of translation invariant continuous convex
valuations on V . Equipped with the topology of uniform convergence
on compact subsets of K(V ), Val(V ) is a Fréchet space.

A valuation has degree k, if Ψ(tK) = tkΨ(K) for all K ∈ K(V ) and all
t > 0. Ψ is called even if Ψ(−K) = Ψ(K) and odd if Ψ(−K) = −Ψ(K)
for all K ∈ K(V ).

McMullen [16] proved that there is a decomposition

(4) Val(V ) =
n

⊕

k=0

Valk(V ).

Furthermore, each Valk(V ) splits as Valk(V ) = Valevk (V ) ⊕ Valodd
k (V ),

where Valevk (V ) and Valodd
k (V ) denote even and odd valuations of degree

k. The natural GL(V )-representation in Val(V ) preserves degree and
parity.

Theorem 3.1 (Alesker’s Irreducibility Theorem, [2]). The natural

GL(V )-representations in Valevk (V ) and Valodd
k (V ) are irreducible.

We can speak of smooth valuations in the representation theoretic
sense (compare [4]) and in the sense of Definition 1.3, and it is not
a priori clear that the two notions are the same. However, using his
irreducibility theorem and the Casselmann-Wallach-theorem, Alesker
showed the following theorem.

Theorem 3.2 (Alesker, [6]). Let Ψ be a translation invariant, con-
tinuous convex valuation. Then Ψ is smooth with respect to the natural
GL(V )-action if and only if it is smooth in the sense of Definition 1.3.

As we have seen, the translation invariance of the valuation Ψω does
not imply the translation invariance of ω. The next theorem describes
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the relation between smooth translation invariant valuations and trans-
lation invariant differential forms.

In the following, the subscript k, n − k will denote the component of
bidegree (k, n − k) (w.r.t. the product structure SV = V × S(V )).

Theorem 3.3.

1) For 1 ≤ k ≤ n − 1, there is an injective map

Valsmk (V ) −→ (im D)V
k,n−k = (ker d)V

k,n−k ∩ J n(SV ).

2) For 2 ≤ k ≤ n − 1, this map is also surjective, i.e., an isomor-
phism.

3) For k = 1, the above map induces an isomorphism

(5) Valsm1 (V )
∼=

−→

{

f ∧ α ∧ µS(V ), f ∈ C∞(S(V )),

∫

S(V )
yf(y)dµS(V )(y) = 0

}

.

4) Let 0 ≤ k ≤ n − 1 and l :=
(

n
k

)

. Then each Ψ ∈ Valsmk (V ) can be
written in the form

Ψ = Ψω, ω =
l

∑

i=1

κi ∧ ξi ∈ Ωn−1(SV )V
k,n−k−1

where κ1, . . . , κl is a basis of translation invariant k-forms on V ,
ξi ∈ Ωn−k−1(S(V )) are coclosed and Dω = dω. This representa-
tion is unique if k < n− 1. In the case k = n− 1, ξi are functions
on S(V ) and the representation is unique under the assumption
∫

S(V ) ξidµ = 0.

Proof.

1) By Corollary 1.6, each Ψ ∈ Valsmk (V ) can be written in the form
Ψ = Ψω with ω ∈ Ωn−1(SV ). Using Theorem 2.2, we get a map
Valsmk (V ) → imD, Ψω 7→ Dω. The image is contained in (imD)V

by Proposition 1.7.
We claim that the bidegree of Dω is (k, n − k). For t > 0, we

let mt(x, y) := (tx, y). Since Ψ is of degree k, we have Ψ(tK) =
tkΨ(K). But Ψ (tK) = nc (tK)(ω) = (mt)∗ nc (K) (ω) =
nc(K)(m∗

t ω) = Ψm∗

t ω(K). From Theorem 2.2 we infer that m∗
t Dω

−tkDω = D(m∗
t ω − tkω) = 0 for t ≥ 0. This implies that the

bidegree of Dω is (k, n − k).
Let us show injectivity. Suppose Ψ = Ψω ∈ Valsmk (V ) such that

Dω = 0. Since Ψ is of degree k > 0, 0 = Ψ({x}) =
∫

SxV
ω for all

x ∈ V . Theorem 2.2 implies that Ψ = 0.
The equality (im D)V

k,n−k = (ker d)V
k,n−k ∩ J n(SV ) follows at

once from the Rumin isomorphism (1).
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2) Suppose k ≥ 2. To show surjectivity, we let ψ ∈ (im D)V
k,n−k. Let

κ1, . . . , κl be a basis of translation invariant k-forms on V . Then
dκi = 0 for i = 1, . . . , l.

