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AUTOEQUIVALENCES OF DERIVED CATEGORIES ON
THE MINIMAL RESOLUTIONS OF A,-SINGULARITIES
ON SURFACES

AKIRA IsHII & HOKUTO UEHARA

Abstract

In this article, we study the group of autoequivalences of derived
categories of coherent sheaves on the minimal resolution of A,,-
singularities on surfaces. Our main result is to find generators of
this group.

1. Introduction

Let X be a smooth projective variety over C and D(X)(= D°(Coh X))
the bounded derived category of coherent sheaves on X. D(X) carries a
lot of geometric information on X; for instance, Bondal and Orlov show
in [BOO1] that if Kx or —Kx is ample, then X can be entirely recon-
structed from D(X). To the contrary, there are examples of mutually
non-isomorphic varieties X and Y having mutually equivalent derived
categories. Given a smooth projective variety X, it is an interesting
problem to find all the varieties Y with D(X) = D(Y). In dimension 2,
the answer is given by Bridgeland and Maciocia in [BMO01], and Kawa-
mata [Kaw02] and in dimension 3, some results are shown by Toda
[Tod03]. Moreover, Orlov gives a satisfactory answer in [Orl02] to this
problem for the case where X is an abelian variety. The subject of this
paper is related to another important problem:

Problem 1.1. Given a smooth projective variety X, determine the
group of isomorphism classes of autoequivalences of D(X).

We denote this group by Auteq D(X). We note that Auteq D(X)
always contains the group A(X) := (Aut X x Pic X) x Z, generated
by functors of tensoring with invertible sheaves, automorphisms of X
and the shift functor. When Kx or —Kx is ample, it is shown that
Auteq D(X) =2 A(X) in [BOO01]. When X is an abelian variety, Orlov
solves Problem 1.1 in [Orl02]. In this case, Auteq D(X) is strictly larger
than A(X).

The twist functors along spherical objects are autoequivalences of an-
other kind that are not in A(X). Seidel and Thomas [STO01] introduced
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them, expecting that they should correspond via Kontsevich’s homolog-
ical mirror conjecture to the generalized Dehn twists along Lagrangian
spheres. These functors play an essential role in this paper and we recall
the definition.

For an object P € D(X x YY), an integral functor

%y : D(X) — D(Y)
is defined by

L
%y (=) = Ray.(P® Lk (—)),
where mx : X XY — X and 7y : X XY — Y are the projections.

Definition 1.2 ([STO01]).

(i) We say that an object a € D(X) is spherical if we have a®Quwx = «a,
and

o k#0dimx
Homi (@, @) {C k = 0. dim X.

(ii) Let @ € D(X) be a spherical object. We consider the mapping
cone

L
C = Cone(mia’ @ mya — Op)

of the natural evaluation 7fa é) msa — O, where A C X x X is
the diagonal, and 7; is the projection of X x X to the i-th factor.
Then, the integral functor T, := <I>§(_) y defines an autoequivalence
of D(X), called the twist functor along the spherical object a.

Consider the derived category D(X) for a smooth surface X. It is
natural to ask how large the subgroup of Auteq D(X) generated by
A(X) and the twists along spherical objects is. An example of a spher-
ical object in D(X) is given by a line bundle R on a chain of —2-curves
on X, considered as a sheaf on X. In this paper, we consider a chain Z
of —2-curves on a smooth surface X and study the autoequivalences of
the derived category Dz(X) of coherent sheaves on X supported by Z.

Note that the twist functor T, can be defined as long as the support
of o is projective, even if X is not projective. Moreover, the category
Dz (X) depends only on the formal neighborhood of Z in X. Thus, we
can assume as follows:

Y = SpecCllz, y, 2]/ («? + y* + ")
is the A,-singularity,
f: X->Y
its minimal resolution and
Z=fYP)=CuU---UC,
where P € Y is the closed point.
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For an autoequivalence ® € Auteq Dz(X), we do not know if it is
always isomorphic to an integral functor. Here, an integral functor
from Dz(X) to Dz(X) is defined by an object P € D(X x X) whose
support is projective over X with respect to each projection. If an
autoequivalence is given as an integral functor, we call it a Fourier—
Mukai transform (FM transform). Let

Auteq™ D (X) € Auteq Dz(X)

be the subgroup consisting of FM transforms. Remark that Aut X =
AutY and Pic X = Pic(X/Y) act faithfully on Dz(X) in our setting;
therefore, we see A(X) C Auteq™ Dz(X).

We also define a normal subgroup

N(Dz(X)) C Auteq Dz(X)

consisting of ® with ®(a) = « for every object a € Dz(X). This group
is trivial if every autoequivalence is an FM transform. We denote the
dualizing sheaf on Z by wz and put

B = <TOcl(—1)7Twz ‘ 1<I< n> C Auteq Dz(X).
The following is a main result of this article.

Theorem 1.3. We have
Auteq Dz(X) = Auteq™ D4 (X) x N(Dz(X))
and
Auteq"™ Dz (X) = (B, Pic X) x Aut X) x Z.
Here, 7 is the group generated by the shift [1].

Remark 1.4 (see Proposition 4.18 and Corollary 6.10). We know
more about subgroups of Auteq™ D (X), that is, we have the follow-
ing:

e BNPicX = (®@0x(C1),...,00x(Cy)).

e (B,PicX)=BXZ/(n+1)Z.

e B=(T, ‘ o € Dy(X), spherical ).

Put a; := O¢,(—1) (1 < i < n) and ap := any1 = wz, where we
consider the suffix i of a; modulo n + 1 (that is, oy = 4144 for all
i € Z). B is generated by all Ty,,’s by definition. We denote by Bj, the

subgroup of B generated by all T,,’s except Ty, . The result in [STO01]
implies that the defining relation of the group By is as follows:

Toi Ty Ty = Ty Toi Ty, £0<i<n, i#k—1k
To To, = To, Ta, if i — j # +1,0.

In other words, By, is the Artin group of type A, (or the braid group on
n—+1 strands). Conjecturally, our group B is the Artin group of type A,,.
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According to Orlov’s theorem [Orl97], any autoequivalence ® €
Auteq D(S) for a smooth projective variety S is isomorphic to an in-
tegral functor <I>7SD_>S for some P € D(S x S). Using this, we obtain
another main result:

Theorem 1.5. Let S be a smooth projective surface of general type
whose canonical model has A, -singularities at worst. Then, we have

Auteq D(S) = (To(a), A(S) ‘ C: —2-curve, a € Z).

In the proofs of Theorems 1.3 and 1.5, the following proposition is
essential.

Key Proposition. For any ® € Auteq Dz(X), there exists an inte-
ger i and W € B such that ¥ o ® sends every skyscraper sheaf O, with
x € Z to Oyli] for somey € Z.

Strategy for the proof of Key Proposition. Our main results, The-
orems 1.3 and 1.5, follow from Key Proposition and rather a formal ar-
gument. Here, we shall explain how to prove Key Proposition because
it is essential in this article. For v € Dz(X), let us put

IOESY lengtho,  HP (),
ip

where 7); is the generic point of C;. When « is spherical, we can see that
every cohomology sheaf HP(«) is a pure one-dimensional Oz-module
(Corollary 4.10). Hence, if [(a) = 1, we get a = O, (a)[i] for some
a,b,1 € Z. To show Key Proposition, we first prove that for a spherical
a with [(a) > 1, there is an autoequivalence ¥ € B such that [(a) >
[(¥(«)). Then, since ¥(«) is again spherical, induction on I(«) yields
the following:

Proposition 1.6. Let o be a spherical object in Dz(X). Then there
are integers a, b (1 < b < n) and i, and there is an autoequivalence
U € B such that

U(a) = Oc, (a)[i].
Next step to prove Key Proposition is to show:

Proposition 1.7. Suppose that an autoequivalence ® of Dz (X) is
given. Then, there are integers a, b (1 < b < n) and i, and there is an
autoequivalence ¥ € B such that

Vo ®(Oc,) = Oc,(a)li]
and
U o ®(Oc, (—1)) = O¢,(a—1)[i].

In particular, for any point © € Ci, we can find a point y € Cy with
Vo d(0,) = 0,li].



AUTOEQUIVALENCES OF DERIVED CATEGORIES 389

Put a = ®(O¢,) and 8 = ®(O¢, (—1)). By Proposition 1.6, we may
assume that [(a) = 1. To prove Proposition 1.7, we show the existence
of U € B such that [(¥(a)) = 1 and [(8) > I[(¥(F)). Then, we can
complete the proof by induction on I(3).

Once we get Proposition 1.7, we can rather easily show Key Propo-

sition by induction on n.
Construction of this article. In Section 3, we first demonstrate that
Proposition 1.7 implies Key Proposition. We then prove our main re-
sults, Theorems 1.3 and 1.5. The rest of this paper is devoted to showing
Proposition 1.7.

In Section 4, we study spherical objects and the twist functors for
a smooth surface X, which play the leads in our article. We first
observe that the isomorphism class of an object a € D(X) is deter-
mined by the cohomology sheaves H'(a) and some connecting data
e'(a) € Ext% (H(a), H""!(a)). Then, we give a necessary and sufficient
condition for v to be spherical in terms of H!(«) and €’(a). Especially,
for a chain Z of —2-curves on X and a spherical object « € Dz(X), we
see that P, HP(«) is a rigid Oz-module, pure of dimension 1 (Corol-
lary 4.10). This result, combined with Lemma 6.1 on pure sheaves on
Z, enables explicit computations in the latter sections.

In Section b5, as a first step, we consider the Ay cases of Propositions

1.6 and 1.7. We show Proposition 1.6 in Section 6 and Proposition 1.7
in Section 7 respectively. In Section 6, we compute (¥ («)) — I(«) for
various U’s in B by using results from §4 and Lemma 6.1. We use
similar methods in Section 7 and find ¥ in the statement of Proposition
1.7 via case-by-case arguments.
Notation and Convention. We work over the complex number field
C. Let X be an algebraic variety and Z a closed subset of X. Dz(X)
denotes the full subcategory of D(X) consisting of objects supported on
Z. Here, the support of an object of Dz(X) is, by definition, the union
of the supports of its cohomology sheaves. It is known that Dz(X) is
naturally equivalent to the bounded derived category of coherent sheaves
on X, supported on Z (see [KS90, Proposition 1.7.11]). When we write
Dz(X) for a closed subscheme Z of X, we forget the scheme structure of
Z and regard it as a closed subset of X. Let D.(X) denote the derived
category of “compactly supported” coherent sheaves on X, i.e. coherent
sheaves whose supports are proper over C.

Next, let Z = C1 U---UC), be a chain of —2-curves on a smooth
surface X. Namely, each Cj is a smooth rational curve with C? = —2

and
1 [l—m|=1
G Cp=dt ol
0 |l—m|>2.

We regard Z as a closed subscheme of X with respect to the reduced
induced structure. For a coherent sheaf R on Z, we denote by deg, R
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the degree of the restriction R|c, on Cj = P'. We denote by

RO = OclU---Ucn (a17 s 7a’l’b)
the line bundle (or Oz-invertible sheaf) on Z such that dege, Ro = @
for all [. When we write * instead of a;, we do not specify the degree at
(). For instance, when we put
Rl = OclLJCQUCg (CL, ba *)’
this means that Ry is a line bundle on C1UC>UC]3 such that dego, R1 =
a, degc, R2 = b and deg, R1 arbitrary. The expression
Ra = Oc¢,u..-(a, %)

means that there exists t > 2 with Ra = Ocyuc,u--uc, (a, *, ..., *). Note
that the support of Ry is strictly larger than C;. We often use figures
Cq Cy Cs
Ri: @ ® O

Ry : @—-
to define Rq, Ro above. We use a dotted line
Cq
Rs: @ - -

to indicate that R3 is either O¢, (a) or O¢,u...(a, *).
For an object a € Dz(X), we put

l(a) = Z lengthoxym HP (o),
4,p
where Ox , is the local ring of X at the generic point 7; of C;, HP (),
is the stalk over n; and lengthOXm measures the length over Ox ..
Throughout this paper, a point on a variety always means a C-valued
point unless otherwise specified. For a point z on a variety X, we denote
the structure sheaf of x by O,. We regard it as a skyscraper sheaf on X.
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3. Main results

In this section, we first show that Key Proposition follows from Propo-
sition 1.7 that will be shown in Section 7. As its application, we prove
our main results, Theorems 1.3 and 1.5. In the proof of Theorem 1.3,
we use the facts that BNAut X = {id} and that B is a normal subgroup
of (B, A(X)), which will be explained in Remark 4.17.
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This section is logically the final part of this article. Therefore, we
do not use the results in Section 3 afterwards.

3.1. Proof of Key Proposition. Let us first show the following claim.

Claim 3.1. Assume that ®(O¢,) = O¢,(a) and ®(Oc¢,(—1)) =
Oc¢,(a — 1) for some [. Then [ =1 or n.

Proof. The assumption implies that a closed point x € C; corre-
sponds bijectively to y € Cj such that ®(0,) = O,. If 1 <1 < n,
there are points g, y1 such that C;NCjyq = {yo} and C;_1NC; = {y1}.
Let xg,z1 € C1 be the points with ®(0y,) = Oy, and ®(O,,) = O,,.
Then, z¢ is contained in Supp CIfl((’)(;lH) NC4. Since Supp CIfl((’)ClH)
is connected and does not contain C7, xg is the intersection point of C;
and C5. By the same argument, we obtain xg = x1, which is absurd.

q.e.d.

