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GENERICITY RESULTS FOR SINGULAR CURVES

Y. Chitour, F. Jean & E. Trélat

Abstract

Let M be a smooth manifold and Dm, m > 2, be the set of
rank m distributions on M endowed with the Whitney C∞ topol-
ogy. We show the existence of an open set Om dense in Dm, so
that every nontrivial singular curve of a distribution D of Om is
of minimal order and of corank one. In particular, for m > 3,
every distribution of Om does not admit nontrivial rigid curves.
As a consequence, for generic sub-Riemannian structures of rank
greater than or equal to three, there do not exist nontrivial mini-
mizing singular curves.

1. Introduction

Let M be a smooth paracompact manifold of dimension n, and D
be a distribution on M that is a subbundle of the tangent bundle TM
of M . All vector spaces D(q), q ∈ M , have dimension m 6 n, called
the rank of the distribution D. A curve q(·) : [0, 1] → M is said to be
horizontal if it is absolutely continuous and q̇(t) ∈ D(q(t)), for almost
every t ∈ [0, 1].

For q0 ∈ M , let Ω(q0) be the set of horizontal curves q(·) : [0, 1] → M
such that q(0) = q0. The set Ω(q0), endowed with the W 1,1-topology,
inherits of a Banach manifold structure1 .

For q0, q1 ∈ M , let Ω(q0, q1) be the set of horizontal curves q(·) :
[0, 1] → M such that q(0) = q0 and q(1) = q1. Notice that Ω(q0, q1) =
End−1

q0
(q1), where the end-point mapping Endq0

: Ω(q0) → M is the
smooth mapping defined by Endq0

(q(·)) = q(1).

Definition. A curve q(·) is said to be singular if it is horizontal and if
it is a critical point of the end-point mapping Endq(0). The codimension
of the singularity is called the corank of the singular curve.

The set Ω(q0, q1) is a Banach submanifold of Ω(q0) of codimension n in
a neighborhood of a nonsingular curve, but may fail to be a manifold in
a neighborhood of a singular curve. Hence the study of singular curves
is of crucial importance in the calculus of variations with nonholonomic
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1It is a straightforward adaptation of results of Bismut [9].
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constraints. Recently, the geometry of the set Ω(q0, q1) has received a
revival of interest, for instance in Griffiths [19], Hamenstädt [20], Pansu
[29], Strichartz [32], or Zhong Ge [35].

Singular curves first appeared in the works of Carathéodory, En-
gel, and Hilbert (see [10, 34]), through the notion of rigidity. Recall
that rigid curves are locally isolated curves in Ω(q0, q1) for the W 1,∞-
topology, and form a particular class of singular curves. More recently,
Bryant and Hsu prove in [13] that every rank two distribution satis-
fying some mild non-degeneracy conditions possesses rigid curves. In
[5], Agrachev and Sarychev develop a second-order variation theory in
order to characterize rigid curves.

In the theory of classification of distributions, singular curves are
natural candidates to be invariant geometric objects. The question is
to know whether or not a distribution is characterized, up to diffeo-
morphism, by the set of its singular curves. The answer is in general
negative, due to the existence of moduli of normal forms. However, the
answer remains positive for a large class of distributions, see Jakubczyk
and Zhitomirskii [24], and Montgomery [27].

Singular curves play a major role in the framework of sub-Riemannian
geometry (also known as Carnot-Carathéodory geometry). Recall that
every sub-Riemannian minimizing curve is either a singular curve, or the
projection of a normal extremal, i.e., a solution of the geodesic equations
associated to the sub-Riemannian metric. Note that singular curves do
not depend on the metric, but may be minimizing. Attempts have been
made, however, to ignore singular curves, on the false grounds that
they are never optimal. In [26], Montgomery offers both an example
of a minimizing singular curve, which is not the projection of a normal
extremal, and a list of false proofs (by several authors) allegedly showing
that a singular curve cannot be optimal. These findings gave impetus to
wide-ranging research with view to identifying the role of singular curves
in sub-Riemannian geometry, and in particular their optimality status
(see for instance Agrachev and Sarychev [4], Liu and Sussmann [25]).
Besides, the existence of minimizing singular curves is closely related to
the regularity of the sub-Riemannian distance in the analytic context.
In [1], the author proves that, in the absence of a nontrivial minimizing
singular curve starting from q0, the sub-Riemannian distance dSR(q0, ·)
is subanalytic outside q0. In [2], Agrachev and Gauthier show that
this situation is valid for a dense set (for the Whitney topology) of
distributions of rank greater than or equal to three.

The existence of singular curves has consequences in the theory of hy-
poelliptic operators; singular curves have an impact on the asymptotics
of the spectrum of a certain class of sub-Laplacian operators whose sym-
bols correspond to sub-Riemannian metrics, see [27]. This fact seems to
be general (see [9, 17]) but, up to now, has not been completely cleared



GENERICITY RESULTS FOR SINGULAR CURVES 47

up. Christ has conjectured that, in presence of singular curves, hypoel-
liptic sub-Laplacian operators may fail to be analytic hypoelliptic (see
[15, 16]). This is related to a conjecture of Treves [33].

In this paper, we first give two geometric characterizations of singular
curves in terms of characteristic curves. The first one was discovered by
Hsu [23]; the second one (Proposition 2.3) is new, and is the starting
point of our analysis. Indeed, this proposition puts forward a relevant
property of singular curves, namely to be of minimal order. Roughly
speaking, minimal order means that a minimal amount of time differ-
entiations is sufficient to recover the field of characteristic directions
defining the singular curve. This terminology was introduced by Bon-
nard and Kupka [12] in the context of control theory. Our main result,
Theorem 2.4, states that, for generic distributions, nontrivial singular
curves are of minimal order and of corank one. Here, a distribution
is said to be generic if it belongs to an open dense subset of the set
of distributions endowed with the Whitney topology. This result has
several consequences. First, it implies that generic distributions of rank
greater than or equal to three do not admit rigid curves (Theorem 2.6).
This answers positively to a conjecture of Bryant and Hsu [13]. Second,
for generic sub-Riemannian geometry structures of rank greater than or
equal to three, there do not exist nontrivial minimizing singular curves
(Theorem 2.8). We thus extend results of [25], and also improve some
results of [2].

Some results of the present paper were announced in [14].

Acknowledgments. We are indebted to B. Jakubczyk and J.-P. Gau-
thier for useful comments.

2. Singular curves of distributions

2.1. Characterizations of singular curves. Let T ∗M denote the
cotangent bundle of M , π : T ∗M → M the canonical projection, and
ω the canonical symplectic form on T ∗M . We use D⊥ to denote the
annihilator of D in T ∗M minus its zero section. We define ω to be the
restriction of ω to D⊥; this restriction needs not be symplectic, and
hence it might admit characteristic subspaces ker ω(ψ) at ψ ∈ D⊥.

Definition. An absolutely continuous curve ψ(·) : [0, 1] → D⊥ such

that ψ̇(t) ∈ ker ω(ψ(t)) for almost every t ∈ [0, 1], is called an abnormal

extremal of D.

Such a curve is sometimes called a characteristic curve of ω. Here,
we adopt the terminology stemming from calculus of variations. The
result of [23] given next (see also [30]) provides a first characterization
of singular curves.
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Proposition 2.1. A curve q(·) : [0, 1] → M is singular if and only if

it is the projection of an abnormal extremal ψ(·) of D. The curve ψ(·)
is said to be an abnormal extremal lift of q(·).

Remark 1. The set of abnormal extremals lifts of a given singular
curve q(·) is a vector space whose dimension is the corank of q(·). In
particular, when q(·) is of corank one, it admits a unique (up to a scalar)
abnormal extremal lift.

Remark 2. Every constant curve is singular if m < n. For the rest
of the paper, a curve not reduced to a point is said to be nontrivial. If
m = n, then D = TM and there is no singular curve.

We next provide a Hamiltonian characterization of singular curves.

For a smooth function h on T ∗M , we denote by
−→
h the Hamiltonian

vector field on T ∗M defined by i−→
h
ω = −dh. Given a smooth vector field

f on M , we denote by hf the function on T ∗M defined by hf (ψ) = ψ(f).

For every ψ ∈ D⊥, we define
−→
hD(ψ) as the subset of Tψ(T ∗M) of all

elements
−→
hf (ψ), where f is a smooth section of D. Notice that for every

smooth function α on M , one has

−−→
hαf (ψ) = α(π(ψ))

−→
hf (ψ)

for every ψ ∈ D⊥. Hence
−→
hD is a rank m subbundle of T (T ∗M) with

basis D⊥.

Remark 3. Notice that
−→
hD = orthω(TD⊥), where orthω denotes the

symplectic orthogonal with respect to ω. Indeed, for every ψ ∈ D⊥,
there holds

TψD⊥ = {dhf (ψ) = 0 : f ∈ D}

= {ξ ∈ Tψ(T ∗M) : ω(
−→
hf , ξ) = 0, ∀f ∈ D}

= orthω(
−→
hD(ψ)).

