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CANONICAL METRICS ON THE MODULI SPACE
OF RIEMANN SURFACES I

KEFENG L1U, XIAOFENG SUN & SHING-TUNG YAU

1. Introduction

One of the main purposes of this paper is to understand the geometry
of the moduli and the Teichmiiller spaces of Riemann surfaces. The most
interesting results we have in this paper are the detailed understand-
ing of two new complete Kéhler metrics with nice properties and the
Kahler—Einstein metric on the Teichmiiller and the moduli spaces of Rie-
mann surfaces. The two new metrics, the Ricci metric and the perturbed
Ricci metric, are naturally defined as the negative Ricci curvature of the
Weil-Petersson metric and a combination of it with the Weil-Petersson
metric. We prove that these new metrics and the Kahler-Einstein metric
on the Teichmiiller and moduli spaces all have Poincaré type boundary
behavior, and further, in [], we prove that they all have bounded geom-
etry. Note that the Kéhler—Einstein metric is the key link between the
differential geometric and algebraic geometric aspects of these spaces.
So, it is most interesting and also most challenging to understand the
Kéahler—Einstein metric. In fact, by using our understanding of the
Kihler-Einstein metric and the new metrics, we will derive in [7] the
stability of the logarithmic cotangent bundle of the moduli space of Rie-
mann surfaces. In this paper, we study in detail the asymptotic behav-
iors and the signs of the curvatures of these new metrics. In particular,
we prove that the perturbed Ricci metric is a complete Kéahler metric
with bounded negative holomorphic sectional and Ricci curvature and
bounded bisectional curvature. As a consequence, we show that, by us-
ing the new metrics as a bridge and some simple argument with Schwarz
lemma, all of the classical complete metrics are equivalent to the Ricci
and the perturbed Ricci metric on the Teichmiiller and moduli spaces.

The study of the Teichmiiller and moduli spaces of Riemann surfaces
has a long history. It has been intensively studied by many mathemati-
cians in complex analysis, differential geometry, topology and algebraic
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geometry for the past 60 years. They have also appeared in theoret-
ical physics such as string theory. The moduli space can be viewed
as the quotient of the corresponding Teichmiiller space by the mod-
ular group. There are several classical metrics on these spaces: the
Weil-Petersson metric, the Teichmiiller metric, the Kobayashi metric,
the Bergman metric, the Carathéodory metric and the Kahler-Einstein
metric. These metrics have been studied over the years and have found
many important applications in various areas of mathematics. FEach
of these metrics has its own advantages and disadvantages in studying
different problems.

The Weil-Petersson metric is a Kahler metric as first proved by
Ahlfors, both of its holomorphic sectional curvature and Ricci curva-
ture have negative upper bounds as conjectured by Royden and proved
by Wolpert. These properties have found many applications by Wolpert,
and they were also used in solving problems from algebraic geometry
by combining with the Schwarz lemma of Yau ([6], [19]). But as first
proved by Wolpert and Chu, it is not a complete metric which prevents
the understanding of some aspects of the geometry of the moduli spaces.
Royden, Siu and Schumacher extended some results to higher dimen-
sional cases. The works of Masur and Wolpert, Siu and Schumacher
will play important roles in our study.

The Teichmiiller metric, the Kobayashi metric and the Carathéodory
metric are only Finsler metrics. They are very effective in studying the
hyperbolic property of the moduli space. Royden proved that the Te-
ichmiiller metric is equal to the Kobayashi metric from which he deduced
the important corollary that the isometry group of the Teichmiiller space
is exactly the modular group. Recently, McMullen introduced a new
complete Kéhler metric on the moduli space by perturbing the Weil-
Petersson metric [12]. By using this metric, he was able to prove that
the moduli space is Kéahler hyperbolic, and also to derive several topo-
logical consequences. The McMullen metric has bounded geometry, but
we lose control on the signs of its curvatures.

In the early 80s, Cheng and Yau [2] proved the existence of the
Kahler-Einstein metric on the Teichmiiller space. Since the Kahler—
Einstein metric is canonical, it also descends to a complete Kahler met-
ric on the moduli space. More than 20 years ago, Yau [20] conjectured
the equivalence of the Kahler—Einstein metric to the Teichmiiller met-
ric. We will prove this conjecture in this paper. Since the McMullen
metric is equivalent to the Teichmiiller metric, so we have also proved
the equivalence of the Kéhler—Einstein metric and the McMullen metric.
We will further show that the Bergman metric and the Carathéodory
metric are also equivalent to the Kobayashi metric which was also first
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conjectured by Yau. Therefore, all of the classical metrics are equivalent
to the Ricci and the perturbed Ricci metric.

