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CANONICAL METRICS ON THE MODULI SPACE
OF RIEMANN SURFACES I

Kefeng Liu, Xiaofeng Sun & Shing-Tung Yau

1. Introduction

One of the main purposes of this paper is to understand the geometry
of the moduli and the Teichmüller spaces of Riemann surfaces. The most
interesting results we have in this paper are the detailed understand-
ing of two new complete Kähler metrics with nice properties and the
Kähler–Einstein metric on the Teichmüller and the moduli spaces of Rie-
mann surfaces. The two new metrics, the Ricci metric and the perturbed
Ricci metric, are naturally defined as the negative Ricci curvature of the
Weil–Petersson metric and a combination of it with the Weil–Petersson
metric. We prove that these new metrics and the Kähler–Einstein metric
on the Teichmüller and moduli spaces all have Poincaré type boundary
behavior, and further, in [7], we prove that they all have bounded geom-
etry. Note that the Kähler–Einstein metric is the key link between the
differential geometric and algebraic geometric aspects of these spaces.
So, it is most interesting and also most challenging to understand the
Kähler–Einstein metric. In fact, by using our understanding of the
Kähler–Einstein metric and the new metrics, we will derive in [7] the
stability of the logarithmic cotangent bundle of the moduli space of Rie-
mann surfaces. In this paper, we study in detail the asymptotic behav-
iors and the signs of the curvatures of these new metrics. In particular,
we prove that the perturbed Ricci metric is a complete Kähler metric
with bounded negative holomorphic sectional and Ricci curvature and
bounded bisectional curvature. As a consequence, we show that, by us-
ing the new metrics as a bridge and some simple argument with Schwarz
lemma, all of the classical complete metrics are equivalent to the Ricci
and the perturbed Ricci metric on the Teichmüller and moduli spaces.

The study of the Teichmüller and moduli spaces of Riemann surfaces
has a long history. It has been intensively studied by many mathemati-
cians in complex analysis, differential geometry, topology and algebraic
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geometry for the past 60 years. They have also appeared in theoret-
ical physics such as string theory. The moduli space can be viewed
as the quotient of the corresponding Teichmüller space by the mod-
ular group. There are several classical metrics on these spaces: the
Weil–Petersson metric, the Teichmüller metric, the Kobayashi metric,
the Bergman metric, the Carathéodory metric and the Kähler–Einstein
metric. These metrics have been studied over the years and have found
many important applications in various areas of mathematics. Each
of these metrics has its own advantages and disadvantages in studying
different problems.

The Weil–Petersson metric is a Kähler metric as first proved by
Ahlfors, both of its holomorphic sectional curvature and Ricci curva-
ture have negative upper bounds as conjectured by Royden and proved
by Wolpert. These properties have found many applications by Wolpert,
and they were also used in solving problems from algebraic geometry
by combining with the Schwarz lemma of Yau ([6], [19]). But as first
proved by Wolpert and Chu, it is not a complete metric which prevents
the understanding of some aspects of the geometry of the moduli spaces.
Royden, Siu and Schumacher extended some results to higher dimen-
sional cases. The works of Masur and Wolpert, Siu and Schumacher
will play important roles in our study.

The Teichmüller metric, the Kobayashi metric and the Carathéodory
metric are only Finsler metrics. They are very effective in studying the
hyperbolic property of the moduli space. Royden proved that the Te-
ichmüller metric is equal to the Kobayashi metric from which he deduced
the important corollary that the isometry group of the Teichmüller space
is exactly the modular group. Recently, McMullen introduced a new
complete Kähler metric on the moduli space by perturbing the Weil–
Petersson metric [12]. By using this metric, he was able to prove that
the moduli space is Kähler hyperbolic, and also to derive several topo-
logical consequences. The McMullen metric has bounded geometry, but
we lose control on the signs of its curvatures.

In the early 80s, Cheng and Yau [2] proved the existence of the
Kähler–Einstein metric on the Teichmüller space. Since the Kähler–
Einstein metric is canonical, it also descends to a complete Kähler met-
ric on the moduli space. More than 20 years ago, Yau [20] conjectured
the equivalence of the Kähler–Einstein metric to the Teichmüller met-
ric. We will prove this conjecture in this paper. Since the McMullen
metric is equivalent to the Teichmüller metric, so we have also proved
the equivalence of the Kähler–Einstein metric and the McMullen metric.
We will further show that the Bergman metric and the Carathéodory
metric are also equivalent to the Kobayashi metric which was also first
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conjectured by Yau. Therefore, all of the classical metrics are equivalent
to the Ricci and the perturbed Ricci metric.

The Ricci metric is induced by the negative Ricci curvature of the
Weil–Petersson metric, see also [15], and the perturbed Ricci metric is a
perturbation of the Ricci metric by the Weil–Petersson metric. We first
study the asymptotic behaviors of the Ricci metric near the boundary
of the moduli space, we prove that it is asymptotically equivalent to the
Poincaré metric, and asymptotically, its holomorphic sectional curvature
has negative upper and lower bound in the degeneration directions. But
its curvatures in the non-degeneration directions near the boundary and
in the interior of the moduli space cannot be controlled well. To solve
this problem, we introduce another new complete Kähler metric which
we call the perturbed Ricci metric, it is obtained by adding a multiple of
the Weil–Petersson metric. We compute the holomorphic sectional cur-
vature and the Ricci curvature of this new metric. We show in this paper
and also in [7] that they are all bounded below and above, and the holo-
morphic sectional and Ricci curvature have negative upper and lower
bounds. This is the first known complete Kähler metric on the moduli
space with such good curvature property. Note that the curvatures of
the Weil–Petersson metric do not have lower bound. By applying the
Schwarz lemma of Yau, we can prove the equivalence of this new metric
to the Kähler–Einstein metric. The equivalence of the perturbed Ricci
metric to the McMullen metric is proved by an estimate of the asymp-
totic behavior of these two metrics. The equivalences of the Bergman
metric, the Carathéodory metric and the Kobayashi metric are proved
by simply using the Bers embedding and the Schwarz–Yau lemma.

Another important fact of the Ricci metric is that it is cohomologous
to the Kähler–Einstein metric. By using the Ricci metric as the back-
ground metric, we can establish the Monge–Amperé equation and study
the strongly bounded geometry of the Kähler–Einstein metric [7].

To state our main results in detail, let us introduce some definitions
and notations. Here, for convenience, we will use the same notation for
a Kähler metric and its Kähler form. First, two metrics ωτ1 and ωτ2 are
called equivalent, if they are quasi-isometric to each other in the sense
that

C−1ωτ2 ≤ ωτ1 ≤ Cωτ2

for some positive constant C. We will write this as ωτ1 ∼ ωτ2.
Our first result is the following asymptotic behavior of the Ricci met-

ric near the boundary divisor of the moduli space. Let Tg denote the
Teichmüller space and Mg be the moduli space of Riemann surfaces of
genus g where g ≥ 2. Mg is a complex orbifold of dimension 3g−3 as a
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quotient of Tg by the modular group. Let n = 3g − 3. Let ωWP be the
Weil–Petersson metric and ωτ = −Ric(ωWP ) be the Ricci metric. It is
easy to show that there is an asymptotic Poincaré metric on Mg. See
Section 4 for the construction.

Theorem 1.1. The Ricci metric is equivalent to the asymptotic
Poincaré metric.

This theorem is proved in Section 4. Our second result is the following
estimates of the holomorphic sectional curvature of the Ricci metric.
Note our convention of the sign of the curvature may be different from
some literature.

Theorem 1.2. Let X0 ∈ Mg \ Mg be a codimension m point and
let (t1, · · · , tm, sm+1, · · · , sn) be the pinching coordinates at X0 where
t1, · · · , tm correspond to the degeneration directions. Then, the holo-
morphic sectional curvature of the Ricci metric is negative in the degen-
eration directions and is bounded in the non-degeneration directions.
Precisely, there is a δ > 0 such that if |(t, s)| < δ, then

R̃iiii =
3u4

i

8π4|ti|4
(1 +O(u0)) > 0 if i ≤ m

and

R̃iiii = O(1) if i ≥ m+ 1.

Furthermore, on Mg the holomorphic sectional curvature, the bisec-
tional curvature and the Ricci curvature of the Ricci metric are bounded
from above and below.

This is Theorem 4.4 of Section 4 of this paper. One of the main pur-
poses of our work was to find a natural complete metric whose holomor-
phic sectional curvature is negative. To do this, we introduce the per-
turbed Ricci metric. In Section 5, we will prove the following theorem:

Theorem 1.3. For suitable choice of positive constant C, the per-
turbed Ricci metric

ω
�τ = ωτ + CωWP

is complete and its holomorphic sectional curvatures are negative and
bounded from above and below by negative constants. Furthermore, the
Ricci curvature of the perturbed Ricci metric is bounded from above and
below.

Note that the perturbed Ricci metric is equivalent to the Ricci metric,
since its asymptotic behavior is dominated by the Ricci metric. Now
we denote the Kähler–Einstein metric of Cheng–Yau by ωKE which is
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another complete Kähler metric on the moduli space. By applying the
Schwarz lemma of Yau, we derive our fourth result in Section 6:

Theorem 1.4. We have the equivalence of the following three com-
plete Kähler metrics on the moduli spaces of curves:

ωKE ∼ ωτ ∼ ωτ̃ .

Our fifth result in this paper proved in Section 6 is the equivalence
of the Ricci metric and the perturbed Ricci metric to the McMullen
metric. Let us denote the McMullen metric by ωM .

Theorem 1.5. We have the equivalence of the following metrics: the
McMullen metric, the Ricci metric and the perturbed Ricci metric:

ωM ∼ ωτ ∼ ωτ̃ .

As a corollary, we know that these metrics are also equivalent to
the Teichmüller metric, the Kobayashi metric, and the Kähler–Einstein
metric. This proved the conjecture of Yau [20].

We denote by ‖ · ‖
K

, ‖ · ‖
B

and ‖ · ‖
C

the norms defined by the
Kobayashi, Bergman and Carathéodory metrics. In the last section, we
showed that these metrics are equivalent.

Theorem 1.6. On the Teichmüller space Tg with g ≥ 2, the Kobayashi
metric, the Bergman metric and the Carathéodory metrics are equiva-
lent. Namely,

‖ · ‖
K
∼ ‖ · ‖

B
∼ ‖ · ‖

C
.

These results imply that all the above complete metrics have Poincaré
type growth on the moduli space.

In the second part of this work [7], we will prove that the Kähler–
Einstein metric, Ricci and the perturbed Ricci metric all have (strongly)
bounded geometry, and derive the stability of the logarithmic cotangent
bundle of the moduli space of Riemann surfaces. It would be interesting
to see how this result can be proved by algebraic geometric method. In
the third part of our work [8], we will prove the goodness of the Weil–
Petersson metric, the Ricci and the perturbed Ricci metric and other
metrics in the sense of Mumford, derive some other nice properties of
these metrics and find interesting applications.

This paper is organized as follows. In Section 2, we set up some no-
tations and introduce the Weil–Petersson metric and its curvatures. In
Section 3, we introduce various operators needed for our computations,
we compute and simplify the curvature of the Ricci metric by using these
operators and their various special properties. This section consists of
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long and complicated computations. Section 4 consists of several subtle
estimates of the Ricci metric and its curvatures near the boundary of
the moduli space. In Section 5, we introduce the perturbed Ricci met-
ric, compute its curvature and study its asymptotic behavior near the
boundary of the moduli space. These results are then used in Section
6 to prove the equivalence of the several well-known classical complete
Kähler metrics as stated above. Finally, in Section 7, by using the Ber’s
embedding theorem and basic properties of the Kobayashi, Bergman
and Carathéodory metric, we show that these metrics are equivalent.
This finishes the proof of the equivalence of all of the known complete
metrics. In the appendix, we add some details of the computations for
the convenience of the readers.

For simplicity, we state all of our results for the moduli and Te-
ichmüller spaces of closed Riemann surfaces. All of the theorems hold
for moduli spaces Mg,n of hyperbolic Riemann surfaces with punctures.

Some history of this research can be found in our survey paper [9].

2. The Weil–Petersson metric

The purpose of this section is to set up notations for our computa-
tions. We will introduce the Weil–Petersson metric and recall some of
its basic properties. Let Mg be the moduli space of Riemann surfaces
of genus g where g ≥ 2. Mg is a complex orbifold of dimension 3g − 3.
Let n = 3g − 3. Let X be the total space and π : X → Mg be the
projection map. There is a natural metric, called the Weil–Petersson
metric which is defined on the orbifold Mg as follows:

Let s1, · · · , sn be holomorphic local coordinates near a regular point
s ∈ Mg and assume that z is a holomorphic local coordinate on the
fiber Xs = π−1(s). For the local holomorphic vector fields ∂

∂s1
, · · · , ∂

∂sn
,

there are vector fields v1, · · · , vn on π−1(U) ⊂ X where U is a small
neighborhood of s in Mg such that

1) π∗(vi) = ∂
∂si

for i = 1, · · · , n;
2) ∂vi are harmonic TXs-valued (0, 1) forms for i = 1, · · · , n. Here,

∂ is the operator on the fiber Xs.

The vector fields v1, · · · , vn are called the harmonic lift of the vectors
∂

∂s1
, · · · , ∂

∂sn
. The existence of such harmonic vector fields was pointed

out by Siu [14]. In his work [13], Schumacher gave an explicit construc-
tion of such lift which we now describe.

Since g ≥ 2, we can assume that each fiber is equipped with the
Kähler–Einstein, or the Poincaré metric, λ =

√
−1
2 λ(z, s)dz ∧ dz. The
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Kähler–Einstein condition gives the following equation:

∂z∂z log λ = λ.(2.1)

For the rest of this paper, we denote ∂
∂si

by ∂i and ∂
∂z by ∂z. Let

ai = −λ−1∂i∂z log λ(2.2)

and let

Ai = ∂zai.(2.3)

Then, we have the following

Lemma 2.1. The harmonic horizontal lift of ∂i is

vi = ∂i + ai∂z.

In particular
Bi = Ai∂z ⊗ dz ∈ H1(Xs, TXs)

is harmonic. Furthermore, the lift ∂i 
→ Bi gives the Kodaira–Spencer
map TsMg → H1(Xs, TXs).

Remark 2.1. In the above lemma, the spaceH1(Xs, TXs) is the space
of harmonic forms with value in the holomorphic tangent sheaf of Xs.
We used the Dolbeault isomorphism implicitly.

Now, we define the well-known Weil–Petersson metric:

Definition 2.1. The Weil–Petersson metric on Mg is defined to be

hij(s) =
∫

Xs

Bi ·Bj dv =
∫

Xs

AiAj dv,(2.4)

where dv =
√
−1
2 λdz ∧ dz is the volume form on the fiber Xs.

It is known that the curvature tensor of the Weil–Petersson metric
can be represented by

Rijkl =
∫

Xs

{
(Bi ·Bj)(� + 1)−1(Bk ·Bl)

+(Bi ·Bl)(� + 1)−1(Bk · Bj)
}
dv,

where � is the complex Laplacian defined by

� = −λ−1 ∂2

∂z∂z
.

By the expression of the curvature operator, we know that the curva-
ture operator is non-positive. Furthermore, the Ricci curvature of the
metric is negative.

However, the Weil–Petersson metric is incomplete. In [15], Trapani
proved the negative Ricci curvature of the Weil–Petersson metric is a
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complete Kähler metric on the moduli space. We call this metric the
Ricci metric. It is interesting to understand the curvature of the Ricci
metric, at least asymptotically. To estimate it, we first derive an integral
formula of its curvature.

3. Ricci metric and its curvature

In this section, we establish an integral formula (3.28) of the curvature
of the Ricci metric. The importance of this formula is that the functions
being integrated only involve derivatives in the fiber direction which we
are able to control. Thus, we can use this formula to estimate the
asymptotic of the curvature of the Ricci metric in next section.

The main tool we use is the harmonic lift of Siu and Schumacher
described in the previous section. These lifts together with formula (3.2)
enable us to transfer derivatives in the moduli direction into derivatives
in the fiber direction.

We use the same notations as in the previous section. We first in-
troduce several operators which will be used for the computations and
simplifications of the curvatures of the Ricci metric.

Define an (1, 1) form on the total space X by

g =
√
−1
2

∂∂ log λ =
√
−1
2

(gijdsi∧dsj−λaidsi∧dz−λaidz∧dsi+λdz∧dz).

The form g is not necessarily positive. Introduce

eij =
2√
−1

g(vi, vj) = gij − λaiaj

be a global function. Let us write fij = AiAj. Schumacher proved the
following result:

Lemma 3.1. By using the same notations as above, we have

(� + 1)eij = fij.(3.1)

Since eij and fij are the building blocks of the Ricci metric, it is
interesting to study its property under the action of the vector fields
vi’s.

Lemma 3.2. With the same notations as above, we have

vk(eij) = vi(ekj).

Proof. Since dg = 0, we have the following

0 = dg(vi, vk, vj) = vi(ekj) − vk(eij) + vjg(vi, vk)

− g(vi, [vk, vj]) + g(vk, [vi, vj ]) − g(vj , [vi, vk]).
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The Lie bracket of vj with vj or vk are vector fields tangential to Xs,
which are perpendicular to the horizontal vector fields vi with respect
to the form g. Thus, the last three terms of the above equations are
zero. On the other hand, g(vi, vk) = 0. The lemma thus follows from
the above equation. q.e.d.

We also need to define the following operator

P : C∞(Xs) → Γ(Λ1,0(T 0,1Xs)), f 
→ ∂z(λ−1∂zf).

The dual operator P ∗ can be written as follows

P ∗ : Γ(Λ0,1(T 1,0Xs)) → C∞(Xs), B 
→ λ−1∂z(λ−1∂z(λB)).