Definition. We define ωD as the restriction of ω to the subbundle
−→
hD, that is

ωD(ψ) = ω(ψ)
|
−→
hD(ψ)

,

for every ψ ∈ D⊥. Equivalently, if j :
−→
hD →֒ T (T ∗M) denotes the

canonical injection, one has ωD = j∗ω.

It follows readily from Remark 3 that every abnormal extremal ψ(·) of

D satisfies, for a.e. t ∈ [0, 1], ψ̇(t) ∈
−→
hD(ψ(t)) and ωD(ψ(t))(ψ̇(t), ·) = 0.

As a consequence, the rank of ωD(ψ(t)) is less than m for every t ∈ [0, 1].

If, moreover, m is even, then ω
m/2
D (ψ(·)) ≡ 0. In order to differentiate

this relation, we need the following lemma.
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Lemma 2.2. Let ψ0 ∈ D⊥ such that ω
m/2
D (ψ0) = 0. For every

ξ ∈
−→
hD, the m-form Lξω

m/2
D (ψ0) on

−→
hD(ψ0), where Lξ denotes the

Lie derivative, only depends on ξψ0
, the value of ξ at ψ0. We use

Lξψ0
ω

m/2
D (ψ0) to denote this m-form.

Proof. It is enough to prove that Lξω
m/2
D (ψ0) = 0 whenever ξ(ψ0) =

0. For such a ξ, one has easily

[ξ,
−→
hD](ψ0) ⊂

−→
hD(ψ0),

where [ , ] denotes the Lie bracket, and thus

Lξω
m/2
D (ψ0)(Y1, . . . , Ym) = ξ. ω

m/2
D (ψ0)(Y1, . . . , Ym)

−
m∑

i=1

ω
m/2
D (ψ0)(Y1, . . . , [ξ, Yi], . . . , Ym)

= 0.

q.e.d.

It is now immediate that, along the abnormal extremal ψ(·), there
holds

Lψ̇(t)ω
m/2
D (ψ(t)) = 0 for a.e. t ∈ [0, 1].

This suggests to introduce, for ψ0 ∈ D⊥ such that ω
m/2
D (ψ0) = 0, the

linear mapping

ω̃D(ψ0) :
−→
hD(ψ0) −→ Λ1(

−→
hD(ψ0)) × Λm(

−→
hD(ψ0))

ξψ0
7−→ (ωD(ψ0)(ξψ0

, ·), Lξψ0
ω

m/2
D (ψ0)),

where the notation Λk(·) stands for the set of k-forms on a vector space.
We finally obtain the following characterization for singular curves.

Proposition 2.3. An absolutely continuous curve ψ(·) : [0, 1] → D⊥

is an abnormal extremal of D if and only if

• ψ̇(t) ∈ ker ωD(ψ(t)) a.e. if m is odd,

• ψ̇(t) ∈ ker ω̃D(ψ(t)) a.e. if m is even.

If m is odd (resp. if m is even), the property dim kerωD(ψ) = 1

(resp. dim ker ω̃D(ψ) = 1) is open in D⊥ (resp. in {ω
m/2
D = 0}). As

a consequence, for every abnormal extremal ψ(·) : [0, 1] → D⊥ of D, if
there exists t0 ∈ [0, 1] such that dim kerωD(ψ(t0)) = 1 if m is odd (resp.
dim ker ω̃D(ψ(t0)) = 1 if m is even), then it is possible to define, in a
neighborhood of ψ(t0), a unique field of characteristic directions and
thus to recover locally the abnormal extremal ψ(·) up to reparametriza-
tion.

Moreover, when m is odd, if dim kerωD(ψ(·)) = 1 a.e. along every
abnormal extremal ψ(·) of D, then there exists an open dense subset
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of M such that, through every point of this subset, passes a nontrivial
singular curve (see also [27]).

This motivates the following definition.

Definition. A singular curve q(·) : [0, 1] → M is said to be of minimal

order if it admits an abnormal extremal lift ψ(·) : [0, 1] → D⊥ such that
dim kerωD(ψ(t)) = 1 a.e. if m is odd, and dim ker ω̃D(ψ(t)) = 1 a.e. if
m is even.

On the opposite, for arbitrary m, a singular curve is said to be a Goh

curve if it admits an abnormal extremal lift ψ(·) along which ωD(ψ(·)) ≡
0. A Goh curve cannot be of minimal order when m > 3.

Remark 4. Let q(·) be a singular curve. For an abnormal ex-
tremal lift ψ(·) of q(·), the function kψ : t 7→ dim kerωD(ψ(t)) (resp.
t 7→ dim ker ω̃D(ψ(t))) needs not be constant a.e., and is only upper
semicontinuous in general. Moreover, if the singular curve q(·) is of
corank greater than one, it admits several linearly independent abnor-
mal extremal lifts. The functions kψ(·) associated to each of these lifts
are not related to one another. It is then not obvious in general to de-
fine a geometric invariant using the functions kψ(·). The only geometric
invariant considered here is the corank of q(·) (i.e., the codimension of
the singularity of the end-point mapping).

This emphasizes the relevance of the notion of minimal order. As
noted above, it permits to recover the field of characteristics. Further-
more, it turns out to be a generic property of singular curves, as shown
in the main result hereafter.

2.2. The main result. Let M be a smooth manifold of finite dimen-
sion. The following theorem constitutes the main result of the paper.

Theorem 2.4. Let m > 2 be a positive integer and let Dm be the set

of rank m distributions on M endowed with the Whitney C∞ topology.

There exists an open set Om dense in Dm so that every nontrivial sin-

gular curve of a distribution D of Om is of minimal order and of corank

one.

Remark 5. In addition, for every integer k, the set Om can be chosen
so that its complement has codimension greater than k. Let O∞

m be the
intersection over all k of the latter subsets; then O∞

m shares the same
properties as the set Om with the following differences: O∞

m may fail to
be open, but its complement has infinite codimension.

Corollary 2.5. If m > 3, then every distribution D ∈ Om does not

admit nontrivial Goh singular curves.

Remark 6. In particular, every distribution D of O∞
m has no non-

trivial Goh singular curve. This is exactly the contents of [2, Theorem
8].
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Recall that a curve q(·) ∈ Ω(q0, q1) of a distribution D is rigid if it is
isolated (up to reparametrization) in Ω(q0, q1) endowed with the W 1,∞-
topology. A rigid curve has to be a Goh curve (see [5]), and hence, we
get the following result.

Theorem 2.6. If m > 3, then every distribution D ∈ Om has no

nontrivial rigid curve.

This answers positively to a conjecture of Bryant and Hsu [13], who
proved the result for generic distributions of rank 3 in dimension 5 or 6.

2.3. Consequences in sub-Riemannian geometry. Recall that a
sub-Riemannian manifold is a 3-tuple (M, D, g), where M is a smooth
manifold of finite dimension, D is a distribution on M and g is a Rie-
mannian metric defined on D. A sub-Riemannian manifold is analytic
if M, D, g are.

The sub-Riemannian distance dSR(q0, q1) between two points q0, q1

of M is the infimum over the Riemannian lengths (for the metric g)
of the horizontal curves joining q0 and q1. Such a horizontal curve is
called a minimizing curve if its length is equal to dSR(q0, q1). The sub-

Riemannian sphere S(q0, r) centered at q0 with radius r is the set of
points q ∈ M such that dSR(q0, q) = r.

Let (M, D, g) be a sub-Riemannian manifold. We define the Hamil-
tonian H : T ∗M → R as follows. For every q ∈ M , the restriction of H
to the fiber T ∗

q M is given by the nonnegative quadratic form

(1) λ 7−→
1

2
max

{
λ(v)2

gq(v, v)
: v ∈ D(q) \ {0}

}
.

A normal extremal is an integral curve of
−→
H defined on [0, 1], i.e., a

curve ψ(·) : [0, 1] → T ∗M such that ψ̇(t) =
−→
H (ψ(t)), for t ∈ [0, 1].

Notice that the projection of a normal extremal is a horizontal curve.
According to the Pontryagin maximum principle (see [30]), a nec-

essary condition for a curve to be minimizing is to be the projection
either of a normal extremal or of an abnormal extremal. In particular,
singular curves satisfy this condition. However, a singular curve may
also be the projection of a normal extremal.

Definition. A singular curve is said to be strictly abnormal if it is
not the projection of a normal extremal.

Remark 7. A singular curve is of corank one if it admits a unique
(up to a scalar) abnormal extremal lift. It is strictly abnormal and of
corank one if it admits a unique (up to a scalar) extremal lift which is
abnormal.

Let M be a smooth manifold. The next result is proved in the
preprint [11]. For the sake of completeness, a proof of that result is
given in the appendix.
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Proposition 2.7. Let m > 2 be a positive integer, Gm be the set of

couples (D, g), where D is a rank m distribution and g is a Riemannian

metric on D, endowed with the Whitney C∞ topology. Then there exists

an open dense subset W s
m of Gm such that every nontrivial singular curve

of an element of W s
m is strictly abnormal.

According to [6, Theorem 3.7], a minimizing singular curve which is
strictly abnormal is necessarily a Goh curve2 . Hence, combining the
above proposition and Corollary 2.5, we get the next result.