We want to show that there is an autoequivalence
Ve (lil,B|licZ)
such that for any point x € Z, we can find a point y € Z with Vo
P(0,) = O,.
The assertion for the case n = 1 follows directly from Proposition 1.7,

and hence, we may assume n > 1. Utilizing Proposition 1.7 and Claim
3.1, we obtain an autoequivalence

Uy e([i],B|icZ)

such that for any point z € C, we have a point y € C; with U;0®(0,) =
Oy. Here, [ = 1 or n and we consider the case [ = n, the other case is
similar. Put Z =Y ;_, Cy and Zy = Z;i C). Then, we can see that
Uy o & induces an equivalence Dy, (X) = Dy, (X). By the induction
hypothesis, there is

s € (Top,w|a€Z1<I<n-1)
such that ¥ := W50W; has the desired property, and we finish the proof

of Key Proposition. q.e.d.

Let « € AutY (= Aut X)) be an involution such that ¢«(C;) = Cp—it1
for curves Cj;. The above proof also supplies the following:

Corollary 3.2. For any ® € Auteq Dz(X), there is U € (B, ", [i] }
i € Z) such that

Vod(R)=R

for every line bundle R on any subchain of Z.
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3.2. Proof of Theorem 1.3. First of all, we show the equality
Auteq™ D (X) = ((B,Pic X) x Aut X) x Z.

Note that BNAut X = {id} and B is a normal subgroup of (B, A(X)) by
Remark 4.17. Therefore, it suffices to show that ® belongs to (B, A(X))
for any ® € Auteq™ Dz(X). Key Proposition implies that there are
U € B and an integer i such that for any point x € Z, we have ¥ o
P(O,) = Oy[i] for some point y € Z. Then, Lemma 3.3 assures that
Vo ®d e A(X), and thus, we get the conclusion.

Lemma 3.3 ([BM98, 3.3]). Suppose an autoequivalence ® €
AuteqFMD(X) for an algebraic variety X satisfies the following: for
any point x € X, there is a point y € X such that ®(O,) = O,. Then,
® € PicX x Aut X.

Next, we prove
Auteq Dz (X) = Auteg"™ D4 (X) x N(Dz(X))

by using the McKay correspondence. Recall that Y is isomorphic to (the
germ of ) a quotient singularity C?/G, where G' C SL(2, C) is a finite sub-
group; the A,-singularity corresponds to the case G =2 Z/(n+ 1)Z. Let
Coh%(C?) be the abelian category of G-equivariant coherent sheaves
on C? and D%(C?) its bounded derived category. The McKay corre-
spondence [KV00] establishes an equivalence from the derived cate-
gory of the minimal resolution of C2/G to D%(C?), which is an FM
transform. This induces an equivalence from Dyz(X) to the full sub-
category D%}((CQ) of objects supported on the set {0}. Especially, it
sends O¢;(—1) € Dz(X) to p; ® Oy € D{%}((CQ), where p1,...,p, are
the non-trivial irreducible representations of G. Moreover, wy corre-
sponds to py ® Op[—1] where po is the the trivial representation of
G. Thus, an autoequivalence of Dz(X) which fixes wz and O¢,(—1)
for i = 1,...,n corresponds to an autoequivalence of Dﬁ)} (C?) which

fixes pg ® O, ..., pn ® Og. Recall that we have a natural isomorphism
Aut X = AutY; via this isomorphism Aut X acts both on Dz(X) and
on D%} (C2) preserving the McKay correspondence.

Proposition 3.4. Let ® be an autoequivalence ofD%} (C?) satisfying
D(p; @ Op) = p; @ Oq for all irreducible representations p; of G. Then,
there is an automorphism o € AutY such that

P(a) Zo*a

for all o € D%} (C?).

Proof. Since any sheaf F € Coh{GO} (C?) is a successive extension of
sheaves p; ® Oy, it follows from the assumption that ®(F) is also a sheaf.
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Moreover, ® restricted to Coh{GO}(C2) is an exact functor of abelian

categories. Let R be the affine coordinate ring of C? with maximal
ideal m of the origin. We denote by R the completion of R with respect
to m.

Claim 3.5. We have ®(p; ® R/m!) = p; ® R/m! for all irreducible
representations p; and for all positive integers (.

Proof. We prove the claim by induction on [. The case | = 1 is
included in the assumption. Assume [ > 1 and consider the short exact
sequence

0—pi@m~/m! — p;®@ R/m! — p;® R/m!~! — 0.
Since the equivalence ® sends a sheaf to a sheaf, the following is also an
exact sequence of sheaves:
0— ®(p; @ m' ™! /m!) — ®(p; © R/m') — ®(p; @ R/m'~") — 0.

Here, we have ®(p;@m!~! /m!) = p;@m!~1/m! since m!~! /m! is a direct
sum of sheaves p; ® Op, and ®(p; ® R/m!~!) = p; @ R/m!~! by the
induction hypothesis. Therefore, the claim follows from the following
lemma. q.e.d.

Lemma 3.6. Let
0—=p@m™/m - F—=p@R/m™1 =0
be the extension corresponding to a class e € G—Ext}cg (pi®@R/m!~! p;®
m!=t/mb). Then, F = p;@ R/m! if and only if poe # 0 in G—Ext(lcz (pi®
R/m!=L, p; @ Op) for any j and for any surjection ¢ : p; @ m!=t/ml —
pj @ Op.

Proof. The ‘only if’ part is obvious. Let F be an extension with
the above property. Lift p; ® 1 C p; ® R/m!~! to a G-invariant vector
subspace V = p; of F. The assumption on e implies that V' generates F
as an R-module. Therefore, F is of the form p; ® R/J for a G-invariant

R-submodule J of p; ® R. Since F fits into the above extension, J must
coincide with p; ® m!. q.e.d.

We denote by j : C — D%} (C?) the full subcategory whose objects
are sheaves p; ® R/m! where i and [ vary.

Claim 3.7. There exists an automorphism ¢ € AutY with an iso-
morphism ¢ : 6% o j = P o j.

Proof. ® induces an isomorphism (of C-algebras)

o1 : G-Homgz (R/m!, R/m') = G-Homgz(®(R/m!), ®(R/m')).
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By Claim 3.5, the right-hand side is isomorphic to (R/m!)¢ and this
isomorphism does not depend on the choice of the isomorphism in Claim
3.5. Hence, 0y is a C-algebra automorphism of (R/m!)%. Put

o =limo; € AutY.
T

By replacing ® with (¢*)~! o ®, we may assume that o is the identity.
We choose isomorphisms ¢! : R/m! = ®(R/m!) such that

R/ml-H R/ml

= )=
141y 2P0 l
O(R/m™") —= @(R/m’)

commutes where p; is the projection. We see that ®(f) o ¢? = qb? o
f for any G-equivariant morphism f : R/ m! — R/m! since f is the
multiplication by an element of (R/m!)® and since o; is the identity.

For i # 0, we first choose isomorphisms 1 : p;®@ R/m! = ®(p;@ R/m!)
such that ¢} o (1,, ® p) = ®(1,, ® pr) o ¢j,;. For an element a €
(pi®R/m")¢, denote by mg : R/m! — p;®R/m! the multiplication by a.
Then, (¢)~Lo®(m,)o¢) is also a morphism from R/m! to p;@ R/m! and
hence is the multiplication by an element &(a) of (p; ® R/m")%. Here, &
is an automorphism of (p; ® R/m!)¢ as an additive group. Moreover, for
any b € (R/m"), the relation my, = m,om; implies that & is (R/m!)C-
linear. Furthermore, &1 induces & on (p; ® R/m )G. Therefore, we
can define £ = hm & which is a RG-module automorphism of (p; ®R)
Since

~ ~ G o\ WV
([Esn85], see also [Rie03, Theorem 12]), ¢ gives rise to automorphisms

f of p; ® R and therefore, we obtain an automorph1sm fl of p; ® R/m!
for any I which coincide with & on (p; ® R/m")¢. Put

P =10 &

Then for any a € (p; ® R/m")¢, we have §omg = Mg, (q), hence the
diagram

R/m! pi @ R/m! pi @ R/m!
4= x|
l ®(ma) !
®(p; ® R/m’) ®(pi @ R/m’)

is commutative. Then, we obtain

(3.1) ¢} 0omg = ®(mg) o B
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Finally, we consider a G-equivariant morphism f : p; ® R/mF —
p;® R/m! for arbitrary i, j, k, 1 and show that

(3:2) pi © R/m* pj ® R/m!

ldﬁg lqs{
o(f)
®(p; ® R/m*) —— ®(p; ® R/m")

commutes. When k = [, we write Clﬁ(f) = (gb{)_l o ®(f) o ¢! and put
(= lim, (/. Then, ¢7" is a R%-automorphism of

~ ~\G ~ ~
(Homﬁ(,oi ®R,p; ® R)) = Hompe ((pi @ R)Y, (p; ® R)).

Take f € Homﬁq((pi@)R)G, (p] ®R)'G) and g € Hompe (R, (p'i_®R)G).
Then, we have (7°(fog) = ¢(7(f)o(®(g) by the definition of (/%’s. (3.1)
shows that (*°(g) = g and ¢’°(f o g) = f o g. Since g is arbitrary, these
equalities imply that ¢7*(f) = f and hence, the commutativity of (3.2)
in the case k = I. If k > [, then f factors through p; ® R/m! and if k <
then f can be composed with the surjection p; ® R/m! — p; ® R/m*.
In this way, we obtain the commutativity of (3.2). q.e.d.

Claim 3.8. Let j' : Coh{GO}(CQ) — D%}(Cz) be the natural em-
bedding. Then, we have an isomorphism ¢ : 6* o 7/ = ® o j/. More-
over, for F € Coh%}((CQ), let us define ¢z, : Fln] — ®(F[n]) by
bFm) = ¢x[n]. Then, these isomorphisms commute with Hom’s be-
tween shifts of sheaves: F[n] and G[m)].

Proof. As in the proof of the previous claim, we may assume o is the
identity. For F € Coh%} (C?), we can take a presentation

&L= & —F—=0

where & and & are direct sums of sheaves in C. Then, the proof is
similar to that in [Orl97, 2.16.1-2.16.4]. q.e.d.

Now, we give a proof of the proposition. We may assume o is the
identity by replacing ® with (6*)™' o ®. Let a # 0 be an object of
Dﬁ)} (C?%). a = a® is a bounded complex over Cohﬁ)} (C?). Let p and ¢
be the minimum and the maximum of i with o’ # 0, and denote by v
the natural morphism a4[—q] — «. We show by induction on g — p that
there is an isomorphism ¢, : & — ®(a) such that ¢o0v = ®(v)opaa[—q].
Let 3 = (3* be an object such that
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with the same differentials (except for d9=! : 39~ — 39) as a. Then, 3
fits into a distinguished triangle

al—q] = a— B 5 all—q+1].

By the induction hypothesis, we have an isomorphism ¢g : 3 — ®(3)
such that ¢gou = ®(u) o pge—1[—q + 1] where u : BT —q+1] — B
is the natural morphism. For the existence of ¢, with the prescribed
property, it is enough to show ¢na[—g+ 1] ot = ®(t) o 3. Consider the
following diagram:

B g+ 1] — > ——— (g + 1]

l%ql [~g+1] lm l%q [~q+1]
35 —g + 1] —2 a(8) 2 (a)[—q + 1].

Here, the left square is commutative by virtue of the property of ¢3 and
the whole square is commutative by Claim 3.8. Thus, we obtain

(3.3) ¢aa|—q+1]otou = P(t) o pgowu.
If we consider the object v in a distinguished triangle
BN—q+1] 5 B —y— B =g +2],

then we see Hom(vy, ®(a?)[—q + 1]) = Hom(y,af[—¢ + 1]) = 0 and
therefore

u” : Hom(8, ®(a?)[~q + 1]) — Hom (5" [~¢ + 1], ®(a)[~q + 1])

is injective. Thus, we can remove ‘ou’ from (3.3) as desired. q.e.d.

We apply the above proposition to Dz(X) via the McKay correspon-
dence. Assume ¢ € AuteqDz(X) is given. From Corollary 3.2 and
Proposition 3.4, we obtain an FM transform ¥ € (B,Aut X, [i] | i € Z)
such that W o ® € N(Dz(X)).

On the other hand, Lemma 3.3 implies that an autoequivalence

® € Auteq™ Dz (X) N N(Dz(X))

is induced by an automorphism o of X such that o(z) = x for all z € Z.
Moreover, we have o*F =2 F for any coherent sheaf 7 on X supported by
{z} C Z and this implies that the automorphism of the two-dimensional
regular local ring Ox , induced by o is the identity. Consequently, o
and hence ® are the identity. Now, we obtain the splitting

Auteq Dz(X) = Auteq!™ D4 (X) x N(Dz(X)),

which completes the proof of Theorem 1.3. q.e.d.
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3.3. Proof of Theorem 1.5.Let f : S — Sy be a composite of
blowing-ups along a point and Sy the minimal model of S.

Claim 3.9. Let C be an irreducible curve on S.

(i) If Kg-C = 0, then C is a —2-curve. Assume furthermore that
Exc fNC # 0. Then C C Exc f.
(i) If Kg-C <0, then C is a —1-curve with C' C Exc f.

Proof. Put Kg = f*Kg, + Y a;E;, where E;’s are the components
of Exc f and a; € Z~g. Assume that Kg-C < 0. Then, we have
0>Kg-C>> a;F;-C, and hence, CNExc f = () or C = E; for some
i. In the former case, we get Kg-C = Kg, - f(C) = 0, in particular C
is a —2-curve. If Kg-C < 0, then the latter case occurs and we have
C? < 0. Therefore, we obtain Kg-C = —1. q.e.d.