The operator P is actually a composition of the Maass operators. We
recall the definitions from [18]. Let X be a Riemann surface and let
κ be its canonical bundle. For any integer p, let S(p) be the space of
smooth sections of (κ⊗κ−1)

p
2 . Fix a conformal metric ds2 = ρ2(z)|dz|2.

Definition 3.1. The Maass operators Kp and Lp are defined to be
the metric derivatives Kp : S(p) → S(p+ 1) and Lp : S(p) → S(p− 1)
given by

Kp(σ) = ρp−1∂z(ρ−pσ)
and

Lp(σ) = ρ−p−1∂z(ρpσ)
where σ ∈ S(p).

Clearly, we have P = K1K0. Also, each element σ ∈ S(p) has a
well-defined absolute value |σ| which is independent of the choice of the
local coordinate. We define the Ck norm of σ as in [18]:

Definition 3.2. Let Q be an operator which is a composition of op-
erators K∗ and L∗. Denote by |Q| the number of such factors. For any
σ ∈ S(p), define

‖σ‖0 = sup
X

|σ|

and
‖σ‖k =

∑
|Q|≤k

‖Qσ‖0.

We can also localize the norm on a subset of X. Let Ω ⊂ X be a domain.
We can define

‖σ‖0,Ω = sup
Ω

|σ|

and
‖σ‖k,Ω =

∑
|Q|≤k

‖Qσ‖0,Ω.
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Both of the above definitions depend on the choice of conformal metric
on X. In the following, we always use the Kähler–Einstein metric on
the surface unless otherwise stated.

Since the Weil–Petersson metric is defined by using the integral along
the fibers, the following formula is very useful:

(3.2) ∂i

∫
Xs

η =
∫

Xs

Lviη

where η is a relative (1, 1) form on X.
The Lie derivative defined here is slightly different from the ordinary

definition. Let ϕt be the one parameter group generated by the vector
field vi. Then, ϕt can be viewed as a diffeomorphism between two fibers
Xs → Xs′ . Then, we define

Lviη = lim
t→0

1
t
(ϕ∗

t (σ) − σ)

for any one form σ. On the other hand, let ξ be a vector field on the
fiber Xs. Then, we define

Lviξ = lim
t→0

1
t
((ϕ−t)∗ξ − ξ).

We have the following

Proposition 3.1. By using the above notations, we have

Lviσ = i(vi)d1σ + d1i(vi)σ,

where d1 is the differential operator along the fiber, and

Lviξ = [vi, ξ].

In the following, we denote Lvi by Li.

Lemma 3.3. By using the above notations, we have
1) Lidv = 0;
2) Ll(Bi) = −P (eil) − fil∂z ⊗ dz + fil∂z ⊗ dz;
3) Lk(Bj) = −P (ekj) − fkj∂z ⊗ dz + fkj∂z ⊗ dz;
4) Lk(Bi) = (vk(Ai) −Ai∂zak)∂z ⊗ dz;
5) Ll(Bj) = (vl(Al) −Al∂zal)∂z ⊗ dz.

Proof. The first formula was proved by Schumacher in [13]. To check
the other formulae, we note that the third and fifth formulae follow from
the second and fourth, which we will prove, by taking conjugation. We
first have

∂zak = ∂z(−λ−1∂k∂z log λ) = λ−2∂zλ∂k∂z log λ− λ−1∂z∂k∂z log λ

= −λ−1∂zλak − λ−1∂k∂z∂z log λ = −λ−1∂zλak − λ−1∂kλ.
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We also have

∂lai = ∂l(−λ
−1∂i∂z log λ)) = λ−2∂lλ∂i∂z log λ− λ−1∂z∂i∂l log λ

= −λ−1∂lλai − λ−1∂zgil = −λ−1∂lλai − λ−1∂z(eil + λaial)

= −λ−1∂lλai − λ−1∂zeil − λ−1∂zλaial −Aial − ai∂zal

= −(λ−1∂lλ+ λ−1∂zλal + ∂zal)ai − λ−1∂zeil −Aial

= −λ−1∂zeil −Aial.

For the second formula, we have

Ll(Bi) = vl(Ai)∂z ⊗ dz +Ai(−∂zal∂z) ⊗ dz +Ai∂z ⊗ (∂zaldz + ∂zaldz)

= (vl(Ai) +Ai∂zal)∂z ⊗ dz − fil∂z ⊗ dz + fil∂z ⊗ dz.

So, we only need to check that vl(Ai) + Ai∂zal = −∂z(λ−1∂zeil). To
prove this, we have

vl(Ai) +Ai∂zal = al∂zAi + ∂lAi +Ai∂zal = ∂z(Aial) + ∂z∂lai

= ∂z(Aial) − ∂z(λ−1∂zeil) − ∂z(Aial) = −∂z(λ−1∂zeil).

This proves the second formula. For the fourth one, we have

Lk(Bi) = vk(Ai)∂z ⊗ dz +Ai(−∂zak∂z) ⊗ dz

= (vk(Ai) −Ai∂zak)∂z ⊗ dz.

This finishes the proof. q.e.d.

An interesting and useful fact is that the Lie derivative of Bi in the
direction of vk is still harmonic. This result is true only for the mod-
uli space of Riemann surfaces. In the general case of moduli space of
Kähler–Einstein manifolds, we only have ∂∗LkBi = 0.

Lemma 3.4. Lk(Bi) ∈ H1(Xs, TXs) is harmonic.

Proof. From Lemma 3.3, we know that Lk(Bi) = (vk(Ai)−Ai∂zak)∂z⊗
dz ∈ A0,1(Xs, TXs). So, it is clear that ∂(Lk(Bi)) = 0 for the dimen-
sional consideration. The fact that ∂∗LkBi = 0 was proved in [14].
q.e.d.

The above lemma is very helpful in computing the curvature when
we use normal coordinates of the Weil–Petersson metric. We have

Corollary 3.1. Let s1, · · · , sn be normal coordinates at s ∈ Mg with
respect to the Weil–Petersson metric. Then, at s, we have, for all i, k,

LkBi = 0.
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Proof. From Lemma 3.4, we know that LkBi is harmonic. Since
B1, · · · , Bn is a basis of TsMg, we have

LkBi = hpq(
∫

Xs

LkBi · Bq dv)Bp = hpq∂khiqBp = 0.

q.e.d.

The commutator of vk and vl will be used later. We give a formula
here which is essentially due to Schumacher.

Lemma 3.5. [vl, vk] = −λ−1∂zekl∂z + λ−1∂zekl∂z.

Proof. From a direct computation, we have

[vl, vk] = vl(ak)∂z − vk(al)∂z.

By using the proof of Lemma 3.3, we have

vl(ak) = al∂zak + ∂lak = −λ−1∂zekl

and
vk(al) = ak∂zal + ∂kal = −λ−1∂zekl.

These finish the proof. q.e.d.

Remark 3.1. In the rest of this paper, we will use the following
notation for curvature:
Let (M,g) be a Kähler manifold. Then, the curvature tensor is given
by

Rijkl =
∂2gij

∂zk∂zl
− gpq ∂giq

∂zk

∂gpj

∂zl
.(3.3)

By using this convention, the Ricci curvature is given by

Rij = −gklRijkl,

and the holomorphic sectional curvature of g is negative means

R(v, v, v, v) > 0

for any holomorphic tangent vector v at any point.

In [14] and [13], Siu and Schumacher proved the following curvature
formula for the Weil–Petersson metric. This formula was also proved
by Wolpert in [16]. We give a short proof here since we need to use the
techniques.

Theorem 3.1. The curvature of Weil–Petersson metric is given by

Rijkl =
∫

Xs

(eijfkl + eilfkj) dv.(3.4)
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Proof. We have

Rijkl =∂l∂khij − hpq∂khiq∂lhpj

=∂l

∫
Xs

LkBi · Bj dv − hpq

∫
Xs

LkBi ·Bq dv

∫
Xs

Bp · LlBj dv

=
∫

Xs

(LlLkBi · Bj + LkBi · LlBj) dv

− hpq

∫
Xs

LkBi · Bq dv

∫
Xs

Bp · LlBj dv.

(3.5)

Since B1, · · · , Bn is a basis of TsMg, we have

hpq

∫
Xs

LkBi · Bq dv

∫
Xs

Bp · LlBj dv =
∫

Xs

LkBi · LlBj dv.

By combining this formula with (3.5), we have

Rijkl =
∫

Xs

LlLkBi ·Bj dv =
∫

Xs

LkLlBi ·Bj dv +
∫

Xs

L[vl,vk]Bi · Bj dv

=∂k

∫
Xs

LlBi · Bj dv −
∫

Xs

LlBi · LkBj dv +
∫

Xs

L[vl,vk]Bi · Bj dv

= −
∫

Xs

LlBi · LkBj dv +
∫

Xs

L[vl,vk]Bi · Bj dv

(3.6)

since
∫
Xs
LlBi ·Bj dv = 0. Now, we compute

∫
Xs
L[vl,vk]Bi ·Bj dv. Let

π1
1
(L[vl,vk]Bi) be the projection of L[vl,vk]Bi onto H0,1(Xs, TXs) which

gives the ∂z ⊗ dz part of L[vl,vk]Bi. Since Bi is harmonic, we know
∂z(λAi) = 0 which implies ∂zAi = −λ−1∂zλAi. By Lemma 3.5, we have

π1
1
(L[vl,vk]Bi) =(−λ−1∂zekl∂zAi +Ai∂z(λ−1∂zekl)

+ ∂z(λ−1Ai∂zekl))∂z ⊗ dz

=(λ−2∂zλAi∂zekl − λ−2∂zλAi∂zekl −Ai�ekl

+ ∂z(λ−1Ai∂zekl))∂z ⊗ dz

=(−Ai�ekl + ∂z(λ−1Ai∂zekl))∂z ⊗ dz.

(3.7)
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This implies

∫
Xs

L[vl,vk]Bi · Bj dv =
∫

Xs

π1
1
(L[vl,vk]Bi) ·Bj dv

=
∫

Xs

(−Ai�ekl + ∂z(λ−1Ai∂zekl))Aj dv

= −
∫

Xs

fij�ekl dv +
∫

Xs

∂z(λ−1Ai∂zekl)Aj dv

= −
∫

Xs

fij�ekl dv −
∫

Xs

λ−2Ai∂zekl∂z(λAj) dv

= −
∫

Xs

fij�ekl dv.

(3.8)

To compute
∫
Xs
LlBi · LkBj dv, by using Lemma 3.3, we obtain

∫
Xs

LlBi · LkBj dv =
∫

Xs

(∂z(λ−1∂zeil)∂z(λ−1∂zekj) − 2fkjfil) dv

=
∫

Xs

(λ−2∂zekj∂z(λ∂z(λ−1∂zeil)) dv − 2
∫

Xs

fkjfil dv

= −
∫

Xs

(λ−2∂zλ∂zekj∂z(λ−1∂zeil)

+ λ−1∂zekj∂z∂z(λ−1∂zeil)) dv − 2
∫

Xs

fkjfil dv

=
∫

Xs

(λ−2∂zeil∂z(λ−1∂zλ∂zekj)

+ λ−1∂z∂zekj∂z(λ−1∂zeil)) dv − 2
∫

Xs

fkjfil dv

=
∫

Xs

(λ−2∂zeil(λ∂zekj − ∂zλ�ekj)

− �ekj(−λ−2∂zλ∂zeil − �eil)) dv − 2
∫

Xs

fkjfil dv

=
∫

Xs

(λ−1∂zeil∂zekj) + �ekj�eil) dv − 2
∫

Xs

fkjfil dv

=
∫

Xs

(�ekjeil + �ekj�eil) dv − 2
∫

Xs

fkjfil dv

=
∫

Xs

(�ekjfil − 2fkjfil) dv = −
∫

Xs

(fkjfil + ekjfil) dv.

(3.9)
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By combining (3.6), (3.8) and (3.9) with the identity fkjfil = AiAjAkAl =
fijfkl, we have

Rijkl =
∫

Xs

(fkjfil + ekjfil − fij�ekl) dv =
∫

Xs

(fijekl + filekj) dv

=
∫

Xs

(eijfkl + eilfkj) dv.

(3.10)

Here, we have used the fact the (� + 1) is a self-adjoint operator. This
finishes the proof. q.e.d.

It is well-known that the Ricci curvature of the Weil–Petersson metric
is negative which implies that the negative Ricci curvature of the Weil–
Petersson metric defines a Kähler metric on the moduli space Mg.

Definition 3.3. The Ricci metric τij on the moduli space Mg is the
negative Ricci curvature of the Weil–Petersson metric. That is

τij = −Rij = hαβRijαβ.(3.11)

Now, we define a new operator which acts on functions over the fibers.

Definition 3.4. For each 1 ≤ k ≤ n and for any smooth function
f on the fibers, we define the commutator operator ξk which acts on a
function f by

ξk(f) = ∂
∗(i(Bk)∂f) = −λ−1∂z(Ak∂zf).(3.12)

The reason we call ξk the commutator operator is that ξk is the
commutator of (� + 1) and vk and the following lemma.

Lemma 3.6. As operators acting on functions, we have
(1) (� + 1)vk − vk(� + 1) = �vk − vk� = ξk;
(2) (� + 1)vl − vl(� + 1) = �vl − vl� = ξl;
(3) ξk(f) = −Ak∂z(λ−1∂zf) = −AkP (f) = −AkK1K0(f).
Furthermore, we have

(� + 1)vk(eij) = ξk(eij) + ξi(ekj) + LkBi ·Bj .(3.13)
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Proof. To prove (1), we have

(� + 1)vk − vk(� + 1)
= �vk + vk − vk� − vk = �vk − vk�
= −λ−1∂z∂z(ak∂z + ∂k) − (ak∂z + ∂k)(−λ−1∂z∂z)

= −λ−1∂z(Ak∂z + ak∂z∂z + ∂k∂z)

+ ak∂z(λ−1)∂z∂z + λ−1ak∂z∂z∂z + ∂k(λ−1)∂z∂z + λ−1∂k∂z∂z

= −λ−1∂z(Ak∂z) − λ−1∂zak∂z∂z − λ−1ak∂z∂z∂z − λ−1∂k∂z∂z

− λ−2∂zλak∂z∂z + λ−1ak∂z∂z∂z − λ−2∂kλ∂z∂z + λ−1∂k∂z∂z

= ξk − λ−1(∂zak + λ−1∂zλak + λ−1∂kλ)∂z∂z = ξk

where we have used Lemma 3.3 in the last equality of the above formula.
By taking conjugation, we can prove (2) by using (1). To prove (3), we
use the harmonicity of Bk. Since ∂

∗
Bk = 0, we have ∂z(λAk) = 0.

So

ξk(f) = −λ−1∂z(Ak∂zf) = −λ−1∂z(λAkλ
−1∂zf)

= −λ−1λAk∂z(λ−1∂zf) = −Ak∂z(λ−1∂zf).

To prove the last part, by using part 1 of this lemma, we have

(� + 1)vk(eij) =vk((� + 1)(eij)) + ξk(eij) = vk(fij) + ξk(eij)

=LkBi ·Bj +Bi · LkBj + ξk(eij)

=LkBi ·Bj −Ai∂z(λ−1∂zekj) + ξk(eij)

=LkBi ·Bj + ξi(ekj) + ξk(eij).

This finishes the proof. q.e.d.

Remark 3.2. From Corollary 3.1 and the above lemma, when we use
the normal coordinates on the moduli space with respect to the Weil–
Petersson metric, we have the clean formula (� + 1)vk(eij) = ξi(ekj) +
ξk(eij).

The main result in this section is the curvature formula of the Ricci
metric. The terms produced here are very symmetric with respect to
indices. For convenience, we introduce the symmetrization operator.

Definition 3.5. Let U be any quantity which depends on indices
i, k, α, j, l, β. The symmetrization operator σ1 is defined by taking the
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summation of all orders of the triple (i, k, α). That is

σ1(U(i, k, α, j, l, β)) = U(i, k, α, j, l, β) + U(i, α, k, j, l, β)

+ U(k, i, α, j, l, β) + U(k, α, i, j, l, β)

+ U(α, i, k, j, l, β) + U(α, k, i, j, l, β).

Similarly, σ2 is the symmetrization operator of j and β and σ̃1 is the
symmetrization operator of j, l and β.

Now, we are ready to compute the curvature of the Ricci metric. For
the first order derivative, we have

Theorem 3.2.

∂kτij = hαβ

{
σ1

∫
Xs

(ξk(eij)eαβ) dv
}

+ τpjΓ
p
ik(3.14)

where Γp
ik is the Christoffell symbol of the Weil–Petersson metric.

Proof. From Lemma 3.1, we know that (� + 1)eij = fij. By using
Lemma 3.6 and Theorem 3.1, we have

∂kRijαβ =∂k

∫
Xs

(eijfαβ + eiβfαj) dv

=
∫

Xs

(vk(eij)fαβ + eijvk(fαβ) + vk(eiβ)fαj + eiβvk(fαj)) dv

=
∫

Xs

((� + 1)vk(eij)eαβ + eijvk(fαβ) + (� + 1)vk(eiβ)eαj

+ eiβvk(fαj)) dv

=
∫

Xs

(vk(fij)eαβ + eijvk(fαβ) + vk(fiβ)eαj

+ eiβvk(fαj)) dv

+
∫

Xs

(ξk(eij)eαβ + ξk(eiβ)eαj) dv

=
∫

Xs

((LkBi ·Bj)eαβ + (LkBα ·Bβ)eij

+ (LkBi · Bβ)eαj + (LkBα · Bj)eiβ) dv

+
∫

Xs

((Bi · LkBj)eαβ + (Bα · LkBβ)eij + (Bi · LkBβ)eαj

+ (Bα · LkBj)eiβ) dv +
∫

Xs

(ξk(eij)eαβ + ξk(eiβ)eαj) dv.