Theorem 2.8. Let m > 3 be a positive integer. There exists an open

dense subset Wm of Gm such that every element of Wm does not admit

nontrivial minimizing singular curves.

Remark 8. In addition, for every integer k, the sets Wm and W s
m

can be chosen so that their complements have codimension greater than
k. As in Remark 5, we obtain a subset W∞

m of Gm, sharing the same
properties as Wm, which may fail to be open but whose complement
has infinite codimension.

The absence of nontrivial minimizing singular curves has conse-
quences on the regularity of the sub-Riemannian distance dSR. More
precisely, in an analytic context, if there is no nontrivial minimizing
singular curve in Ω(q), then dSR(q, .) is subanalytic in a pointed neigh-
borhood of q in M , and thus the sub-Riemannian spheres S(q, r) with
small positive radius r are subanalytic (see [1]). For a general definition
of subanalyticity, see e.g., [21, 22]. The next result then follows from
Theorem 2.8.

Corollary 2.9. Assume that M is an analytic manifold and, for

m > 3, let Gω
m be the set of analytic couples (D, g) on M endowed with

the Whitney topology. Then, there exists an open dense set Wm of Gω
m

so that, for every element (D, g) ∈ Wm, the sub-Riemannian spheres

S(q, r) with small positive radii are subanalytic.

Remark 9. As in Remarks 5, 6 and 8, we obtain a subset W∞
m of Gω

m,
sharing the same properties as Wm, which may fail to be open but whose
complement has infinite codimension. We thus recover [2, Theorem 9].

Remark 10. Corollaries 2.5 and 2.9 are the only results of the present
paper similar to results of [2]. Both are actually stronger than [2, The-
orems 8 and 9], in which only the existence of a subset of infinite codi-
mension is proved (see Remarks 6 and 9). The difference is the openness
property, stated in Corollary 2.5 (and then in Corollary 2.9), which is
essential to derive the conclusion of Theorem 2.8.

2For a more detailed and self-contained proof of that result, see the textbook [3]
and, more specifically, Theorem 20.6 page 300 and Proposition 20.13 page 314 therein.
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2.4. Formulation in local coordinates. In this section, we translate
into local coordinates the objects introduced in Section 2.1.

For every open set U ⊂ M , let VF (U) be the set of smooth vector
fields on U . We use VFm(U) (resp. VFm

0 (U)) to denote the set of
m-tuples of elements (resp. everywhere linearly independent) of VF (U)
and we use D|U to denote the restriction of the distribution D to U .
Let q0 ∈ M , and U be an open neighborhood of q0 in M such that D|U

is spanned by a m-tuple (f1, . . . , fm) ∈ VFm
0 (U).

Every curve q(·) ∈ Ω(q0), contained in U , satisfies

q̇(t) =

m∑

i=1

ui(t)fi(q(t)) for a.e. t ∈ [0, 1],

where ui ∈ L1([0, 1], R), for i = 1, . . . , m. The function u(·) defined by
u(·) = (u1(·), . . . , um(·)) is called the control associated to q(·).

For i, j ∈ {1, . . . , m}, set hi = hfi
and hij = h[fi,fj ]. Notice that

hij = {hi, hj}, where {·, ·} denotes the Poisson bracket. The vector

fields
−→
h1, . . . ,

−→
hm form a field of frame of the restriction of

−→
hD to D⊥

|U .

In the coordinates defined by this field of frame, the form ωD(ψ) is
represented by the skew-symmetric (m × m)-matrix

(2) G(ψ) =
(
hij(ψ)

)
16i,j6m

,

for ψ ∈ D⊥
|U . We call G the Goh matrix associated to the field of frame

(f1, . . . , fm).
Let Vol denote the volume form, in the previous coordinates, on the

restriction of
−→
hD to D⊥

|U . When m is even, the m-form ω
m/2
D is equal

to P Vol, where P : D⊥
|U → R denotes the Pfaffian of the Goh matrix

G, i.e., P (ψ)2 = det G(ψ), for ψ ∈ D⊥
|U . The Pfaffian P is a homoge-

neous polynomial of degree m/2 in the hij , see [7]. In local coordinates,

ω̃D(ψ) is represented by the ((m+1)×m)-matrix G̃(ψ), defined as G(ψ)
augmented with the row ({P, hj}(ψ))16j6m, for ψ ∈ D⊥

|U .

Let q(·) ∈ Ω(q0) be a singular curve contained in U . It is the projec-
tion of an abnormal extremal ψ(·). In the local coordinates, ψ(t) ∈ D⊥

means that, for t ∈ [0, 1],

(3) hi(ψ(t)) = 0, i = 1, . . . , m.

Moreover, since ψ̇(t) ∈
−→
hD(ψ(t)) for a.e. t ∈ [0, 1], we have

(4) ψ̇(t) =
m∑

i=1

ui(t)
−→
hi(ψ(t)),

where u(·) = (u1(·), . . . , um(·)) is the control associated to q(·). From
Proposition 2.3, there holds, for a.e. t ∈ [0, 1]:

(i) u(t) ∈ ker G(ψ(t)) if m is odd,
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(ii) u(t) ∈ ker G̃(ψ(t)) if m is even.

With the notations above, if m is odd (resp. even), a singular curve
is of minimal order if it admits an abnormal extremal lift along which

rankG(ψ(t)) = m − 1 (resp. rank G̃(ψ(t)) = m − 1) a.e. on [0, 1]. It is
a Goh curve if hij(ψ(·)) ≡ 0, for i, j ∈ {1, . . . , m}.

Remark 11. Differentiating (3) and using (4) yields, for a.e. t ∈
[0, 1],

(5)
m∑

j=1

hij(ψ(t))uj(t) = 0, i = 1, . . . , m.

If moreover m is even, the determinant of G(ψ(·)), and thus the Pfaffian
P (ψ(·)), are identically equal to zero on [0, 1]. After differentiation, one
gets, for a.e. t ∈ [0, 1],

(6)
m∑

j=1

{P, hj}(ψ(t))uj(t) = 0.

We recover in this way the characterization (i)-(ii) of the control asso-
ciated to a singular curve.

Remark 12. In the context of sub-Riemannian geometry, the Hamil-
tonian H defined by (1) writes locally

H(ψ) =
1

2

m∑

i=1

h2
i (ψ),

for ψ ∈ T ∗U , provided that (f1, . . . , fm) is orthonormal with respect to
the associated Riemanian metric g. The control u(·) = (u1(·), . . . , um(·))
associated to the projection of a normal extremal is then given by ui(t) =
hi(ψ(t)), i ∈ {1, . . . , m} and t ∈ [0, 1].

2.5. Structure of the proofs. The rest of the paper is organized as
follows. Section 3 is devoted to prove the genericity of the minimal order
property (see Proposition 3.1), and Section 4 the corank one property
(see Proposition 4.1). Theorem 2.4 follows from Propositions 3.1 and
4.1. Finally, Proposition 2.7 is proved in Appendix.

The proofs of these propositions use two kinds of arguments. The
first ones consist of transversality techniques. They are inspired by
[12], as well as the general strategy of the proofs. The second kind
of arguments amount to deriving an infinite number of relations in the
cotangent bundle and, from them, to extracting enough independent
ones.

More precisely, the aim of Section 3 is to construct a set O′
m ⊂ Dm

sharing all required properties. The set O′
m is first defined locally as the
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complement of a bad set (Section 3.1). We next compute the codimen-
sion of the typical fiber of the bad set (Lemma 3.7), and, using transver-
sality arguments, we prove that O′

m is open dense (Lemma 3.2). Then,
we prove in Section 3.3 that the minimal order property holds locally
in O′

m. We finally prove Proposition 3.1 in Section 3.4.

The proofs of the genericity of the corank-one property (Proposition
4.1 in Section 4) and of the strictly abnormal property (Proposition 2.7
in Appendix) follow the same lines.

3. Genericity of the minimal order property

We assume that 2 6 m < n.

Proposition 3.1. There exists O′
m ⊂ Dm, containing an open dense

subset of Dm, such that, along every nontrivial abnormal extremal ψ(·)
of a distribution D in O′

m, there holds rk ωD(ψ(t)) = m− 1 if m is odd

(resp. rk ω̃D(ψ(t)) = m − 1 if m is even), for a.e. t ∈ [0, 1].

In the sequel, we adopt the following notations. For an open subset
U of M , define

• JTU : the space of jets of elements of VF (U);
• JNTU, N ∈ N: the space of N -jets;
• JN

m TU : the fiber product on U defined by JNTU×U · · ·×U JNTU ;
• JN

m,q: the fiber of JN
m TU at q ∈ U .

Recall that VF (U), VFm(U) and VFm
0 (U) are, respectively, the set of

smooth vector fields on U , the set of m-tuples of elements of VF (U)
and the set of m-tuples of everywhere linearly independent elements of
VF (U).

The spaces JTU , JNTU , VFm(U), and VFm
0 (U), are endowed with

the Whitney C∞ topology.
For k ∈ N, let I = i1 · · · ik be a multi-index of {1, . . . , m}. The length

of I is |I| = k. A multi-index I = ji · · · i with k consecutive occurrences
of the index i is denoted as I = jik. For F ∈ VFm(U), U ⊂ M open
set, fI is the vector field defined by

fI = [[. . . [fi1 , fi2 ], . . . ], fik ].