We can write ψ uniquely as

ψ =
l

∑

i=1

κi ∧ τi,

where τi, i = 1, . . . , l are n − k-forms on S(V ).

Now 0 = dψ = (−1)k
∑l

i=1 κi ∧ dτi, since ψ ∈ im D = ker dQ.

It follows that dτi = 0 for all i. Using Hn−k
dR (S(V )) = 0 and the

Hodge-de Rham theorem, we can write τi = (−1)kdξi for some
coclosed n − k − 1-forms ξi on S(V ).

We set ω :=
∑l

i=1 κi ∧ ξi. Then Dω = dω = ψ. Since ω is
translation invariant, the same is true for the valuation Ψ := Ψω.
Moreover, since ω is of bidegree (k, n − k − 1), Ψ is of degree k.

3) Any form ψ ∈ (im D)V
1,n−1 can be written as ψ = α ∧ ξ with an

n − 1-form ξ on S(V ). Since we can write ξ = fµS(V ) for some
f ∈ C∞(S(V )), we get ψ = f ∧α∧µS(V ). On the other hand, any

such form is closed and thus belongs to (imD)V
1,n−1.

Now suppose that there exists a valuation Ψ = Ψω ∈ Valsm1 (V )
such that Dω = ψ = f ∧ α ∧ µS(V ).

Use coordinates (x1, ..., xn) on V and induced coordinates (x, y)
on V × V .

Set ω′ := fu∧µS(V ) ∈ Ωn−1(SV ), where u : V ×V → R, (x, y) 7→
∑n

i=1 xiyi is the scalar product of V . Then Dω′ = dω′ = ψ and
Corollary 1.5 implies that Ψω′ − Ψ = rχ for some r ∈ R. Since Ψ
is of degree 1, Ψ({x}) = 0 for all x = (x1, . . . , xn) ∈ V . But

Ψω′({x}) =

∫

SxV

ω′ =
n

∑

i=1

xi

∫

S(V )
yif(y)µS(V )

is independent of x if and only if
∫

S(V ) yf(y)µS(V ) = 0.

To show the other direction, suppose that ψ = f ∧ α ∧ µS(V )

with
∫

S(V ) yf(y)dµS(V ) = 0.

Then we find coclosed n − 2-forms ξi on S(V ) with dξi =
−yif(y)µS(V ). Setting ω :=

∑n
i=1 dxi ∧ ξi we get Dω = dω = ψ.

The valuation Ψω belongs to Valsm1 (V ), which finishes the proof
of Equation (5).

We note that, by Corollary 1.7, a valuation Ψ ∈ Valsm1 (V ) is
even (odd) if and only if the function f on S(V ) is even (odd).

4) Suppose first that 1 ≤ k ≤ n−1. As we have seen in the proof of (2)
and (3), each Ψ ∈ Valsmk (V ) can be written as Ψ = Ψω with ω =
∑l

i=1 κi ∧ ξi, δξi = 0, Dω = dω. It remains to prove uniqueness.
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Suppose that ω′ =
∑l

i=1 κi ∧ ξ′i satisfies the same conditions and
Ψ = Ψω′ . By Theorem 2.2, d(ω − ω′) = D(ω − ω′) = 0. Therefore
d(ξi − ξ′i) = 0 for all i. By assumption δ(ξi − ξ′i) = 0, i.e., ξi − ξ′i is
harmonic. If k < n− 1, Hn−k−1(S(V )) = 0 and thus there are no
non-zero harmonic n − k − 1-forms on S(V ), which implies that
ξi = ξ′i and thus ω = ω′.