(3.15)
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Now, we simplify the right-hand side of (3.15). Since B1, · · · , Bn is a
basis of TsMg, we know that the first line of the right-hand side of
(3.15) is

∫
Xs

((LkBi · Bj)eαβ + (LkBα · Bβ)eij + (LkBi · Bβ)eαj

+ (LkBα ·Bj)eiβ) dv

=
∫

Xs

(LkBi · (Bjeαβ +Bβeαj) + LkBα · (Bjeiβ +Bβeij)) dv

=hpq

∫
Xs

(LkBi · Bq) dv
∫

Xs

(Bp · (Bjeαβ +Bβeαj) dv

+ hpq

∫
Xs

(LkBα ·Bq) dv
∫

Xs

(Bp · (Bjeiβ +Bβeij) dv

=hpq∂khiqRpjαβ + hpq∂khαqRijpβ = Γp
ikRpjαβ + Γp

αkRijpβ.

(3.16)

We deal with the second line of the right-hand side of (3.15) by using
Lemmas 3.3 and 3.6 to get

Bi · LkBj = −Ai∂z(λ−1∂zekj) = ξi(ekj).(3.17)

This implies∫
Xs

((Bi · LkBj)eαβ + (Bα · LkBβ)eij(3.18)

+ (Bi · LkBβ)eαj + (Bα · LkBj)eiβ) dv

=
∫

Xs

(ξi(ekj)eαβ + ξα(ekβ)eij + ξi(ekβ)eαj + ξα(ekj)eiβ) dv.

We also have

(3.19)
∂kτij = hαβ∂kRijαβ + ∂kh

αβRijαβ = hαβ(∂kRijαβ −RijpβΓp
kα).

By combining (3.15), (3.16), (3.18) and (3.19), together with the fact
that ξi is a real symmetric operator and the definition of τij, we have
proved this theorem. q.e.d.

To compute the second order derivative, we need to compute the
commutator of ξk and vl. We have

Lemma 3.7. For any smooth function f ∈ C∞(Xs),

(3.20) vl(ξkf) − ξk(vlf) = P (ekl)P (f) − 2fkl�f + λ−1∂zfkl∂zf.
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Proof. We will fix local holomorphic coordinates and compute locally.
First, we know that the commutator of vl and ∂z is

(3.21) vl∂z − ∂zvl = −∂zal∂z = −Al∂z.

Similarly, the commutator of vl and λ−1∂z is

vl(λ−1∂z) − λ−1∂zvl = vl(λ−1)∂z + λ−1(vl∂z − ∂zvl)(3.22)

= λ−1∂zal∂z − λ−1Al∂z.

The above two formulae imply

−(vlP − Pvl) = −vl(∂z(λ−1∂z)) + ∂z(λ−1∂z)vl

= (Al∂z − ∂zvl)(λ−1∂z) + ∂z(vl(λ−1∂z) − λ−1∂zal∂z

+ λ−1Al∂z)

= Al∂z(λ−1∂z) − ∂z(λ−1∂zal∂z) + ∂z(λ−1Al∂z)

= −λ−2∂zλAl∂z + λ−1Al∂z∂z + λ−2∂zλ∂zal∂z

− λ−1∂zAl∂z − λ−1∂zal∂z∂z

− λ−2∂zλAl∂z + λ−1∂zAl∂z + λ−1Al∂z∂z.

(3.23)

By using the harmonicity, we have ∂z(λAl) = 0 which implies ∂zAl =
−λ−1∂zλAl. By plugging this into formula (3.23), we have

−(vlP − Pvl) = − 2Al� + λ−2∂zλ∂zal∂z − λ−1∂zal∂z∂z(3.24)

− λ−2∂zλAl∂z + λ−1∂zAl∂z

= − 2Al� − ∂zalP − λ−2∂zλAl∂z + λ−1∂zAl∂z.

Now, since ξk = −AkP , we have

vl(ξkf)− ξk(vlf) = − vl(Ak)P (f) −Ak(vlP (f) − Pvl(f))(3.25)

= − (vl(Ak) +Ak∂zal)P (f) − 2fkl�f
− λ−2∂zλAkAl∂zf + λ−1Ak∂zAl∂zf.

From the proof of lemma 3.3, we know vl(Ak) +Ak∂zal = −P (ekl). By
using the harmonicity, we have −λ−1∂zλAk = ∂zAk. So, from (3.25),
we have

vl(ξkf) − ξk(vlf) =P (ekl)P (f) − 2fkl�f + λ−1∂zAkAl∂zf(3.26)

+ λ−1Ak∂zAl∂zf

=P (ekl)P (f) − 2fkl�f + λ−1∂zfkl∂zf.

This finishes the proof. q.e.d.
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From the above lemma, it is convenient to define the commutator of
ξk and vl as an operator.

Definition 3.6. For each k, l, we define the operator Qkl which acts
on a function to produce another function by

Qkl(f) = P (ekl)P (f) − 2fkl�f + λ−1∂zfkl∂zf.(3.27)

Now, we are ready to compute the curvature tensor of the Ricci met-
ric. The formula consists of four types of terms.

Theorem 3.3. Let s1, · · · , sn be local holomorphic coordinates at s ∈
Mg. Then at s, we have

R̃ijkl =hαβ

{
σ1σ2

∫
Xs

{
(� + 1)−1(ξk(eij))ξl(eαβ)

+ (� + 1)−1(ξk(eij))ξβ(eαl)
}
dv

}

+ hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
− τpqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

}{
σ̃1

∫
Xs

ξl(epj)eγδ) dv
}

+ τpjh
pqRiqkl.

(3.28)

Proof. By Lemma 3.4, we know that LkBi is harmonic. SinceB1, · · · , Bn

is a basis of harmonic Beltrami differentials, from the proof of Theorem
3.1, we have

LkBi = Γs
ikBs.(3.29)

We first compute ∂l

∫
Xs
ξk(eij)eαβ dv. By Lemmas 3.6 and 3.7, we have

∂l

∫
Xs

ξk(eij)eαβ dv =
∫

Xs

(vl(ξk(eij))eαβ + ξk(eij)vl(eαβ)) dv

(3.30)

=
∫

Xs

(ξk(vl(eij))eαβ + ξk(eij)vl(eαβ) +Qkl(eij)eαβ) dv

=
∫

Xs

(ξk(eαβ)vl(eij) + ξk(eij)vl(eαβ) +Qkl(eij)eαβ) dv

=
∫

Xs

(� + 1)−1(ξk(eαβ))(� + 1)(vl(eij)) dv
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+
∫

Xs

(� + 1)−1(ξk(eij))(� + 1)(vl(eαβ)) dv

+
∫

Xs

Qkl(eij)eαβ dv

=
∫

Xs

(� + 1)−1(ξk(eαβ))(ξl(eij) + vl(fij)) dv

+
∫

Xs

(� + 1)−1(ξk(eij))(ξl(eαβ) + vl(fαβ)) dv

+
∫

Xs

Qkl(eij)eαβ dv

=
∫

Xs

((� + 1)−1(ξk(eαβ))ξl(eij)

+ (� + 1)−1(ξk(eij))ξl(eαβ)) dv

+
∫

Xs

(� + 1)−1(ξk(eαβ))(ξj(eil) +Ai · LlAj) dv

+
∫

Xs

(� + 1)−1(ξk(eij))(ξβ(eαl) +Aα · LlAβ) dv

+
∫

Xs

Qkl(eij)eαβ dv.

Now, by using (3.29), we have

∫
Xs

((� + 1)−1(ξk(eαβ))(Ai · LlAj) + (� + 1)−1(ξk(eij))(Aα · LlAβ)) dv

=
∫

Xs

((� + 1)−1(ξk(eαβ))(Γt
jlAi ·At)

+ (� + 1)−1(ξk(eij))(Γ
t
βlAα · At)) dv

= Γt
jl

∫
Xs

ξk(eαβ)(� + 1)−1(Ai · At) dv

+ Γt
βl

∫
Xs

ξk(eij)(� + 1)−1(Aα ·At) dv

= Γt
jl

∫
Xs

ξk(eαβ)eit dv + Γt
βl

∫
Xs

ξk(eij)eαt dv.

(3.31)

By combining (3.30) and (3.31), we have
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∂l

∫
Xs

ξk(eij)eαβ dv =
∫

Xs

(� + 1)−1(ξk(eij))(ξl(eαβ) + ξβ(eαl)) dv

+
∫

Xs

(� + 1)−1(ξk(eαβ))(ξl(eij) + ξj(eil)) dv

+ Γt
jl

∫
Xs

ξk(eαβ)eit dv + Γt
βl

∫
Xs

ξk(eij)eαt dv

+
∫

Xs

Qkl(eij)eαβ dv.

(3.32)

We also have

∂lΓ
p
ik =∂l(h

pq∂khiq) = −hpβhαq∂lhαβ∂khiq + hpq∂l∂khiq

=hpq(∂l∂khiq − hαβ∂lhαq∂khiβ) = hpqRiqkl.
(3.33)

From Theorem 3.2, formula (3.32) and (3.33), we derive

∂l∂kτij =(∂lh
αβ)
{
σ1

∫
Xs

ξk(eij)eαβ dv

}
+ hαβ

{
σ1∂l

∫
Xs

ξk(eij)eαβ dv

}
+ hγδ

{
σ̃1

∫
Xs

ξl(epj)eγδ dv

}
Γp

ik + τpqΓ
p
ikΓq

jl + τpjh
pqRiqkl

= − hαtΓβ
lt

{
σ1

∫
Xs

ξk(eij)eαβ dv

}
+ hαβ

{
σ1σ2

∫
Xs

(� + 1)−1(ξk(eij))(ξl(eαβ) + ξβ(eαl)) dv
}

+ hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
+ hαβΓt

jl

{
σ1

∫
Xs

ξk(eit)eαβ dv

}
+ hαβΓt

βl

{
σ1

∫
Xs

ξk(eij)eαt dv

}
+ hγδ

{
σ̃1

∫
Xs

ξl(epj)eγδ dv

}
Γp

ik

+ τpqΓ
p
ikΓq

jl + τpjh
pqRiqkl.

(3.34)

Now, from the above formula, by using Theorem 3.2, we can easily check the
formula (3.28). q.e.d.

The curvature formula of the Ricci metric would be simpler if we
have used the normal coordinates. However, when we estimate the
asymptotic behavior of the curvature, it is hard to describe the normal
coordinates near the boundary points. Thus, we will use this general
formula directly in our computations. The estimates are quite subtle.
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4. The asymptotic of the Ricci metric and its curvatures

From formula (3.4), we can easily see the sign of the curvature of the
Weil–Petersson metric directly. However, the sign of the curvature of
the Ricci metric cannot be derived from formula (3.28). In this section,
we estimate the asymptotic of the Ricci metric and its curvatures. We
first describe the local pinching coordinates near the boundary of the
moduli space due to the plumbing construction of Wolpert. Then, we
use Masur’s construction of the holomorphic quadratic differentials to
estimate the harmonic Beltrami differentials. Finally, we construct ẽij
which is an approximation of eij . By doing this, we avoid the estimates
of the Green function of � + 1 on the Riemann surfaces.

Let Mg be the moduli space of Riemann surfaces of genus g ≥ 2
and let Mg be its Deligne–Mumford compactification [3]. Each point
y ∈ Mg \Mg corresponds to a stable nodal surface Xy. A point p ∈ Xy

is a node if there is a neighborhood of p which is isometric to the germ
{(u, v) | uv = 0, |u|, |v| < 1} ⊂ C

2.
We first recall the rs-coordinate on a Riemann surface defined by

Wolpert in [18]. There are two cases: the puncture case and the short
geodesic case. For the puncture case, we have a nodal surface X and
a node p ∈ X. Let a, b be two punctures which are glued together to
form p.

Definition 4.1. A local coordinate chart (U, u) near a is called rs-
coordinate if u(a) = 0 where u maps U to the punctured disc 0 < |u| < c
with c > 0, and the restriction to U of the Kähler–Einstein metric on
X can be written as 1

2|u|2(log |u|)2 |du|
2. The rs-coordinate (V, v) near b is

defined in a similar way.

For the short geodesic case, we have a closed surface X, a closed
geodesic γ ⊂ X with length l < c∗ where c∗ is the collar constant.

Definition 4.2. A local coordinate chart (U, z) is called rs-coordinate
at γ if γ ⊂ U where z maps U to the annulus c−1|t| 12 < |z| < c|t| 12 , and
the Kähler–Einstein metric on X can be written as 1

2( π
log |t|

1
|z| csc

π log |z|
log |t| )2

|dz|2.
Remark 4.1. We put the factor 1

2 in the above two definitions to
normalize metrics such that (2.1) hold.

By Keen’s collar theorem [4], we have the following lemma:

Lemma 4.1. Let X be a closed surface and let γ be a closed geodesic
on X such that the length l of γ satisfies l < c∗. Then, there is a collar
Ω on X with holomorphic coordinate z defined on Ω such that
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1) z maps Ω to the annulus 1
ce

− 2π2

l < |z| < c for c > 0;
2) the Kähler–Einstein metric on X restricted to Ω is given by(

1
2
u2r−2 csc2 τ

)
|dz|2(4.1)

where u = l
2π , r = |z| and τ = u log r;

3) the geodesic γ is given by the equation |z| = e−
π2

l .

We call such a collar Ω a genuine collar.

We notice that the constant c in the above lemma has a lower bound
such that the area of Ω is bounded from below. Also, the coordinate
z in the above lemma is rs-coordinate. In the following, we will keep
using the above notations u, r and τ .

Now, we describe the local manifold cover of Mg near the bound-
ary. We take the construction of Wolpert [18]. Let X0,0 be a nodal
surface corresponding to a codimension m boundary point. X0,0 have
m nodes p1, · · · , pm. X0 = X0,0 \ {p1, · · · , pm} is a union of punctured
Riemann surfaces. Fix the rs-coordinate charts (Ui, ηi) and (Vi, ζi) at
pi for i = 1, · · · ,m such that all the Ui and Vi are mutually disjoint.
Now, pick an open set U0 ⊂ X0 such that the intersection of each
connected component of X0 and U0 is a non-empty relatively com-
pact set and the intersection U0 ∩ (Ui ∪ Vi) is empty for all i. Now,
pick Beltrami differentials νm+1, · · · , νn which are supported in U0 and
span the tangent space at X0 of the deformation space of X0. For
s = (sm+1, · · · , sn), let ν(s) =

∑n
i=m+1 siνi. We assume |s| = (

∑
|si|2)

1
2

small enough such that |ν(s)| < 1. The nodal surface X0,s is obtained
by solving the Beltrami equation ∂w = ν(s)∂w. Since ν(s) is sup-
ported in U0, (Ui, ηi) and (Vi, ζi) are still holomorphic coordinates on
X0,s. Note that they are no longer rs-coordinates. By the theory of
Alhfors and Bers [1] and Wolpert [18], we can assume that there are
constants δ, c > 0 such that when |s| < δ, ηi and ζi are holomorphic
coordinates on X0,s with 0 < |ηi| < c and 0 < |ζi| < c. Now, we assume
t = (t1, · · · , tm) has small norm. We do the plumbing construction on
X0,s to obtain Xt,s. We remove from X0,s the discs 0 < |ηi| ≤ |ti|

c

and 0 < |ζi| ≤ |ti|
c for each i = 1, · · · ,m, and identify |ti|

c < |ηi| < c

with |ti|
c < |ζi| < c by the rule ηiζi = ti. This defines the surface Xt,s.

The tuple (t1, · · · , tm, sm+1, · · · , sn) are the local pinching coordinates
for the manifold cover of Mg. We call the coordinates ηi (or ζi) the
plumbing coordinates on Xt,s and the collar defined by |ti|

c < |ηi| < c
the plumbing collar.
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Remark 4.2. From the estimate of Wolpert [17], [18] on the length
of short geodesic, we have ui = li

2π ∼ − π
log |ti| .

We also need the following version of the Schauder estimate proved
by Wolpert [18].

Theorem 4.1. Let X be a closed Riemann surface equipped with the
unique Kähler–Einstein metric. Let f and g be smooth functions on X
such that (�+1)g = f . Then, for any integer k ≥ 0, there is a constant
ck such that ‖g‖k+1 ≤ ck‖f‖k where the norm is defined by (3.2).

Now, we estimate the asymptotic of the Ricci metric in the pinch-
ing coordinates. We will use the following notations. Let (t, s) =
(t1, · · · , tm, sm+1, · · · , sn) be the pinching coordinates near X0,0. For
|(t, s)| < δ, let Ωj

c be the j-th genuine collar on Xt,s which contains
a short geodesic γj with length lj . Let uj = lj

2π , u0 =
∑m

j=1 uj +∑n
j=m+1 |sj|, rj = |zj | and τj = uj log rj where zj is the properly nor-

malized rs-coordinate on Ωj
c such that

Ωj
c = {zj | c−1e

− 2π2

lj < |zj | < c}.

From the above argument, we know that the Kähler–Einstein metric λ
on Xt,s restrict to the collar Ωj

c is given by

λ =
1
2
u2

jr
−2
j csc2 τj.(4.2)

For convenience, we let Ωc = ∪m
j=1Ω

j
c and Rc = Xt,s \ Ωc. In the

following, we may change the constant c finitely many times. Clearly,
this will not affect the estimates.

To estimate the curvature of the Ricci metric, the first step is to find
all the harmonic Beltrami differentials B1, · · · , Bn which correspond to
the tangent vectors ∂

∂t1
, · · · , ∂

∂sn
. In [11], Masur constructed 3g − 3

regular holomorphic quadratic differentials ψ1, · · · , ψn on the plumbing
collars by using the plumbing coordinate ηj . These quadratic differen-
tials correspond to the cotangent vectors dt1, · · · , dsn.