We use hI to denote hfI
, where hfI

(ψ) = ψ(fI), for ψ ∈ T ∗U . Clearly,

(7) {hI , hi} = hJ ,

where the multi-index J is equal to the concatenation Ii.
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3.1. Construction of O′
m.

3.1.1. Elementary determinants. Let U be an open subset of M ,
and F ∈ VFm(U). We use Sm to denote the set of permutations with
m elements. We introduce next real valued functions on Sm × T ∗U ,
that we call elementary determinants, and that are defined inductively.
Fix σ ∈ Sm and ψ ∈ T ∗U . For the sake of simplicity, in this section,
the index i stands for σ(i), and the argument (σ, ψ) in the subsequent
matrices and in the elementary determinants is omitted.

Let r < m be an integer. Set

(8) G = (hij)16i,j6m, Gr = (hij)16i,j6r, and ∆r
0 = det Gr,

with ∆0
0 = 1. We next define inductively the following elementary

determinants:

• for k ∈ {r + 1, . . . , m} and s > 0, (with the convention that the
index m + 1 stands for r + 1),

∆r,k
0,s+1 = det




Gr
(
hik

)
16i6r

(
{∆r,k

0,s, hj}
)
j=1,...,r,k


 ,

∆r,k
0,0 = det




Gr
(
hik

)
16i6r

(
h(k+1)j

)
16j6r

h(k+1)k


 ;

• for p ∈ {1, . . . , m − r − 1}, k ∈ {r + p + 1, . . . , m}, s1, . . . , sp > 1
and s > 0,

∆r,r+1,...,r+p,k
0,s1,...,sp,s+1 = det




(
hij

)
16i6r

j=1,...,r+p,k

(
{∆r,r+1

0,s1−1, hj}
)
j=1,...,r+p,k

...(
{∆r,r+1,...,r+p

0,s1,...,sp−1 , hj}
)
j=1,...,r+p,k(

{∆r,r+1,...,r+p,k
0,s1,...,sp,s , hj}

)
j=1,...,r+p,k




,

and

∆r,r+1,...,r+p,k
0,s1,...,sp,0 = ∆r,r+1,...,r+p−1,k

0,s1,...,sp−1 .

When m is even, as noticed in Section 2.4, the elementary determi-
nants ∆r

0 defined in (8) are squares of polynomials in hij (for appropriate
sets of indices (i, j)), called Pfaffians. Of special interest are the Pfaffi-
ans Pm−2 and P , associated, respectively, to the matrices Gm−2 and G.
We define inductively additional elementary determinants as follows:
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• for k = m − 1 or m, and s > 0,

δk
s+1 = det




Gm−2
(
hik

)
16i6m−2

(
{δk

s , hj}
)
16j6m−2

{δk
s , hk}


 ,

δm−1
0 = δm

0 = P ;

• for s1 > 1 and s > 0,

δs1,s+1 = det




(
hij

)
16i6m−2
16j6m

(
{δm−1

s1−1, hj}
)
16j6m(

{δs1,s, hj}
)
16j6m


 ,

δs1,0 = δm
s1−1.

3.1.2. Bad set. Let U be an open subset of M , d an integer, and
N = 2d. For p integer, let Np,d denote the set of (p + 1)-tuples s̄ =
(0, s1, . . . , sp) in {0} × (N∗)p with s1 + · · · + sp < d + p.

The “bad set” B(d, U) is defined as the canonical projection on JN
m TU

of

B̂(d, U) = {(jN
q F, ψ) : q = π(ψ), ψ ∈ T ∗U, jN

q F ∈ B̂0(d, ψ)∪B̂1(d, ψ)},

where B̂0(d, ψ) and B̂1(d, ψ) are defined below.

Definition of B̂0(d, ψ). If m = 2, set B̂0(d, ψ) = ∅. Assume m > 3.
For ψ ∈ T ∗U with π(ψ) = q, σ ∈ Sm, an even integer r 6 m − 3,

and s̄ ∈ Np,d, 0 6 p < m, let B̂0(d, σ, r, s̄, ψ) be the set of elements

jN
q F ∈ JN

m,q such that:

1) f1(q), . . . , fm(q) are linearly independent;
2) ∆r

0(σ, ψ) 6= 0;
3) for i = 0, . . . , p,

(a) ∆r,r+1,...,r+i
0,s1,...,si

(σ, ψ) 6= 0;

(b) for every k ∈ {r + i, . . . , m} and s ∈ {1, . . . , si − 1},

∆r,r+1,...,r+i−1,k
0,s1,...,si−1,s (σ, ψ) = 0;

4) for every k ∈ {r+p+1, . . . , m} and s ∈ {1, . . . , d+p−(s1+· · ·+sp)},

∆r,r+1,...,r+p,k
0,s1,...,sp,s (σ, ψ) = 0.

Define B̂0(d, ψ) ⊂ JN
m,q as the union of the sets B̂0(d, σ, r, s̄, ψ) with

σ ∈ Sm, r 6 m − 3 even, and s̄ ∈ Np,d, 0 6 p < m.

Definition of B̂1(d, ψ). If m is odd, set B̂1(d, ψ) = ∅. Assume
that m > 2 is even. For σ ∈ Sm and a positive integer s1 6 d, define

B̂1(d, σ, s1, ψ) as the set of jN
q F ∈ JN

m,q such that:

1) f1(q), . . . , fm(q) are linearly independent;
2) ∆m−2

0 (σ, ψ) 6= 0;
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3) a) δm−1
s1

(σ, ψ) 6= 0 if s1 < d;

b) for k ∈ {m − 1, m} and s = 0, . . . , s1 − 1, δk
s (σ, ψ) = 0;

4) for s ∈ {1, . . . , d − s1}, δs1,s(σ, ψ) = 0.

Let B̂1(d, ψ) ⊂ JN
m,q be the union of the sets B̂1(d, σ, s1, ψ) with σ ∈ Sm

and s1 6 d.

3.1.3. Definition of O′
m. Let d be an integer, and N = 2d. For every

U open subset of M , set

(9) Od(U) = {F ∈ VFm
0 (U) : jNF /∈ B(d, U)}.

Finally, the set O′
m is defined as follows. A distribution D belongs to

O′
m if, for every q ∈ M , there exist a neighborhood U of q and a m-

tuple of vector fields F ∈ Od(U) such that F is a field of frame of the
restriction D|U .

3.2. O′
m contains an open dense subset of Dm. Let d > 2n, N =

2d, and U be an open subset of M .

Lemma 3.2. The set Od(U) contains a subset Õd(U) which is open

and dense in VFm
0 (U). Moreover, the complement of Õd(U) in VFm

0 (U)
is of codimension greater than or equal to d − n > n.

In order to apply transversality techniques, we need to compute the
codimension of the typical fiber T (d, U) of B(d, U) in JN

m TU . For that
purpose, we show that T (d, U) is contained in a particular semi-algebraic
variety given below.

We may assume that U is the domain of a chart (x, U) of M , centered
at q ∈ M .

3.2.1. Construction of semi-algebraic varieties. Let P (n, N) be
the set of polynomial mappings (Q1, . . . , Qn) : R

n → R
n such that

deg Qj 6 N , for 1 6 j 6 n, and P (n, N)m be the set of m-tuples
Q = (Q1, . . . , Qm) with Qi ∈ P (n, N), i = 1, . . . , m. Define the semi-
algebraic open subset Ω of P (n, N)m as the set of Q ∈ P (n, N)m such
that Q1(0), . . . , Qm(0) are linearly independent.

Let ((x, λ), π−1(U)) be the induced chart on T ∗M . We consider el-
ements of P (n, N)m as m-tuples of vector fields on U given in local
coordinates.

The typical fiber Tm,N of the vector bundle JN
m TU ×U T ∗U is equal

to P (n, N)m × R
n. The set B̂(d) is a semi-algebraic subbundle of

JN
m TM×M T ∗M . Its typical fiber T̂ (d) is clearly equal to Ĝ0(d)∪Ĝ1(d),

where Ĝ0(d) and Ĝ1(d) are defined below.

Definition of Ĝ0(d). If m = 2, set Ĝ0(d) = ∅. Assume m > 3. For
σ ∈ Sm, r 6 m − 3 an even integer, and s̄ ∈ Np,d, 0 6 p < m, define

φ0
σ,r,s̄ : Tm,N → R

d as the mapping that associates to (Q, λ) ∈ Tm,N the
following evaluations of elementary determinants associated to Q:
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(i) ∆r,...,r+i
0,s1,...,si−1,s(σ, ψλ), for i = 1, . . . , p and s = 1, . . . , si − 1;

(ii) ∆r,...,r+p,r+p+1
0,s1,...,sp,s (σ, ψλ), for s = 1, . . . , d + p − (s1 + · · · + sp),

where ψλ denotes the element of T ∗
q M given in coordinates by (0, λ).