The Ricci metric is induced by the negative Ricci curvature of the
Weil-Petersson metric, see also [15], and the perturbed Ricci metric is a
perturbation of the Ricci metric by the Weil-Petersson metric. We first
study the asymptotic behaviors of the Ricci metric near the boundary
of the moduli space, we prove that it is asymptotically equivalent to the
Poincaré metric, and asymptotically, its holomorphic sectional curvature
has negative upper and lower bound in the degeneration directions. But
its curvatures in the non-degeneration directions near the boundary and
in the interior of the moduli space cannot be controlled well. To solve
this problem, we introduce another new complete Kéahler metric which
we call the perturbed Ricci metric, it is obtained by adding a multiple of
the Weil-Petersson metric. We compute the holomorphic sectional cur-
vature and the Ricci curvature of this new metric. We show in this paper
and also in [7] that they are all bounded below and above, and the holo-
morphic sectional and Ricci curvature have negative upper and lower
bounds. This is the first known complete Kéhler metric on the moduli
space with such good curvature property. Note that the curvatures of
the Weil-Petersson metric do not have lower bound. By applying the
Schwarz lemma of Yau, we can prove the equivalence of this new metric
to the Kéhler—Einstein metric. The equivalence of the perturbed Ricci
metric to the McMullen metric is proved by an estimate of the asymp-
totic behavior of these two metrics. The equivalences of the Bergman
metric, the Carathéodory metric and the Kobayashi metric are proved
by simply using the Bers embedding and the Schwarz—Yau lemma.

Another important fact of the Ricci metric is that it is cohomologous
to the Kahler—Einstein metric. By using the Ricci metric as the back-
ground metric, we can establish the Monge-Amperé equation and study
the strongly bounded geometry of the Kahler—Einstein metric [7].

To state our main results in detail, let us introduce some definitions
and notations. Here, for convenience, we will use the same notation for
a Kahler metric and its Kahler form. First, two metrics w,, and w,, are
called equivalent, if they are quasi-isometric to each other in the sense
that

Cileg Swp < CwTQ
for some positive constant C'. We will write this as w;, ~ wy,.

Our first result is the following asymptotic behavior of the Ricci met-
ric near the boundary divisor of the moduli space. Let 7, denote the
Teichmiiller space and M, be the moduli space of Riemann surfaces of
genus g where g > 2. M, is a complex orbifold of dimension 3g —3 as a
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quotient of 7, by the modular group. Let n = 3g — 3. Let wy p be the
Weil-Petersson metric and w, = —Ric(wyp) be the Ricci metric. It is
easy to show that there is an asymptotic Poincaré metric on M,. See
Section 4 for the construction.

Theorem 1.1. The Ricci metric is equivalent to the asymptotic
Poincaré metric.

This theorem is proved in Section 4. Our second result is the following
estimates of the holomorphic sectional curvature of the Ricci metric.
Note our convention of the sign of the curvature may be different from
some literature.

Theorem 1.2. Let Xy € M, \ M, be a codimension m point and
let (t1,-++ tm,Sm+1,- - ,Sn) be the pinching coordinates at Xy where
t1,-- ,t;m correspond to the degeneration directions. Then, the holo-
morphic sectional curvature of the Ricci metric is negative in the degen-
eration directions and is bounded in the non-degeneration directions.
Precisely, there is a § > 0 such that if |(t,s)| < 0, then

~ 3u§l 140 TR
Rﬁﬁ = &TTW( + (’LL(])) >0 if i<m
and

R.-=0(1) if i>m+1.

111

Furthermore, on Mg the holomorphic sectional curvature, the bisec-
tional curvature and the Ricci curvature of the Ricci metric are bounded
from above and below.