However, it is more convenient to estimate the curvature if we use the
rs-coordinate on Xt,s since we have the accurate form of the Kähler–
Einstein metric λ in this coordinate. In [15], Trapani used the graft
metric constructed by Wolpert [18] to estimate the difference between
the plumbing coordinate and rs-coordinate and gave the holomorphic
quadratic differentials constructed by Masur in the rs-coordinate. We
collect Trapani’s results (Lemma 6.2–6.5, [15]) in the following theorem:
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Theorem 4.2. Let (t, s) be the pinching coordinates on Mg near X0,0

which corresponds to a codimension m boundary point of Mg. Then,
there exist constants M, δ > 0 and 1 > c > 0 such that if |(t, s)| < δ,
then the j-th plumbing collar on Xt,s contains the genuine collar Ωj

c.
Furthermore, one can choose rs-coordinate zj on the collar Ωj

c properly
such that the holomorphic quadratic differentials ψ1, · · · , ψn correspond-
ing to the cotangent vectors dt1, · · · , dsn have the form ψi = ϕi(zj)dz2

j

on the genuine collar Ωj
c for 1 ≤ j ≤ m, where

1) ϕi(zj) = 1
z2
j
(qj

i (zj) + βj
i ) if i ≥ m+ 1;

2) ϕi(zj) = (− tj
π ) 1

z2
j
(qj(zj) + βj) if i = j;

3) ϕi(zj) = (− ti
π ) 1

z2
j
(qj

i (zj) + βj
i ) if 1 ≤ i ≤ m and i �= j.

Here, βj
i and βj are functions of (t, s), qj

i and qj are functions of (t, s, zj)
given by

qj
i (zj) =

∑
k<0

αj
ik(t, s)t

−k
j zk

j +
∑
k>0

αj
ik(t, s)z

k
j

and

qj(zj) =
∑
k<0

αjk(t, s)t−k
j zk

j +
∑
k>0

αjk(t, s)zk
j

such that

1)
∑

k<0 |α
j
ik|c−k ≤M and

∑
k>0 |α

j
ik|ck ≤M if i �= j;

2)
∑

k<0 |αjk|c−k ≤M and
∑

k>0 |αjk|ck ≤M ;
3) |βj

i | = O(|tj |
1
2
−ε) with ε < 1

2 if i �= j;
4) |βj | = (1 +O(u0)).

An immediate consequence of the above theorem is the following re-
fined version of Masur’s estimates of the Weil–Petersson metric. In the
following, we will fix (t, s) with small norm and let X = Xt,s.

Corollary 4.1. Let (t, s) be the pinching coordinates. Then

1) hii = 2u−3
i |ti|2(1 +O(u0)) and hii = 1

2
u3

i
|ti|2 (1 +O(u0)) for 1 ≤ i ≤

m;

2) hij = O(|titj|) and hij = O(
u3

i u3
j

|titj | ), if 1 ≤ i, j ≤ m and i �= j;

3) hij = O(1) and hij = O(1), if m+ 1 ≤ i, j ≤ n;

4) hij = O(|ti|) and hij = O( u3
i

|ti|) if i ≤ m < j;

5) hij = O(|tj |) and hij = O(
u3

j

|tj |) if j ≤ m < i.
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Proof. We need the following simple calculus results:∫ c

c−1e
− 2π2

lj

1
rj

sin2 τj drj = u−1
j (

π

2
+O(uj)).(4.3)

For any k ≥ 1, ∫ c

c−1e
−2π2

lj

rk−1
j sin2 τj drj = O(u2

j )c
k(4.4)

and for k ≤ −1,

∫ c

c−1e
− 2π2

lj

rk−1
j sin2 τj drj = O(u2

j)c
−k

(
e
− 2π2

lj

)k

.(4.5)

On the collar Ωj
c, the metric λ is given by (4.2). hij is given by the

formula
hij =

∫
X
ψiψjλ

−2dv.

By using the above calculus facts, we can compute the above integral
on the collars. The bounds on Rc was calculated in [11]. A simple
computation shows that the first parts of all of the above claims hold.
The second parts of these claims can be obtained by inverting the matrix
(hij) together with Masur’s result on the non-degenerate extension of
the submatrix (hij)i,j>m. This finishes the proof. q.e.d.

Now, we are ready to compute the harmonic Beltrami differentials
Bi = Ai∂z ⊗ dz.

Lemma 4.2. For c small, on the genuine collar Ωj
c, the coefficient

functions Ai of the harmonic Beltrami differentials have the form:

1) Ai = zj

zj
sin2 τj

(
pj

i (zj) + bji
)

if i �= j;

2) Aj = zj

zj
sin2 τj(pj(zj) + bj)

where
1) pj

i (zj) =
∑

k≤−1 a
j
ikρ

−k
j zk

j +
∑

k≥1 a
j
ikz

k
j if i �= j;

2) pj(zj) =
∑

k≤−1 ajkρ
−k
j zk

j +
∑

k≥1 ajkz
k
j .

In the above expressions, ρj = e
− 2π2

lj and the coefficients satisfy the
following conditions:

1)
∑

k≤−1 |a
j
ik|c−k = O(u−2

j ) and
∑

k≥1 |a
j
ik|ck = O(u−2

j ) if i ≥ m+1;

2)
∑

k≤−1 |a
j
ik|c−k = O(u−2

j )O
( u3

i
|ti|
)
and

∑
k≥1 |a

j
ik|ck = O(u−2

j )O
( u3

i
|ti|
)

if i ≤ m and i �= j;
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3)
∑

k≤−1 |ajk|c−k = O( uj

|tj |) and
∑

k≥1 |ajk|ck = O( uj

|tj |);

4) |bji | = O(uj) if i ≥ m+ 1;

5) |bji | = O(uj)O
( u3

i
|ti|
)

if i ≤ m and i �= j;
6) bj = − uj

πtj
(1 +O(u0)).

Proof. The duality between the harmonic Beltrami differentials and
the holomorphic quadratic differentials is given by

Bi = λ−1
n∑

l=1

hilψl(4.6)

which implies Ai = λ−1
∑n

l=1 hilϕl. Now, by Wolpert’s estimate on the
length of the short geodesic γj in [18], we have lj = − 2π2

log |tj |(1+O(uj)).
This implies there is a constant 0 < µ < 1 such that µ|tj | < ρj < µ−1|tj|.
The lemma follows from equation (4.6) by replacing c by µc, a simple
computation together with Theorem 4.2 and Corollary 4.1. q.e.d.

To estimate the curvature of the Ricci metric, we need to estimate the
asymptotic of the Ricci metric by using Theorem 3.1. So, we need the
following estimates on the norms of the harmonic Beltrami differentials.

Lemma 4.3. Let ‖ · ‖k be the norm as defined in Definition 3.2. We
have

1) ‖Ai‖0,Ωi
c

= O
(

ui
|ti|
)

and ‖Ai‖0,X\Ωi
c

= O
( u3

i
|ti|
)
, if i ≤ m;

2) ‖Ai‖0 = O(1), if i ≥ m+ 1;
3) ‖fii‖0,Ωi

c
= O

( u2
i

|ti|2
)

and ‖fii‖0,X\Ωi
c

= O
( u6

i
|ti|2
)
, if i ≤ m;

4) ‖fij‖0 = O(1), if i, j ≥ m+ 1;

5) ‖fij‖0,Ωi
c

= O
( uiu3

j

|titj |
)

and ‖fij‖0,Ωj
c

= O
(u3

i uj

|titj |
)

and ‖fij‖0,X\(Ωi
c∪Ωj

c)
=

O
(u3

i u3
j

|titj |
)

if i, j ≤ m and i �= j;

6) ‖fij‖0,Ωi
c

= O
(

ui
|ti|
)

and ‖fij‖0,X\Ωi
c

= O
( u3

i
|ti|
)
, if i ≤ m and j ≥

m+ 1;
7) |fij|L1 = O(1), if i, j ≥ m+ 1;

8) |fij|L1 = O( u3
i

|ti|), if i ≤ m and j ≥ m+ 1;

9) |fij|L1 = O(
u3

i u3
j

|titj |), if i, j ≤ m and i �= j.

Proof. We choose c small enough such that for each 1 ≤ j ≤ m,

tan(uj log c) < −10uj
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when |(t, s)| < δ. A simple computation shows that, when 1 ≤ p ≤ 10,
on the collar Ωj

c, we have

|rk
j sinp τj| ≤ ck| log c|pup

j

if k ≥ 1, and

|rk
j sinp τj | ≤ c−k| log c|pρk

ju
p
j

if k ≤ −1.
To prove the first claim, note that on Ωi

c, we have

|Ai| =
∣∣∣∣zizi
∣∣∣∣ | sin2 τi(pi + bi)| ≤

∑
k≤−1

|aik|ρ−k
i rk

i sin2 τi

+
∑
k≥1

|aik|rk
i sin2 τi + |bi|

≤(log c)2u2
i

∑
k≤−1

|aik|c−k +
∑
k≥1

|aik|ck
+ |bi|

=O(u2
i )O

(
ui

|ti|

)
+O(u2

i )O
(
ui

|ti|

)
+O

(
ui

|ti|

)
= O

(
ui

|ti|

)
.

Similarly, on Ωj
c with j �= i, we have |Ai| = O

( u3
i

|ti|
)
. Also, on Rc we

have |Ai| = O
( u3

i
|ti|
)

by the work of Masur [11], equation (4.6) together
with Theorem 4.2 and Corollary 4.1. This finishes the proof of the first
claim.

The second claim can be proved in a similar way. Claim (3)–(6) follow
from the first and second claims by using the fact that fij = AiAj .
Claim (7) follows from claim (4) and the fact that the area of X is a
fixed positive constant using the Gauss–Bonnet theorem.

Now, we prove claim (9). On Ωi
c, by using a similar estimate as above,

we have

|fij| =| sin4 τi(pi + bi)(pi
j + bij)| ≤ | sin4 τipip

i
j | + | sin4 τibip

i
j|

+ | sin4 τipib
i
j| + | sin4 τibib

i
j |

≤O
(u3

iu
3
j

|titj |
)

+ | sin4 τibib
i
j | = O

(u3
iu

3
j

|titj|
)

+O
(u2

iu
3
j

|titj |
)
sin4 τi.

So

|fij |L1(Ωi
c)
≤
∫

Ωi
c

(
O

(
u3

i u
3
j

|titj|

)
+O

(
u2

i u
3
j

|titj|

)
sin4 τi

)
dv = O

(
u3

i u
3
j

|titj|

)
.
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Similarly, |fij|L1(Ωj
c)

≤ O
(u3

i u3
j

|titj |
)
. The estimate |fij|L1(X\(Ωi

c∪Ωj
c))

=

O
(u3

i u3
j

|titj |
)

follows from claim (5). This proves claim (9). Similarly, we
can prove claim (8). q.e.d.

In the following, we will denote the operator (� + 1)−1 by T . We
then have the following estimates about L2 norms:

Lemma 4.4. Let f ∈ C∞(X,C). Then we have∫
X
|Tf |2 dv ≤

∫
X
Tf · f dv ≤

∫
X
|f |2 dv.(4.7)

Proof. This lemma is a simple application of the spectral decompo-
sition of the operator (� + 1) and the fact that all eigenvalues of this
operator are greater than or equal to 1. One can also prove it directly
by using integration by part. q.e.d.

To estimate the Ricci metric, we also need to estimate the functions
eij . We localize these functions on the collars by constructing the fol-
lowing approximation functions.

Pick a positive constant c1 < c and define the cut-off function η ∈
C∞(R, [0, 1]) by

η(x) = 1, x ≤ log c1;
η(x) = 0, x ≥ log c;
0 < η(x) < 1, log c1 < x < log c.

(4.8)

It is clear that the derivatives of η are bounded by constants which only
depend on c and c1. Let ẽij(z) be the function on X defined in the
following way where z is taken to be zi on the collar Ωi

c:

1) if i ≤ m and j ≥ m+ 1, then

ẽij(z) =


1
2 sin2 τibib

i
j, z ∈ Ωi

c1;
(1
2 sin2 τibib

i
j)η(log ri), z ∈ Ωi

c and c1 < ri < c;
(1
2 sin2 τibib

i
j)η(log ρi − log ri), z ∈ Ωi

c and c−1ρi < ri < c−1
1 ρi;

0, z ∈ X \ Ωi
c;
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2) if i, j ≤ m and i �= j, then

ẽij(z) =



1
2 sin2 τibib

i
j, z ∈ Ωi

c1;
(1
2 sin2 τibib

i
j)η(log ri), z ∈ Ωi

c and c1 < ri < c;
(1
2 sin2 τibib

i
j)η(log ρi − log ri), z ∈ Ωi

c and c−1ρi<ri<c
−1
1 ρi;

1
2 sin2 τjb

j
i bj , z ∈ Ωj

c1;

(1
2 sin2 τib

j
i bj)η(log rj), z ∈ Ωj

c and c1 < rj < c;

(1
2 sin2 τib

j
i bj)η(log ρj − log rj), z ∈ Ωj

c and c−1ρj<rj<c
−1
1 ρj ;

0, z ∈ X \ (Ωi
c ∪ Ωj

c);

3) if i ≤ m, then

ẽii(z) =


1
2 sin2 τi|bi|2, z ∈ Ωi

c1;
(1
2 sin2 τi|bi|2)η(log ri), z ∈ Ωi

c and c1 < ri < c;
(1
2 sin2 τi|bi|2)η(log ρi − log ri), z ∈ Ωi

c and c−1ρi<ri<c
−1
1 ρi;

0, z ∈ X \ Ωi
c.

Also, let f̃ij = (� + 1)ẽij . It is clear that the supports of these approx-
imation functions are contained in the corresponding collars. We have
the following estimates:

Lemma 4.5. Let ẽij be the functions constructed above. Then

1) eii = ẽii +O
( u4

i
|ti|2
)
, if i ≤ m;

2) eij = ẽij +O
(u3

i u3
j

|titj |
)
, if i, j ≤ m and i �= j;

3) eij = ẽij +O
( u3

i
|ti|
)
, if i ≤ m and j ≥ m+ 1;

4) ‖eij‖0 = O(1), if i, j ≥ m+ 1.

Proof. The last claim follows from the maximum principle and
Lemma 4.3. To prove the first claim, we note that the maximum prin-
ciple implies

‖eii − ẽii‖0 ≤ ‖fii − f̃ii‖0.

Now, we compute the right-hand side of the above inequality. Since
f̃ii |X\Ωi

c
= 0, by Lemma 4.3, we know that ‖fii − f̃ii‖0,X\Ωi

c
= O

( u6
i

|ti|2
)
.

On Ωi
c1, we have

|fii − f̃ii| ≤ | sin4 τipibi| + | sin4 τibipi| + | sin4 τipipi| = O

(
u6

i

|ti|2

)
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which implies ‖fii − f̃ii‖0,Ωi
c1

= O
( u6

i
|ti|2
)
. On Ωi

c \ Ωi
c1 with c1 ≤ ri ≤ c,

we have

|fii − f̃ii| ≤(1 − η)|bi|2 sin4 τi + | sin4 τipibi| + | sin4 τibipi| + | sin4 τipipi|

+
|bi|2u−2

i |η′′|
4

sin4 τi +
|bi|2u−1

i |η′|
2

sin2 τi| sin 2τi|

= O

(
u4

i

|ti|2

)
.

Similarly, on Ωi
c \ Ωi

c1 with c−1ρi ≤ ri ≤ c−1
1 ρi, we have |fii − f̃ii| ≤

O
( u4

i
|ti|2
)
. By combining the above estimate, we have ‖fii − f̃ii‖0 =

O
( u4

i
|ti|2
)

which implies the first claim. The second and the third claims
can be proved in a similar way. q.e.d.

As a corollary, we prove the following estimates which are more re-
fined than those of Trapani’s on the Ricci metric [15]. The precise con-
stants of the leading terms will be used later to compute the curvature
of the Ricci metric.

Corollary 4.2. Let (t, s) be the pinching coordinates. Then, we have

1) τii = 3
4π2

u2
i

|ti|2 (1 +O(u0)) and τ ii = 4π2

3
|ti|2
u2

i
(1 +O(u0)), if i ≤ m;

2) τij = O

(
u2

i u2
j

|titj |(ui + uj)
)

and τ ij = O(|titj|), if i, j ≤ m and i �= j;

3) τij = O
( u2

i
|ti|
)

and τ ij = O(|ti|), if i ≤ m and j ≥ m+ 1;
4) τij = O(1), if i, j ≥ m+ 1.

Remark 4.3. The second part of the above corollary can be made
sharper. However, it will not be useful for our later estimates.

Proof. The second part of the corollary is obtained by inverting the
matrix (τij) in the first part together with the fact that the matrix
(hij)i,j≥m+1 is non-degenerate which was proved by Masur and the fact
that the matrix (τij)i,j≥m+1 is bounded from below by a constant mul-
tiple of the matrix (hij)i,j≥m+1 which was proved by Wolpert.

Now, we prove the first part. In the following, we use C0 to denote
all universal constants which may change. Recall that

τij = hαβRijαβ.(4.9)

To prove the last claim, let i, j ≥ m+ 1. We first notice that if α �= β

or α = β ≥ m + 1, then |hαβ |‖Aα‖0‖Aβ‖0 = O(1) by Lemma 4.3 and
Corollary 4.1. In this case, we have
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|Rijαβ | ≤
∣∣∣∣∫

X
eijfαβ dv

∣∣∣∣+ ∣∣∣∣∫
X
eiβfαj dv

∣∣∣∣
≤C0(‖eij‖0‖fαβ‖0 + ‖eiβ‖0‖fαj‖0)

≤C0(‖fij‖0‖fαβ‖0 + ‖fiβ‖0‖fαj‖0) = O(1)‖Aα‖0‖Aβ‖0

which implies |hαβRijαβ | = O(1). If α = β ≤ m, we have

|Rijαα| ≤
∣∣∣∣∫

X
eijfαα dv

∣∣∣∣+ ∣∣∣∣∫
X
eiαfαj dv

∣∣∣∣ ≤ ‖eij‖0|fαα|L1

+
(∫

X
|eiα|2 dv

∫
X
|fαj |2 dv

) 1
2

≤ O(1)O
(
u3

i

|ti|2

)
+
(∫

X
|fiα|2 dv

∫
X
|fαj |2 dv

) 1
2

= O

(
u3

i

|ti|2

)
+
(∫

X
fiifαα dv

∫
X
fααfjj dv

) 1
2

≤ O

(
u3

i

|ti|2

)
+ ‖Ai‖0‖Aj‖0|fαα|L1 = O

(
u3

i

|ti|2

)
which implies |hααRijαα| = O(1). So, we have proved that last claim.