Let T 0
σ,r,s̄ ⊂ Tm,N be the open set defined by

Q ∈ Ω, ∆r,...,r+i
0,s1,...,si

(σ, ψλ) 6= 0, i = 0, . . . , p,

and let Ĝ0(d, σ, r, s̄) be the inverse image of {0} by the restriction of

φ0
σ,r,s̄ to T 0

σ,r,s̄. We define Ĝ0(d) as the union of Ĝ0(d, σ, r, s̄) for σ ∈ Sm,
r 6 m − 3 an even integer, and s̄ ∈ Np,d with 0 6 p < m.

Definition of Ĝ1(d). If m is odd, set Ĝ1(d) = ∅. Assume that
m > 2 is even. For σ ∈ Sm and a positive integer s1 6 d, define
φ1

σ,s1
: Tm,N → R

d as the mapping that associates to (Q, λ) ∈ Tm,N the
following evaluations of elementary determinants associated to Q:

(i) δm−1
s (σ, ψλ), for s = 0, . . . , s1 − 1;

(ii) δs1,s(σ, ψλ), for s ∈ {1, . . . , d − s1}.

Let T 1
σ,s1

⊂ Tm,N be the open set defined by

Q ∈ Ω, δm−1
s1

(σ, ψλ) 6= 0 if s1 < d, and ∆m−2
0 (σ, ψλ) 6= 0,

and Ĝ1(d, σ, s1) be the inverse image of {0} by the restriction of φ1
σ,s1

to T 1
σ,s1

. We define Ĝ1(d) as the union of Ĝ1(d, σ, s1) for σ ∈ Sm and
s1 6 d.

3.2.2. Evaluation in coordinates of the elementary determi-

nants. We first need to express some of the elementary determinants
using the functions hI ’s. By an easy but lengthy inductive argument,
the next two lemmas follow.

Lemma 3.3. Assume m > 3. Let r 6 m − 3 be an even integer.

With the convention m+ 1 = r + 1 in the multi-indices I of {1, . . . , m},
we have:

• for k ∈ {r + 1, . . . , m} and s > 0,

(10) ∆r,k
0,s = h(k+1)ks+1

(
∆r

0

)s+1
+ Rr,k

0,s,

where Rr,k
0,s is a polynomial in the hI ’s, |I| 6 s+2, with I different

from (j + 1)js+1 and j(j + 1)js, for every j > r;
• for p, k such that r < r + p < k 6 m, s1, . . . , sp > 1, and s > 0,

∆r,r+1,...,r+p,k
0,s1,...,sp,s

= h(k+1)kℓ∆r
0




p−1∏

q=0

(
∆r,r+1,...,r+q

0,s1,...,sq

)sq+1−1




(
∆r,r+1,...,r+p

0,s1,...,sp

)s

+ Rr,r+1,...,r+p,k
0,s1,...,sp,s ,

(11)



60 Y. CHITOUR, F. JEAN & E. TRÉLAT

where ℓ = s1+· · ·+sp+s−p+1 and Rr,r+1,...,r+p,k
0,s1,...,sp,s is a polynomial in

the hI ’s, |I| 6 ℓ+1, with I different from (j+1)jℓ and j(j+1)jℓ−1,

for every j > r + p.

Lemma 3.4. If m > 2, then:

• For s > 0,

δm−1
s = −hm(m−1)s+1

(
Pm−2

)2s+1
+ Rm−1

s ,

δm
s = h(m−1)ms+1

(
Pm−2

)2s+1
+ Rm

s ,

(12)

where Rm−1
s and Rm

s are polynomials in the hI ’s, |I| 6 s + 2, I
different from the multi-indices m(m − 1)s+1, (m − 1)m(m − 1)s,

(m − 1)ms+1, and m(m − 1)ms.

• For s1 > 1 and s > 0,

δs1,s = h(m−1)ms1+s

(
Pm−2

)2s1−1(
δm−1
s1

)s
+ Rs1,s,

where Rs1,s is a polynomial in the hI ’s, |I| 6 s1 + s + 1, with I
different from (m − 1)ms1+s and m(m − 1)ms1+s−1.

Remark 13. Equation (12) is the consequence of a property of Pfaf-
fians (see [7]), namely

P = h(m−1)mPm−2 + RP ,

where RP is a polynomial in the hij ’s, with i < j and ij 6= (m − 1)m.

Coordinate systems. We recall a definition of coordinate systems
on Ω (see [12]).

Set A0 = {0}. For k > 1, we denote by Ak the set of k-tuples of
ordered integers of {1, . . . , n}.

For a homogeneous polynomial f : R
n → R of degree k, and η =

(η1, . . . , ηk) ∈ (Rn)k, the polarization of f along η is the real number
Pf(η), given by

Pf(η) = Dη1
· · ·Dηk

f,

where Dξf , ξ ∈ R
n, is the differential of f in the direction ξ.

For Q̂ ∈ Ω, we complete Q̂1(0), . . . , Q̂m(0) in a basis of R
n with n−m

vectors vm+1, . . . , vn. Let V ⊂ Ω be a neighborhood of Q̂ such that the
mapping eV : V → (Rn)n defined by

ei
V (Q) = Qi(0) for i = 1, . . . , m,

ei
V (Q) = vi for i = m + 1, . . . , n,

associates to each Q ∈ V a basis of R
n. To this mapping eV , is associated

a coordinate chart on V ⊂ Ω, given by

(13)
(
Xj

i,ν : j = 1, . . . , n, i = 1, . . . , m, ν ∈ Ak, k = 0, . . . , N
)
,
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where Xj
i,ν is the polarization of the j-th coordinate of the homogeneous

part of degree k = |ν| of Qi along
(
eν1

V (Q1, ..., Qm), ..., eνk

V (Q1, ..., Qm)
)
.

We next evaluate on T ∗
q M the elementary determinants associated to

an element Q of V . Consider the chart of Ω×R
n of domain V̂ = V ×R

n.
For ν ∈ Ak, set ν! = ν1! . . . νk! and xν = xν1

1 . . . xνk

k . In coordinates,
Qi, i = 1, . . . , m, is represented by

∂

∂xi
+

∑

16k6N, ν∈Ak

xν

ν!
Xi,ν ,

where each Xi,ν =
n∑

j=1

Xj
i,ν

∂

∂xj
is a constant vector field.

For i, k ∈ {1, . . . , m}, we have [Qk, Qi](0) = Qki(0) = Xi,k −Xk,i. By
an easy induction, there holds, for s > 1,

Qkis(0) = −Xk,is + Ri,k,s,

where Ri,k,s is a polynomial in the coordinates Xa
l,ν , with 1 6 a 6 n,

1 6 l 6 m, |ν| 6 s, and ν is different from js, j ∈ {1, . . . , m}.
Recall that ψλ is given in coordinates by (0, λ), λ = (λb)16b6n. We

infer that hki(ψλ) = 〈λ, Xi,k〉 − 〈λ, Xk,i〉 and, for s > 1,

hkis(ψλ) = 〈λ, Qkis(0)〉 = −〈λ, Xk,is〉 + R′
i,k,s,

where R′
i,k,s is a polynomial in the coordinates λb, Xa

l,ν , with 1 6 a, b 6

n, 1 6 l 6 m, |ν| 6 s, and ν is different from js, j ∈ {1, . . . , m}.
By an induction argument, hI(ψλ) can be expressed in terms of the

coordinates λb, Xa
l,ν . In local coordinates, Lemmas 3.3 and 3.4 yield the

following results.

Lemma 3.5. Assume m > 3. Let r 6 m − 3 be an even integer.

With the convention m+ 1 = r + 1 in the multi-indices I of {1, . . . , m},
we have:

• For k ∈ {r + 1, . . . , m} and s > 0,

∆r,k
0,s(σ, ψλ) = −〈λ, Xk+1,ks〉

(
∆r

0(σ, ψλ)
)s+1

+ R̃r,k
0,s,

where R̃r,k
0,s is a polynomial in the coordinates λb, Xa

l,ν , with 1 6

a, b 6 n, 1 6 l 6 m, |ν| 6 s, and if (l, ν) is of the form (i + 1, is),
then i 6 r.

• For p, k such that r < r + p < k 6 m, s1, . . . , sp > 1 and s > 0,

∆r,r+1,...,r+p,k
0,s1,...,sp,s (σ, ψλ)

= −〈λ, Xk+1,kℓ〉∆r
0(σ, ψλ)




p−1∏

q=0

(
∆r,r+1,...,r+q

0,s1,...,sq
(σ, ψλ)

)sq+1−1




·
(
∆r,r+1,...,r+p

0,s1,...,sp
(σ, ψλ)

)s
+ R̃r,r+1,...,r+p,k

0,s1,...,sp,s ,
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where ℓ = s1+ · · ·+sp+s−p+1 and Rr,r+1,...,r+p,k
0,s1,...,sp,s is a polynomial

in the coordinates λb, Xa
l,ν , with 1 6 a, b 6 n, 1 6 l 6 m, |ν| 6 ℓ,

and if (l, ν) is of the form (i + 1, iℓ), then i 6 r + p.