Put f =¢p10---0¢p, and S = 5, where ¢ : Sp — Sip_1 is the
blow-up along a point xp_1 € Sk_1.

Claim 3.10. Let C be a —1-curve on S. If some —2-curve C7 meets
C, no other —2-curves meet C.

Proof. We may assume that ¢, contracts C, since C' C Exc f. For
a contradiction, suppose that there are two —2-curves C7, Cs such that
both of them meet C. By Claim 3.9, ¢, (C1) and ¢, (C2) are —1-curves
on Sp—1. ©n(C1) N pp(Cs) # 0 yields a contradiction with C1,Cy C
Exc f. q.e.d.

Claim 3.11. Any connected component of the union of all —2-curves
on S; (0 < k < n) forms a chain.

Proof. We show the claim by induction on k. Note that the claim
holds for k£ = 0 by the assumption of Theorem 1.5. Suppose that the
claim is true for Sg. If there are no —1-curves passing through zj, we
have C' N Exc g1 = 0 for any —2-curve C' on Sii1. Then the claim
is true for Siy1. If there is a —1-curve C' passing through x, no other
—1-curves pass through z; by Claim 3.10 for Sk,;. Claim 3.10 for S
says that at most one —2-curve meets C'. Now, we get the conclusion
by the induction assumption. q.e.d.

Suppose that ® € Auteq D(S) is given. Then, Orlov’s result [Or197]
assures that there is an object P € D(S x S) such that & = &F.
By the proof of [Kaw02, Theorem 2.3], we have a projective surface
Z C Supp P such that p;|z : Z — S (i = 1,2) is an isomorphism. Here,
p;’s are the projections S x S — S. Put q := pa|z o (p1]2) L.

Because S is of general type and ®(0,) @ wg = ®(O,) for any = € S
(see [BMO1, Theorem 2.7]), we have dim ®(O;) < 1. Assume that
dim ®(Oy,) = 1 for some xg € S. Then, because Kg - C = 0 for any
one-dimensional irreducible component C' of Supp ®(Oy,) by the proof
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of [Kaw02, Theorem 2.3], Claim 3.9 implies that there is a —2-curve
C on S such that C C Supp ®(Oy,). Since ¢(zg) € C, there is a —2-
curve C’ such that zo € C’. Therefore, we can conclude that if a point
x € S is not contained in any —2-curves, we have Supp ®(O5,) = q(z).
Moreover, the proof of [BMO1, Proposition 3.1] deduces that ®(0,) =
Og(a)i] for some i € Z. Here, the choice of 7 is independent of the choice
of x.

Let {Z;}; be the set of chains of —2-curves on S. Take a point
z € S\[[;Z;. Then, we have ®(O0;) = Oyy)lil, and in particular
q* o ®(Oy) = Ogli] for any x € S\[[; Z;. Therefore ¢* o @ preserves
Dz.(S) for each j. Now, Key Proposition and Lemma 3.3 complete the
proof. q.e.d.

4. Spherical objects and twist functors for the derived
categories of smooth surfaces

This section provides technical tools used in the proofs of Proposition
1.6 and Proposition 1.7. In Section 4.1, we recall two kinds of spectral
sequences; their do-maps are determined by some connecting data €' ().
Then, we see in Section 4.2 that the isomorphism class of an object a €
D(X), X a smooth surface, is determined by the cohomology sheaves
H?(a) and the connecting data e’(a). In Section 4.3, we give a necessary
and sufficient condition for « to be spherical in terms of H(«) and €’(«).
In Section 4.4, we summarize properties of twist functors and then do
some computations. We consider the group B and its relation with
Pic X in Section 4.5.

4.1. Spectral sequences arising from the canonical filtration of
a complex. In this subsection, we review some basic facts on spectral
sequences. See [GM96, IV.2. Excercise 2] and the proof of [Ver96, 111
Proposition 4.4.6] for details.

Let A be an abelian category with enough injectives and let D(.A) be
the bounded derived category of it. For an object a € D(A), we denote
by Hi(a) € A the i-th cohomology of the complex a. For objects
a, 3 € D(A), there is a spectral sequence
(4.1)

EPT = @Hom%m) (H'(@), H™M(3)) = EPT1 = HompDJEi)(a,ﬁ).

(2

For a cohomological functor F' from D(.A) to an abelian category B,
we have another spectral sequence

(4.2) EN = FP(HY(a)) = EPT? = FP19(q).
We use (4.1) for a single spherical object o = /3 in the proof of Propo-

sition 1.6, and two spherical objects a = ®(O¢,) and § = ®(O¢, (—1))
in the proof of Proposition 1.7.
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In addition, we also use the description of the maps do of the above
spectral sequences. We denote by 7<,a the following complex:

n

o n<p
(T<pa)” = < kerd? n=p
0 n>p

We define 7,0(= T>pt10) so that it fits into a distinguished triangle
T<pll — @ — Top@ — T<po[1]

and we put
Tlp.g)® = T2pT<q®-

Especially, we have an isomorphism 7y, ;o = HP(a)[—p] and a distin-
guished triangle

(4.3) HPHQ)[=p+1] = Tp1 o — HP(@)[=p] = HP~H(@)[-p +2].
The last morphism determines an element

e?(a) € Homp gy (HP (), HP L (0)[2]) = Exti(Hp(a), HP ).
This class gives rise to the morphisms ds of the above spectral sequences:

Proposition 4.1. The morphisms dy? : EP? — E§+2’q_1 in the
spectral sequences in (4.1) and (4.2) are determined as follows.

(4.1): For @;f; € P, Hom%(A)(Hi(a),H”q(ﬁ)),

B9(5) = 1P 9fir 0 a) - H1(3) o £
(4.2): d%’q is the morphism F(e(a)[p]) : F(H(a)[p]) — F(HI 1 (a)[p +
2]).

4.2. Reconstruction of objects of the derived category of a
smooth surface. Let X be a smooth surface. We denote by D(X) =
D’(Coh X) the bounded derived category of coherent sheaves on X. The
following proposition shows that an object a of D(X) is determined
by its cohomology sheaves H'(a) and the classes e‘(a), up to (non-
canonical) isomorphisms.

Proposition 4.2. Suppose we are given coherent sheaves G* on X
and elements

e € Ext% (G, G 1)
for all i € Z such that G'’s are zero except for finitely many i’s. Then,
there is an object a € D(X) and isomorphisms p; : H'(a) = G* such
that p;_1[2] o €'(a) = €' o p;. This « is uniquely determined up to
isomorphisms.
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Proof. Define qg = Inax{q ‘ Gl £ O} and q; = min{q ‘ Gl £ 0}. We
use induction on the non-negative integer qog — q1. When gg — g1 = 0,
we just define a to be G%[—qg]. Let us consider the case qo — q1 > 0.
By the induction hypothesis, we can find § € D(X) and isomorphisms

G i#q
0 1=qo

vi : H'(B) = {

such that v;_1[2] 0 €!(3) = el ov; if i # qq.
Let us consider the spectral sequence (4.1)

qu — Eth( (GD, qu+<1(ﬁ)) — Hom%igc)(gqo[—%]» B).

Then, since EY? =0 for ¢ > 0 or p & [0,2], we have an isomorphism

(qu—l)* 2

f i Ext} (g0, g0~y —— gy = Bl
From the morphism — f(e%)[—1], we obtain an object a € D(X) and a
distinguished triangle

G®[—qp — 1] —feo) I6] « G9[—qp).

We denote the last morphism by ¢. Then, we have an isomorphism
§ 1 Tego = [ and a morphism of distinguished triangles:

3 @ hid GP[—qo] &) B[1]

l | | |

HP=1(B)[—qo + 1] — Tlao—1.q0]¥ — G [—go] —— HP~1(B)[—qo + 2]

Here, the triangle in the second row is isomorphic to the one in (4.3).
Thus, putting u; = v; 0o H(E) for i # qo and pg = H®(p), we have
wi s Hi(a) =2 G and pi_1[2] o €'(a) = €' o .

For the uniqueness, let o and 3 be objects of D(X) with isomor-
phisms &; : Hi(a) = HY(B) satisfying & _1[2] o €?(a) = €*(B) 0 &;. Then,
®;&; lies in Eg’o in the spectral sequence (4.1) and the condition on &;
implies that dg’o(@ifl-) = 0. Since X is non-singular of dimension 2, E5"
vanishes unless 0 < p < 2 and hence, (4.1) is E3-degenerate. Therefore,
©;&; survives at the infinity and there exists { € Hompx)(a, 3) which
induces &; on the cohomology sheaves. Since each &; is an isomorphism,
we see that £ is an isomorphism. q.e.d.

In the light of Proposition 4.2, we obtain the following.

Lemma 4.3. Let « be an object of D(X) which satisfies H'(a) = Gi
Gi for some coherent sheaves Gi,Gy. For the class ¢'(a) € Ext% (H!(a),
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HHa)), we write

so that

6.6,
G5, G171,
1,657,
G5.Gy™")

respectively. If allb; and ¢; are zero, then we have objects aq, ag € D(X)
such that a = a1 @ az, H' (o) = G, €'(a1) = a; and e'(az) = d;.

a; € BExt%
b; € Eth(
ci € BExt%

d; € Eth(v

~—~~ I~

4.3. Spherical objects. The definition of a spherical object on an n-
dimensional smooth quasi-projective variety X is given by Seidel and
Thomas:

Definition 4.4 ([ST01]). We say that an object v € D.(X) is spher-
ical if we have o @ wx = « and

0 k#0,n
Hom = ’
omyp, ) (e, a) {(C k= 0.n.

Here, suppose that dim X = 2 and take an object a of D.(X).
We shall give conditions for a to be spherical under the assumption
a®@wyx = a.

Proposition 4.5. Assume that a @ wx = «. The following are
equivalent.

(i) « is spherical.
(ii) In the spectral sequence (4.1) (for o = [3)

ER? = € Homly (H' (o), H'*(@)) = Hom, %, (a, a),

we have the following:
o dY" is injective for all g # 0.
e Ker dg’o is a one-dimensional C-vector space generated by the
element ®;id; € Eg’g.
o E;7 =0 for all q, i.e., Exty (Hi(a),H/(a)) = 0 for all i,j.
Proof. Notice that the spectral sequence in (ii) degenerates at the
FEs-level, since X is two-dimensional. We have

(4.4) Ey? = (Ey71)"
for all ¢ by the Grothendieck—Serre duality.
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Let us first give the proof of the implication from (i) to (ii). Notice

that
dim Ker dy® = dim Ey° < dim E® = 1.

Since @jid; € Ker dg’o, we obtain the second condition in (ii) and
Ey~' = E27? = 0. Especially, we get E;' = 0 by (4.4). Since
dimE;’q < dim E'™4 = 0 for all ¢ # —1,1, we have Egl’q = 0 for all
q, as desired. Now, let us show the first condition in (ii). Obviously,
the condition (i) implies that d9? is injective for ¢ # 0,2. On the other
hand, we know that dg’2 is surjective by E? = 0 and dg’fl is isomorphic
by E:,Z,’*2 = 0. In particular, we see

dim Ker dy? = dim By — dim ES? = dim EY™" — dim B3 = 0,
which implies the conclusion.

Conversely, assume that (ii) holds. We have

_ 1 =0

dim EYY — dim E27" < dimKerd)? = {4
0 g#0.
Combining this and (4.4) together, we get
dim Eg’q = dim Eg’qfl

for ¢ # 0,1. Since dg’q is injective for ¢ # 0, we know that dg’q is
isomorphic for g # 0,1, in particular, Eg,—z = Coker dg’_l = 0. This
equality and (ii) imply

Coker d! = Eg’o = HomQD(X)(a, a)
and
Hom%(X) (o, @) = Eg’o =~ Kerdy? = C.
Hence, it follows from the duality that
Coker dg’l = Hom%(X)(a, a)Y = C.
Therefore, we have
dim ES° — dim By ~" = dim B3 — dim EY"' = dim Coker dy' = 1.
Especially, we get the surjectivity of dg’o and
dim Hom})(x) (o, ) = dim Eg’_l = dim Coker dg’o =0.
This completes the proof. q.e.d.

Remark 4.6. Via Proposition 4.1, Proposition 4.5 (ii) is regarded
as a condition on H'(a) and e’(a). Consequently, the condition for
a € D(X) to be spherical is entirely expressed in terms of H'(«) and
et(a).

Example 4.7. Let X be a smooth surface.
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(i) Let Z be a chain of —2-curves on X and £ a line bundle on Z.
Then £ is a spherical object of D(X).

(i) We give a rather non-trivial example of a spherical object a €
D(X), supported on C; U --- U C5, a union of —2-curves in As-
configuration on X. First, we define the cohomology sheaves of «

as follows:
C1 Cy Cs Cy Cs
H2(a) : © S ©
Ri: S © © ©
Ry :
HO(a) : S © © © ©

with H!(a) = R @ Rs. Notice that
Ext% (H%(a), H'(a)) = Ext% (H?(a), R1) @ Ext% (H?*(a),Re) 2 C & C
and
Extk (H'(a), H'(a)) = Ext% (R1, H' (o)) @ Extk (R2, H(a)) 2 C & C.
Keep these isomorphisms in mind, and take
() = (ef, €3) € ExtX (H*(a), H' ()
and
el(@) = (0,¢3) € Ext} (H'(a), H(a))
with e?,e3 el € C*. The data Hi(a) and e'(a) € Ext’ (Hi(a),
H"!(a)) determine an object a € D(X) by Proposition 4.2. We
can see that « is spherical by checking the conditions in Proposi-
tion 4.5 (ii).
Proposition 4.5 holds for any compactly supported object on a smooth

surface X. In the situation of our problem, we can say more about the
cohomology sheaves of a spherical object.