To prove the third claim, let i ≤ m and j ≥ m + 1. If α �= β or
α = β ≥ m+ 1 in formula (4.9), by using integration by part, we have

|Rijαβ | ≤
∣∣∣∣∫

X
fijeαβ dv

∣∣∣∣+ ∣∣∣∣∫
X
fiβeαj dv

∣∣∣∣
≤C0(‖eαβ‖0|fij|L1 + ‖eαj‖0|fiβ|L1)

≤C0(‖fαβ‖0|fij|L1 + ‖fαj‖0|fiβ|L1)

=O
(
u3

i

|ti|

)
‖Aα‖0‖Aβ‖0 +O(1)‖Aα‖0|fiβ|L1 .

By the above argument, we have |hαβO
( u3

i
|ti|
)
‖Aα‖0‖Aβ‖0| = O

( u3
i

|ti|
)

and

by Lemma 4.3, we have |hαβ‖Aα‖0|fiβ|L1 | = O
( u3

i
|ti|
)
. So, the claim is

true in this case.
If α = β ≤ m and α �= i, we have

|Rijαα| ≤
∣∣∣∣∫

X
fijeαα dv

∣∣∣∣+ ∣∣∣∣∫
X
fiαeαj dv

∣∣∣∣ .
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To estimate the second term in the above formula, we have∣∣∣∣∫
X
fiαeαj dv

∣∣∣∣ ≤ ‖eαj‖0|fiα|L1 ≤ ‖fαj‖0|fiα|L1

= O

(
uα

|tα|

)
O

(
u3

i u
3
α

|titα|

)
= O

(
u3

i u
4
α

|ti||tα|2

)
.

To estimate the first term, we have∣∣∣∣∫
X
fijeαα dv

∣∣∣∣ ≤ ∣∣∣∣∫
X
fij ẽαα dv

∣∣∣∣ + ∣∣∣∣∫
X
fij(eαα − ẽαα) dv

∣∣∣∣
≤
∣∣∣∣∣
∫

Ωα
c

fij ẽαα dv

∣∣∣∣∣ + ‖eαα − ẽαα‖0|fij|L1

≤‖fij‖0,Ωα
c
|ẽαα|L1 +O

(
u4

α

|tα|2

)
O

(
u3

i

|ti|

)
= O

(
u3

i u
3
α

|ti||tα|2

)
which implies |hααRijαα| = O

( u3
i

|ti|
)
.

Finally, if α = β = i, we have

|Rijii| = 2
∣∣∣∣∫

X
fijeii dv

∣∣∣∣ ≤ 2‖eii‖0|fij|L1 ≤ 2‖fii‖0|fij|L1

= O

(
u2

i

|ti|2

)
O

(
u3

i

|ti|

)
= O

(
u5

i

|ti|3

)
which implies |hiiRijii| = O

( u2
i

|ti|
)
. This proves the third claim.

The second claim can be proved in a similar way. Now, we prove the
first claim. If α �= β or α = β ≥ m+ 1 in formula (4.9), we have

|Riiαβ| ≤
∣∣∣∣∫

X
fiieαβ dv

∣∣∣∣+ ∣∣∣∣∫
X
fiβeαi dv

∣∣∣∣ ≤ ‖eαβ‖0|fii|L1

+
(∫

X
|eαi|2 dv

∫
X
|fiβ|

2 dv

) 1
2

≤‖fαβ‖0|fii|L1 +
(∫

X
|fαi|2 dv

∫
X
|fiβ|

2 dv

) 1
2

≤(‖fαβ‖0 + ‖Aα‖0‖Aβ‖0)|fii|L1

which implies |hαβRiiαβ| = O
( u3

i
|ti|2
)
.

If α = β ≤ m and α �= i, we have

|Riiαα| ≤
∣∣∣∣∫

X
eiifαα dv

∣∣∣∣+ ∣∣∣∣∫
X
eiαfαi dv

∣∣∣∣ .
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To estimate the second term in the above inequality, we have∣∣∣∣∫
X
eiαfαi dv

∣∣∣∣ ≤ ‖eiα‖0|fαi|L1 ≤ ‖fiα‖0|fαi|L1

= O

(
uiuα

|titα|

)
O

(
u3

iu
3
α

|titα|

)
= O

(
u4

i u
4
α

|titα|2

)
.

To estimate the first term in the above inequality, we have∣∣∣∣∫
X
eiifαα dv

∣∣∣∣ ≤ ∣∣∣∣∫
X
ẽiifαα dv

∣∣∣∣+ ∣∣∣∣∫
X

(eii − ẽii)fαα dv

∣∣∣∣
≤
∣∣∣∣∣
∫

Ωi
c

ẽiifαα dv

∣∣∣∣∣+ ‖eii − ẽii‖0|fαα|L1

≤‖fαα‖0,Ωi
c
|ẽii|L1 + ‖eii − ẽii‖0|fαα|L1

= O

(
u6

α

|tα|2

)
O

(
u3

i

|ti|2

)
+O

(
u3

α

|tα|2

)
O

(
u4

i

|ti|2

)
= O

(
u3

iu
3
α

|titα|2

)
.

These imply |hααRiiαα| = O
( u3

i
|ti|2
)
.

Finally, we compute hiiRiiii. Clearly, Riiii = 2
∫
X eiifii dv and∫

X
eiifii dv =

∫
X
ẽiif̃ii dv +

∫
X
ẽii(fii − f̃ii) dv +

∫
X

(eii − ẽii)fii dv.

We also have∣∣∣∣∫
X
ẽii(fii − f̃ii) dv

∣∣∣∣ ≤ ‖fii − f̃ii‖0|ẽii|L1 = O

(
u7

i

|ti|4

)
and ∣∣∣∣∫

X
fii(eii − ẽii) dv

∣∣∣∣ ≤ ‖eii − ẽii‖0|fii|L1 = O

(
u7

i

|ti|4

)
.

Also, we have ‖ẽii‖0,Ωi
c\Ωi

c1
= O

( u4
i

|ti|2
)

and ‖f̃ii‖0,Ωi
c\Ωi

c1
= O

( u4
i

|ti|2
)
. So∫

X
ẽiif̃ii dv =

∫
Ωi

c1

ẽiif̃ii dv +
∫

Ωi
c\Ωi

c1

ẽiif̃ii dv

=
3π2

16
|bi|4ui(1 +O(u0)) +O

(
u8

i

|ti|4

)
.

By using Corollary 4.1, we have hiiRiiii = 3
4π2

u2
i

|ti|2 (1 + O(u0)). By
combining the above results, we have proved this corollary. q.e.d.
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It is well known that there is a complete asymptotic Poincaré metric
ωp on Mg. We briefly describe it here. Please see [10] for more details.

Let M be a compact Kähler manifold of dimension m. Let Y ⊂M be
a divisor of normal crossings and let M = M\Y . Cover M by coordinate
charts U1, · · · , Up, · · · , Uq such that (U p+1 ∪ · · · ∪U q)∩Y = Φ. We also
assume that, for each 1 ≤ α ≤ p, there is a constant nα such that
Uα \ Y = (∆∗)nα × ∆m−nα and on Uα, Y is given by zα

1 · · · zα
nα

= 0.
Here, ∆ is the disk of radius 1

2 and ∆∗ is the punctured disk of radius
1
2 . Let {ηi}1≤i≤q be the partition of unity subordinate to the cover
{Ui}1≤i≤q. Let ω be a Kähler metric on M and let C be a positive
constant. Then, for C large, the Kähler form

ωp = Cω +
p∑

i=1

√
−1∂∂

(
ηi

ni∑
j=1

log log
1
|zi

j |

)
defines a complete metric on M with finite volume since on each Ui with
1 ≤ i ≤ p, ωp is bounded from above and below by the local Poincaré
metric on Ui. We call this metric the asymptotic Poincaré metric.

As a direct application of the above corollary, we have

Theorem 4.3. The Ricci metric is equivalent to the asymptotic
Poincaré metric. More precisely, there is a positive constant C such that

C−1ωp ≤ ωτ ≤ Cωp.

Now, we estimate the holomorphic sectional curvature of the Ricci
metric. We will show that the holomorphic sectional curvature is nega-
tive in the degeneration directions and is bounded in other directions.
We will need the following estimates on the norms to estimate the error
terms.

Lemma 4.6. Let f, g ∈ C∞(X,C) be smooth functions such that
(� + 1)f = g. Then, there is a constant C0 such that

1) |K0f |L2 ≤ C0|K0g|L2 ;
2) |K1K0f |L2 ≤ C0|K0g|L2 ;

Proof. Let h = |K0f |2. By using Schwarz inequality, we easily see
that the lemma follows from the Bochner formula:

�h+ h+ |K1K0f |2 = K0fK0g +K0fK0g − |f − g|2.
q.e.d.

We also need the estimates on the sections K0fij. We have:

Lemma 4.7. Let K0 and K1 be the Maass operators defined in Sec-
tion 3. Then
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1) ‖K0fii‖0,Ωi
c

= O
( u2

i
|ti|2
)

and ‖K0fii‖0,X\Ωi
c

= O
( u6

i
|ti|2
)
, if i ≤ m;

2) ‖K0fij‖0 = O(1), if i, j ≥ m+ 1;

3) ‖K0fij‖0,Ωi
c

= O
( uiu3

j

|titj |
)

and ‖K0fij‖0,Ωj
c

= O
(u3

i uj

|titj |
)

and

‖K0fij‖0,X\(Ωi
c∪Ωj

c)
= O

(u3
i u3

j

|titj |
)
, if i, j ≤ m and i �= j;

4) ‖K0fij‖0,Ωi
c

= O
(

ui
|ti|
)

and ‖K0fij‖0,X\Ωi
c

= O
( u3

i
|ti|
)
, if i ≤ m and j ≥ m+ 1;

5) ‖fii − f̃ii‖1 = O
( u4

i
|ti|2
)
, if i ≤ m.

This lemma can be proved by using similar methods as we used in
the proof of Lemma 4.3 together with direct computations. So are the
following L1 and L2 estimates:

Lemma 4.8. Let P = K1K0 be the operator defined Section 3. We
have

1) |fii|2L2 = O
( u5

i
|ti|4
)
, if i ≤ m;

2) |K0fii|2L2 = O
( u5

i
|ti|4
)
, if i ≤ m;

3) |K0fij|2L2 = O
( u3

i u3
j

|titj |2
)
, if i, j ≤ m and i �= j;

4) |K0fij|2L2 = O
( u3

i
|ti|2
)
, if i ≤ m and j ≥ m+ 1;

5) |K0fij|2L2 = O(1), if i, j ≥ m+ 1;

6) |P (ẽii)|L1 = O
( u3

i
|ti|2
)
, if i ≤ m.

To estimate the curvature of the Ricci metric by using formula (3.28),
we first expand the term

∫
X Qkl(eij)eαβ dv. A simple computation

shows that

Lemma 4.9. We have∫
X
Qkl(eij)eαβ dv = −

∫
X
fkl(K0eijK0eαβ +K0eijK0eαβ) dv

−
∫

X
(�eijK0eαβK0ekl + �eαβK0eijK0ekl) dv.

To estimate the holomorphic sectional curvature, in formula (3.28),
we let i = j = k = l. We decompose R̃iiii into two parts:

R̃iiii = G1 +G2

where G1 consists of those terms in the right-hand side of (3.28) with
all indices α, β, γ, δ, p and q equal to i and G2 = R̃iiii −G1 consists of
those terms in (3.28) where, in each term, at least one of the indices α,
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β, γ, δ, p or q is not i. If i ≤ m, the leading term is G1 which is given
by

G1 =24hii

∫
X

(� + 1)−1(ξi(eii))ξi(eii) dv

+ 6hii

∫
X
Qii(eii)eii dv

− 36τ ii(hii)2
∣∣∣∣∫

X
ξi(eii)eii dv

∣∣∣∣2
+ τiih

iiRiiii.

(4.10)

The main theorem of this section is the following estimate of the
holomorphic sectional curvature of the Ricci metric.

Theorem 4.4. Let X0 ∈ Mg \ Mg be a codimension m point and
let (t1, · · · , tm, sm+1, · · · , sn) be the pinching coordinates at X0 where
t1, · · · , tm correspond to the degeneration directions. Then, the holo-
morphic sectional curvature is negative in the degeneration directions
and is bounded in the non-degeneration directions. More precisely, there
is a δ > 0 such that, if |(t, s)| < δ, then

− R̃iiii = − 3u4
i

8π4|ti|4
(1 +O(u0)) < 0(4.11)

if i ≤ m and

R̃iiii = O(1)(4.12)

if i ≥ m+ 1.
Furthermore, on Mg, the holomorphic sectional curvature, the bisec-

tional curvature and the Ricci curvature of the Ricci metric are bounded
from above and below.

Proof. We first compute the asymptotic of the holomorphic sectional
curvature. By Lemma 4.9, we know that∫

X
Qii(eii)eii dv =

∫
X
|K0eii|2(2eii − 4fii) dv.

By (4.10), we have

G1 =24hii

∫
X
T (ξi(eii))ξi(eii) dv + 6hii

∫
X
|K0eii|2(2eii − 4fii) dv

− 36τ ii(hii)2
∣∣∣∣∫

X
ξi(eii)eii dv

∣∣∣∣2 + τiih
iiRiiii.

(4.13)
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We first consider the degeneration directions. Assume i ≤ m. In this
case, G1 is the leading term. We have the following lemma.

Lemma 4.10. If i ≤ m, then |G2| = O
( u5

i
|ti|4
)
.

Proof. The lemma follows from a case by case check. We will prove
it in the appendix. q.e.d.

Now, we go back to the proof of Theorem 4.4. We compute each
term of G1. By the proof of Corollary 4.2, we know that hiiRiiii =

3
4π2

u2
i

|ti|2 (1 +O(u0)). So, we have

τiih
iiRiiii =

(
3u2

i

4π2|ti|2

)2

(1 +O(u0)) =
9u4

i

16π4|ti|4
(1 +O(u0)).(4.14)

Now, we compute the second term. We have

∫
X
|K0eii|2(2eii − 4fii) dv

=
∫

X
|K0ẽii|2(2ẽii − 4f̃ii) dv +

∫
X

(|K0eii|2 − |K0ẽii|2)(2ẽii − 4f̃ii) dv

+
∫

X
|K0eii|2(2(eii − ẽii) − 4(fii − f̃ii)) dv.

(4.15)

For the second term in the above equation, we have∣∣∣∣∫
X

(|K0eii|2 − |K0ẽii|2)(2ẽii − 4f̃ii) dv
∣∣∣∣

≤ ‖|K0eii|2 − |K0ẽii|2‖0

∫
X

(2|ẽii| + 4|f̃ii|) dv

≤ ‖|K0eii| + |K0ẽii|‖0‖K0(eii − ẽii)‖0

∫
X

(2|ẽii| + 4|f̃ii|) dv

= O

(
u2

i

|ti|2

)
O

(
u4

i

|ti|2

)
O

(
u3

i

|ti|2

)
= O

(
u9

i

|ti|6

)
.

For the second term in the above equation, we have∣∣∣∣∫
X
|K0eii|2(2(eii − ẽii) − 4(fii − f̃ii)) dv

∣∣∣∣
≤ C0‖K0eii‖2

0(2‖eii − ẽii‖0 + 4‖fii − f̃ii‖0)

= O

(
u4

i

|ti|4

)
O

(
u4

i

|ti|2

)
= O

(
u8

i

|ti|6

)
.
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So, we get ∫
X
|K0eii|

2(2eii − 4fii) dv

=
∫

X
|K0ẽii|

2(2ẽii − 4f̃ii) dv +O

(
u8

i

|ti|6

)
=
∫

Ωi
c1

|K0ẽii|2(2ẽii − 4f̃ii) dv

+
∫

Ωi
c\Ωi

c1

|K0ẽii|
2(2ẽii − 4f̃ii) dv +O

(
u8

i

|ti|6

)
.

(4.16)

We also have the estimate∣∣∣∣∣
∫

Ωi
c\Ωi

c1

|K0ẽii|2(2ẽii − 4f̃ii) dv

∣∣∣∣∣
≤ C0‖K0ẽii‖2

0(‖ẽii‖0,Ωi
c\Ωi

c1
+ ‖f̃ii‖0,Ωi

c\Ωi
c1

) = O

(
u8

i

|ti|6

)
.

A direct computation shows that∫
Ωi

c1

|K0ẽii|
2(2ẽii − 4f̃ii) dv = − 3u7

i

64π4|ti|6
(1 +O(u0)).

So

(4.17) 6hii

∫
X
|K0eii|2(2eii − 4fii) dv = − 9u4

i

16π4|ti|4
(1 +O(u0)).

Now, we compute the third term. We have∫
X
ξi(eii)eii dv =

∫
X
ξi(ẽii)ẽii dv +

∫
X
ξi(ẽii)(eii − ẽii) dv(4.18)

+
∫

X
ξi(eii − ẽii)eii dv.