If k = n−1, then ξi−ξ′i is a constant. The additional assumption
∫

S(V ) ξidµS(V ) =
∫

S(V ) ξ′idµS(V ) = 0 implies that this constant is 0

and hence ω = ω′.
Let us consider the case k = 0. Since Valsm0 (V ) is generated

by χ = Ψω, where ω is the volume form on S(V ) (which is co-
closed) the existence part of the statement holds. Moreover, each
harmonic n − 1-form on S(V ) is a multiple of the volume form,
which implies the uniqueness part.

q.e.d.

We end this section by showing that the derivation operator L corre-
sponds to one of Alesker’s operators (which is denoted by Λ in [3]).

Lemma 3.4. Let Ψ be a smooth valuation on V . Then for all K ∈
K(V )

LΨ(K) =
d

dt

∣

∣

∣

∣

t=0

Ψ(K + tB).

Proof. By Corollary 1.6, there exists a form ω such that Ψ = Ψω.
Let exp be the exponential flow on SV . It is generated by the Reeb

vector field T . The normal cycle of K + tB is given by (expt)∗ nc(K)
(compare [8] for the relation between the Minkowski sum and normal
cycles). Therefore

d

dt

∣

∣

∣

∣

t=0

Ψ(K + tB) =
d

dt

∣

∣

∣

∣

t=0

nc(K)(exp∗
t ω) = nc(K)(LT ω) = LΨ(K).

q.e.d.

4. Hard Lefschetz theorem

Proof of Theorem 2. The statement in the case k = n follows easily
from Steiner’s tube formula.

Let us suppose that k ≤ n − 1. Let M := V × (V \ {0}). M is in
a natural way a (non-compact) Kähler manifold. We denote by I the
(almost) complex structure on M .

Given an orthogonal basis on V , we get coordinates (x1, . . . , xn) on V
and induced coordinates (x1, . . . , xn, y1, . . . , yn) on M . The vector fields
∂

∂xi
, ∂

∂yi
, i = 1, . . . , n span TM and I

(

∂
∂xi

)

= ∂
∂yi

, I
(

∂
∂yi

)

= − ∂
∂xi

. The

induced operator on differential forms satisfies I(dxi) = −dyi, I(dyi) =
dxi.
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The canonical 1-form on M is denoted by α̃ =
∑n

i=1 yidxi. The

Kähler form on M is θ := −dα̃. Let T̃ be the Hamiltonian vector
field with Hamiltonian function (x, y) 7→ 1

2‖y‖
2 on M (in coordinates

T̃ =
∑n

i=1 yi
∂

∂xi
).

Several operators act on the space of differential forms on M . Besides
the differential operators d and dI := I−1 ◦ d ◦ I, their duals δ = − ∗
◦d ◦ ∗ and δI = − ∗ ◦dI ◦ ∗, we have the (linear) Lefschetz operator L
(multiplication by the Kähler form θ) and its dual Λ. Moreover, the
Hodge stars on the factors of M = V × (V \ {0}) induce operators ∗1

and ∗2. Note that ∗1 ◦ ∗2 = ∗2 ◦ ∗1 = (−1)l(n−k)∗ on (k, l)-forms.
In the following, Cn,k,... will denote a non-zero real constant which

depends on n, k, . . . and can change its value from line to line.

Proposition 4.1. Let ω̃ be a translation invariant (k, l)-form on M .
Then

1) d ∗1 ω̃ = (−1)n ∗1 dω̃,
2) dI ∗2 ω = ∗2d

Iω,
3)

LT̃ ω̃ = (−1)n−k ∗−1
1 ◦L ◦ ∗1ω̃,

4)

(6) dI ω̃ = Cn,k,l

(

∗−1
1 Λ ∗1 dω̃ − d ∗−1

1 Λ ∗1 ω̃
)

,

5) if Ldω̃ = 0 and δω̃ = 0 then

(7) L∆ω̃ = Cn,k,ld ∗−1
1 Λ ∗1 dω̃.

Proof. Write ω̃ =
∑

I,J fIJdxIdyJ , where I ranges over all ordered k-
tuples and J ranges over all ordered l-tuples and where fIJ only depends
on y but not on x.