This is Theorem 4.4 of Section 4 of this paper. One of the main pur-
poses of our work was to find a natural complete metric whose holomor-
phic sectional curvature is negative. To do this, we introduce the per-
turbed Ricci metric. In Section 5, we will prove the following theorem:

Theorem 1.3. For suitable choice of positive constant C', the per-
turbed Ricct metric
Wry = Wr + C wwp
1s complete and its holomorphic sectional curvatures are negative and
bounded from above and below by negative constants. Furthermore, the
Ricci curvature of the perturbed Ricci metric is bounded from above and
below.

Note that the perturbed Ricci metric is equivalent to the Ricci metric,
since its asymptotic behavior is dominated by the Ricci metric. Now
we denote the Kéhler—Einstein metric of Cheng—Yau by wxp which is
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another complete Kahler metric on the moduli space. By applying the
Schwarz lemma of Yau, we derive our fourth result in Section 6:

Theorem 1.4. We have the equivalence of the following three com-
plete Kdhler metrics on the moduli spaces of curves:

WKE ~ Wr ~ Ws.

Our fifth result in this paper proved in Section 6 is the equivalence
of the Ricci metric and the perturbed Ricci metric to the McMullen
metric. Let us denote the McMullen metric by wjy.

Theorem 1.5. We have the equivalence of the following metrics: the
McMullen metric, the Ricci metric and the perturbed Ricci metric:

WM ~ Wy ~ Wi,

As a corollary, we know that these metrics are also equivalent to
the Teichmiiller metric, the Kobayashi metric, and the Kéhler—Einstein
metric. This proved the conjecture of Yau [20].

We denote by || - ||, || - || and || - ||, the norms defined by the
Kobayashi, Bergman and Carathéodory metrics. In the last section, we
showed that these metrics are equivalent.

Theorem 1.6. On the Teichmiiller space Ty with g > 2, the Kobayashi
metric, the Bergman metric and the Carathéodory metrics are equiva-
lent. Namely,

e lle ~ Dl ~ 0 e

These results imply that all the above complete metrics have Poincaré
type growth on the moduli space.

In the second part of this work [7], we will prove that the Kéhler—
Einstein metric, Ricci and the perturbed Ricci metric all have (strongly)
bounded geometry, and derive the stability of the logarithmic cotangent
bundle of the moduli space of Riemann surfaces. It would be interesting
to see how this result can be proved by algebraic geometric method. In
the third part of our work [:8], we will prove the goodness of the Weil—
Petersson metric, the Ricci and the perturbed Ricci metric and other
metrics in the sense of Mumford, derive some other nice properties of
these metrics and find interesting applications.

This paper is organized as follows. In Section 2, we set up some no-
tations and introduce the Weil-Petersson metric and its curvatures. In
Section 3, we introduce various operators needed for our computations,
we compute and simplify the curvature of the Ricci metric by using these
operators and their various special properties. This section consists of
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long and complicated computations. Section 4 consists of several subtle
estimates of the Ricci metric and its curvatures near the boundary of
the moduli space. In Section 5, we introduce the perturbed Ricci met-
ric, compute its curvature and study its asymptotic behavior near the
boundary of the moduli space. These results are then used in Section
6 to prove the equivalence of the several well-known classical complete
Kahler metrics as stated above. Finally, in Section 7, by using the Ber’s
embedding theorem and basic properties of the Kobayashi, Bergman
and Carathéodory metric, we show that these metrics are equivalent.
This finishes the proof of the equivalence of all of the known complete
metrics. In the appendix, we add some details of the computations for
the convenience of the readers.

For simplicity, we state all of our results for the moduli and Te-
ichmiiller spaces of closed Riemann surfaces. All of the theorems hold
for moduli spaces My, of hyperbolic Riemann surfaces with punctures.

Some history of this research can be found in our survey paper [d].

2. The Weil-Petersson metric

The purpose of this section is to set up notations for our computa-
tions. We will introduce the Weil-Petersson metric and recall some of
its basic properties. Let M, be the moduli space of Riemann surfaces
of genus g where g > 2. M, is a complex orbifold of dimension 3g — 3.
Let n = 39 — 3. Let X be the total space and 7 : X — M, be the
projection map. There is a natural metric, called the Weil-Petersson
metric which is defined on the orbifold M, as follows:

Let s1,---, s, be holomorphic local coordinates near a regular point
s € M, and assume that z is a holomorphic local coordinate on the

fiber X, = 7~ 1(s). For the local holomorphic vector fields 8%17 cee %,

there are vector fields v1,--- ,v, on 7 5(U) C X where U is a small
neighborhood of s in M, such that

1) me(vy) = (% fori=1,---,m;
2) ?vi are harmonic 7' X,-valued (0,1) forms for i = 1,--- ,n. Here,
0 is the operator on the fiber X.