By using the same method as above, we obtain∣∣∣∣∫
X
ξi(ẽii)(eii − ẽii) dv

∣∣∣∣ ≤ C0‖ξi(ẽii)‖0‖eii − ẽii‖0

≤ C0‖Ai‖0‖K1K0(ẽii)‖0‖eii − ẽii‖0

≤ C0‖Ai‖0‖ẽii‖2‖eii − ẽii‖0

= O

(
ui

|ti|

)
O

(
u2

i

|ti|2

)
O

(
u4

i

|ti|2

)
= O

(
u7

i

|ti|5

)
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and

∣∣∣∣∫
X
ξi(eii − ẽii)eii dv

∣∣∣∣ ≤ ‖ξi(eii − ẽii)‖0

∫
X
eii dv

≤ ‖Ai‖0‖eii − ẽii‖2hii

≤ ‖Ai‖0‖fii − f̃ii‖1hii

= O

(
ui

|ti|

)
O

(
u4

i

|ti|2

)
O

(
u3

i

|ti|2

)
= O

(
u8

i

|ti|5

)
and ∣∣∣∣∣

∫
Ωi

c\Ωi
c1

ξi(ẽii)ẽii dv

∣∣∣∣∣ ≤ C0‖ξi(ẽii)‖0‖ẽii‖0,Ωi
c\Ωi

c1
= O

(
u7

i

|ti|5

)
.

By putting the above results together, we get∫
X
ξi(eii)eii dv =

∫
Ωi

c1

ξi(ẽii)ẽii dv +O

(
u7

i

|ti|5

)
.

On Ωi
c1, we have

ξi(ẽii) = −zi
zi

sin2 τibiP (ẽii) −
zi
zi

sin2 τipiP (ẽii).

However, we have ‖zi
zi

sin2 τipiP (ẽii)‖0,Ωi
c1

= O
( u5

i
|ti|3
)

which implies∣∣∣∣∣
∫

Ωi
c1

zi
zi

sin2 τipiP (ẽii)ẽii dv

∣∣∣∣∣ = O

(
u8

i

|ti|5

)
.

A direct computation shows that∫
Ωi

c1

−zi
zi

sin2 τibiP (ẽii))ẽii dv = − u6
i

32π3|ti|4ti
(1 +O(u0))

which implies ∫
X
ξi(eii)eii dv = − u6

i

32π3|ti|4ti
(1 +O(u0)).

So, we obtain

36τ ii(hii)2
∣∣∣∣∫

X
ξi(eii)eii dv

∣∣∣∣2 =
3u4

i

16π4|ti|4
(1 +O(u0)).(4.19)



612 KEFENG LIU, XIAOFENG SUN & SHING-TUNG YAU

Now, we estimate the first term. We have∫
X
Tξi(eii)ξi(eii) dv =

∫
X
Tξi(ẽii)ξi(ẽii) dv

+
∫

X
Tξi(eii − ẽii)ξi(ẽii) dv

+
∫

X
Tξi(eii)ξi(eii − ẽii) dv.

By using the same method, we can get∣∣∣∣∫
X
Tξi(eii − ẽii)ξi(ẽii) dv

∣∣∣∣ ≤C0‖Tξi(eii − ẽii)‖0‖ξi(ẽii)‖0

≤C0‖ξi(eii − ẽii)‖0‖ξi(ẽii)‖0

=O
(
u5

i

|ti|3

)
O

(
u3

i

|ti|3

)
= O

(
u8

i

|ti|6

)
.

Similarly, ∣∣∣∣∫
X
Tξi(eii)ξi(eii − ẽii) dv

∣∣∣∣ = O

(
u8

i

|ti|6

)
.

So, we have∫
X
Tξi(eii)ξi(eii) dv =

∫
X
Tξi(ẽii)ξi(ẽii) dv +O

(
u8

i

|ti|6

)
.

To estimate Tξi(ẽii), we introduce another approximation function.
Pick c2 < c1 and let η1 ∈ C∞(R, [0, 1]) be the cut-off function defined
by

η1 =


η1(x) = 1, x ≤ log c2;
η1(x) = 0, x ≥ log c1;
0 < η1(x) < 1, log c2 < x < log c1.

(4.20)

For i ≤ m, define the function di by

di(z) =


− 1

8 sin2 τi cos 2τi|bi|2bi, z ∈ Ωi
c2

;
(− 1

8 sin2 τi cos 2τi|bi|2bi)η1(log ri), z ∈ Ωi
c1

and c2 < ri < c1;
(− 1

8 sin2 τi cos 2τi|bi|2bi)η1(log ρi − log ri), z ∈ Ωi
c1

and c−1
1 ρi < ri < c−1

2 ρi;
0, z ∈ X \ Ωi

c1
.

A simple computation shows that

‖ξi(ẽii) − (� + 1)di‖0 = O

(
u5

i

|ti|3

)
which implies

‖Tξi(ẽii) − di‖0 = O

(
u5

i

|ti|3

)
.
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So ∫
X

Tξi(ẽii)ξi(ẽii) dv =
∫

X

diξi(ẽii) dv +
∫

X

(Tξi(ẽii) − di)ξi(ẽii) dv.

We have the estimate∣∣∣∣∫
X

(Tξi(ẽii) − di)ξi(ẽii) dv
∣∣∣∣ ≤ C0‖Tξi(ẽii) − di‖0‖ξi(ẽii)‖0 = O

(
u8

i

|ti|6

)
which implies∫

X

Tξi(eii)ξi(eii) dv =
∫

X

diξi(ẽii) dv +O

(
u8

i

|ti|6

)
.

We also have

diξi(ẽii) = −di
zi

zi
sin2 τibiP (ẽii) − di

zi

zi
sin2 τipiP (ẽii).

Since ‖di
zi

zi
sin2 τipiP (ẽii)‖0 = O

( u8
i

|ti|6
)

and ‖di
zi

zi
sin2 τibiP (ẽii)‖0,Ωi

c1
\Ωi

c2

= O
( u8

i

|ti|6
)
, we get∫

X

Tξi(eii)ξi(eii) dv =
∫

Ωi
c2

diξi(ẽii) dv +O

(
u8

i

|ti|6

)
.

A direct computation shows that∫
X

Tξi(eii)ξi(eii) dv =
3u7

i

256π4|ti|6
(1 +O(u0))

which implies

24hii

∫
X

T (ξi(eii))ξi(eii) dv =
9u4

i

16π4|ti|4
(1 +O(u0)).(4.21)

By combining formulas (4.21), (4.17), (4.19) and (4.14), we obtain

G1 =
3u4

i

8π4|ti|4
(1 +O(u0)).

Together with Lemma 4.10, we proved formula (4.11). The formula (4.12) can
be proved using similar method with a case by case like the proof of Lemma
4.10.

Now, we give a weak estimate on the full curvature of the Ricci metric. Let
1) Λi = ui

|ti| if i ≤ m;
2) Λi = 1 if i ≥ m+ 1.

We can check the following estimates by using the methods in the proof of
Lemma 4.10. We have

R̃ijkl = O(1)(4.22)

if i, j, k, l ≥ m+ 1 and

R̃ijkl = O(ΛiΛjΛkΛl)O(u0)(4.23)
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if at least one of these indices i, j, k, l is less than or equal to m and they are
not all equal to each other.

Now, we prove the boundedness of the curvatures. We first consider the
holomorphic sectional curvature. We need to show that there is a positive
constant c such that for each point p ∈ Mg and each tangent vector v ∈ TpMg,
|R(v, v, v, v)| ≤ c‖v‖4

τ . We first check on a pinching coordinate chart near a
codimension m boundary point. Assume the coordinates are (t1, · · · , sn). We
assume v =

∑m
i=1 ai

∂
∂ti

+
∑n

j=m+1 aj
∂

∂sj
. By Corollary 4.2, we know that there

is a constant c0 > 0 such that

‖v‖2
τ ≥ c0

n∑
i=1

|ai|2Λ2
i .

Now, we have
|R(v, v, v, v)| ≤

∑
i,j,k,l

|aiajakal||Rijkl|.

The conclusion follows from Theorem 4.4, formulas (4.11), (4.12) and Schwarz
inequality.

We cover the divisor Y = Mg \Mg by such open coordinate charts. Since
Y is compact, we can pick finitely many such coordinate charts Ξ1, · · · ,Ξq

such that Y ⊂
⋃q

s=1 Ξs. Clearly, there is an open neighborhood N of Y such
that N ⊂

⋃q
s=1 Ξs. From formulae (4.22), (4.23) and the above argument, we

know that the holomorphic sectional curvature of τ is bounded from above and
below on N . However, Mg \ N is a compact set of Mg, so the holomorphic
sectional curvature is also bounded on Mg \N which implies the holomorphic
sectional curvature is bounded on Mg.

The boundedness of the bisectional curvature and the Ricci curvature of the
Ricci metric can be proved by using (4.22), (4.23) and a similar argument as
above, together with the covering and compactness argument. This finishes
the proof. q.e.d.

Remark 4.4. The estimates of the bisectional curvature and the Ricci
curvature are not optimal. A sharper estimate will be given in our next
paper [7].

5. The perturbed Ricci metric and its curvatures

In this section, we introduce another new metric, the perturbed Ricci
metric. This metric is obtained by adding a constant multiple of the
Weil–Petersson metric to the Ricci metric. By doing this, we construct a
natural complete metric whose holomorphic sectional curvature is nega-
tively bounded. We will see that the holomorphic sectional curvature of
the perturbed Ricci metric near an interior point of the moduli space is
dominated by the curvature of the large constant multiple of the Weil–
Petersson metric. Similar argument holds for the holomorphic sectional
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curvature of the perturbed Ricci metric in the non-degenerate directions
near a boundary point.

Definition 5.1. For any constant C > 0, we call the metric

τ̃ij = τij + Chij

the perturbed Ricci metric with constant C.

We first give the curvature formula of the perturbed Ricci metric. We
use Pijkl to denote the curvature tensor of the perturbed Ricci metric.

Theorem 5.1. Let s1, · · · , sn be local holomorphic coordinates at
s ∈Mg. Then at s, we have

Pijkl =hαβ

{
σ1σ2

∫
Xs

{
(� + 1)−1(ξk(eij))ξl(eαβ)

+(� + 1)−1(ξk(eij))ξβ(eαl)
}
dv
}

+ hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
− τ̃pqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

}{
σ̃1

∫
Xs

ξl(epj)eγδ) dv
}

+ τpjh
pqRiqkl + CRijkl.

(5.1)

Proof. Let s1, · · · , sn be normal coordinates at a point s ∈ Mg with
respect to the Weil–Petersson metric. By formula (3.14), at the point
s, we have

∂k τ̃ij = ∂kτij + C∂khij(5.2)

= hαβ

{
σ1

∫
Xs

(ξk(eij)eαβ) dv
}

+ τpjΓ
p
ik +C∂khij

= hαβ

{
σ1

∫
Xs

(ξk(eij)eαβ) dv
}

since Γp
ik = ∂khij = 0 at this point. Now, at s the curvature of the

Weil–Petersson metric is

Rijkl = ∂l∂khij .

The theorem follows from formulas (3.3), (5.2) and (3.34). q.e.d.

Now, we estimate the curvature of the perturbed Ricci metric using
formula (5.1). The following two linear algebra lemmas will be used
to handle the inverse matrix τ̃ ij near an interior point and a boundary
point.
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Lemma 5.1. Let D be a neighborhood of 0 in C
n and let A and B be

two positive definite n × n Hermitian matrix functions on D such that
they are bounded from above and below on D and each entry of them are
bounded. Then, each entry of the inverse matrix (A+CB)−1 = O(C−1)
when C is very large.

Proof. Consider the determinant det(A+CB). It is a polynomial of
C of degree n and the coefficient of the leading term is det(B) which is
bounded from below. All other coefficients are bounded since they only
depend on the entries of A and B. So, we can pick C large such that
det(A+CB) ≥ 1

2 det(B)Cn. Now, the determinant of the (i, j)-minor of
A+CB is a polynomial of C of degree at most n−1 and the coefficients
are bounded since they only depend on the entries of A and B. From the
fact that the (i, j)-entry is the quotient of the determinant of the (i, j)-
minor and the determinant of the matrix A + CB, the lemma follows
directly. q.e.d.

Lemma 5.2. Let X0 ∈ Mg be a codimension m boundary point
and let (t1, · · · , sn) be the pinching coordinates near X0. Then, for
|(t, s)| < δ with δ small, we have that, for any C > 0,

1) 0 < τ̃ ii < τ ii for all i;
2) τ̃ ij = O(|titj |), if i, j ≤ m and i �= j;
3) τ̃ ij = O(|ti|), if i ≤ m and j ≥ m+ 1;
4) τ̃ ij = O(1), if i, j ≥ m+ 1.

Furthermore, the bounds in the last three claims are independent of the
choice of C.

Proof. The first claim is a general fact of linear algebra. To prove the
last three claims, we denote the submatrices (τij)i,j≥m+1 and (hij)i,j≥m+1

by A and B. These two matrices represent the non-degenerate direc-
tions of the Ricci metric and the Weil–Petersson metric respectively. By
the work of Masur, we know that the matrix B can be extended to the
boundary non-degenerately. This implies that B has a positive lower
bound. By Corollary (4.1), we know that B is bounded from above.
Now, by the work of Wolpert, since ωτ ≥ C̃ωWP where C̃ only depend
on the genus of the Riemann surface, we know that A has a positive
lower bound. By Corollary 4.2, we know that A is bounded from above.
So, both matrices A and B are bounded from above and below and all
their entries are bounded as long as |(t, s)| ≤ δ.
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By Corollarys 4.1 and 4.2, we know that

(τ̃ij) =
(

Υ Ψ
ΨT

A+ CB

)
where Υ is an m×m matrix given by

Υ =


u2
1

|t1|2 ( 3
4π2 + Cu1

2 )(1 +O(u0)) . . .
u2
1u2

m

|t1tm|(O(u0) + CO(u1um))
...

...
...

u2
1u2

m

|t1tm|(O(u0) + CO(u1um)) . . .
u2

m

|tm|2 ( 3
4π2 + Cum

2 )(1 +O(u0))


which represent the degenerate directions of the perturbed Ricci metric and

Ψ is an m× (n−m) matrix given by

Ψ =


u2
1

|t1| (O(1) + CO(u1)) . . .
u2
1

|t1|(O(1) + CO(u1))
...

...
...

u2
m

|tm|(O(1) + CO(um)) . . .
u2

m

|tm| (O(1) + CO(um))


which represents the mixed directions of the perturbed Ricci metric.

A direct computation shows that

det τ̃ =

{
m∏

i=1

u2
i

|ti|2

(
3

4π2
+
Cui

2

)}
det(A+ CB)(1 +O(u0))

where the O(u0) term is independent of C. Let Φij be the (i, j)-minor of (τ̃ij)
obtained by deleting the i-th row and j-th column of (τ̃ij). By using the fact
that

|τ̃ ij | =
∣∣∣∣detΦij

det τ̃

∣∣∣∣ ,
the lemma follows from a direct computation of the determinant of Φij . q.e.d.

Now, we prove the main theorem of this section.

Theorem 5.2. For a suitable choice of positive constant C, the per-
turbed Ricci metric τ̃ij = τij + Chij is complete and its holomorphic
sectional curvatures are negative and bounded from above and below by
negative constants. Furthermore, the Ricci curvature of the perturbed
Ricci metric is bounded from above and below.

Proof. It is clear that the metric τ̃ij is complete as long as C ≥ 0
since it is greater than the Ricci metric which is complete.

Now, we estimate the holomorphic sectional curvature. We first show
that, for any codimension m point X0 ∈ Mg \Mg, there are constants
C0, δ > 0 such that, if (t, s) = (t1, · · · , tm, sm+1, · · · , sn) is the pinching
coordinates at X0 with |(t, s)| < δ and C ≥ C0, then the holomorphic
sectional curvature of the metric τ̃ is negative. We first consider the
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degeneration directions. Let i = j = k = l ≤ m. As in the proof of
Theorem 4.4, we let

G̃1 = 24hii

∫
X
T (ξi(eii))ξi(eii) dv + 6hii

∫
X
|K0eii|2(2eii − 4fii) dv

− 36τ̃ ii(hii)2
∣∣∣∣∫

X
ξi(eii)eii dv

∣∣∣∣2 + τiih
iiRiiii

(5.3)

and G̃2 be the summation of those terms in (5.1) in which at least one
of the indices p, q, α, β, γ, δ is not i. We have Piiii = G̃1 + G̃2 + CRiiii.
We notice here that we can use Lemma 5.2 instead of Corollary 4.2 in
the proof of Lemma 4.10 without changing any estimate. This implies
that |G̃2| = O

( u5
i

|ti|4
)
. By the proof of Theorem 4.4, we have

G̃1 =

(
9

16π4
− 3

16π4

(
1 +

2π2Cui

3

)−1
)

u4
i

|ti|4
(1 +O(u0))(5.4)

which implies

Piiii =

((
9

16π4
− 3

16π4

(
1 +

2π2Cui

3

)−1
)

u4
i

|ti|4
(5.5)

+
3C
8π2

u5
i

|ti|4

)
(1 +O(u0)) > 0

as long as δ is small enough. Furthermore, Piiii is bounded above and
below by constant multiple of τ̃2

ii
where the constants may depend on

C. However, when C is fixed, the constants are universal if δ is small
enough.

Now, we let i = j = k = l ≥ m + 1. By the proof of Theorem 4.4
and Lemma 5.2, we know that Piiii = O(1)+CRiiii. We also know that
Riiii > 0 has a positive lower bound. Again, by using the extension
theorem of Masur, we can choose C0 large enough such that, when
C ≥ C0, we have Piiii > 0. Furthermore, Piiii is bounded from above
and below by constant multiples of τ̃2

ii
where the constants may depend

on C,m,n, X0 and the choice of νm+1, · · · , νn if δ is small enough. We
also have estimates similar to (4.22) and (4.23):

Pijkl = O(1) + CRijkl(5.6)

if i, j, k, l ≥ m+ 1 and

Pijkl = O(ΛiΛjΛkΛl)O(u0) + CRijkl(5.7)
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if at least one of these indices i, j, k, l is less than or equal to m and they
are not all equal to each other. So, we can choose δ small such that, if
|(t, s)| ≤ δ, then the holomorphic sectional curvature is bounded from
above and below by negative constants which may depend on C.