1)

d ∗1 ω̃ =
∑

I,J,i

∂fIJ

∂yi
dyi ∧ (∗1dxI) ∧ dyJ

= (−1)n−k
∑

I,J,i

∂fIJ

∂yi
(∗1dxI) ∧ dyi ∧ dyJ

∗1dω̃ = ∗1

∑

I,J,i

∂fIJ

∂yi
dyi ∧ dxI ∧ dyJ

= (−1)k
∑

I,J,i

∂fIJ

∂yi
(∗1dxI) ∧ dyi ∧ dyJ .
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2)

dI ∗2 ω̃ = I−1dI ∗2 ω̃

= I−1dI
∑

I,J

fI,JdxI ∧ ∗2dyJ

= (−1)kI−1d
∑

I,J

fI,JdyI ∧ ∗1dxJ

= (−1)kI−1
∑

I,J,i

∂fI,J

∂yi
dyi ∧ dyI ∧ ∗1dxJ

= −
∑

I,J,i

∂fI,J

∂yi
dxi ∧ dxI ∧ ∗2dyJ .

∗2d
I ω̃ = ∗2I

−1dIω̃

= (−1)k ∗2 I−1d
∑

I,J

fIJdyI ∧ dxJ

= (−1)k ∗2 I−1
∑

I,J,i

∂fIJ

∂yi
dyi ∧ dyI ∧ dxJ

= −
∑

I,J,i

∂fIJ

∂yi
dxi ∧ dxI ∧ ∗2dyJ .

3) Since LT̃ fIJ = 0, it suffices to show the equation in the case
ω̃ = dxI ∧ dyJ , which is an easy computation.

4) We note that ∗2
1 = (−1)k(n−k) and ∗2

2 = (−1)l(n−l) on (k, l)-forms.
Using the Kähler identity [Λ, d] = −δI we compute

dI ω̃ = Cn,k,ld
I ∗2 ∗2ω̃

= Cn,k,l ∗2 dI ∗2 ω̃

= Cn,k,l ∗
−1
1 δI ∗1 ω

= Cn,k,l

(

∗−1
1 Λd ∗1 ω̃ − ∗−1

1 dΛ ∗1 ω̃
)

= Cn,k,l

(

∗−1
1 Λ ∗1 dω̃ − d ∗−1

1 Λ ∗1 ω̃
)

.

5) Using the Kähler identity [L, δ] = dI we obtain

L∆ω̃ = ∆Lω̃ = dδLω̃ = −d[L, δ]ω̃ = −ddI ω̃

and the result follows from (4).

q.e.d.

Lemma 4.2. Let φ be a differential form on SV . Let p : M →

SV, (x, y) 7→
(

x, y
‖y‖

)

denote radial projection.

1) If α ∧ φ = dα ∧ φ = 0, then Lp∗φ = 0, where L is the Lefschetz
operator of M .
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2) For k = 0, 1, . . .

Lk+1
T̃

p∗φ = ‖y‖k+1p∗Lk+1
T φ + d(‖y‖k+1) ∧ p∗iTL

k
T φ.

In particular, if Lk
T φ = 0, then Lk+1

T̃
p∗φ = 0.

3) δp∗φ = ‖y‖−2p∗δφ.
4) ∆p∗φ = d‖y‖−2 ∧ p∗δφ + ‖y‖−2p∗∆φ.

Proof.

1) The canonical 1-form on M is given by α̃ = ‖y‖p∗α. Therefore
Lp∗φ = −dα̃ ∧ p∗φ = −d‖y‖ ∧ p∗(α ∧ φ) − ‖y‖ ∧ p∗(dα ∧ φ) = 0.

2) It is easily checked that iT̃ p∗φ = ‖y‖p∗iT φ. The claim then follows
by induction using Cartan’s formula.

3) Straightforward computation.
4) Follows easily from (3).

q.e.d.

Lemma 4.3. Let ω̃ be a translation invariant (k, l)-form on M . For
t > 0 let mt : M → M, (x, y) 7→ (x, ty). Suppose that m∗

t ω̃ = tdω̃, i.e.,
ω̃ is d-homogeneous. If ∆ω̃ = 0 and (d − l)(d − l + n − 2) is not in the
spectrum of Sn−1, then ω̃ = 0.