Lemma 4.8. Let f : X — Y be a surjective morphism from a smooth
variety X to a variety Y, and let Z = f~'(y) be the scheme-theoretic
fiber of a closed point y € Y. If a € Dz(X) satisfies Hompx)(a, o) =
C, then every cohomology sheaf H'(c) is an Oz-module.

Proof. Take an affine open neighborhood U := SpecR of y and
denote by m, C R the maximal ideal of y in U. Then, the spec-
tral sequence (4.1) is a spectral sequence of R-modules and we have
E° = Hompx)(a,a) = R/m,. On the other hand, this spectral se-
quence satisfies

EY’ > By’ > 5 EY

and the image of E in Eoy < Eg’o = @, Homx (H'(a), H'(t)) con-
tains @;id;. Thus, for each identity map id; on H'(«), we have my,-id; =
0 and Zz - H'(ar) = 0. This completes the proof. q.e.d.
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Recall that a coherent sheaf F on a variety X is rigid if Exty (F, F) =
0.

Lemma 4.9. Let F be a one-dimensional rigid coherent sheaf on a
smooth surface X. Then F is purely one-dimensional, that is, every
non-zero subsheaf of F is one-dimensional.

Proof. Let Fior be the ‘torsion’ part of F, namely the maximal zero-
dimensional subsheaf of 7. Our aim is to show Fi,- = 0. Take a
surjection & — F from a locally free sheaf £ and denote the kernel of it
by G. We consider the following commutative diagram with exact rows.

0 g £ F 0
N
0 GgvVv & F 0

Here, GV is the double dual of G and F' = F/Fy,,. Note that Fy,, =
GVV /G by the snake lemma. Let us consider the composite of the natural
maps

Homx (G, Fior) — Homx (G, F) — Extx (F, F)
and denote it by ¢. Since Homx (G, Fior) is a zero-dimensional sheaf,
the vanishing of HO(Ext (F,F)) implies that ¢ is the zero map. This
means that in the exact sequence

Homx (£, F) — Homx (G, F) — Exty (F,F) — 0,

we can extend a (local) map ¢ € Homx (G, Ftor) to a (local) map
v € Homx(E,F). v sends (GVV) into Fyyp, since GVV/G(2 Fiop) is

zero-dimensional. Therefore, in the exact sequence
HOmX(gvvvftor) — Homx (G, Ftor) — Extﬁ( (Ftors Ftor) — 0,
the first map is surjective. It follows that Exti (Fiop, Fror) = 0. Since

Fior is zero-dimensional and rigid, we obtain F,r = 0. q.e.d.

We summarize Proposition 4.5, Lemmas 4.8 and 4.9 in our situation
as follows.

Corollary 4.10. Let {C;} be a collection of —2-curves in an ADE-
configuration on a smooth surface X and let Z be the fundamental cycle
of U; Ci. If « € Dz(X) is a spherical object, then the sheaf @, HP ()
is a rigid Oz-module, pure of dimension 1.

Recall we defined /() for an object & € Dz(X) in Introduction. The
following is a basic tool in the proofs of Propositions 1.6 and 1.7.

Lemma 4.11. Under the notation in Corollary 4.10, we have

(4.5) [(®(a)) < Y UE(HY(a)))
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for any ® € Auteq Dz (X). The equality in (4.5) implies the vanishing
dy? =0 for all p,q in the spectral sequence
(4.6) Ep? =HP(D(H () = EPT = H'(®(a)),
if every EY is purely one-dimensional.

Proof. In (4.6), we see that
Zz (E™) Zz (ER:9)
< Zz (EP9) < Zz (E5) = 1I(®(HY(a))),
q

which implies (4.5). If the equality holds in (4.5), then 3 1(E§7) =
> p gl (E5?). This ensures I(Im(dy?)) =0, and consequently dim Im(dy?)

< 0. Since Im(d5) is a subsheaf of EZT*7~! which is pure of dimension
1, it must be zero. q.e.d.

Remark 4.12. If Z forms an A,-configuration in Lemma 4.11, we
can actually show that every E5? is always purely one-dimensional by
Corollary 4.10 and Lemma 6.1.

4.4. Twist functors. Let X be an n-dimensional smooth quasi-pro-
jective variety. The following definition is due to Seidel and Thomas.

Definition 4.13 ([STO01]). Let o € D.(X) be a spherical object and
consider the mapping cone

L
C = Cone(nia” @ mya — Op)

of the natural evaluation 7ja (%5 msae — Oa, where A C X x X is
the diagonal and m; is the i-th projection 7; : X x X — X. Then,
Ty = @g(% y defines an autoequivalence, called the twist functor along
a spherical object a. The object T, () fits into a distinguished triangle

R Homop, («, 3) (%éc a =5 B — To(B)

for any § € D(X), where ev is the evaluation morphism. For the inverse
T! of T, we have a distinguished triangle

T4(5) — B = RHomoy (5,0)" e a
for any 5 € D(X).

We list several lemmas on twist functors that will be used later.

Lemma 4.14.
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(i) Let a € D(X) be a spherical object. For an FM transform & :

D(X) — D(X) with quasi-inverse ®~1, we have

®oT,o0® ' = Tp,.
For an integer i, we also have
Ty = ali]-

(ii) Let Z C X be a closed subscheme of X which is proper over C.

Then, we have

(T, ‘ o € Dy(X), spherical ) N Aut X = {id}.

Proof. (i) is readily verified by definition. The kernel P of an integral
functor ®” in the left-hand side of (ii) satisfies that Plx\zyx(x\z) =
Oalx\z)x(x\2), where A C X x X is the diagonal. This leads us to
the equality in (ii). q.e.d.

Lemma 4.15. Let X be a smooth surface.

(i) For a —2-curve C' on X and an integer a, we have the following:

(1)
Toc()(Oc(a)) = Oc(a)[-1]
and
Too(a—1)(Oc(a)) = Oc(a — 2)[1].
(2)
Toc(a-1) © Toc () = ©0x(C).
(ii) Let Z =3~ C; be a chain of —2-curves C; on X withn > 1 and

put « = Oz(ay,az,...,a,) for some a; € Z. Then, we have the
following:
(1)
«a p=20
HY (Tog, (a1) (@) = § Ocy(a1) p=1
0 p#0,1.
(2)
TOcl (al_l)(a) = OCQU...UC”(CLQ, e ,an).
(3)

Ocl(alf?)) p=—1
HY (Tog, (a1-2)(@)) = § Oz(b1,...,bny) p=
0 p# —1,0.
Here,
ar—2 [ =1
bhb=qax+1 [=2
a l;é 1,2.
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(4)
TOck (ak—l)(a) =«
for all k (1 <k < n).
(5)
TOck (ap—2)(@) = Oz(b1,...,by)
forallk (1 <k <n).

Here,
aj i1£k—1,kk+1
bp=<a;+1 I=k—1,k+1
ar—2 l=k.

Proof. (i.1) and (ii) are easy calculations. It follows from (i.1) that
Tog(a—1)°Toe(a) sends Oc(a) to Oc(a—2) and Oc(a+1) to Oc(a—1).
Hence, for any point = € X,

Too(a-1) © Tog(a)(Ox) = Oy
for some y € X. Thus, Lemma 3.3 implies that T, (q—1) © To.(a) i an

element of A(X). Lemma 4.14 (ii) then yields it must be ® L for some
line bundle L. Since O¢(a)® L = O¢(a—2), we see L = Ox(C). q.e.d.

4.5. On the group B. Let Z = C1U---UC,, C X be as in Introduction.
Recall we defined

B = <TOcl(—1)7Twz ‘ 1<i< n> C Auteq Dz(X),
where wz denotes the dualizing sheaf on Z. Put
B = (Toqw|a€Z1<1<n).
Then, we have
Lemma 4.16. B = B'.

Proof. The proof is by induction on n. When n = 1, we write C' = .
In this case, B = <TOC(_2)’TOC(—1)> C B’ by definition. Then, Lemma
4.15 (i.2) shows ®Ox(C) € B. Thus, we obtain from Lemma 4.14 (i)

Toc(2a—2) = ®0O0x(—aC) o Too(-2)© ®0x(aC) € B,

and
TOC(Qa—l) >~ R0x(—aC) o TOC(—l) o ®0x(alC) € B.
Let us consider the case n > 1. By the induction hypothesis, we have

(47) (Togw lacZ2<i<n) = (Tog (1), Ty, |2<1<n)

and
(4.8)

<Tocl(a) lacz,1<I §n—1> _ <TOCZ(_1),TwZn 1 gzgn_1>,
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where Z; = Y7, C; and Z, = 37" C;. Since we have
TWZ1 = T(//)Cl (_1) 9] TWZ o) Tocl(_l) € B

and

Twzn = T(,an(il) o TWZ o Tocn(—l) eB
by Lemmas 4.14 (i) and 4.15 (ii), (4.7) and (4.8) show that Toc, () €
B for all I (1 <1 < n), that is, B C B. Conversely, we see from

Lemmas 4.14 (i) and 4.15 (ii) that T, € B’. Thus, we obtain B = B’.
q.e.d.

We further see in Corollary 6.10 that T,, € B for every spherical
object a € Dyz(X).

Remark 4.17. We see from Lemma 4.14 (i) and Lemma 4.16 that
B is a normal subgroup of (A(X), B). It also follows from Lemma 4.14
(ii) that BN Aut X = {id}.

Next, we consider the relation between B and Pic X in Auteq Dz (X).

Proposition 4.18. We have the following.

(i) BnNPicX = <®(’)X(C’1),...,®(’)X(Cn)>.
(ii) (B,PicX) =~ B x Z/(n+ 1)Z.

Proof.

(i) Lemma 4.15 (i.2) implies that the right-hand side is contained in
the left-hand side. Let i : X\Z — X be the open immersion. For a
spherical object @ € Dz(X), we have (i* o To)(Ox) = Ox\z. Hence,
for an autoequivalence ®L € BN Pic X, we have i*L = Ox\ z. Thus, £
belongs to the right-hand side.

(ii) Note that the natural map
deg : PicX — Z%" L+ (degL|c,)
is isomorphic [Art66]. We denote by Ox(ai,...,a,) the element of
Pic X which goes to (a1, ...,a,) € Z%".
By (i), B N Pic X can be regarded as the root lattice; then Pic X
is the weight lattice of it. As is well-known (see [Hum72, Section 13,

Exercise 4]), the weight lattice modulo the root lattice of type A, is
isomorphic to Z/(n + 1)Z. Thus, we have

(B,PicX) /B =PicX/(BNPicX)=Z/(n+1)Z.

Put

Py = TOCI(—I) 0---0 TOCn(—l) o ®Ox(0, ..., 0, 1),
and o := O¢,(—1) for l = 1,...,n, and ap := anpy1 := wz[l]. Then,
we can show by direct computation that ®¢(ay) = a1 for I =0,...,n.

Thus, we have ®,""!(ay) = o for all I (0 < I < n), which implies that
for any point = € Cj, we obtain ®;""(0,) = O, for some y € Cj. Then,
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we get ®o"T! € Aut X N B, and therefore, ®;" ! = id by Lemma 4.14
(ii) and (B, Pic X) = B x (). q.e.d.

Remark 4.19. Consider the McKay correspondence Dy (X) =
D{O}((CQ). Then, it is easy to find an autoequivalence of D{O}((CQ) of
order n + 1. In fact, tensoring by a one-dimensional representation of
G is such an equivalence and this lies in our subgroup.

Finally, we state a fact which we frequently use in the proofs of Propo-
sitions 1.6 and 1.7.

Lemma 4.20. Let o be an object of Dyz(X). If there is ¥y €
(B, A(X)) such that [(Vo(a)) < l(c), then there is U € B with the
same property.

Proof. We know by Remark 4.17 that B is a normal subgroup of
(B, A(X)), and by definition that I(a) = I[(¥(«)) holds for ¥ € A(X)
and for a spherical object & € Dz(X). The assertion follows from this.

q.e.d.

5. The A; cases of Propositions 1.6 and 1.7

In this section, we consider the A; cases of Propositions 1.6 and 1.7;
thus we are given a single —2-curve C' = Z. Let a € Dz(X) be a
spherical object. By Corollary 4.10, we may assume that there is an
integer a such that

H (@) = Oc(a— 1) © Oc(a)

for all p, where 7, and s, are non-negative integers. In this case, I(«) is
written as

(o) = Z(Tp + 5p)-

p

Proposition 5.1 (The A; case of Proposition 1.6). Let o € Dz(X)
be a spherical object. Then, there are integers a,i and a functor ¥ € B
such that

V() = Oc(a)li.

Proof. Since we have B = B’ by Lemma 4.16, it suffices to show the
following:

Claim 5.2. If I(a) > 1, then I(Tp, (q—1)(@)) < ().

The class e(a) € Ext (H9(a), H!(a)) is of the form
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where
aq € Ext% (Oc(a — 1), Oc(a — 1) 1),
by € Ext% (0 (a)®%, 0c(a —1)%7-1),
cq € Extgg((’)c(a —1)®7, O¢(a)®%e-1) =0,
dy € Extd (Oc()®*, Op(a) )
respectively.