Lemma 3.6. If m > 2, then:

• For s > 0,

δm−1
s (σ, ψλ) = 〈λ, Xm,(m−1)s+1〉

(
Pm−2(σ, ψλ)

)2s+1
+ R̃m−1

s ,

δm
s (σ, ψλ) = −〈λ, X(m−1),ms+1〉

(
Pm−2(σ, ψλ)

)2s+1
+ R̃m

s ,

where R̃m−1
s and R̃m

s are polynomials in the coordinates λb, Xa
l,ν ,

with 1 6 a, b 6 n, 1 6 l 6 m, |ν| 6 s + 1, and (l, ν) is different

from (m, (m − 1)s+1) and ((m − 1), ms+1).
• For s1 > 1 and s > 0,

δs1,s(σ, ψλ)

= 〈λ, X(m−1),ms1+s〉
(
Pm−2(σ, ψλ)

)2s1−1(
δm−1
s1

(σ, ψλ)
)s

+ R̃s1,s,

where R̃s1,s is a polynomial in the coordinates λb, Xa
l,ν , with 1 6

a, b 6 n, 1 6 l 6 m, |ν| 6 s1 + s, and (l, ν) is different from

((m − 1), ms1+s).

3.2.3. Proof of Lemma 3.2.

Lemma 3.7. The typical fiber of B(d, U) is of codimension greater

than or equal to d − n, that is greater than n.

Proof. If m > 3, let σ ∈ Sm, r 6 m−3 an even integer, and s̄ ∈ Np,d,
0 6 p < m. Then, using Lemma 3.5, the mapping φ0

σ,r,s̄ is a submersion

on T 0
σ,r,s̄ ∩ V̂ , for every chart domain V̂ of Ω × R

n. It follows readily

that Ĝ0(d) is of codimension d. Similarly, if m > 2 is even, then, using

Lemma 3.6, the mapping φ1
σ,s1

is a submersion on T 1
σ,s1

∩ V̂ , for every

chart domain V̂ of Ω × R
n, for every σ ∈ Sm and all positive integers

s1 6 d. Hence Ĝ1(d) is of codimension d. Therefore the typical fiber

T̂ (d) = Ĝ0(d)∪ Ĝ1(d) of B̂(d, U) is of codimension d in P (n, N)m ×R
n.

By projection, the typical fiber of B(d, U) is of codimension greater than
or equal to d − n, that is greater than n. q.e.d.

Clearly, Od(U) contains the open subset of VFm
0 (U) given by

Õd(U) = {F ∈ VFm
0 (U) : jNF /∈ B(d, U)}.

Since B(d, U) is a semi-algebraic subbundle of JN
m TU , B(d, U) and

B(d, U) have the same codimension in JN
m TU , which is greater than

or equal to d − n > n.
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For this codimension, jNF /∈ B(d, U) if and only if jNF is transverse

to B(d, U). Therefore the set Õd(U) satisfies

(14) Õd(U) = {F ∈ VFm
0 (U) : jNF is transverse to B(d, U)}.

Using the transversality theorem for stratified sets of [18], we obtain

that Õd(U) is an open dense subset in VFm
0 (U). Lemma 3.2 is proved.

3.3. Minimal order property in O′
m. Consider an open set U ⊂ M ,

and two integers m > 2 and d > 2n.

Lemma 3.8. Let F ∈ VFm
0 (U) be a m-tuple of vector fields, and DF

the distribution on U generated by F . If F ∈ Od(U), then, along every

nontrivial abnormal extremal ψ(.) of DF , there holds rankG(ψ(t)) >

m − 2 a.e. on [0, 1].

Since rankG(ψ(t)) is even, Lemma 3.8 implies that, if m is odd, then
m − 2 can be replaced by m − 1 in the previous statement.

Lemma 3.9. Assume m is even. Let F ∈ VFm
0 (U) be a m-tuple

of vector fields, and DF the distribution on U generated by F . If F ∈
Od(U), then, along every nontrivial abnormal extremal ψ(.) of DF , there

holds rank G̃(ψ(t)) = m − 1 a.e. on [0, 1].

We will need the following technical lemma.

Lemma 3.10. Let I ⊂ R be a compact interval and f : I → R be an

absolutely continuous function on I. Then, for every measurable subset

J ⊂ I of positive measure such that f ≡ 0 on J , one has f ′ = 0 a.e. on

J .

Proof of Lemma 3.10. Since f is of bounded variation on [0, 1], its set
of discontinuities S is at most countable. Then clearly f(x) = 0 except
in J ∩ S. The argument of [31, Lemma p. 177] applies to the present
situation. q.e.d.

Proof of Lemma 3.8. Let F ∈ Od(U). We may suppose m > 3. Argu-
ing by contradiction, we assume that there exist a nontrivial abnormal
extremal ψ(.) of DF and a measurable set J ⊂ [0, 1] of positive measure,
such that rank G 6 m− 3 on J , where G denotes the Goh matrix along
ψ(.).

In what follows, a p-symmetric minor of G denotes a determinant
of the form det (hij)(i,j)∈I2

p
, where Ip is any subset of {1, . . . , m} with

cardinality p. Let 0 6 r 6 m − 3 be the largest even integer such
that a r-symmetric minor of G is not identically equal to zero on J .
Then, there exists a permutation σ ∈ Sm, so that ∆r

0(σ, ψ(·)) does not
vanish on some subset Jr ⊂ J of positive measure (see Section 3.1.1 for
a definition of the elementary determinants). Moreover, every (r + 2)-
symmetric minor is identically equal to zero on Jr and the rank of the
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corresponding sub-matrix of G is less or equal to r. Therefore, every
minor of size r+1 extracted from such a matrix is also identically equal
to zero on Jr. In particular, it implies that, for k = r + 1, . . . , m,

(15) ∆r,k
0,0(σ, ψ(t)) = 0, t ∈ Jr.

For the sake of simplicity, in the sequel the index i stands for σ(i), and
we drop the arguments (σ, ψ(·)).

Let u(·) = (u1(·), . . . , um(·)) be the control associated to ψ(·). Differ-
entiating (15) with respect to t, one gets, by Lemma 3.10,

(16) u1{∆
r,k
0,0, h1} + · · · + um{∆r,k

0,0, hm} = 0 a.e. on Jr,

for k = r + 1, . . . , m. Equation (16), together with Equation (5) of
Section 2.4, imply that the matrix

G0 =




h11 · · · h1m
...

...
hr1 · · · hrm

{∆r,r+1
0,0 , h1} · · · {∆r,r+1

0,0 , hm}
...

...
{∆r,m

0,0 , h1} · · · {∆r,m
0,0 , hm}




is not invertible on Jr. The first diagonal minor of order r of G0 is ∆r
0,

which never vanishes on Jr. By definition, the diagonal minors of order

r + 1 containing ∆r
0 are the ∆r,k

0,1, k = r + 1, . . . , m.

We claim that there exist k1 ∈ {r + 1, . . . , m}, an integer s1 with
1 6 s1 < d + 1, and a subset Jr+1 ⊂ Jr of positive measure such that

• ∆r,k
0,l ≡ 0 on Jr+1, for k = r + 1, . . . , m and l = 0, . . . , s1 − 1;

• ∆r,k1

0,s1
never vanishes on Jr+1.

Indeed, assume the claim is false. Then the ∆r,k
0,1, k = r+1, . . . , m, are

identically equal to zero on Jr, and we consider the matrix G1 obtained
by replacing the last m − r rows of G0 by the rows

({∆r,k
0,1, hl})16l6m, k = r + 1, . . . , m.

By construction, detG1 ≡ 0 on Jr. The contradiction assumption im-

plies that, for k = r+1, . . . , m, the minor ∆r,k
0,2 of G1 is identically equal

to zero on Jr. Proceeding similarly, we get that there exists t ∈ Jr such

that jN
q(t)F belongs to B̂0(d, σ, r, 0, ψ(t)), which contradicts F ∈ Od(U).

The claim is thus proved.
Up to a permutation, we assume k1 = r + 1. Define now a non-

invertible matrix by replacing in G0:

• the (r + 1)-th line by ({∆r,r+1
0,s1−1, hl})16l6m;

• for j = r + 2, . . . , m, the j-th line by ({∆r,j
0,s1−1, hl})16l6m.
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To this matrix is applied the previous reasoning on G0. We thus obtain,
in a finite number of steps, a subset Jm−1 ⊂ J of positive measure, and
s̄ = (0, s1, . . . , sm−1) in Nm−1,d, such that

• ∆r,...,r+m−1
0,s1,...,sm−1

never vanishes on Jm−1;

• ∆r,...,r+m−1,r+m
0,s1,...,sm−1,l ≡ 0 on Jm−1, l > 0.

As a consequence, jN
q(t)F belongs to the set B̂0(d, σ, r, s̄, ψ(t)) for every

t ∈ Jm−1, which contradicts F ∈ Od(U). q.e.d.