Now, we consider the interior points. Fix a point p ∈ Mg and a
small neighborhood D of p such that D ⊂ Mg. Since the Ricci metric
and Weil–Petersson metric are uniformly bounded in D, we have Piiii =
O(1) + CRiiii. Using a similar argument as above, we can choose a
C0 such that, when C > C0, the holomorphic sectional curvature is
bounded from above and below by negative constants which may depend
on C.

Since the divisor Mg \ Mg is compact, we can find finitely many
boundary charts of Mg described above such that the holomorphic sec-
tional curvature of τ̃ is pinched by two negative constants which de-
pend on C on these charts. Furthermore, there is a neighborhood N of
Mg\Mg in Mg such that N is contained in the union of these charts. It
is clear that we can find a constant C1 such that on N , the holomorphic
sectional curvature of τ̃ is pinched by negative constants when C ≥ C1.

Also, since the set Mg\N is compact, by the above argument, we can
find finitely many interior charts described above such that their union
covers Mg \N and a constant C2, such that the holomorphic sectional
curvature of τ̃ is pinched by negative constants when C > C2. Again,
the bounds may depend on C. By taking a constant C > max{C1, C2},
we have proved the first part of the theorem. The Ricci curvature can
be estimated in a similar way as we did in the proof of Theorem 4.4
together with Lemmas 5.1 and 5.2. q.e.d.

Remark 5.1. By using the negativity of the Ricci curvature of the
Weil–Petersson metric and estimates (5.5), (5.6) and (5.7), we can ac-
tually show that the Ricci curvature of the perturbed Ricci metric is
pinched between two negative constants. The detail will be given in our
next paper.

6. Equivalent metrics on the moduli space

In this section, we prove the equivalence among the Ricci metric,
perturbed Ricci metric, Kähler–Einstein metric and the McMullen met-
ric. These equivalences imply that the Teichmüller metric is equivalent
to the Kähler–Einstein metric which gives a positive answer to Yau’s
Conjecture. The main tool we use is the Schwarz–Yau Lemma. Also,
to control the McMullen metric, we give a simple formula of the first
derivative of the geodesic length functions.



620 KEFENG LIU, XIAOFENG SUN & SHING-TUNG YAU

Lemma 6.1. The Weil–Petersson metric is bounded above by a con-
stant multiple of the Ricci metric. Namely, there is a constant α > 0
such that ωWP ≤ αωτ .

Proof. This lemma follows from Corollarys 4.1 and 4.2. It also follows
directly from Schwarz–Yau Lemma. q.e.d.

By using this simple result, we have

Theorem 6.1. The Ricci metric and the perturbed Ricci metric are
equivalent.

Proof. Since τ̃ij = τij + Chij and C > 0, we know that the Ricci
metric is bounded above by the perturbed Ricci metric. By using the
above lemma, we also have the bound of the other side. q.e.d.

By the work of Cheng and Yau [2], there is a unique complete Kähler–
Einstein metric on the moduli space whose Ricci curvature is −1. One of
the main results of this section is the equivalence of the Kähler–Einstein
metric and the Ricci metric. To prove this result, we need the following
simple fact of linear algebra.

Lemma 6.2. Let A and B be positive definite n × n Hermitian
matrices and let α, β be positive constants such that B ≥ αA and
det(B) ≤ β det(A). Then, there is a constant γ > 0 depending on
α, β and n such that B ≤ γA.

Theorem 6.2. The Ricci metric is equivalent to the Kähler–Einstein
metric gKE.

Proof. Consider the identity map i : (Mg, gKE) → (Mg, τ̃ ). We
know that the Kähler–Einstein metric is complete and its Ricci curva-
ture is −1. By Theorem 5.2, we know that the holomorphic sectional
curvatures of the perturbed Ricci metric is bounded above by a negative
constant. From the Schwarz–Yau Lemma, there is a constant c0 > 0
such that

gKE ≥ c0τ̃ .

From Theorem 6.1, we know that the Kähler–Einstein metric is bounded
below by a constant multiple of the Ricci metric

gKE ≥ c̃0τ.(6.1)

Now, we consider the identity map j : (Mg, τ) → (Mg, gKE). By
Theorem 4.4, we know that the Ricci curvature of the Ricci metric is
bounded from below. Also, the Ricci curvature of the Kähler–Einstein
metric is −1. From the Schwarz–Yau Lemma for volume forms, there is
a constant c1 > 0 such that
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det(gKE) ≤ c1 det(τ).(6.2)

By combining formula (6.1), (6.2) and Lemma 6.2, we have proved the
theorem. q.e.d.

Now, we consider the McMullen metric. In [12], McMullen con-
structed a new metric g1/l on Mg which is equivalent to the Teichmüller
metric and is Kähler hyperbolic. More precisely, let Log : R+ → [0,∞)
be a smooth function such that

1) Log(x) = log x if x ≥ 2;
2) Log(x) = 0 if x ≤ 1.

For suitable choices of small constants δ, ε > 0, the Kähler form of the
McMullen metric g1/l is

ω1/l = ωWP − iδ
∑

lγ(X)<ε

∂∂Log
ε

lγ

where the sum is taken over primitive short geodesics γ on X. We will
also write this as ωM .

To compare the Ricci metric and the McMullen metric, we compute
the first order derivative of the short geodesics.

Lemma 6.3. Let X0 ∈ Mg be a codimension m boundary point and
let (t1, · · · , sn) be the pinching coordinates near X0. Let lj be the length
of the geodesic on the collar Ωj

c. Then

∂ilj = −πujb
j
i

if i �= j and
∂ilj = −πujbi

if i = j. Here, bji and bi are defined in Lemma 4.2.

Proof. It is clear that on the genuine collar Ωj
c, λAi is an anti-holo-

morphic quadratic differential. By using the rs-coordinate z on Ωj
c, we

can denote λAi by κi(z)dz2. We consider the coefficient of the term z−2

in the expansion of κi and denote it by C−2(κi). From formula (4.2)
and Lemma 4.2, we know that

C−2(κi) =
1
2
u2

jb
j
i .(6.3)

Now, we use a different way to compute C−2(κi). Fix (t0, s0) with small
norm and let X = Xt0,s0. Let w be the rs-coordinates on the j-th collar
of Xt,s and let z be the rs-coordinate on the j-th collar of X. Clearly,
w = w(z, t, s) is holomorphic with respect to z and when (t, s) = (t0, s0),
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we have w = z. We pull-back the metric on the j-th collar of Xt,s to X.
We have

Λ =
1
2
u2

j |w|−2 csc2(uj log |w|)
∣∣∣∣∂w∂z

∣∣∣∣2
is the Kähler–Einstein metric on the j-th collar of Xt,s. Now, from
formulae (2.2) and (2.3), at point (t0, s0), a simple computation shows
that

κi(z) = − uj∂iuj

z2 +
u2

j + 1
z3 ∂iw |(t0,s0) −

u2
j + 1
z2 ∂i∂zw |(t0,s0)(6.4)

− ∂i∂z∂z∂zw |(t0,s0) .

From the above formula, we can see that C−2(κi) = −uj∂iuj since the
contribution of the last three terms in the above formula to C−2(κi) is
0. By comparing equations (6.3) and (6.4), we have

∂iuj = −1
2
ujb

j
i .

The lemma follows from the fact that lj = 2πuj . Again, the above
argument also works when i = j. In this case, we replace bji by bi. q.e.d.

Now, we can prove another main theorem of this section.

Theorem 6.3. The Ricci metric is equivalent to the McMullen met-
ric, the Teichmüller metric and the Kobayashi metric.

Proof. Royden proved that the Teichmüller metric is the same as the
Kobayashi metric. Also, the equivalence of the McMullen metric and
the Teichmüller metric was proved by McMullen [12]. We only need to
show the equivalence between the Ricci metric and the McMullen g1/l

metric.
Since the Ricci curvature of the g1/l metric is bounded from below

and it is complete, by the Schwarz–Yau lemma, we know that

τ < τ̃ ≤ C0g1/l

for some constant C0. Now, we prove the other bound. Fix a boundary
point X0 and the pinching coordinates near X0. By Theorems 1.1 and
1.7 of [12], we know that there are constants c1, c2 such that, when
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i ≤ m,

(g1/l)ii =
∥∥∥∥ ∂∂ti

∥∥∥∥2

g1/l

< c1

∥∥∥∥ ∂∂ti
∥∥∥∥2

T

≤ c2

(∥∥∥∥ ∂∂ti
∥∥∥∥2

WP

+
∑
lγ<ε

∣∣∣∣(∂ log lγ)
∂

∂ti

∣∣∣∣2)

=c2

(∥∥∥∥ ∂∂ti
∥∥∥∥2

WP

+
m∑

j=1

|∂i log lj |2
)
.

(6.5)

By Lemma 6.3, we know that

|∂i log lj |2 =

∣∣∣∣∣−πujb
j
i

lj

∣∣∣∣∣
2

=
1
4

∣∣∣bji ∣∣∣2 .
From Lemma 4.2, we have

m∑
j=1

|∂i log lj |2 =
1
4

u2
i

π2|ti|2
(1 +O(u0)).

From the above formulae and Corollarys 4.1 and 4.2, we know that there
is a constant c3 such that∥∥∥∥ ∂∂ti

∥∥∥∥2

WP

+
m∑

j=1

|∂i log lj|2 ≤ c3τii

which implies

(g1/l)ii ≤ c4τii(6.6)

where c4 is another constant. The same argument works when i ≥ m+1.
So formula (6.6) holds for all i. Since the McMullen metric is bounded
from below by a constant multiple of the Ricci metric and the diagonal
terms of its metric matrix is bounded from above by a constant multiple
of the diagonal terms of matrix of the Ricci metric, a simple linear
algebra fact shows that there is a constant c5 such that

τ ≥ c5g1/l.

The theorem follows from a compactness argument as we have used in
previous sections. q.e.d.
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7. The Carathéodory Metric and the Bergman Metric

In this section, we prove that the Carathéodory metric and the Bergman
metric on the Teichmüller space are equivalent to the Kobayashi met-
ric by using the Bers’ embedding theorem. This achieves one of our
initial goals on the equivalence of all known complete metrics on the
Teichmüller space. The proof of these equivalences can be applied to
holomorphic homogeneous regular manifolds.

We first describe the idea. By the Bers’ embedding theorem, we
know that for each point p in the Teichmüller space Tg, we can find an
embedding map of the Teichmüller space into C

n with n = 3g − 3 such
that p is mapped to the origin and the image of the Teichmüller space
contains the ball of radius 2 and is contained inside the ball of radius
6. The Kobayashi metric and the Carathéodory metric of these balls
coincide and can be computed directly. Also, both of these metrics have
restriction property. Roughly speaking, the metrics on a submanifold
are larger than those on the ambient manifold. We use explicit form of
these metrics on the balls together with this property to estimate the
Kobayashi and the Carathéodory metric on the Teichmüller space and
compare them on a smaller ball. On the other hand, the norm defined
by the Bergman metric at each point can be estimated by using the
quotient of peak sections at this point. We use upper and lower bounds
of these peak sections to compare the Bergman metric, the Kobayashi
metric and the Euclidean metric on a small ball in the image under the
Bers’ embedding of the Teichmüller space.

At first, we briefly recall the definitions of the Carathéodory, Bergman
and Kobayashi metric on a complex manifold. Please see [5] for details.

Let X be a complex manifold of dimension n. let ∆R be the disk in C

with radius R. Let ∆ = ∆1 and let ρ be the Poincaré metric on ∆. Let
p ∈ X be a point and let v ∈ TpX be a holomorphic tangent vector. Let
Hol(X,∆R) and Hol(∆R,X) be the spaces of holomorphic maps from
X to ∆R and from ∆R to X respectively. The Carathéodory norm of
the vector v is defined to be

‖v‖C = sup
f∈Hol(X,∆)

‖f∗v‖∆,ρ

and the Kobayashi norm of v is defined to be

‖v‖K = inf
f∈Hol(∆R,X), f(0)=p, f ′(0)=v

2
R
.

Now, we define the Bergman metric on X. Let KX be the canonical
bundle of X and let W be the space of L2 holomorphic sections of KX
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in the sense that if σ ∈W , then

‖σ‖2
L2 =

∫
X

(
√
−1)n

2
σ ∧ σ <∞.

The inner product on W is defined to be

(σ, ρ) =
∫

X
(
√
−1)n

2
σ ∧ ρ

for all σ, ρ ∈ W . Let σ1, σ2, · · · be an orthonormal basis of W . The
Bergman kernel form is the non-negative (n, n)-form

BX =
∞∑

j=1

(
√
−1)n

2
σj ∧ σj.

With a choice of local coordinates zi, · · · , zn, we have

BX = BEX(z, z)(
√
−1)n

2
dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn

where BEX(z, z) is called the Bergman kernel function. If the Bergman
kernel BX is positive, one can define the Bergman metric

Bij =
∂2 logBEX(z, z)

∂zi∂zj
.

The Bergman metric is well-defined and is non-degenerate if the ele-
ments in W separate points and the first jet of X.

We will use the following notations:

Definition 7.1. Let X be a complex space. For each point p ∈ X
and each holomorphic tangent vector v ∈ TpX , we denote by ‖v‖B,X,p,
‖v‖C,X,p and ‖v‖K,X,p the norms of v measured in the Bergman met-
ric, the Carathéodory metric and the Kobayashi metric of the space X
respectively.

Now, we fix an integer g ≥ 2 and denote by T = Tg the Teichmüller
space of closed Riemann surface of genus g. Our main theorem of this
section is the following:

Theorem 7.1. Let T be the Teichmüller space of closed Riemann
surfaces of genus g with g ≥ 2. Then, there is a positive constant C
only depending on g such that for each point p ∈ T and each vector
v ∈ TpT , we have

C−1‖v‖K,T ,p ≤ ‖v‖B,T ,p ≤ C‖v‖K,T ,p

and
C−1‖v‖K,T ,p ≤ ‖v‖C,T ,p ≤ C‖v‖K,T ,p.
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Proof. We will show that the norms defined by these metrics are
uniformly equivalent at each point of T . We first collect some known
results in the following lemma. q.e.d.

Lemma 7.1. Let X be a complex space. Then

1) ‖ · ‖C,X ≤ ‖ · ‖K,X ;
2) Let Y be another complex space and f : X → Y be a holomorphic

map. Let p ∈ X and v ∈ TpX. Then, ‖f∗(v)‖C,Y,f(p) ≤ ‖v‖C,X,p

and ‖f∗(v)‖K,Y,f(p) ≤ ‖v‖K,X,p;
3) If X ⊂ Y is a connected open subset and z ∈ X is a point. Then,

with any local coordinates, we have BEY (z) ≤ BEX(z);
4) If the Bergman kernel is positive, then at each point z ∈ X, a

peak section σ at z exists. Such a peak section is unique up to a
constant factor c with norm 1. Furthermore, with any choice of
local coordinates, we have BEX(z) = |σ(z)|2;

5) If the Bergman kernel of X is positive, then ‖ · ‖C,X ≤ 2‖ · ‖B,X ;
6) If X is a bounded convex domain in C

n, then ‖ · ‖C,X = ‖ · ‖K,X ;
7) Let Br be the open ball with center 0 and radius r in C

n. Then,
for any holomorphic tangent vector v at 0,

‖v‖C,Br ,0 = ‖v‖K,Br ,0 =
2
r
|v|

where |v| is the Euclidean norm of v.

Proof. The first six claims are Propositions 4.2.4, 4.2.3, 3.5.18, 4.10.4
and 4.10.3, Theorems 4.10.18 and 4.8.13 of [5].

The last claim follows from the second claim easily. By rotation,
we can assume that v = b ∂

∂z1
. Let ∆r be the disk with radius r in

C with standard coordinate z and let ṽ = b ∂
∂z be the corresponding

tangent vector of ∆r at 0. Now, consider the maps i : ∆r → Br and
j : Br → ∆r given by i(z) = (z, 0, · · · , 0) and j(z1, · · · , zn) = z1. We
have i∗(ṽ) = v and j∗(v) = ṽ. By the Schwarz lemma, it is easy to see
that ‖ṽ‖C,∆r,0 = 2

r |ṽ|. So, we have

‖v‖C,Br ,0 ≥ ‖j∗(v)‖C,∆r ,0 = ‖ṽ‖C,∆r ,0 =
2
r
|ṽ| =

2
r
|v|

and

‖v‖C,Br ,0 = ‖i∗(ṽ)‖C,Br ,0 ≤ ‖ṽ‖C,∆r ,0 =
2
r
|v|.

This shows that the last claim holds for the Carathéodory metric. By
the sixth claim, we know that the last claim also holds for the Kobayashi
metric. This finishes the proof. q.e.d.
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Now, we prove the theorem. We first compare the Carathéodory
metric and the Kobayashi metric. By the above lemma, it is easy to see
that ifX ⊂ Y is a subspace, then ‖·‖C,Y ≤ ‖·‖C,X and ‖·‖K,Y ≤ ‖·‖K,X .
Let p ∈ T be an arbitrary point and let n = 3g − 3 = dimC T . Let
fp : T → C

n be the Bers’ embedding map with fp(p) = 0. In the
following, we will identify T with fp(T ) and TpT with T0C

n. We know
that

B2 ⊂ T ⊂ B6.(7.1)

Let v ∈ T0C
n be a holomorphic tangent vector. By using the above

lemma, we have

‖v‖C,T ,0 ≤ ‖v‖K,T ,0(7.2)

and

‖v‖C,T ,0 ≥ ‖v‖C,B6,0 =
1
3
|v| =

1
3
‖v‖C,B2,0(7.3)

=
1
3
‖v‖K,B2,0 ≥ 1

3
‖v‖K,T ,0.

By combining the above two inequalities, we have

1
3
‖v‖K,T ,0 ≤ ‖v‖C,T ,0 ≤ ‖v‖K,T ,0.