Consider the spectral sequence (4.2):
B3 = HP (Tog(a-1)(H!(a))) = HP T (Tog(a-1)(a))-
In this spectral sequence, we have

By = H N Top 1) (Hi(a) =2 Oc(a — 2)%,
Ey? = H (To a1y (Hi(a))) = Oc(a — 1)

and EY? = 0 for p # £1 by Lemma 4.15. Especially, Lemma 4.11
implies [(To(a—1)(@)) < l(a); if the equality holds, then d;l’q = 0 for
all g. Assume, by contradiction, that dy L4 = 0 for all q. Then, we see
by Proposition 4.1 that b; = 0 for all g. Therefore, we have

_ (2% O
el(a) = (0 dq> .
Lemma 4.3 implies that there are objects oy, a2 € Dz(X) such that
a 2 a; @ ay with H(a1) =2 Oc(a — 1) and HI(as) = Oc(a)®5a.
Since « is spherical, either a; or as must be zero. Let ¢g,q; be the
maximum and the minimum of the integers ¢ with H%(a) # 0. Since
a = aq or az, we have Homyx (H® («), H" («)) # 0. If g0 > qi, then
the spectral sequence (4.1) for o = [ implies that Hom%&]‘; (,a) #0
contradicting the assumption that « is spherical. Thus, we have gy = ¢;.
Then, since dim Hompx)(a, o) =1, I(a) must be 1. q.e.d.

Proposition 5.3 (The A; case of Proposition 1.7). Let ® be an
autoequivalence of Dz(X). Then, there are integers a and i, and there
s an autoequivalence ¥ € B such that

Vo ®(O¢) = Oc(a)lil
and
Uod(Oc(—1)) = Oc(a—1)[].
In particular, for any point x € C, we can find a point y € C with

U o B(0,) = O,[i].
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Proof. Put a = ®(O¢) and = ®(O¢c(—1)). By Proposition 5.1, we
may assume [(a) = 1. We can further assume a = O¢ by Lemma 4.20.
Note that we have

C? ¢g=0

0 gq#0.

We prove the first statement in the proposition by induction on I(/3); the
second follows from the first. We first, consider the case {(3) = 1. Then,
(5.1) implies that § is isomorphic to either Oc(—1) or O¢(1)[—2]. In the
latter case, To () = Oc[—1] and Tp, (B) = Oc(—1)[—1] as desired.
Next assume [(3) > 1. As before, there is an integer a such that

HI(B) = Oc(a — 1) & Oc(a)®®.

Let qo,q1 be the maximum and the minimum of the integers ¢ with
H1(B) # 0. If g0 = q1, then [(3) must be 1 since 3 is spherical. If ¢o > ¢1,
then we have Hom% (H%(3),H%(3)) = 0 and hence, 74 = s4 = 0.
Then, we can see that either Hom% (1% (8), Oc) or Hom$% (H%(3), O¢)
is non-zero. It follows from (5.1) and the spectral sequence

E5? = Hom% (H~(8), Oc¢) = Homl, % (8, Oc)

that gy = 0 or ¢; = 2, and in particular that H!(3) = 0. Consequently,
we have Hom} (H~9(8),O¢) = 0 for all ¢ and hence that a = 0 or 1.
Therefore, we have (T, (q—1)(@)) = 1. On the other hand, Claim 5.2
implies I(Tp,(a—1)(8)) < I(B) and we complete the proof by induction
on I(f3). q.e.d.

6. Proof of Proposition 1.6

Our main purpose in this section is to show Proposition 1.6. As
explained in Introduction, the essential part is to find ¥ € B such that
I(¥(a)) < l(a) for a spherical object o € Dyz(X) with {(«) > 1. In
Lemma 6.1 of Section 6.1, we clarify the structure of an Oz-module of
pure dimension 1, generalizing a well-known theorem of Grothendieck.
This gives an expression of cohomology sheaves of a spherical object
a € Dz(X) in a computable way. Then using results in Section 4
and in Section 6.1, we show Lemma A in Section 6.2 and Lemma B in
Section 6.3; these lemmas provide sufficient conditions for the existence
of ¥ € B as above. Finally, we show in Section 6.4 that we can always
apply Lemma A or B, and thus obtain Proposition 1.6.

6.1. Generalization of a theorem of Grothendieck. Grothendieck
proved that every vector bundle on a smooth rational curve decomposes
into a direct sum of line bundles. We generalize this result in the case
of a chain of smooth rational curves.

We first introduce some notation that we use in the statement and
in the proof. Let Z = |J;; C; be a chain of smooth rational curves
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C;. We denote by 3(Z) the set of the isomorphism classes of sheaves
Oc,u-uc,(as, ..., at), where 1 < s <t <nand as,...,a; € Z. X¢c,(Z)
C X(Z) is the subset consisting of R € ¥(Z) with SuppR D C;. We
define the lezicographic order on ¢, (Z) by setting
OC’1U~~-UCS (al, ey CLS) > OC1U~~-UC¢ (bl, ey bt)

if either of the following holds.

e For some integer k (1 < k < s,t), we have a; =b; (1 <i<k—1)

and ap > by.
e We have s <t and a; = b;(1 <i < s).

Let z € C1 \ (C1 N Cy) be a point. Then, we can see that for R,S €
Y, (Z), the inequality R < S holds if and only if the restriction map

HomZ(R, 8) — Homc(R|x78|x)
is non-zero.

Lemma 6.1. Let Z = J!' | C; be a chain of smooth rational curves
C; and let £ be a coherent Oz-module, pure of dimension 1. Then, £
decomposes into a direct sum of sheaves in 3X(Z). Moreover, such a
decomposition is unique up to isomorphism.

Proof. The case n = 1 is due to Grothendieck, so we consider the
case n > 2. We define

I(&) =rank&|c, + - +rank &|c,

and use induction on I(£). We may assume that Supp £ contains C}.
Replacing £ with £® L for some line bundle £ on Z, we may also assume
that Hom%(&, O¢,) # 0 and Hom%(E, O¢, (—1)) = 0. Then there exists
an exact sequence

08 —E&— Og — 0,

where £’ is an Oz-module of pure dimension 1. By the induction hy-
pothesis, we can decompose £’ into sheaves in X(Z). We write

£=PeaeoPre@a.
where &; € ECI(Z), F; € ECQ(CQ y---u Cn) and G; € 2(03 U---u Cn).
It follows from &; € ¥, (Z) that
Exty(Oc,, &) = H' (Homz(Oc,, &),
which is zero by Hom% (€', Oc, (—1)) = 0. Therefore, we have

txKkePeaePa,
i i
where K is given by an extension

(6.1) 0—>@]—}—>/€—>(’)Cl—>0.
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Let e = @e; € Exty(Oc,, @, Fi) be the class corresponding to this
extension. If e = 0, then (6.1) splits and consequently £ has a desired
decomposition. Thus, we may assume e # 0. We reorder the indices i of
Fi so that if ¢ > j, then F; > F; holds with respect to the lexicographic
order in ¥¢,(Co U ---UCy). Then, the image of the restriction map

Auto, (@ ;5-) — Autc (@ Fiy> >~ GL(r, C),

at the point y € C7 N Cy, contains every lower triangular matrix in
GL(r,C). Since Autop, (D; F;) acts on

Exty(Oc,, @ Fi) = C

through the natural action of GL (7, C), there is an element g €
Autp, (B; Fi) such that if we put g -e = P, ¢}, then e; = 0 except for
one index i = ig. Let .7-",{0 be the unique non-trivial extension of O¢, by
Fio- Then, F;, belongs to ¥(Z) and there is an isomorphism

’C = @ fz ¥ Ho’
iio
which proves the existence part of the lemma.
For the uniqueness, fix a point x € C1\ (C1NC2) and let R € X, (2)
be the maximum element that has the property that the restriction map

7 : Homz(R,E) — Home (R|z, &)

is non-zero. We denote by r the rank of the linear map 1. Then, in any
decomposition of £ as in the lemma, £ contains exactly r copies of R as
direct summands. We fix such a decomposition and write & = & ® &
with & = C" ® R. For another such decomposition & = & @ &,
V := Homgz(R,&]) C Homy(R,E) is an r-dimensional subspace such
that the restriction 7|y is an isomorphism to the image of . Then, the
composite of the evaluation map evy : V ® R — £ and the projection
& — & is an isomorphism. Since the image of evy is £, this proves
&y = &L and completes the proof by induction on (). q.e.d.

Lemma 6.1 provides an explicit form of an Oz-module of pure dimen-
sion 1. Our proofs of Propositions 1.6 and 1.7 heavily use this explicit
form. When Z forms a D,- or an F,-configuration, we cannot directly
generalize Lemma 6.1; a purely one-dimensional sheaf on Z (even with
respect to the reduced induced structure) is not necessarily a direct sum
of line bundles on its subtrees.

Till the end of this section, Z and X denote the varieties as in Intro-
duction, namely, X is the minimal resolution of an A,-singularity

Y = SpecC[z,y, 2]]/(¢® + y* + ")



414 A. ISHII & H. UEHARA

and Z is the exceptional locus of it with reduced induced structure.
Suppose that a spherical object o € Dz(X) is given. Then, Corol-

lary 4.10 and Lemma 6.1 say that every cohomology sheaf HP(«) can
be written as

HP () :Rﬁ”@...@ﬁ}“ ,

P

where every RY (1 <1 < k) belongs to X(Z). Note that
(6.2) Exty (RY,RE,) =0
for all p, p’, 1, m by Corollary 4.10. For example, (6.2) yields

| deg RY — dege RE,| < 1

for any —2-curve C' C Supp 725) NSupp Rﬁ;. We have another application
of (6.2), which is useful later. In the expression P, H?(a) = P; R;

with R; € ¥(Z), we always assume that R; is a direct summand of
HP(a) for some p.

Lemma 6.2. Let a € Dz(X) be a spherical object. Suppose that we
have a decomposition

T1 T2
D (@) = DR o PRy
P J J
with Ry ; € X(Z) such that
X(R1,i;Raj) =0
for all i,j. Then either r1 or ro is zero.

Proof. The vanishing of x(R1,,R2;) and (6.2) implies the vanishing
of Exth, (R1,,Ro,;) for all p. Especially, we have

EXt%((RLi,RQJ) = EXt?X('RQ,j,RLZ‘) =0

for all 7,j. Then, « splits as in Lemma 4.3. Since « is spherical, we
obtain the assertion. q.e.d.

To obtain Proposition 1.6, as we explain in Introduction, we find an
autoequivalence ¥ € B such that [(«) > I(V(«)), assuming [(a) > 1.
For this purpose, it suffices to find ¥ € B such that 3 I[(V(HP(a))) <
[(o) by Lemma 4.11.

6.2. Lemma A: a case where we can reduce [(«). As a first can-
didate for ¥ € B with I(¥(«)) < (), we consider functors of the form
T 0c, (a)- We start with an easy, but fundamental case.

Lemma 6.3. Let o € Dz(X) be a spherical object and C C Z a
—2-curve. Assume that for every p, we have a decomposition

ry ry rh ry
H'(0) =DRY; e PRy oD RE; e PRI 08,
J J J J
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where Rp ’s are sheaves of the forms

C
Rzl),j : —O—
Rg,j : ©—
RY O—
Ri,j : S)

and where Supp SP N C' = 0. In this situation, we have the following:
(i) If Ep rd > Zp rh, then UToq -1 (a) <l(a).
(i) If 32, rh < > rh, then (To, (—2) (@) < I(a).

Proof. Combining the assumption of (i) with Lemma 4.15, we deduce

that
ZlT@C _1y(HP (e <ZlH”

and then obtain the conclusion from Lemma 4.11.
(ii) can be seen in a similar way. q.e.d.

We cannot always find C' as above with Y r§ # Z rf (see Example
4.7 (ii)) and it is important to consider the case >, rh = 2o k.

Lemma 6.4. Let o € Dz(X) be a spherical object and C C Z a
—2-curve. Assume that for every p, we have

5 5
") = PR o PRE; oS
i i

with the properties

° jo and Rpj are as in the previous lemma, and
e SP’s are sheaves satisfying that the composition maps

Homx (Oc(—1), Ry ;) x Homx (RY ;, S7) — Homx (Oc(—1),S7)
Homx (87, R} ;) x Homx (Rj ;, Oc(—1)) — Homx (S?, Oc(~1))
are zero for all p,q,j.

Then, we have either rh < r§~ for all p or rQ > 7'3 for all p. Espe-
cially, zfz rh = Z rf, then the equality rh =&~ U holds for every p.

Proof. Put RE = D, 7?, ; and RE = D, RS,j' Let

eP(a) € Ext%((Hp(oz),'Hp_l(a))

be the class determined by « as in Section 4.1. According to the de-
composition

HP (o) = RE o RE @ SP,
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eP(a) also decomposes and determines classes
P € Ext} (R, RE),

£ € Bxt} (RE,RE).

YP € Ext3 (8P, RE).