Proof of Lemma 3.9. Assume there exist a nontrivial abnormal extremal
ψ(.) of DF and a subset J ⊂ [0, 1] of positive measure such that

rank G̃(ψ(t)) 6 m − 2 on J . By the previous proof, we may assume
that ∆m−2

0 is never vanishing on J ; in particular rankG(ψ(t)) = m− 2.
Moreover, for k = m − 1 and k = m, δk

0 ≡ 0 and δk
1 ≡ 0 (see Section

3.1.1 for a definition).
Similarly to the argument of Lemma 3.8, there exist a positive integer

s1 < d and k1 ∈ {m−1, m}, such that δk1
s1

is not identically equal to zero

on J . Indeed, otherwise, δk
s ≡ 0, for s = 0, . . . , d and k ∈ {m − 1, m}.

In that case, for every t ∈ J , jN
q(t)F belongs to B̂1(d, σ, d, ψ(t)), which

contradicts F ∈ Od(U).
Up to a permutation, we assume k1 = m− 1. Let J1 ⊂ J be a subset

of positive measure on which δm−1
s1

is never vanishing. Similarly to the
argument of Lemma 3.8, for every s > 0, we have δs1,s ≡ 0 on J1. Then,

for every t ∈ J1, jN
q(t)F belongs to B̂1(d, σ, s1, ψ(t)), which contradicts

F ∈ Od(U). q.e.d.

3.4. Proof of Proposition 3.1. Let k be an integer greater than n,
and d = k + n. From Lemma 3.2, the set O′

m contains an open dense
subset of Dm of codimension greater than or equal to k.

Let D be a distribution in O′
m and ψ(·) a nontrivial abnormal ex-

tremal of D. For every t0 ∈ [0, 1], we choose a neighborhood U of ψ(t0)
and a m-tuple F of vector fields such that F is a field of frame of D|U and
F ∈ Od(U). There exists a closed subinterval I of [0, 1] centered at t0 so
that ψ(·)|I is (up to reparameterization) an abnormal extremal of D|U .
From Lemma 3.8 (resp. Lemma 3.9), there holds rk ωD(ψ(t)) = m − 1
if m is odd (resp. rk ω̃D(ψ(t)) = m − 1 if m is even), for a.e. t ∈ I.

4. Genericity of the corank one property

Proposition 4.1. There exists Om ⊂ O′
m, containing an open dense

subset of Dm, such that every nontrivial singular curve of a distribution

in Om is of corank one.

The argument follows the same lines as the proof of Proposition 3.1.
We provide the main steps, omitting the details.
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First step. We use F to denote the set of finite sums of mappings
on the fiber product T ∗M ×M T ∗M of the form F1(ψ

[1])F2(ψ
[2]), where

F1(·), F2(·) ∈ C∞(T ∗M). For k = 1, 2, we define the following functions
on Sm × (T ∗M ×M T ∗M):

• h
[k]
I (σ, ψ[1], ψ[2]) = hσ(I)(ψ

[k]), for every multi-index I of {1, ..., m},

• ∆
[k],r
0 (σ, ψ[1], ψ[2]) = ∆r

0(σ, ψ[k]), for r < m,

• P [k](σ, ψ[1], ψ[2])=P (ψ[k]), and P [k],m−2(σ, ψ[1], ψ[2])=Pm−2(ψ[k]),

• δ
[k],i
s (σ, ψ[1], ψ[2]) = δi

s(σ, ψ[k]), for s > 0.

Notice that the restrictions of these functions to T ∗M ×M T ∗M belong
to F . For s > 0, we define inductively the following functions on Sm ×
(T ∗M ×M T ∗M):

Θs+1 = det




(
h

[1]
ij

)
16i6m−1
16j6m

(
L−→

h j
Θs

)
16j6m


 ,

Θ0 = det




(
h

[1]
ij

)
16i6m−1
16j6m

(
h

[2]
1j

)
16j6m


 ,

and

θs+1 = det




(
h

[1]
ij

)
16i6m−2
16j6m

(
{P [1], h

[1]
j }

)
16j6m

(
L−→

h j
θs

)
16j6m




,

θ0 = det




(
h

[1]
ij

)
16i6m−1
16j6m

(
{P [1], h

[1]
j }

)
16j6m

(
{P [2], h

[2]
j }

)
16j6m




,

where L−→
h j

: F → F is defined as follows. For F1(·), F2(·) ∈ C∞(T ∗M),

set

L−→
h j

(
F1(ψ

[1])F2(ψ
[2])

)
=F2(ψ

[2])L−→
h j

(
F1(ψ

[1])
)

+ F1(ψ
[1])L−→

h j

(
F2(ψ

[2])
)

,

and extend it by linearity to F .
These determinants can be expanded as follows:

Θs =
(
∆

[1],m−1
0

)s(
∆

[1],m−1
0 h

[2]
1ms + d0h

[1]
1ms

)
+ Rs,
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where Rs is a polynomial in the h
[k]
I , with k = 1, 2, |I| 6 s+1, I different

from 1ms and m1ms−1, and d0 is a polynomial in the h
[k]
J , with k = 1, 2,

|J | = 2, J different from 1m and m1;

θs =
(
δ
[1],m−1
1

)s(
δ
[1],m−1
1 P [2],m−2h

[2]
(m−1)ms+2 + d′0h

[1]
(m−1)ms+2

)
+ R′

s,

where R′
s is a polynomial in the h

[k]
I , with k = 1, 2, |I| 6 s+3, I different

from (m − 1)ms+2 and m(m − 1)ms+1, and d′0 is a polynomial in the

h
[k]
J , with k = 1, 2, |J | 6 3, J different from m(m − 1)m.

Second step. Let d ∈ N, and N = d + 1. As in Lemmas 3.5
and 3.6, we express Θs and θs in local coordinates (Xa

l,ν) of domain

V ⊂ Ω. We use ψ
[k]
λ to denote the element of T ∗

q M given in coordinates

by λ[k] = (λ
[k]
b )16b6n.

Lemma 4.2. For s > 0, we have

Θs(σ, ψ
[1]
λ , ψ

[2]
λ )

=
〈
∆m−1

0 (σ, ψ
[1]
λ )λ[2] + d0(λ

[1], λ[2])λ[1], X1,ms

〉(
∆m−1

0 (σ, ψ
[1]
λ )

)s
+ R̃s,

where d0 is a polynomial function, and R̃s is a polynomial in the coor-

dinates λ
[k]
b , Xa

l,ν , with k = 1, 2, 1 6 a, b 6 n, 1 6 l 6 m, |ν| 6 s, and

(l, ν) different from (1, ms);

θs(σ, ψ
[1]
λ , ψ

[2]
λ )

=
〈
δm−1
1 (σ, ψ

[1]
λ )Pm−2(σ, ψ

[2]
λ )λ[2] + d′0(λ

[1], λ[2])λ[1], X(m−1),ms+2

〉

·
(
δm−1
1 (σ, ψ

[1]
λ )

)s
+ R̃′

s

where d′0 is a polynomial function, and R̃′
s is a polynomial in the coor-

dinates λ
[k]
b , Xa

l,ν , with k = 1, 2, 1 6 a, b 6 n, 1 6 l 6 m, |ν| 6 s + 2,

and (l, ν) different from ((m − 1), ms+2).

Remark 14. The functions d0 and d′0 play no role. Indeed, we

only need, when λ[1] and λ[2] are linearly independent, the coefficient of

X1,ms in Θs to be nonzero if ∆m−1
0 (σ, ψ

[1]
λ ) 6= 0, and the coefficient of

X(m−1),ms+2 in θs to be nonzero if δm−1
1 (σ, ψ

[1]
λ )Pm−2(σ, ψ

[2]
λ ) 6= 0.

On the domain V̂ = V × R
n × R

n, for every σ ∈ Sm, we define

φ
σ,bV

: V̂ → R
d as the mapping that associates to (Q, λ[1], λ[2]) ∈ V̂ the

evaluations of either Θs(σ, ψ
[1]
λ , ψ

[2]
λ ), 0 6 s 6 d − 1, if m is odd, or

θs(σ, ψ
[1]
λ , ψ

[2]
λ ), 0 6 s 6 d − 1, if m is even. Let V̂σ be the open subset

of V̂ defined by

λ[1], λ[2] linearly independent, and
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{
∆m−1

0 (σ, ψ
[1]
λ ) 6= 0, if m is odd,

δm−1
1 (σ, ψ

[1]
λ )Pm−2(σ, ψ

[2]
λ ) 6= 0, if m is even.

The set ĜC(d, V̂ ) =
⋃

σ∈Sm
φ−1

σ,bV
(0) ∩ V̂σ is a semi-algebraic variety of

V̂ of codimension d (see Remark 14).

Third step. We consider d > 3n, and N = d + 1. For σ ∈ Sm,

let B̂C(d, σ) be the subset of JN
m TM ×M T ∗M ×M T ∗M of all triples

(jN
q F, ψ[1], ψ[2]), q = π(ψ[1]) = π(ψ[2]), such that:

1) f1(q), . . . , fm(q) are linearly independent;

2) ψ[1], ψ[2] are linearly independent;

3) ∆m−1
0 (σ, ψ[1]) 6= 0 if m is odd, δm−1

1 (σ, ψ[1])Pm−2(σ, ψ[2]) 6= 0 if m
is even;

4) for s = 0, . . . , d − 1,

Θs(σ, ψ[1], ψ[2]) = 0 if m is odd, θs(σ, ψ[1], ψ[2]) = 0 if m is even.