Proof. Write ω̃ =
∑

I,J fIJdxI ∧ dyJ . Then ω̃ is d-homogeneous if
and only if each function fIJ is d − l-homogeneous and ∆ω̃ = 0 if and
only if ∆fIJ = 0 (compare [15], 2.1.27). These two equations imply
that the restriction of fIJ to Sn−1 is an eigenfunction with eigenvalue
(d − l)(d − l + n − 2). q.e.d.

Note that d and ∗1 preserve the degree of homogeneity, while δ and
∆ decrease the degree of homogeneity by 2. If a (k, l)-form ω̃ is d-
homogeneous, then Iω̃ is d + k − l-homogeneous and ∗2ω̃ is n + d − 2l-
homogeneous.

Injectivity of L
2k−n

Let Ψ ∈ Valsmk (V ) such that L
2k−nΨ = 0. Using Theorem 3.3, (4), we

can write Ψ = Ψω where ω is a (k, n−k−1)-form on SV with dω = Dω
and δω = 0. From Lemma 4.2 we deduce that Lp∗dω = 0 and δp∗ω = 0.
Since 0 = L

2k−nΨω = ΨL2k−n
T

ω
, Theorem 2.2 implies DL2k−n

T ω = 0.

Since LT and D commute (compare the proof of Theorem 2.5), we get

L2k−n
T dω = 0. By Lemma 4.2, L2k−n+1

T̃
p∗dω = 0 and thus L2k−n+1 ∗1

p∗dω = 0. This means that ∗1p
∗dω is a primitive 2n − 2k-form, i.e.,

Λ ∗1 p∗dω = 0. Proposition 4.1, (5) implies that L∆p∗ω = 0. Since L is
bijective on n − 1-forms on M , we obtain that ∆p∗ω = 0.

We apply Lemma 4.3 with d = 0 and l = n − k − 1. If k < n − 1,
then −l(n − l − 2) = (k + 1 − n)(k − 1) < 0. Therefore p∗ω = 0, which
implies that ω = 0 and thus Ψ = 0.
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If k = n − 1, then each coefficient of p∗ω is 0-homogeneous and
restricts to a harmonic function on the sphere, i.e., is constant. This
implies that dω = 0 and thus Ψ = 0 by Theorem 2.2.

Surjectivity of L
2k−n

Let Ψ′ ∈ Valsmn−k(V ) be given. Let us write Ψ′ = Ψω′ with a trans-
lation invariant (n − k, k − 1)-form ω′. We look for Ψ ∈ Valsmk (V )
with L

2k−nΨ = Ψ′. Using reverse induction on k, we may assume that
LΨ′ = 0, which, by Theorem 2.2, implies that LT Dω′ = DLT ω′ = 0.

Set β̃ := 1
2d‖y‖2 =

∑n
i=1 yidyi and

ψ′ := d‖y‖2k−n+1 ∧ p∗iT Dω′.

Claim 1. There exists a unique translation invariant (k+1, n−k−1)-

form ψ on M such that L2k−n+2
T̃

ψ = ψ′. Moreover, dIψ = 0, α̃ ∧ ψ = 0

and Lψ = Λψ = 0.

Indeed, by Proposition 4.1 (3), this equation is equivalent to

L2k−n+2 ∗1 ψ = ∗1ψ
′,

the latter being a 2k + 2-form on M . Since L2k−n+2 : Ω2n−2k−2(M) →
Ω2k+2(M) is bijective by the Lefschetz theorem on M , the existence of
ψ follows.

More explicitly, ψ = Cn,kIψ′. Indeed, using Lemma 4.2 (2), it is
easily checked that LT̃ ψ′ = 0. Therefore L ∗1 ψ′ = 0 and the inverse of

∗1ψ
′ under L2k−n+2 is given by Cn,kI ∗ ∗1ψ

′ = Cn,k ∗1 Iψ′ ([14], Prop.
1.2.31).

We have dψ′ = 0 (since LT Dω′ = 0) and thus dIψ = 0. Applying I

to the equation β̃ ∧ ψ′ = 0, we obtain α̃ ∧ ψ = 0.
From 0 = iT (dα ∧ Dω′) = dα ∧ iT Dω′ we deduce that Lp∗iT Dω′ =

−d‖y‖∧p∗Dω′ (compare the proof of Lemma 4.2 (1)) and thus Lψ′ = 0.