)

1

We denote by 77 € Ext% (Oc(—1)®"2, Oc(—1)®5 ) the following com-
posite:

rf)p

(6.3)  Oc(—1)%rs Oc(~1)%5 2]

lg lg

P
Homx (Oc, R Ry —>RE1[9] RE e [2)

Assume that the first assertion does not hold. Then, there are i, j
with r5 < r4~1 and r% > réfl. It follows from 74 < 74! that there
is a surjection v : R o — Oc(—1) with y o7’ = 0. Similarly, we
have an injection  : Oc(—1) — HomX(OC,R%) with 777 o § = 0. Let
f:H" (@) — H’(a) be the following composite:

Hi~Ya) > RE e = Oc(—1) & Homx (Oc, RE) — Hi(a)

We claim that f oe’(a) =0 in Ext (H'(a), H/()). Let f and p be as
follows:

Ry . H(a) : i (a)
e J
Cogt 2 X f ;
€ B i %
2]
M ip
S! Ry Ve —= Oc(~1)—2 Homx (Oc, Rj)

It suffices to show fon', fo& and f o' are all zero. Since yoij' =0,
we have yopon' =0 and therefore, fon' = 0. fo{" factors through
vyopo&t e Ext%(( %, Oc(—1)) = 0 and hence is zero. Finally, f oy’ €
Ext% (8%, RY) is in the image of the composition map

Ext% (S, Oc(—1)) x Homy (Oc(—1), R}) — Ext3 (8%, R))

which is zero by the assumption and the Serre duality. Thus, we showed
the claim. Similarly, we have e/(a) o f = 0.
Therefore, in the spectral sequence (4.1) (for a = 3),

f € Homx (H' (), H (o)) € ES7 "

lies in the kernel of dg’jfi. This contradicts Proposition 4.5. q.e.d.
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The above proof is actually showing a slightly stronger statement:

Lemma 6.5. Under the assumption of the above lemma, write P =
M, ®c e, where P is defined in (6.3), M, is an P % rd matriz and
e € Ext%(0c(—1),0c(~1)) = C is a fized basis. Then, we have either
rank M,, = 5 for all p or rank M, = rg_l for all p. Especially, if
>, T = 2., 1%, then all My, are invertible.

Now, we go back to the situation in Lemma 6.3.

Lemma 6.6. Under the assumptions of Lemma 6.3, assume the
equality Zp rh = Zp 8 # 0 holds. Then, Ry =0 for all p.

Proof. Put R} = €D; Ri’j and write e?(a) = (e};), where €}, €
EX@AR?, Rf_l). Among these entries, €b,, el e}, e}, are zero because
the corresponding Ext groups vanish. If, in addition, e}, and €f, are
zero, we have objects aq,ag such that @ & a3 @ ag with HP (o) =
RY @ R @ RE and HP (o) = RY by Lemma 4.3. Since « is spherical,
either a; or as must be zero and we are done. Thus, it is enough to
show that e, and efj, become zero if we change the decomposition

HP(a) = RY @ Ry © R @ R
by suitable automorphisms of HP(«). ek, lies in

Ext2 (RE, RE™Y) = Home(C™,C™% ) @¢ Ext% (Oc(~1), Oc(—1))

and hence is of the form A, ® e for an 75" x r¥ matrix A, and the
same e as in Lemma 6.5. Lemma 6.5 applied to SP = RY & R says that
ehy = nP determines 77 = M, ® e with M, an invertible matrix. We

determine an automorphism gP = (gfj) of HP(«) by
ghy = —Mp_lAp € Homyx (R}, RE) = Homg(C'™, C")

and g, = 0;jj I for the other (i,j). If we replace eP(a) by
(gP"1)"teP(a)gP, then b, becomes zero and €}, does not change. e}, is
also of the form B, ® e for a matrix B, and in a similar way, we can
find automorphisms that eliminate e}, without changing €%,. q.e.d.

Lemma A. Let o € Dyz(X) be a spherical object and let C C Z be a
—2-curve. Assume that we can write

r T2 3 T4
@HP(O&) = @Rl’j % @RQJ % @R&j % @R‘Lj eS
P J J J J
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where Ry, ;’s are sheaves of the forms

C
RLJ —O—
Raj O—
Ra;j - O
Raj: —0O

and where SuppS N C = 0. Suppose that either r3 # 0 or ro - 14 # 0
holds, and suppose, furthermore, that Suppa # C. Then, there is an
integer a such that (T, (q)(a)) < ().

Proof. We can freely replace a with a ® £ for some £ € Pic X by
Lemma 4.20. Hence, we may assume that maxy ; dego Ry ; = 0, and
then, we have dego Ry ; € {—1,0} for all k,j by (6.2). Note that we
have

X(R1;,R3,) = x(S,R3,) =0

for any 4, j. Hence, if ro = r4 = 0 (which implies r3 # 0 by our assump-
tion), then we get P}' R1,; ® S = 0 by Lemma 6.2. This contradicts
our assumption that Suppa # C. Therefore, because the condition is
symmetric, we may assume ry # 0.

When rj - 74 # 0 holds, we see from (6.2) that

degr R = dego Rux = a

for a fixed a € {—1,0} and for all i, k, and that degs R3; is a or a — 1.
Then, I(Tp,(a—1)(@)) < I(a) holds as desired.

Next, consider the case 72 - r3 # 0 and 74 = 0. If dego R3; = —1 for
all j, Lemma 6.3 and Lemma 6.6 imply the conclusion. Hence, suppose
degsR3,; = 0 for some j. Then, dego R2; = 0 for all j by (6.2), and
so [T, (-1)(a)) < l(a) holds, as required. q.e.d.

6.3. Lemma B: another case where we can reduce [(«).

Lemma 6.7. Let a« € Dz(X) be a spherical object and W = Cy U
---UCy C Z a chain of —2-curves with s < t. Assume that for every p
we have

ry ry Tg ry r§
H (o) = DRI DR, e PRE,; e PR, o PRE; oS,
j j j j j
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where RZ j ’s are sheaves of the forms

Cs Cst1 Ci1 Cy
RY; © © © ©
Ry, © © © ©
RS, S © © ©
Ri; © © © S
RS S © © ©

and where SuppSP N W = (). Under these assumptions, either of the
following holds:

(i) At least one of l(To., (-1)(@)), U(To, (-2)(@)), {Toe,(-1)()) or
UToc,(-2)(a)) is smaller than I(a) or
(ii) 7§ =rL =0 for all p.

Proof. Assume that (i) does not hold. Then, Lemma 6.3 applied to
C = Cs and C = Gy imply > (r§ +7}) = > (r§ +r§) and > rf =
Zp rf respectively. These equalities also deduce Ep rh = Zp k. Then,
applying Lemma 6.4 in three ways, we obtain

D p_ ,p—1 p—1
Ty Ty =713 " T3

T.p — 7,,p 1
2

for all p. Especially, we have both rf = ri_l and v = ¥ ~!. Since

HP(a) = 0 except for finitely many integers p, this means that all r}
and rf are zero. q.e.d.

Lemma 6.8. Let o € Dz(X) be a spherical object and fix positive
integers s,t with s < t. Assume

P H* ()
g r1 9 73 T4 5 T6
= @RIJ > @RQJ‘ > @R&j > @R&j S @R5,j S @RG,j e S,
J J J J J J
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where Ry, ;’s are sheaves of the forms

Cs Cst Ci—1 Ci
R © © © ©
Ra,j: © © © S/
Rs,j © © © ©
Ry © © © S)
Rs,j S © © ©
Re,j : S © © S
and where SuppS N (CsU---UCy) = 0. Suppose that
(6.4) I(a) < 1(®(a)) for all & € <TOCZ(G) lacz,s<l< t>

and 3 + 14 + 15 + 76 #* 0. Then, we have riy = r3 = r5 = 0 or
rog =14 = 16 = 0. In particular, deges, Ry, ; does not depend on j and k.
Proof. First note that r3 - rg = 0 by (6.2). We prove the following:

e If r3 = 0, then we have ri = r5 = 0.
e If r¢ = 0, then we have ro = r4 = 0.

First, assume that r3 = 0. We apply Lemma 6.3 for C' = Cs and then
obtain
(6.5) T4 =175+ T
from the assumption (6.4). Put
®=Toc (-0 °Tog,  (-1)°Toc, (-2
ift>s+1, and

@ = TOCS+1 (72)

if t = s + 1. Then, ®(R;;) are sheaves, and we have degy, ®(R4;) =
dege, ®(Rs,j) = 0 and dego, ®(Rej) = —1. If r5 # 0, then we see
from (6.5) that 74 + 15 > 76 and then from Lemma 6.3 that (T, (1)
®(a)) < I(®(a)) = l(er), a contradiction to (6.4). If r; # 0, we have
r¢ = 0 by (6.2) and again r4 + 75 > r¢. This contradicts (6.4) as above.

In the case rg = 0, we get the assertion by a similar argument, using

_ ! / /
U="To., (-n° °Tos (1) °Tog 1)

instead of ®. q.e.d.

The above proof teaches us how to reduce [(«) for the spherical object
a in Example 4.7 (ii); we can see that

(Toe, (-1) © Toe, (-2)(a)) < l(a).



AUTOEQUIVALENCES OF DERIVED CATEGORIES 421

On the other hand, note that
(g, @(@) 2 Ua),  UTh, (oy(@) = la)
for any a,l € Z (1 <1 <5) in the same example.

Lemma B. Let a« € Dyz(X) be a spherical object and fix positive
integers s,t with s < t. Assume that we can write

71 T2 T3 T4
@Hp(a) = @RM @ @Rz,j @ @Rs,j ® ®R4,j &S,
P J J J J

where Ry, ;s are sheaves of the forms

Cs Cst1 Ci1 Cy
Ri; O O O O
Ra,j O O O O
R, O O O O
Ra,j O O O O

and where SuppS N (Cs U ---UCy) = (0. Suppose that either rs # 0 or
ro - 14 # 0 holds. Then, there is

@e<ﬂhmﬂaezﬁgl§Q

such that 1(P(a)) < l(«).

Proof. For a contradiction, we assume
6.6)  l(a) <I(®(a)) for all & € <TOcl(a) lacZ,s<i< t>.

Then, it is enough to check r3 =174 =0 or 79 = r3 = 0. By Lemma 6.8
and by tensoring with a suitable line bundle on X (cf. Lemma 4.20), we
may assume that degq, Ry,j = 0 for all [ (s <1 < t), k and j. Moreover,
we assume

max dege, Ry j = max dege, Ri,j = 0.
7] 7]

Then, we see that dego, Ry, j, dege, Ri; € {—1,0} for all k, j by (6.2).
We further claim

degcs Rl,j = degcs R47j = 0.

Otherwise, (6.2) implies that degs Ro; = dego, R3,; = —1 and hence,
that [(To. (—2)(@)) < l(a) —r2 —73; (6.6) shows ry = r3 = 0 as desired.
Similarly, we have

degct Rl,j = degCt RQJ‘ =0.
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Thus, we can write
72 S1 52
@RQJ‘ = @517]‘ @ @827]‘
rjg 8]3 5]4 S5 56
@ Rs,; = @Sg,j @ @54,]' & @55,]' & @86,]'7
T]4 8]7 8]8 J J
PRri; = PSP Ssy,
J J J

where Sy, ;’s are sheaves of the forms in the following figure.

Cs Cst1 Ci1 Cy

Ri;: © © © ©
Si,j ¢ © © © ©
Sa,j S) © © ©
S35 : © © © ©
Suj © © © S
Ss,j ¢ S/ © © ©
S6,; S © © S
S5 © © © S)
Ss, © © © ©

Now, applying Lemma 6.3 for C' = Cs and C}, we obtain from (6.6)

(6.7) $1+ 83+ 84 = 89 + 85 + s¢

and

(6.8) 83 + 85 + S8 = 54 + 8¢ + S7

respectively.

If s3 # 0, we have sy = sg = s7 = 0 by (6.2). Substituting it into
(6.7) and (6.8), we get s1 + s34+ s4 = s5 and s3 + s5 + sg = sS4, which is
absurd. By a similar argument, we also arrive at a contradiction when
assuming sg # 0. Therefore, we obtain s3 = sg = 0.

Suppose that s; # 0 and sg # 0. In this case, we know so = s7 =0
by (6.2). Then, (6.7) and (6.8) become s1 4+ s4 = s5 and s5 + sg = sS4,
but this is impossible. Next, assume that s; = sg = 0. Then, (6.7) and
(6.8) imply that s = s; = 0 and s4 = s5. We have seen ro = 14 = 0
and thus, we apply Lemma 6.7 to deduce s4 = s5 = 0 from (6.6), as
desired. Finally, suppose that precisely one of s1 and sg is zero. Because
the conditions are symmetric, we may assume that s; # 0 and sg = 0.
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Recall that we are in the case s3 = sg = s7 = sg = 0. Again Lemma 6.7
and (6.6) imply that s4 = s5 = 0. q.e.d.

6.4. Proposition 1.6: The main result of Section 6. For a spher-
ical object o € Dz(X), let us denote by

S()(C %(2))

the set of all the indecomposable direct summands of @, H'(a) obtained
in Lemma 6.1.

Now, we are in a position to prove Proposition 1.6. In the proof, we
freely use the equality

B = (Touw|acZ1<i<n)
proved in Lemma 4.16.

Proof of Proposition 1.6. Notice that if we show the existence of an au-
toequivalence ® € B such that [(a) > I(®(«)), then we can prove the
statement by induction on I(«). We assume Suppa = Z = C1U---UC),.
Recall that the proof is already done for the case n = 1 (and in partic-
ular the case [(«) = 1) by Proposition 5.1. Hence, we consider the case
n > 2. Put

li(a) := Z length@X’ni HP (o),
p

for each curve C; (see Introduction for the notation). To simplify the
argument, we also put lp(a) = l+1(a) = 0.

For R € ¥(«) with SuppR = Cx U --- U (Y, we define s(R) := k and
t(R) :=I. Note that (6.2) guarantees that for R € X(«), there are no
elements S € ¥(«a) such that ¢(S) = s(R) —1 or s(S) = t(R) + 1. Thus,
we have

ls('R)—l(a) < ls('R) (Oé) and lt('R) (Oé) > lt('R)—l—l(a)'

Let s <t be integers such that ls_1(a) < ls(a) = -+ = li(a) > l41().
Then, we are in the situation of Lemma A (if s = ¢) or Lemma B (if
s < t). q.e.d.