The vector fields vy, ,v, are called the harmonic lift of the vectors
8%1’ cee %. The existence of such harmonic vector fields was pointed

out by Siu [14]. In his work [13], Schumacher gave an explicit construc-
tion of such lift which we now describe.
Since g > 2, we can assume that each fiber is equipped with the

Kahler—Einstein, or the Poincaré metric, A = @)\(z, s)dz A dz. The
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Kahler—Einstein condition gives the following equation:

(2.1) 0,0z1log A = A.

For the rest of this paper, we denote (% by 0; and % by 0,. Let
(2.2) a; = —\"19;0-log A

and let

Then, we have the following

Lemma 2.1. The harmonic horizontal lift of 0; is
V; = 82 + aiaz.
In particular
B; = A0, ®dz € H' (X, Tx,)
is harmonic. Furthermore, the lift 0; — B; gives the Kodaira—Spencer
map TeMg — HY (X, Tx,).

REMARK 2.1. In the above lemma, the space H'(X,, T,) is the space
of harmonic forms with value in the holomorphic tangent sheaf of Xj.
We used the Dolbeault isomorphism implicitly.

Now, we define the well-known Weil-Petersson metric:

Definition 2.1. The Weil-Petersson metric on Mg is defined to be
(2.4) hg(s) = / Bi . Fj dv = / AZA_] d’U,
Xs Xs

where dv = @)\dz A dz is the volume form on the fiber Xs.

It is known that the curvature tensor of the Weil-Petersson metric
can be represented by

Raa= [ BB+ BBy

+(B; - B)(O+1)"(By - Bj)} do,

where [J is the complex Laplacian defined by
0

020z

By the expression of the curvature operator, we know that the curva-
ture operator is non-positive. Furthermore, the Ricci curvature of the
metric is negative.

However, the Weil-Petersson metric is incomplete. In [15], Trapani

proved the negative Ricci curvature of the Weil-Petersson metric is a

O=—\
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complete Kéhler metric on the moduli space. We call this metric the
Ricci metric. It is interesting to understand the curvature of the Ricci
metric, at least asymptotically. To estimate it, we first derive an integral
formula of its curvature.

3. Ricci metric and its curvature

In this section, we establish an integral formula (3.28) of the curvature
of the Ricci metric. The importance of this formula is that the functions
being integrated only involve derivatives in the fiber direction which we
are able to control. Thus, we can use this formula to estimate the
asymptotic of the curvature of the Ricci metric in next section.

The main tool we use is the harmonic lift of Siu and Schumacher
described in the previous section. These lifts together with formula (3.2)
enable us to transfer derivatives in the moduli direction into derivatives
in the fiber direction.

We use the same notations as in the previous section. We first in-
troduce several operators which will be used for the computations and
simplifications of the curvatures of the Ricci metric.

Define an (1,1) form on the total space X by
g= g@g log\ = g(gijdsi/\dEj—)\aidsi/\df—)\ﬁidz/\dEi—i—)\dz/\dE).
The form g is not necessarily positive. Introduce

€ = \/L_—lg(viﬂj) = 9;; — Aaiaj
be a global function. Let us write fij = A;A;. Schumacher proved the
following result:

Lemma 3.1. By using the same notations as above, we have

Since €5 and fi} are the building blocks of the Ricci metric, it is
interesting to study its property under the action of the vector fields
;8.

Lemma 3.2. With the same notations as above, we have
vg(e;5) = viley;)-
Proof. Since dg = 0, we have the following
0 = dg(vi, vk, ;) = vi(es3) — vk(ez) +0g(vi, vk)
= 9(vi, [k, U5]) + g(vr, [vi, U5]) — 9(Vj, [vi, vi]).
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The Lie bracket of v; with v; or vy, are vector fields tangential to X,
which are perpendicular to the horizontal vector fields v; with respect
to the form g. Thus, the last three terms of the above equations are
zero. On the other hand, g(v;,vx) = 0. The lemma thus follows from
the above equation. q.e.d.