Since L and LT̃ commute, L2k−n+2
T̃

Lψ = Lψ′ = 0. The injectivity of

L2k−n+2 : Ω2n−2k−2(M) → Ω2k+2(M) and Proposition 4.1 (3) imply
that Lψ = 0. Since ψ is an n-form, this also implies that Λψ = 0.

Claim 2. There exists a (unique) translation invariant (k, n−k−1)-
form ω on SV such that ω̃ := p∗ω satisfies

(8) L∆ω̃ = dψ.

Let us first rewrite this equation. By Claim 1, we have Ldψ = dLψ =
0. By [14], Prop. 1.2.31, Equation (8) is equivalent to

(9) ∆ω̃ = Cn,k ∗ Idψ.

It is easily checked that ∗Idψ is a −2-homogeneous form of degree
(k, n − k − 1). Moreover, δ(∗Idψ) = ± ∗ IdIdψ = ± ∗ IddIψ = 0.

Let Ñ := IT̃ (in coordinates Ñ =
∑n

i=1 yi
∂

∂yi
).
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From Claim 1 we deduce that α̃ ∧ dψ = 0. Taking ∗I we obtain that
iÑ (∗Idψ) = 0 and thus ∗Idψ = ‖y‖−2p∗τ for some (k, n − k − 1)-form
τ on SV .

Taking δ and using Lemma 4.2 (3), we obtain

0 = δ(∗Idψ) = δ(‖y‖−2p∗τ) = ‖y‖−2δp∗τ = ‖y‖−4p∗δτ,

i.e., δτ = 0.
Let us first suppose that k < n − 1. Then ∆ is a bijection on n −

k − 1-forms on Sn−1 and therefore there exists a translation invariant
(k, n− k− 1)-form ω with ∆ω = τ . Then δdδω = δ∆ω = δτ = 0, which
implies δω = 0. We set ω̃ := p∗ω. From Lemma 4.2 (4) we deduce that
∆ω̃ = ‖y‖−2p∗τ = ∗Idψ. Note also that Lemma 4.2 (3) implies that
δω̃ = 0.

If k = n − 1, then by Theorem 3.3 (3) Dω′ = f ∧ α ∧ µS(V ) for some
function f ∈ C∞(S(V )) with

(10)

∫

S(V )
yf(y)dµS(V )(y) = 0.

Equation (10) means that f is orthogonal to the n − 1-eigenspace of
the Laplacian on the n−1-dimensional sphere S(V ). We can thus solve
the equation ∆φ − (n − 1)φ = f with φ ∈ C∞(S(V )).

Let f̃ denote the −1-homogeneous extension of f to V \ {0}. We

obtain ψ′ = f̃dy1 ∧ . . . ∧ dyn and ψ = Cn,kIψ′ = Cn,kf̃dx1 ∧ . . . ∧ dxn.

Then ∗Idψ = Cn,k

∑n
i=1

∂f̃
∂yi

∗1 dxi.

Let φ̃ be the 1-homogeneous extension of φ to V \ {0}. Then ∆φ̃ = f̃

(compare e.g., [12] Prop. 4.48). Now set g̃i := ∂φ̃
∂yi

. These functions are

0-homogeneous and we denote by gi their restrictions to S(V ). Letting
ω :=

∑n
i=1 gi ∗1 dxi, we compute

∆ω̃ = ∆
n

∑

i=1

g̃i∗1dxi =
n

∑

i=1

(

∆
∂φ̃

∂yi

)

∗1dxi =
n

∑

i=1

∂f̃

∂yi
∗1dxi = Cn,k∗Idψ.

This finishes the proof of the claim.

Claim 3. dω = Dω.

Since d, L and ∆ commute,

∆d(α̃ ∧ dω̃) = −dL∆ω̃
(8)
= −d2ψ = 0.

If k > 2, then Lemma 4.3 implies that d(α̃∧dω̃) = 0. If k = 2, n = 3,
we have with the same notations as above dα̃ ∧ ω̃ = (dy1g̃1 + dy2g̃2 +

dy3g̃3) ∧ ∗11 = dφ̃ ∧ ∗11 and therefore dα̃ ∧ dω̃ = 0.
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In both cases, it follows that

0 = dα̃ ∧ dω̃

= d(‖y‖p∗α) ∧ dω̃

= d‖y‖ ∧ p∗(α ∧ dω) + ‖y‖p∗(dα ∧ dω),

which is only possible if α ∧ dω = 0, i.e., dω = Dω.