Remark 6.9. Take an arbitrary element R € ¥(«). Then, in the
proof above, we can find s,t such that s(R) < s <t < t(R). Thus,
Lemma A or B provides

P e <TOcl(a) ‘ a€Z,CyC SuppR>
such that [(a) > I[(®(cr)). We shall use this remark in Section 7.

Corollary 6.10. B = (T, | a« € Dyz(X), spherical ).
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Proof. B is obviously contained in the right-hand side. For a spherical
object «, Proposition 1.6 provides ¥ € B such that V(«) = O¢,(a)[f]
for some b, a and i. Then, Lemma 4.14 (i) shows

Toa =V 0 To, (@) 0 ¥,

which is in B. q.e.d.

7. Proof of Proposition 1.7

The aim of this section is to show Proposition 1.7. In the situation of
Proposition 1.7, put @« = ®(O¢,) and § = ®(O¢, (—1)). By Proposition
1.6, we may assume [(a) = 1, and hence Supp a = C for an integer b
(1 <b < n). The main part of the proof is the following.

Claim 7.1. In this situation, suppose [(3) > 1. Then, there is an
autoequivalence ¥ € B such that

I(W(a)) = 1 and I(8) > I(W(3)).
In fact, Proposition 1.7 easily follows from this:

Proof of Proposition 1.7. By Claim 7.1, we can reduce the problem to
the case I(a) = I(3) = 1. In this case, the supports of a and § must be
the same, since x(«, ) = 2. Therefore, we get the conclusion from the
Aj case. q.e.d.

Thus, the rest of this section is devoted to showing Claim 7.1. In
Section 7.1, we list conditions on « and (; our arguments in the subse-
quent subsections are based on these conditions. We divide the proof of
Claim 7.1 into three cases in Section 7.2. We find ¥ in the three cases
in the remaining three subsections.

7.1. Conditions on « and (. Before doing computation, we list con-
ditions that we assume for simplicity or that our situation imposes on
the spherical objects « and S.

We use the shift functor and a line bundle to simplify the computation
as in Lemma 4.20. First, using the shift functor [i] (i € Z), we may
assume that « is a sheaf on X and therefore

a = ch (a)

for some a € Z.
Secondly, we take a tensor product with a suitable line bundle to
assume:

Condition 7.2. max{degs, R|R € %(3),SuppR D Cp} = 0. Es-
pecially, deg, R = 0 or —1 for all R € %(3) with SuppR D Cj by
(6.2).



AUTOEQUIVALENCES OF DERIVED CATEGORIES 425

Sometimes, we also put conditions on the degrees on other curves,
depending on the cases.

Relations between O¢, and O¢, (—1) impose conditions on a and f3.
From the spectral sequence

(7.1)

C* p+q=0
pa_ » —q p+q =
B} = Hom (1 <ﬁ>,ocb(a>>:‘Homm(ﬂ’“)_{o a0’

we obtain

Condition 7.3. E;? =0 for ¢ # —1

and

Condition 7.4. dg’_l : Eg’_l — Eg’_2 is injective, dg’o : Eg’o —
E27 1 is surjective, and dy? : Ey? — E37" are isomorphic for all
q#0,—1.

In addition to Conditions 7.3 and 7.4, (7.1) implies
(7.2) dim Coker dy~ " + dim Ker dy° + dim Ey ™' = 2.

Moreover, note that the following holds.
Condition 7.5. c¢i(a) = c1(8)(= Cp) holds in the Chow group of

curves on X.

Proof. Let us denote the Grothendieck group of Dz (X) by Kz(X)
and the Euler form on it by x(—, —) : Kz(X) x Kz(X) — Z. Then for
a point x in Z, we have

Z]0;] = {a € Kz(X) | x(a,b) =0 for all b € Kz(X)},

since x(—, —) is non-degenerate on Kz(X)/Z[0,] = @;_, Z|O¢,]. Now,
® induces an isometry ¢ on Kz (X) and it preserves Z[O,] by the above
equality. Because [O¢,] — [O¢, (—1)] = [O,] and [o] — [F] = [2(O,)], we
get the result. q.e.d.

7.2. More on a, and the division into cases. From now on, we
do not use ® in the argument. In fact, it is sufficient to suppose that we
are given a = O¢, (a) and a spherical object 3 satisfying the conditions
listed above.

Claim 7.6. We have a > —1.

Proof. First note that since ¢1(3) = Cp, there is an integer g # 1 such
that H?(8) # 0. Assume that a < —2 and let R € () be a direct
summand of P, H?(B). Then, it follows from Conditions 7.2 and 7.3
that dego, R = —1 and a = —2. Therefore, Condition 7.2 implies that
there is a direct summand R’ € ¥(3) of H!(3) such that SuppR’ D C,,
and dege, R' = 0. Especially, we have

Hom (Oc, (~2), H'(8)) # 0.
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On the other hand, Condition 7.2 also implies
E9° = Hom% (H°(8), Oc, (—2)) = 0
in (7.1) and accordingly, we obtain
Hom% (Oc, (—2), H'(8))Y = E3 ' =0

by Condition 7.4, a contradiction to the non-vanishing above.  q.e.d.

We sometimes use the following useful fact in the latter subsections.

Claim 7.7. Fix ¢ # 0. If E2"%' = 0 in (7.1), then we have
degq, R > a for all direct summands R € X(3) of H?(3) with SuppR D
Cy. If, in addition, we suppose that a > 0, then we get Cj, ¢ Supp H%(3).

Proof. The assumption and Condition 7.4 show that
Hom (HY(5), Oc, (a) = By ™" =0,

which implies the first statement. Then, the second statement follows
from Condition 7.2. q.e.d.

Now, we divide the proof into cases. If there is an element R €
() with SuppR N C, = ), then we can find ¥ € <TOCZ(G) ‘ a €
Z,C; C SuppR) such that ¥(a) = « and () > [(¥(5)) by Remark
6.9. Therefore, we may assume that

SuppRNCy # )
for all R € () and we have only to consider the three cases:

Division into Cases. We divide the proof of Claim 7.1 into the
following cases.
(i) Cp C SuppR for all R € (),
(ii) there is R € 3(f) with Supp R N Cy = Cpy1 N Cy, but there is not
R e Z(ﬂ) with SuppR' N C, = Cp—1 N Cy,
(iii) there are R, R’ € X(8) with Supp RNCj, = Cp11NC} and Supp R'N
Cy = Cyp_1 N Ch.
We subdivide the Case (i) according to the value of a: (i.1) a > 1, (i.2)
a =0, and (i.3) a = —1. We also subdivide Case(ii) into (ii.1) a = 0
and (ii.2) a = —1, after showing a < 0. We further subdivide (ii.1) and
(ii.2) into two cases respectively.

7.3. Case (i).
Case (i.1): a > 1. In this case, it follows from Condition 7.2 that
Ey~% 2 Hom% (Oc, (a), H*(3))Y =0

in (7.1). Hence, Claim 7.7 and the case assumption show that H!(3) =
0 and consequently that E21’q = 0 for all ¢ in Condition 7.3. Then,
Condition 7.2 implies that a = 1 and X(8) = {O¢,}. This case has
been already treated in Proposition 5.3.
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Case (i.2): a=0.
Claim 7.8. O...¢, (%, —1), Oc,u...(—1,%), O..uc,u-. (¥, =1, %) & E(5).

Proof. Note that any sheaf R in the assertion satisfies HomY (O¢,, R)
# 0. Thus, if O¢, € (), then the assertion follows from (6.2). There-
fore, we may assume that Oc, ¢ X(5). Under this assumption, the
same argument as in Case (i.1) shows that Ey? = 0 for all ¢ in (7.1). It
follows that the sheaves in the assertion cannot be in (/). q.e.d.

By Claim 7.8, we see that I(R) > l(T@Cb(_l)(R)) for all R € X(B)
and that the inequality is strict if R = O..uc,(*,0) or Oc,u...(0, *).
Hence, if I(B) = Z(Tch(—l)(ﬂ))7 then (/) consists only of O¢, () and
O..ucyu--(%,0,%). Now, we know ¢i(8) = Cj from Condition 7.5 and
therefore, ¥(/) must contain O, (). Then, Lemma 6.2 shows Supp =
Cy and Proposition 5.3 completes the proof for the case (i.2). q.e.d.

Case (i.3): a = —1. We put
r1 ro r3 T4
PH©B) =P R, PR P Rs; &P Ruy
P J J J J

where Ry, ;’s are sheaves as follows:

Cy
Ri;: —O—
Raj: O—
Rs,; : O
Rayj - —0O

When Supp 8 = Cyp, we can apply Proposition 5.3, and hence, we may
assume that Supp 3 # Cp. On the other hand, since ¢; () = Cj, we can
see either r3 # 0 or r9 - r4 # 0 holds. Therefore, the proof of Lemma A
in Section 6.2 implies [(8) > I(V(3)) for ¥ = Toc, (1) or Tog, (—2)- In

each case, we can see [(¥(«a)) = 1.

7.4. Case (ii). The existence of R € () with Supp RNCy, = CyNCiq
and (6.2) imply the non-existence of S € 3(5) with SuppS N Cyy1 =
Cp N Cyyq. Thus, we have

2(8) C {chu...(a', %), 00y, (%), 00y 1,0 (%),

O..ucyu--(k,d %) ‘ a = —1,0}.

By Condition 7.3, R as above exists only in H!(3). Moreover, because of
the condition c1(3) = Cjy, H!() has precisely one such direct summand
R. It also follows from Condition 7.3 and Claim 7.6 that a = —1 or 0.
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Case (ii.1): a = 0. In this case,
B3 2 Hom§ (Oc,, H™(8))" = 0

holds for all ¢ in (7.1). Therefore, Claim 7.7 implies that H?(/3) = 0 for
q # 0,1 and that Supp H'(3) 2 Cj. Then, from Condition 7.2 and the
condition ¢1(8) = Cy, we can see

(H(B), H (B)) = (Oc,u-ucy, (0, %), Oc,  Uucy (*))

with b+ 1 < b”. Applying Lemma 6.8 (n.b. Cs in Lemma 6.8 is Cyr
here), we may assume that degg, HY(3) = 0 for all I (b+1 <1 < b")
and all ¢q. Now, we can classify spherical objects with such cohomology
sheaves. Note that by virtue of Lemma 4.3, we have

(7.3) Ext (1'(5), H'(B)) # 0.
We divide the proof into two cases:

Case (ii.1.a): b+1 < b”. In this case, we may assume degc,, HO(B) #
degc,. H'(/3) by Lemma 6.3. Then, by virtue of (6.2) and the conditions
listed above, the cohomology sheaves of 3 must be of the following forms,
up to tensoring a line bundle:

Chy Chi1 Chi2 Cyr 1 Cyr
HO(B) : © ©® ©® = ® S
HY(B) - S © e ® ©®

In this case, ¥ := Tp,, © TOCb+1(_2) satisfies the conditions [(3) >
I(¥(B)) and I[(¥(a)) = 1 as desired.

Case (ii.1.b): b+ 1 = b". In this case, (6.2), (7.3) and Condition 7.2
show

(H°(8), H'(B)) = (Oc,uchs1s Ocyi1)s

up to tensoring a line bundle. Then, we can see that TOCb+1(_1)(ﬁ) =
Ocyucy,, (1, —2) and TchH(_l)(a) = Oc,ucy,. (1, —1). Hence, we ob-
tain [(3) > {(¥(8)) and {(¥(a)) = 1, where ¥ = Tp,, o TOCHI(,I).

Case (ii.2): a = —1. By the argument in the beginning of Case (ii),
we can write

To r1 T2 r3
(74) EPHB) =P Ro;e PR &P R & PR3, @Ry,
p J J J J
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where Ry ; and R4 are sheaves of the forms in the following figure.

Cy Co11
Ro,j O O
Ru O O
Ra, O——0O
R, —O—O
R4 ---—-
o S/

Here, noting that Ry C H!(«) is unique, we normalize the degrees on
Cp+1 by the condition

degc,,, Ra=—1.
In addition, we can see
(7.5) degcb ’R/OJ' = degcb R3’j =0

as follows. If O¢,u...(0,%) € X(8), then (6.2) and Condition 7.2 imply
(7.5). Thereby assume O¢,u...(0,*) & 3X(3). Then, we get

E3™* 2 Hom% (Oc, (—1), H*(8))" = 0

in Claim 7.7, and therefore degq, Ro; (or dege, Rs ;) is zero if it is a
direct summand of H'(3). From this and Condition 7.3, we conclude
that (7.5) holds for all j.

As a consequence of (7.5) and the uniqueness of R4, we have
dim Ey ™' =1 in (7.1). Thus, (7.2) becomes

(7.6) dim Coker dy ™" + dim Ker dy° = 1.

Now, we divide the proof of Case (ii.2) into the two cases: (a) [(R4) > 1
and (b) {(R4) = 1.

Case (ii.2.a): [(R4) > 1. In this case, (6.2) implies that deg, ,, Ra; =
degc,,, R3; = —1 and that deg¢, ,, Ro j, dege,,, R1j € {0, —1}. Thus,
specifying degrees in (7.4), we write

o s1 s6 r3
@Hp(ﬂ) = @ROJ S @Sm’ oD @SGJ ® @Rg}j @ Ra,
P J J J J
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where Sy, ;’s are sheaves of the forms in the following figure.

Cb Cb+1

Ro,; :
S5
Soj:
S35
Sy j:
S5
Se,; :
Rsj: —0O——0

Ry: O——

Then, (7.6) and Condition 7.4 imply that

ONONOGNONUNONO
ONONOROGNONONG,

(77) ’814—83—!—85—82—84—86‘:1.