We also need to define the following operator
P: C®(X,) — DAM(TY XY)), f0.(A"0.f).
The dual operator P* can be written as follows
P*: T(AYN(T10X,)) — C®(X,), B— A10.(A10.(AB)).

The operator P is actually a composition of the Maass operators. We
recall the definitions from [1§]. Let X be a Riemann surface and let
k be its canonical bundle. For any integer p, let S(p) be the space of
smooth sections of (k@7 1)%. Fix a conformal metric ds? = p2(z)|dz|2.

Definition 3.1. The Maass operators K, and L, are defined to be
the metric derivatives K, : S(p) — S(p+1) and L, : S(p) — S(p—1)

given by

Ky(0) = 0 10.(p o)
and

Ly(o) = p~ P71 0:(pP o)
where o € S(p).

Clearly, we have P = K;Kj. Also, each element o € S(p) has a
well-defined absolute value || which is independent of the choice of the
local coordinate. We define the C* norm of o as in [18§]:

Definition 3.2. Let (Q be an operator which is a composition of op-
erators K, and L. Denote by |Q| the number of such factors. For any
o € S(p), define

lo]lo = sup |0
X

and

lolls = > lQo]lo-
lQI<k
We can also localize the norm on a subset of X. Let Q C X be a domain.
We can define

lollo.o = sup|o|
Q

and

lollke =Y 1Qalloq-

IQI<k
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Both of the above definitions depend on the choice of conformal metric
on X. In the following, we always use the Kahler—Einstein metric on
the surface unless otherwise stated.

Since the Weil-Petersson metric is defined by using the integral along
the fibers, the following formula is very useful:

(3.2) o [ n= / Lo
XS S

where 7 is a relative (1,1) form on X.

The Lie derivative defined here is slightly different from the ordinary
definition. Let ¢; be the one parameter group generated by the vector
field v;. Then, ¢; can be viewed as a diffeomorphism between two fibers
Xs — Xy. Then, we define

Lo = im (47 (0) — 0)

for any one form o. On the other hand, let £ be a vector field on the
fiber X;. Then, we define

Lo & = m 2 ((p-0).6 — ©).
We have the following
Proposition 3.1. By using the above notations, we have
L0 =i(vi)dyo + dyi(v;)o,
where dy is the differential operator along the fiber, and
L€ = [vi, €.
In the following, we denote L, by L;.

Lemma 3.3. By using the above notations, we have
Lidv = 0; B
1(Bi) = —P(eg) — f30= @ dz + f30. @ dz;

2) Ly
Lk;( i) = —P(ek]) fi50- ® dz + f4502 @ dz;
L
L;

1)
)
3)

( ) (vz(Az) Klaza_l)azéédz.

Proof. The first formula was proved by Schumacher in [13]. To check
the other formulae, we note that the third and fifth formulae follow from
the second and fourth, which we will prove, by taking conjugation. We
first have

D.ay = 0.(=\"10,0z10og \) = X720, 00,05 log A — \"10,0),0z log A
= X190 ap — A\ 10,0.0:1og N\ = = A1 hay — ATLORA.
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We also have
Ora; = O(—A"19;0:1og \)) = A\ 2909, 0z log A — A~ 10:0,0;log A
= - A"19Na; — A1 0zg; = — AT O — A Ts(ey; + Nagar)
= AT — A dsey — A0 e — A — aidm
= —(AT'IA N ONT + Oz a; — N Oze — A
= —\"'0ze;; — Ajay.
For the second formula, we have
Li(B;) = 0i(A;)0, ® dZ + Ai(—0,@05) ® dZ + A;0, ® (0,mdz + dza1dZ)
= (01(A;) + Ai0:@)0, ® dZ — f;0: ® dZ + f;0. @ dz.

So, we only need to check that 7;(4;) + A;0za; = —85(/\_18262-2). To
prove this, we have

T1(As) + AiOza1 = @10z A; + OjA; + Aidza; = 0z(Asap) + 0=0;a4
= Oz(Asar) — 32(/\_13262-2) — 0z(Aia) = —82()\_18562.?).
This proves the second formula. For the fourth one, we have
Li(B;) = vk(A)0, ® dz + Ai(—0.a10,) ® dz
= (vi(4;) — Ai0.ax)0, ® dz.
This finishes the proof. q.e.d.