Since the above constants are independent of the choice of p, we proved
the second claim of the theorem.

Now, we compare the Bergman metric and the Kobayashi metric. By
the above lemma, we know that the Bergman norm is bounded from
below by half of the Carathéodory norm provided the Bergman kernel
is non-zero. For each point p ∈ Tg, let fp be the Bers’ embedding map
with fp(p) = 0. Since fp(Tg) ⊂ B6, by the above lemma, we know that
BEfp(Tg)(0) ≥ BEB6(0). However, we know that the Bergman kernel
on B6 is positive. This implies that the Bergman kernel is non-zero at
every point of the Teichmüller space.

By the above lemma and the equivalence of the Carathéodory metric
and the Kobayashi metric, we know that the Bergman metric is bounded
from below by a constant multiple of the Kobayashi metric.

When we fix a point p and the Bers’ embedding map fp, from in-
equality (7.3), we know that

|v| ≤ 3‖v‖C,T ,0 ≤ 3‖v‖K,T ,0.(7.4)

Let z1, · · · , zn be the standard coordinates on C
n with ri = |zi| and

let dV =
(√

−1
)n
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn be the volume form. Let
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σ = α(z)dz1 ∧ · · · ∧ dzn be a peak section over T at 0 such that∫
T
|α|2 dV = 1.

Then, we have BET (0) = |α(0)|2. Now, we consider a peak section
σ1 = α1(z)dz1 ∧ · · · ∧ dzn over B6 at 0 with

∫
B6

|α1|2 dV = 1. Similarly,
we have that BEB6(0) = |α1(0)|2. By the above lemma and (7.1), we
have

|α(0)| = (BET (0))
1
2 ≥ (BEB6(0))

1
2 = |α1(0)|.(7.5)

Let vn =
∫
B1
dV be the volume of the unit ball in C

n and let

wn =
1
n

∫
x2
1+···+x2

n≤4, xi≥0
(x2

1 + · · · + x2
n)x1 · · · xn dx1 · · · dxn

where x1, · · · , xn are real variables. We see that both vn and wn are
positive constants only depending on n = 3g − 3.

Now, we consider the constant section σ2 = a dz1 ∧ · · · ∧ dzn over B6

where a = 6−
n
2 v

− 1
2

n . we have
∫
B6
a2 dV = 1. Since σ1 is a peak section

at 0, we know that |α1(0)| ≥ a. By using inequality (7.5), we have

|α(0)| ≥ 6−
n
2 v

− 1
2

n .(7.6)

To estimate the Bergman norm of v, by rotation, we may assume
v = b ∂

∂z1
. So |v| = |b|. Let τ = f(z)dz1∧· · ·∧dzn be an arbitrary section

over T with f(0) = 0 and
∫
T |f |2 dV = 1. We have

∫
B2

|f |2 dV ≤ 1.
Let I be the index set I = {(i1, · · · , in) | ik ≥ 0,

∑
ik ≥ 1}. Since

f(0) = 0 and f is holomorphic, we can expand f as a power series on
B2 as

f(z) =
∑

(i1,··· ,in)∈I

ai1···inz
i1
1 · · · zin

n .

This implies df(v) = a10···0b. Since
∫
B2

|f |2 dV ≤
∫
T |f |2 dV = 1, we

have

1 ≥
∫

B2

|f |2 dV =
∫

B2

∑
(i1,··· ,in)∈I

|ai1···in |2r2i1
1 · · · r2in

n dV

≥
∫

B2

|a10···0|2r21 dV

= |a10···0|2(4π)n
∫

r2
1+···+r2

n≤4
r31r2 · · · rn dr1 · · · drn

= |a10···0|2(4π)nwn
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which implies

|a10···0| ≤ (4π)−
n
2w

− 1
2

n .(7.7)

So, we have

|df(v)| = |a10···0||b| ≤ (4π)−
n
2w

− 1
2

n |v|.(7.8)

Let W ′ be the set of sections over T such that

W ′ = {τ = f(z)dz1 ∧ · · · ∧ dzn | f(0) = 0,
∫
T
|f |2 dV = 1}.

By combining (7.4), (7.6) and (7.8), we have

‖v‖B,T ,0 = sup
τ∈W ′

|df(v)|
|α(0)| ≤ (4π)−

n
2w

− 1
2

n |v|

6−
n
2 v

− 1
2

n

=
(

3
2π

)n
2
(
vn

wn

) 1
2

|v|

≤3
(

3
2π

)n
2
(
vn

wn

) 1
2

‖v‖K,T ,0.

(7.9)

Since the constant in the above inequality only depends on the dimen-
sion n, we know that the Bergman metric is uniformly equivalent to the
Kobayashi metric. This finished the proof. q.e.d.

Remark 7.1. After we proved this theorem, the second author was
informed by McMullen that the equivalence of the Carathéodory metric
and the Kobayashi metric may be already known. A more interesting
question is whether these two metrics coincide or not. We would like to
study this problem in the future.

Finally, we introduce the notion of holomorphic homogeneous regular
manifolds. This generalizes the idea of Morrey.

Definition 7.2. A complex manifold X of dimension n is called holo-
morphic homogeneous regular if there are positive constants r < R such
that for each point p ∈ X, there is a holomorphic map fp : X → C

n

which satisfies
1) fp(p) = 0;
2) fp : X → fp(X) is a biholomorphism;
3) Br ⊂ fp(X) ⊂ BR where Br and BR are Euclidean balls with

center 0 in C
n.

The following theorem follows from the proof of Theorem 7.1 directly.

Theorem 7.2. Let X be a holomorphic homogeneous regular man-
ifold. Then, the Kobayashi metric, the Bergman metric and the
Carathéodory metric on X are equivalent.
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We will study in detail the holomorphic homogeneous regular mani-
folds and the possible complete Kähler–Einstein metric on them in our
future paper [8].

8. Appendix: the proof of Lemma 4.10

We will prove Lemma 4.10 in this appendix which consists of some
computational details. We fix a nodal surface X0 which corresponding
to a codimension m boundary point in Mg. Let (t, s) be the pinching
coordinates near X0 such that X0,0 = X0. Fix (t, s) with small norm, we
denote Xt,s by X. In the curvature formula (3.28), we let i = j = k =
l ≤ m. The term G2 is a summation of the following four types of terms:

1) I = hαβ
{
σ1σ2

∫
X

{
T (ξk(eij))ξl(eαβ) + T (ξk(eij))ξβ(eαl)

}
dv
}

with (α, β) �= (i, i);
2) II = hαβ

{
σ1

∫
Xs
Qkl(eij)eαβ dv

}
with (α, β) �= (i, i);

3) III = τpqhαβhγδ
{
σ1

∫
Xs
ξk(eiq)eαβ dv

}{
σ̃1

∫
Xs
ξl(epj)eγδ) dv

}
with (p, q, α, β, γ, δ) �= (i, i, i, i, i, i);

4) IV = τpjh
pqRiqkl with (p, q) �= (i, i)

where T = (� + 1)−1. Now, we check that the norm of each type is
bounded by O

( u5
i

|ti|4
)
. In the following, C0 will be a universal constant

which may change, but is independent of the Riemann surface as long
as (t, s) has small norm.

Case 1. We check that each term in the sum IV has the desired
bound. By Corollary 4.2 and its proof, we have

Riqii =


O
( u5

i
|ti|3
)
, if q ≥ m+ 1;

O
( u5

i u3
q

|ti|3|tq |
)
, if q ≤ m, and q �= i;

O
( u5

i
|ti|4
)
, if q = i.

By using the above formula and Corollarys 4.1 and 4.2, and by a case
by case check, we have

|τpih
pqRiqii| = O

( u7
i

|ti|4
)
.

This proves that the norm of the last term is bounded by = O
( u5

i
|ti|4
)
.
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Case 2. We check that each term in the sum I has the desired bound.
Firstly, when i = j = k = l, we have

σ1σ2

{
T (ξk(eij))ξl(eαβ) + T (ξk(eij))ξβ(eαl)

}
=2
{
T (ξi(eii))ξi(eαβ) + 2T (ξi(eiβ))ξi(eαi) + T (ξi(eii))ξβ(eαi)

}
+ 2
{
T (ξi(eαi))ξi(eiβ) + 2T (ξi(eαβ))ξi(eii) + T (ξi(eαi))ξβ(eii)

}
+ 2
{
T (ξα(eii))ξi(eiβ) + T (ξα(eiβ))ξi(eii) + T (ξα(eii))ξβ(eii)

}
+ 2T (ξα(eiβ))ξi(eii).

(8.1)

We estimate the integration of each term in the above summation. To
estimate these terms, we note that, if α �= β or α = β ≥ m+ 1, then∣∣∣hαβ‖fαβ‖1

∣∣∣ = O(1).(8.2)

Also, we have

‖P (eαβ)‖0 ≤ ‖eαβ‖2 ≤ C0‖fαβ‖1.(8.3)

These formulae can be checked easily by using Theorem 4.1, Corol-
lary 4.1, Lemmas 4.3 and 4.7.

Now, we estimate
∣∣∣hαβ

∫
X T (ξi(eii))ξi(eαβ) dv

∣∣∣. If α �= β or α = β ≥
m+ 1, we have∣∣∣∣∫

X
T (ξi(eii))ξi(eαβ) dv

∣∣∣∣ ≤ (∫
X
|T (ξi(eii))|2 dv

∫
X
|ξi(eαβ)|2 dv

) 1
2

≤
(∫

X
|ξi(eii)|2 dv

∫
X
|ξi(eαβ)|2 dv

) 1
2

=
(∫

X
fii|P (eii)|2 dv

∫
X
fii|P (eαβ)|2 dv

) 1
2

≤ ‖P (eii)‖0‖P (eαβ)‖0hii ≤ C0‖fii‖1‖fαβ‖1hii = O

(
u5

i

|ti|4

)
‖fαβ‖1

since ‖fii‖1 = O
( u2

i
|ti|2
)
. Together with formula (8.2), we have∣∣∣∣hαβ

∫
X
T (ξi(eii))ξi(eαβ) dv

∣∣∣∣ = O

(
u5

i

|ti|4

)
.
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If α = β ≤ m and α �= i, we have∣∣∣∣∫
X
T (ξi(eii))ξi(eαα) dv

∣∣∣∣ ≤ ∣∣∣∣∫
X
T (ξi(eii))ξi(ẽαα) dv

∣∣∣∣
+
∣∣∣∣∫

X
T (ξi(eii))ξi(eαα − ẽαα) dv

∣∣∣∣ .(8.4)

From Lemma 4.7, we have

‖P (eαα − ẽαα)‖0 ≤ ‖eαα − ẽαα‖2 ≤ ‖fαα − ẽαα‖1 = O

(
u4

α

|tα|2

)
.

So ∣∣∣∣∫
X
T (ξi(eii))ξi(eαα − ẽαα) dv

∣∣∣∣
≤ ‖P (eαα − ẽαα)‖0

∣∣∣∣∫
X
|T (ξi(eii))||Ai| dv

∣∣∣∣
≤ ‖P (eαα − ẽαα)‖0

(∫
X
|T (ξi(eii))|2 dv

∫
X
fii dv

) 1
2

≤ ‖P (eαα − ẽαα)‖0

(∫
X
|ξi(eii)|2 dv

∫
X
fii dv

) 1
2

= ‖P (eαα − ẽαα)‖0

(∫
X
fii|P (eii)|2 dv

∫
X
fii dv

) 1
2

≤ ‖P (eαα − ẽαα)‖0‖eii‖2hii = O

(
u4

α

|tα|2

)
O

(
u5

i

|ti|4

)
.

(8.5)

Since the support of ẽαα is inside Ωα
c , we know the support of P (ẽαα) is

inside Ωα
c . From Lemma 4.8, we have

∣∣∣∣∫
X
T (ξi(eii))ξi(ẽαα) dv

∣∣∣∣ =
∣∣∣∣∣
∫

Ωα
c

T (ξi(eii))ξi(ẽαα) dv

∣∣∣∣∣
≤ ‖Ai‖0,Ωα

c
‖T (ξi(eii))‖0|P (ẽαα)|L1 ≤ ‖Ai‖0,Ωα

c
‖ξi(eii)‖0|P (ẽαα)|L1

= ‖Ai‖0,Ωα
c
‖Ai‖0‖P (eii)‖0|P (ẽαα)|L1

= O

(
u3

i

|ti|

)
O

(
ui

|ti|

)
O

(
u2

i

|ti|2

)
O

(
u3

α

|tα|2

)
= O

(
u6

i

|ti|4

)
O

(
u3

α

|tα|2

)
.

(8.6)
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By combining the inequalities (8.5) and (8.6), we know that∣∣∣∣∫
X
T (ξi(eii))ξi(eαα) dv

∣∣∣∣ = O
( u5

i

|ti|4
)
O
( u3

α

|tα|2
)
.

From Lemma 4.1, we have∣∣∣∣hαα

∫
X
T (ξi(eii))ξi(eαα) dv

∣∣∣∣ = O
( u5

i

|ti|4
)
.

We finish the estimate of the first term in the sum (8.1). The integration
of other terms in this sum can be estimated in a similar way.

Case 3. We check that each term in the sum III has the desired
bound. By Lemma 4.2, we first prove that when q �= i and k = i,

(8.7)
∣∣∣∣hαβ

{
σ1

∫
X
ξk(eiq)eαβ dv

}∣∣∣∣ =
O
( u

5
2
i

|ti|2
)
O
( uq

|tq|
)

if q ≤ m

O
( u

5
2
i

|ti|2
)

if q ≥ m+ 1

Again, we do a case by case check. First, we estimate
∣∣∣hαβ

∫
X ξi(eiq)eαβ dv

∣∣∣.
If α �= β or α = β ≥ m+ 1, we have∣∣∣∣∫

X
ξi(eiq)eαβ dv

∣∣∣∣ = ∣∣∣∣∫
X
eiqξi(eαβ) dv

∣∣∣∣
≤
(∫

X
|ξi(eαβ)|2 dv

∫
X
|eiq|2 dv

) 1
2

≤
(∫

X
fii|P (eαβ)|2 dv

∫
X
|fiq|2 dv

) 1
2

≤ ‖P (eαβ)‖0

(∫
X
fii dv

∫
X
fiifqq dv

) 1
2

≤ ‖P (eαβ)‖0‖Aq‖0hii = O
( u3

i

|ti|2
)
‖fαβ‖1‖Aq‖0.

(8.8)

This implies ∣∣∣∣hαβ

∫
X
ξi(eiq)eαβ dv

∣∣∣∣ = O
( u3

i

|ti|2
)
‖Aq‖0.

If α = β ≤ m and α �= i, we have∣∣∣∣∫
X
ξi(eiq)eαα dv

∣∣∣∣ ≤ ∣∣∣∣∫
X
ξi(eiq)ẽαα dv

∣∣∣∣+ ∣∣∣∣∫
X
ξi(eiq)(eαα − ẽαα) dv

∣∣∣∣ .
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For the second term in the above formula, we have∣∣∣∣∫
X
ξi(eiq)(eαα − ẽαα) dv

∣∣∣∣
=
∣∣∣∣∫

X
eiqξi(eαα − ẽαα) dv

∣∣∣∣ ≤ (∫
X
|eiq|2 dv

∫
X
|ξi(eαα − ẽαα)|2 dv

) 1
2

≤
(∫

X
|fiq|2 dv

∫
X
fii|P (eαα − ẽαα)|2 dv

) 1
2

≤ ‖P (eαα − ẽαα)‖0

(∫
X
fiifqq dv

∫
X
fii dv

) 1
2

≤ ‖eαα − ẽαα‖2‖Aq‖0hii

≤ ‖fαα − ẽαα‖2‖Aq‖0hii = O

(
u4

α

|tα|2

)
O

(
u3

i

|ti|2

)
‖Aq‖0.

For the first term in the above formula, we have∣∣∣∣∫
X
ξi(eiq)ẽαα dv

∣∣∣∣ =
∣∣∣∣∣
∫

Ωα
c

ξi(eiq)ẽαα dv

∣∣∣∣∣ ≤ ‖Ai‖0,Ωα
c
‖P (eiq)‖0

∫
Ωα

c

ẽαα dv

≤ ‖Ai‖0,Ωα
c
‖eiq‖2

∫
Ωα

c

ẽαα dv ≤ O
( u3

α

|tα|2
)
O
( u3

i

|ti|
)
‖fiq‖1.

By combining the above two formulae, we have the desired bound for∣∣hαα
∫
X ξi(eiq)eαα dv

∣∣.
When α = β = i, by using a similar method, we can show that∣∣∣hii
∫
X ξi(eiq)eii dv

∣∣∣ = O
( u3

i
|ti|2
)
‖Aq‖0. From the above estimates, we

have proved that the term
∣∣∣hαβ

∫
X ξi(eiq)eαβ dv

∣∣∣ in formula (8.7) has
the desired estimate. By using similar method, we can show that the
other terms in (8.7) have the desired estimate. This proves formula (8.7).

In a similar way, in the case q = i, we can prove that, when k = i,

(8.9)
∣∣∣∣hαβ

{
σ1

∫
X
ξk(eiq)eαβ dv

}∣∣∣∣ =
O
( u3

i
|ti|3
)
, if α = β = i;

O
( u4

i
|ti|3
)
, if α �= i or β �= i.

By combining formulas (8.8) and (8.9), we conclude that each term in
the sum III is of order O

( u5
i

|ti|4
)
.

Case 4. We need to show that each term in the sum II is of order
O
( u5

i
|ti|4
)
. This case can be proved by a case by case check by using the

similar estimates as in the third case together with Lemma 4.9. This
finishes the proof. q.e.d.
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Remark 8.1. The method we estimate these terms can be directly
applied to the computations of the full curvature tensor and we can get
certain bounds for the bisectional curvature and the Ricci curvature of
the Ricci metric as well as the perturbed Ricci metric.
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