We first consider ¥/ = Tog,(-1) © T(ch+1(_2) and note that ¥'(a) =
Oc,,,(—2). Moreover, we obtain

Zl(q’/(HP(ﬁ))) - l(ﬁ) =581 — 82— 83+ 54 —85—85—2r3—1

from direct computation. Then by Lemma 4.11, we have
(7.8) l(qf,(ﬁ)) - l(ﬁ) <81 —82— 83+ 84 — S5 — Sg — 2r3 — 1.
From (7.7) and (7.8), we get

(7.9) L(Y'(B)) —1(B) < 284 — 283 — 255 — 213
and
(710) l(‘lﬂ(ﬂ)) - l(ﬁ) E 251 - 282 — 286 — 27“3.

If 1(B) > I(V'(B)), then we have nothing to do any more. Hence, let us
consider the case

1(B) < LY'(B)).
Now, note that s; - s4 = 0 by (6.2). If sy =0, (7.10) implies sy = s =
rg =0 and [(V'(3)) = I(B). Then, (7.8) means

s4 > 83+ 55+ 1.

It follows from this that s4 # 0, which implies s5 = 0 and degcb+ L Roj =
—1 by (6.2). Hence, in this case, we have

Z(Tocbucb+1(_17_2) (ﬁ)) - l(ﬁ) S 283 - 254 + 1 S -1
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and Tocbucb+1(—1,—2) () = Opy1(—3)[1] as desired. If s4 = 0, by a similar
argument, we see s3 = S5 = 8¢ = r3 = 0, deng+1 Ro; = 0 and s1 >
s2 + 1. Then, we obtain

(Tog,0,,, (B) —UB) <255 =251 + 1< —1

and T(/')Cbucb+1 () = Opy1[—1], which finishes the proof.

Case(ii.2.b): a = —1 and [(R4) = 1. In this case, (6.2) implies that
degc,,, Ro,; = degg,,, R1,; = 0. Noting (7.5), we specify the degrees
in (7.4) and write

) s1 s8
@Hp(ﬁ) = @’ROJ S5) @3173' b---D @S&j @D Ra,
p J J J

where Sy, ;’s are sheaves of the following forms.

Cy Co1
Ro,;j © ©
S1j © ®
Sz S’ ©
S35 ©——O
Saj ©@——O
Ss.j O——O
S6,j O——0O
S —O0O—0
Sg,j —O——©
Ry : S

Claim 7.9. Under the above assumption, we have the following.
(i) ‘81 + s34+ 54 — (82 + s5 +86>‘ =1.

(i) If s3 = s¢ = sy = sg = 0, then we have s1 # so.

(iii) If s1 = s2 = s3 = sg = 0, then we have s7 # ss.

Proof. (i) follows from Condition 7.4 and (7.6). To show (ii), assume

(7.11) s3=85=587=583=0

and

(7.12) s1 = $2.

(i) means that |s4 — s5| = 1 in this case. Write s = > s} where s

counts the number of direct summands Sy ; in HP(3). By (7.12), we

can apply Lemma 6.4 to deduce that s} = 812)71 for all p. On the other
hand, Condition 7.4 under the assumption (7.11) gives rise to equalities
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and inequalities £ + s) = SZH + slfﬂ for p 7510, 1, s+ 59 > s+ st and
58+ sb < 57+ s7. Thus, we obtain s£ = s§ 7' for p # 0,1, s2 > s} and
st < s3. Moreover, (7.6) says either

1 1
sg =s5+1 5(5) =5y
or
s% = si s% = Si —1
holds. We consider only the first case because the second case is similar.

In this case, Lemma 6.4 applied to C' = Cp1 yields sifl < sf for all p.
Then, we have

st=si<si=si<- and s)<si=si<sdi=s1<..
Because (3 is a bounded complex, we have s = 315’ =0 for p > 0, and
consequently s = s = 0. It follows from this and (7.11) that
Ext% (H*(5), Ra) = Bxt’ (Ra, H'(B)) = 0.

Recall R4 is a direct summand of 7! (/3) by Condition 7.3. Then, Lemma
4.3 implies that R4[—1] is a direct summand of 3. Since [ is spherical,
this means that 5 = R4[—1] and hence that c¢;(a) # ¢1(5). This is a
contradiction to Condition 7.5. (iii) can be shown in a similar way. q.e.d.

Since ¢1 () = Cp holds by Condition 7.5, we see that r¢+s1+s2 is even
and rg+s1+- - -+ sg is odd. Therefore, s3+- - -+ sg is odd and especially
we have s34 s5 + sg 7# sS4+ S¢ + s7. Since Z(Tch(—l) o T@Cb+1 k(@) =1
for all k, the following completes the proof for the case (ii.2.b).

Claim 7.10.

(i) If s34 55458 > s4+s¢+s7, then Z(Tocb(*l)OTch_‘_l(*l)(ﬂ)) < l(ﬂ)

(ii) If s3+s5+53 < sS4+ S+ 57, then l(TOCb(—l)OTOCb+1 (-2) (ﬁ)) < l(ﬂ)

Proof. To prove (i), suppose that the inequality
(7.13) $3 + S5 + S8 > S4 + Sg + S7

holds. If we further assume sg # 0, then (6.2) implies ro = s; =
sg = sg = 0 and (7.13) becomes s5 > s4 + sg + s7. This contradicts
|sqa — (s2+ s5 + sg)| = 1 from Claim 7.9 and thus, we obtain

S6 = 0.

Then, putting ¥ = Tch(fl) o TOCHI(,I), we have

(7.14)  L(Y(B)) —UPB) < (s2+ 54+ 287+ 1) — (s1+ s3+ 55+ 2sg)

by Lemma 4.11.

We first consider the case s3 = 0. By contradiction, assume that
I(¥(B))—1(8) > 0. Then, combining (7.14) with s5—s4 = s1—s2£1 from
Claim 7.9 (i) and s5—s4 > s7—sg from (7.13), we see s5—s4 = s1—82+1
and s; — s2 = s7 — sg. Now, we have s187 = sosg = 0 by (6.2) and
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therefore, we obtain s; = s9 and s7 = sg. Since either of these is zero,
this contradicts Claim 7.9 (ii) and (iii).

Next, consider the case s3 # 0. In this case, we have g = s9 = s =
s7 =0 by (6.2). Then, (7.14) and (7.13) imply
(7.15) I(V(B)) —U(B) < (sa+1)—(s1+s3+55+2s3) < —s1—538 <0.
Assume [(¥(83)) = I(B). Then, the equalities hold in (7.15) and it
follows that s; = sg§ = 0 and s4 + 1 = s3 + s5. Combining it with
|sg + s4 — s5| = 1 from Claim 7.9 (i), we also see s3 = 1 and s4 = s5.
Moreover, since the equality holds in (7.14), the spectral sequence in

Lemma 4.11 must be Es-degenerate. Namely, for the class eP(3) €
Homx (HP(3), H*~'(5)[2]), the map

H™HE(P(B))) : HHE(HP(B))) — R (L(HPH(5)))
is zero (see Proposition 4.1). Note
(] Eth(—(}—, 83,1) for F = 84’j,55,j,724.
e The map Ext%(Ss1,F) — Homyx(H 1(¥(S;1)), H (¥ (F))) in-
duced by ¥ is isomorphic for F = S5, R4 and of rank 1 for
F =84
Hence, for F as above, if an entry of e?(8) in Ext% (F,S31) or
Ext?x(Sgﬂ,}") is non-zero, then it must be in the kernel of Ext%((ngl,
Suj) — Ext%(8s,1,84,lc,,,). This contradicts the surjectivity of dg,o
in Condition 7.4. Thus, we obtain (i). The proof of (ii) is similar. q.e.d.
7.5. Case (iii). Condition 7.4 implies that R and R’ above must be
in H!'(B3). Moreover, they are unique in a decomposition of H!(3), by
virtue of the inequality dim E21 1 < 2 from (7.2). Thus, (6.2) allows us
to write

T1 T2
@Hp(ﬁ) = @Rm @ @sz ® R3 ® Ry,
P J J

where Ry, ;’s, R3 and R4 are sheaves of the following forms.

Cp—1 Chy Chi1

Ri;j: O O O----
Raj O O O----
Rs:  ----0 O---- R4
Q: @
Here, we assume that deg, | R3 = —1 by tensoring a suitable line

bundle.
Claim 7.11. We have a = —1.

Proof. Claim 7.6 says a>—1. If a >0, then we have Ext% (O¢, (a), R)
# 0 for any R € X(5). It follows from Condition 7.3 that H4(3) = 0 for
q # 1. This is absurd, since ¢1(3) = C by Condition 7.5. q.e.d.
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The inequality dim E;’fl < 2 from (7.2) also implies that
Ext (Re.j, Oc,(~1)) = 0
for £k = 1,2 and for all j. In particular, we get
degcb Ri; = degcb Ra; = 0.

Now, we give a proof for Case (iii) by induction on I(Rg3). First,
suppose [(R3) = 1. We write

1 51 s2
@RQJ = @Sl,j S5 @Sg,j,
J J J

where Sj, ;’s are sheaves of the following forms.

Cp—1 Cy Cot1

R © © O----

S © © O----

S2 S) © O----

Rs : S) O-—--- : R4
o S

Because of the existence of R3, we have s; # so by Lemma 6.6. Define

4 if s9 < s7.

. Tch_lucb(—L—l) if 51 < s2,
Uy =
Oc,_yucy

Then, (¥o(a), Uo(B)) fits in Case (ii) and ¥y (3) satisfies I(Vo(3)) <
[(3). Since, we have proved Case (ii), we finish the case [(R3) = 1.
Next, suppose [(R3) > 1. In this case, (6.2) implies

degcb_l RQJ‘ =—1.

Define
/
\I/ = Tch(fl) [¢] Tocb71(72)'

Then, we have ¥'(a) = O¢,_,(—2) and [(V'(3)) < I(3). Moreover, we
can see that /() satisfies the induction hypothesis (on [(R3)). This
finishes the proof of Case (iii) and we get the assertion of Proposition 1.7.

q.e.d.

References

[Art66] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88
(1966) 129-136, MR 0199191, Zbl 0142.18602.

[BOO1] A. Bondal & D. Orlov, Reconstruction of a variety from the derived cate-
gory and groups of autoequivalences, Compositio Math. 125 (2001) 327-344,
MR 1818984, Zbl 0994.18007.



[Bri99]

[BMOS]
[BMO1]
[Esn85]
[GM96]
[Hum72]

[KVO00]

[KS90]
[Kaw02]

[0r197]

[Orl02]

[Rie03)]

[STO1]
[Tod03]

[Ver96]

AUTOEQUIVALENCES OF DERIVED CATEGORIES 435

T. Bridgeland, Equivalences of triangulated categories and Fourier-Mukai
transforms, Bull. London Math. Soc. 31 (1999) 25-34, MR 1651025,
Zbl 0937.18012.

T. Bridgeland & A. Maciocia, Fourier-Mukai transforms for quotient vari-
eties, preprint, math.AG/9811101.

, Complex surfaces with equivalent derived categories, Math. Z. 236
(2001) 677-697, MR 1827500.

H. Esnault, Reflezive modules on quotient surface singularities, J. Reine
Angew. Math. 362 (1985), MR 0809966, Zbl 0553.14016.

S.I. Gelfand & Yu.l. Manin, Methods of homological algebra, Springer, 1996,
MR 0323842, Zbl 0855.18001.

J.E. Humphreys, Introduction to Lie algebras and representation theory,
Springer, 1972, MR 0323842, Zbl 0254.17004.

M. Kapranov & E. Vasserot, Kleinian singularities, derived categories
and Hall algebras, Math. Ann. 316 (2000) 565-576, MR 1752785,
Zbl 0997.14001.

M. Kashiwara & P. Schapira, Sheaves on Manifolds, Springer, 1990,
MR 1074006, Zbl 0709.18001.

Y. Kawamata, D-equivalence and K -equivalence, J. Differential Geom. 61
(2002) 147-171, MR 1949787.

D.O. Orlov, Equivalences of derived categories and K3 surfaces, in ‘Alge-
braic geometry’, 7, J. Math. Sci. (New York), 84, Consultants Bureau, New
York, 1361-1381, 1997, MR 1465519, Zbl 0938.14019.

, Derived categories of coherent sheaves on abelian varieties and
equivalences between them, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002)
131-158; translation in Izv. Math. 66 (2002) 569-594, MR 1921811,
Zbl 1031.18007.

O. Riemenschneider, Special representations and the two-dimensional
McKay correspondence, Hokkaido Math. J. 32 317-333 (2003),
MR, 1996281, Zbl 1046.14002.

P. Seidel & R. Thomas, Braid group actions on derived categories of coher-
ent sheaves, Duke Math. J. 108 (2001) 37-108, MR 1831820.

Y. Toda, Fourier—-Mukai transforms and canonical divisors, preprint,
math.AG/0312015, 2003.

J.L. Verdier, Des catégories dérivées des catégories abéliennes, Astéresque
23 (1996), MR 1453167, Zbl 0882.18010.

DEPARTMENT OF MATHEMATICS

GRADUATE SCHOOL OF SCIENCE

HirosHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA
HicAsHI-HIROSHIMA 739-8526, JAPAN

E-mail address: akira@math.sci.hiroshima-u.ac.jp

DEPARTMENT OF MATHEMATICS
KyoTo UNIVERSITY
Kyoro 606-8502, JAPAN

E-mail address: hokuto@math.kyoto-u.ac.jp