An interesting and useful fact is that the Lie derivative of B; in the
direction of vy is still harmonic. This result is true only for the mod-
uli space of Riemann surfaces. In the general case of moduli space of
Kahler—Einstein manifolds, we only have 9" LiB; = 0.

Lemma 3.4. L;(B;) € H'(X,,TX,) is harmonic.

Proof. From Lemma 3.3, we know that Ly(B;) = (v (A;)—A;0,ax)0,®
dz € A%(X,, Tx,). So, it is clear that d(Ly(B;)) = 0 for the dimen-
sional consideration. The fact that & LyB; = 0 was proved in [14].
q.e.d.

The above lemma is very helpful in computing the curvature when
we use normal coordinates of the Weil-Petersson metric. We have

Corollary 3.1. Let s1,--- , s, be normal coordinates at s € Mgy with
respect to the Weil-Petersson metric. Then, at s, we have, for all i,k,

Li.B; = 0.
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Proof. From Lemma 3.4, we know that LjB; is harmonic. Since
By,---, B, is a basis of T, M, we have

LiB; = hpq(/ LiB; - By dv)B, = h"19,higB, = 0.

q.e.d.

The commutator of vy and v; will be used later. We give a formula
here which is essentially due to Schumacher.

Lemma 3.5. [7,vx] = —/\_lagekzaz + )\_lazekzﬁg.
Proof. From a direct computation, we have
(01, v = vi(ax)0; — v (@) 0.
By using the proof of Lemma 8.3, we have
v(ar) = mOza, + dar, = =\~ 'Oz

and
Uk(a_l) = a0, a; + Opa; = _Ailazekj-
These finish the proof. q.e.d.

REMARK 3.1. In the rest of this paper, we will use the following
notation for curvature:
Let (M, g) be a Kéhler manifold. Then, the curvature tensor is given
by

2
995 7004 agpi.
ikl 02,07 0z, 07
By using this convention, the Ricci curvature is given by
_ Kkl
R =—9" Ry,

and the holomorphic sectional curvature of g is negative means

R(v,7,v,0) >0

(3.3)

for any holomorphic tangent vector v at any point.

In [14] and [13], Siu and Schumacher proved the following curvature
formula for the Weil-Petersson metric. This formula was also proved
by Wolpert in [16]. We give a short proof here since we need to use the
techniques.

Theorem 3.1. The curvature of Weil-Petersson metric is given by

(3.4) Ri}kz = /X (eijsz + €isz3) dv.

s
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Proof. We have

(3.5)
za;/x LyB; -Fjdv—hPQ/ LyB; - By dv/X B, - L;B; dv

E]

- hpﬁ/ LyB; - By dv/ B, - L;B; dv.
S X.S
Since Bi,--- , By, is a basis of T\ My, we have
hpq/ L;B; - B, dv/ B, - L;Bj dv = / LyB; - L;B; dv.

By combining this formula with (3.§), we have

(3.6)
Rijkl:/X L;LyB; - B; dv:/X LyL;B; - Bj dv+/X L0, Bi - Bj dv

zak/ LTBi'Fjdv—/ L;B; - Ly B; dv+/ L0, Bi - Bj dv
X Xs Xs

= — / LZBZ' . Lij dv + /X L[v_l,vk]Bi . FJ dv

since [y L;B; - Bj dv = 0. Now, we compute Ix. Lo Bi - B; dv. Let
W%(L[v—lmk]Bi) be the projection of Ly ,,1B; onto H%' (X, Tx,) which
gives the 9, ® dz part of L[Fl,vk]Bi' Since B; is harmonic, we know
0,(AA;) = 0 which implies 9,4; = —A\"19,AA;. By Lemma 8.5, we have

TH( L) Bi) =(—A7'0ze,00. A + Aido (A Ozeyq)
+0:(\ 1 A;0.€47))0, ® dz
(3.7) =(AT20.AA;0ze,; — A 20 A A;0z¢,5 — Ailey;
+ 0:(A1A;0.¢,7))0. ® dz
=(—A;Oe; + ag(xlAiazekz))az ® dz.
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This implies
(3.8)