Claim 4.

(11) ∗−1
1 Λ ∗1 dω̃ = Cn,kψ.

From the Kähler identity [Λ, d] = −δI one easily obtains [Λ, dI ] = δ
and therefore δψ = [Λ, dI ]ψ = 0.

On the other hand, L2k−n+2∗1dψ = ∗1dψ′ = 0 and hence Λ∗1dψ = 0.
Now, we compute that

δ(∗−1
1 Λ ∗1 dω̃) = ∗−1

1 Λ ∗1 ∆ω̃

= Cn,k ∗−1
1 Λ ∗1 I ∗ dψ by (9)

= Cn,k ∗−1
1 IΛ ∗1 dψ

= 0.

From Claim 3 we infer that Ldω̃ = 0 and, as was shown in Claim 2,
δω̃ = 0. We can therefore apply Proposition 4.1 (5) to get dψ = L∆ω̃ =
Cn,kd ∗−1

1 Λ ∗1 dω̃.
From these equations we deduce that

∆ ∗−1
1 Λ ∗1 dω̃ = Cn,k∆ψ.

By Lemma 4.3, it follows that

∗−1
1 Λ ∗1 dω̃ = Cn,kψ,

provided that k > 2.
In the remaining case k = 2, n = 3, we use the same notation as in the

explicit computation in Claim 2. From ω̃ =
∑3

i=1 g̃i ∗1 dxi we compute
that

∗−1
1 Λ∗1dω̃ = C∗−1

1 Λ

3
∑

i,j=1

∂g̃i

∂yj
dxi∧dyj = C∗−1

1

3
∑

i=1

∂g̃i

∂yi
= C∗−1

1 ∆φ̃ = Cψ.

Claim 5. L
2k−nΨω = Ψ′.

From L2k−n+3
T̃

ψ = LT̃ ψ′ = 0 and Proposition 4.1 (3), we obtain

Λ ∗1 ψ = 0. Now ∗1ψ is a 2n − 2k − 2-form and, by the classical
commutator relation on Kähler manifolds, [Λ, L]∗1ψ = (2k−n+2)∗1ψ.

Therefore ∗1ψ = Cn,k[Λ, L] ∗1 ψ = Cn,kΛL ∗1 ψ.

From (11) we get Λ ∗1 dω̃ = Cn,kΛL ∗1 ψ. Therefore L2k−n+1 ∗1 dω̃ =

Cn,kL
2k−n+2 ∗1 ψ = Cn,k ∗1 ψ′, i.e.,

L2k−n+1
T̃

dω̃ = Cn,kψ
′.
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Applying Lemma 4.2 (2) we obtain

Cn,kψ
′ = L2k−n+1

T̃
p∗dω

= ‖y‖2k−n+1p∗L2k−n+1
T dω + d‖y‖2k−n+1 ∧ p∗iTL

2k−n
T dω.

Looking at the spherical and the radial part of this equation and
using injectivity of p∗, we obtain

L2k−n+1
T dω = 0

iT Dω′ = Cn,kiTL
2k−n
T dω.

Since Dω′ = α ∧ iT Dω′ and DL2k−n
T ω = α ∧ iT DL2k−n

T ω = α ∧

iTL
2k−n
T dω, we get

Dω′ = Cn,kDL2k−n
T ω.

Theorem 2.2 implies that

L
2k−nCn,kΨω = Ψ

Cn,kL
2k−n
T

ω
= Ψω′ = Ψ′.

Therefore, Ψ′ is in the image of L
2k−n, which finishes the proof of sur-

jectivity. q.e.d.

Proof of Corollary 0.2. Since G is a subgroup of O(V ), it commutes
with L. Part (1) follows from Theorem 2. Alesker proved that
(Valsm(V ))G is finite-dimensional and equals ValG(V ) if G is compact
and acts transitively on S(V ) ([3], Corollary 1.1.3 and [6]). The Lef-
schetz inequalities thus follow from (1). q.e.d.
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