Set B̂C(d) =
⋃

σ∈Sm
B̂C(d, σ), and define the “bad set” BC(d) as the

canonical projection of B̂C(d) on JN
m TM . Reasoning as in Section 3.2.3,

we obtain that the typical fiber of BC(d) has codimension greater than
or equal to d − 2n in P (n, N)m, and we get the following result.

Lemma 4.3. Let U ⊂ M be an open set. The set

O1
d(U) = {F ∈ VFm

0 (U) : ∀q ∈ U, jN
q F /∈ BCq(d)}

contains an open dense subset of VFm
0 (U) whose complement is of codi-

mension greater than or equal to d − 2n.

Fourth step. The last step is similar to Section 3.3. Consider an
open subset U of M and an integer d > 3n.

Lemma 4.4. Let F ∈ VFm
0 (U) be a m-tuple of vector fields, and

DF the distribution on U generated by F . If F ∈ Od(U) ∩O1
d(U), then

every nontrivial singular curve of DF is of corank one.

Proof. Let F ∈ Od(U)∩O1
d(U). We argue by contradiction. Assume

there exist two abnormal extremal lifts ψ[1](·) and ψ[2](·) of the same

singular curve q(·) such that, for some t0 ∈ [0, 1], ψ[1](t0) and ψ[2](t0) are

linearly independent. By linearity of abnormal extremal lifting, ψ[1](·)
and ψ[2](·) are linearly independent everywhere on [0, 1].

Case m odd. For k = 1, 2, let G[k] denote the Goh matrix G(ψ[k]).
Since F ∈ Od(U), it follows from the proof of Lemma 3.8 that there

exists a (m − 1)-symmetric minor of G[1] which is not identically equal

to zero on [0, 1]. Then, up to a permutation, we assume that ∆
[1],m−1
0

is never vanishing on an open subinterval J ⊂ [0, 1].
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Let u(·) be the control function associated to the singular curve q(·).
For i = 1, . . . , m and k = 1, 2, we have

m∑

j=1

ujh
[k]
ij = 0 a.e. on [0, 1].

Hence, the matrix




h
[1]
11 · · · h

[1]
1m

...
...

h
[1]
(m−1)1 · · · h

[1]
(m−1)m

h
[2]
11 · · · h

[2]
1m




is not invertible on [0, 1], i.e., Θ0 ≡ 0. Differentiating with respect to t,
we get

m∑

j=1

uj L−→
h j

Θ0 = 0 a.e. on [0, 1].

It implies Θ1 ≡ 0. Proceeding similarly, we get, on the interval J , that

∆
[1],m−1
0 6= 0 and Θ0 ≡ · · · ≡ Θd−1 ≡ 0, which contradicts F ∈ O1

d(U).

Case m even. Since F ∈ Od(U), it follows from the proofs of Lem-

mas 3.8 and 3.9 that, up to a permutation, P [1],m−2 and δ
[1],m−1
1 are

never vanishing on some open subinterval J ⊂ [0, 1].

Let us show that we can suppose P [2],m−2 never vanishing on J . For
α ∈ [0, 1], consider ψ[α] = (1 − α)ψ[1] + αψ[2]. Since Pm−2

(
ψ[α](·)

)

depends continuously on α, it is never vanishing on J for α small enough.
Moreover, the set of abnormal extremal lifts being a vector space, ψ[α]

is an abnormal extremal lift of the singular curve q(·) which is linearly

independent of ψ[1] if α > 0. It then suffices to replace ψ[2] by ψ[α], for
some α > 0 small enough.

Similarly to the case m odd, δ
[1],m−1
1 P [2],m−2 is never vanishing on J ,

and θ0 ≡ · · · ≡ θd−1 ≡ 0 on J , which contradicts F ∈ O1
d(U). q.e.d.

Proposition 4.1 is finally obtained by combining Lemmas 4.3 and 4.4.

5. Appendix

In this appendix we provide a proof of Proposition 2.7. We follow
the same lines as in Section 4. Let (ψ[n], ψ[a]) ∈ T ∗M ×M T ∗M , and

q = π(ψ[n]) = π(ψ[a]). For every multi-index I of {1, . . . , m}, set

h
[n]
I (ψ[n], ψ[a]) = hI(ψ

[n]), and h
[a]
I (ψ[n], ψ[a]) = hI(ψ

[a]),
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and define inductively the following functions in F , depending on the
couple (ψ[n], ψ[a]):

βi,0 = h
[a]
i ,

βi,s+1 =
m∑

j=1

h
[n]
j L−→

hj
βi,s, s ∈ N,

where F and L−→
hj

are defined in Section 4. For i ∈ {1, . . . , m} and s > 0,

one has

βi,s = (h
[n]
i )sh

[a]
(i+1)is + Ri,s,

where Ri,s is a polynomial in h
[n]
J and h

[a]
I , |J | 6 s, |I| 6 s + 1, with I

different from (i + 1)is and i(i + 1)is−1 (with the convention that the
index m + 1 stands for 1).

Let d > 3n be an integer, and N = d+1. For every i ∈ {1, . . . , m}, we

define B̂(d, i, ψ[n], ψ[a]) as the set of jN
q F ∈ JN

m,q such that the following
conditions hold:

1) f1(q), . . . , fm(q) are linearly independent;

2) h
[n]
i 6= 0;

3) βi,s = 0 for every s ∈ {0, . . . , d − 1}.

Let B̂(d, ψ[n], ψ[a]) ⊂ JN
m,q be the union of the sets B̂(d, i, ψ[n], ψ[a]) with

i ∈ {1, . . . , m}. Define now B̂(d) ⊂ JN
m TM ×M T ∗M ×M T ∗M by

B̂(d) = {(jN
q F, ψ[n], ψ[a])) : jN

q F ∈ B̂(d, ψ[n], ψ[a])}.

Finally, the “bad set” B(d) is the canonical projection of B̂(d) on
JN

m TM .

Reasoning as in Section 3.2.3, it is clear that B̂(d) is a semi-algebraic
subbundle of JN

m TM×M T ∗M×M T ∗M whose typical fiber has codimen-
sion greater than or equal to d in P (n, N)m × R

n × R
n. By projection

we deduce that the typical fiber of B(d) has codimension greater than
or equal to d − 2n, that is greater than n. We get the following result,
analogous to Lemma 3.2.

Lemma 5.1. Let U ⊂ M be an open set. Then

Os
d(U) = {F ∈ VFm

0 (U) : ∀q ∈ U, jN
q F /∈ Bq(d)}

contains an open dense subset of VFm
0 (U).

As in Section 3.3, we have the following lemma.

Lemma 5.2. Let F ∈ VFm
0 (U) be a m-tuple of vector fields, DF be

the distribution on U generated by F , and gF be the Riemannian metric

on DF for which F is orthonormal. If F ∈ Os
d(U), then every nontrivial

singular curve of DF is strictly abnormal for the metric gF .
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Proof. Let F ∈ Os
d(U). By contradiction, assume that there ex-

ists a nontrivial singular curve q(·), associated to a control u(·) =
(u1(·), . . . , um(·)) on [0, 1], and having on the one part a normal extremal

lift ψ[n](·) and on the other part an abnormal extremal lift ψ[a](·). From
Remark 12, there holds

(17) ui(t) = hi(ψ
[n](t)) = h

[n]
i (ψ[n](t), ψ[a](t)),

and

(18) h
[a]
i (ψ[n](t), ψ[a](t)) = hi(ψ

[a](t)) = 0,

for every i ∈ {1, . . . , m}, and t ∈ [0, 1]. Since the control u(·) is non-
trivial, there exist i0 ∈ {1, . . . , m} and an open interval J ⊂ [0, 1] on
which ui0(·) is never vanishing. Differentiating (18) with respect to t,
one gets,

0 =
d

dt
h

[a]
i0+1(ψ

[n](t), ψ[a](t))

=
m∑

j=1

uj(t)h
[a]
(i0+1)j(ψ

[n](t), ψ[a](t))

=
m∑

j=1

h
[n]
j (ψ[n](t), ψ[a](t))h

[a]
(i0+1)j(ψ

[n](t), ψ[a](t))

= βi0,1(ψ
[n](t), ψ[a](t)),

for every t ∈ J . By induction,

βi0,s(ψ
[n](t), ψ[a](t)) = 0,

for every s ∈ {0, . . . , d − 1} and t ∈ J . Hence jN
q(t)F belongs to

B̂(d, i0, ψ
[n](t), ψ[a](t)) for t ∈ J , which contradicts the hypothesis.

q.e.d.

References

[1] A. Agrachev, Compactness for sub-Riemannian length minimizers and subanalyt-

icity, Rend. Semin. Mat. Torino 56(4) (1998) 1–12, MR 1845741, Zbl 1039.53038.

[2] A. Agrachev & J.-P. Gauthier, On subanalyticity of Carnot-Carathéodory dis-
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Zbl 0512.49003.
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