/ Liyy0,Bi Bj dv =
Xs

To compute [y L;B; -

(3.9)
/ L;B; - LyBj dv =

\\\

- /X (—AiDey + 0z(\ 1 4;0.¢4)) A dv
B A fZEDGkZ dv + /)( 83(Ailflzazekj)fl_] dv
= — /X szDekz dv — / )\7214187;6]&83()\14_]) dv

Xs

LyB; dv, by using Lemma 8.3, we obtain

/ (%(A_laéeiz)az(xlazekj) = 2fizf7) dv

/ (A_Qaze@@z()\a%()\_laéeﬂ)) dv — 2/X fk}fﬂ dv

E]

_—/ (A‘Qﬁz)\@zek;az(/\_lafeﬂ)

+ A1 0.0,50:0:(A " Dze)) v — 2 / Tl dv
X
/ 28—6 10=(A™ 19,00, €k )

+2719 8—6k]8 (A~ 8‘%) dv—2/ fk]le dv

\

1(ADzey5 — 9:00e;5)

E]

—Oepz(=A" 20, \0ze 7 / figla dv

15Lezl8 ek]) + DekJDe ;) dv — 2/ fk] 7 dv

s

(Oeyzeq + Deyz0ey) dv — 2/ figfa dv

s

(Oegfa=2hgla) dv == [ (gfa+eghy dov

s s



CANONICAL METRICS ON THE MODULI SPACE 585

By combining (3.0), (8.8) and (3.9) with the identity figla = AiA;ALA =
fij J37» we have

(3.10)
Rz :/X (figfa T e la— fi7Ben) dv = /X (fizen + faerz) dv

s

:/X (eﬁsz + eiszg) dv.

s

Here, we have used the fact the (O + 1) is a self-adjoint operator. This
finishes the proof. q.e.d.

It is well-known that the Ricci curvature of the Weil-Petersson metric
is negative which implies that the negative Ricci curvature of the Weil—
Petersson metric defines a Kahler metric on the moduli space M,.

Definition 3.3. The Ricci metric 7.5 on the moduli space Mg is the
negative Ricci curvature of the Weil-Petersson metric. That is

o R-— KPR
(3.11) 7 =R =h"Rz 3.

Now, we define a new operator which acts on functions over the fibers.

Definition 3.4. For each 1 < k < n and for any smooth function
f on the fibers, we define the commutator operator & which acts on a
function f by

(3.12) &(f) = 0 (i(By)of) = —A"19.(A0. ).

The reason we call £ the commutator operator is that & is the
commutator of (J+ 1) and v; and the following lemma.

Lemma 3.6. As operators acting on functions, we have
(]) (D + 1)Uk - Uk(D + 1) == ka - UkD = ék;
(2) (O + 1o —w(0 + 1) = Ot — 50 =
(3) &(f) = —Ar0:(N\710.f) = —ARP(f) = — A K1 Ko(f).

Furthermore, we have

(3.13) (D + 1)7)]@(62'3) = fk(ezg) + éz(ekg) + LkBZ' : Fj
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Proof. To prove (1), we have
O+ Dok —v(B+1)
= Do + v — v — v = Do — v,
= A 10.0:(ay0. + 0)) — (ar0. + O)(—A"10.0%)
= —X\"10.(A40. + 0.0z + 01,05
+ ap0. (AN 10,05 + N1 ap0.0,05 + O (V10,0 + N 100,05
= —N"10.(A40.) — X 10.0,0.0 — A 0.0.05 — X710,0.0=
— A20.003,0.07 + A1 ay0.0.05 — X203 00,07 + A1 0,,0.0=
=& — A N (Ozap, + A 10 Aay, + AN TTORN)0.0: = &
where we have used Lemma 8.3 in the last equality of the above formula.
By taking conjugation, we can prove (2) by using (1). To prove (3), we

use the harmonicity of Bj. Since & By = 0, we have 0,(AAg) = 0.
So

E(f) = —AT0(AkD.f) = =21 (AARATIO )
= AT (AT10Lf) = — Ard. (A0 f).
To prove the last part, by using part 1 of this lemma, we have
(O + Dog(ez) =or((O+ 1)(ez)) + &rlez) = velfiz) + Erles;)
=LyB; - Bj+ B; - L, B; + §k(ei3)
=LiBi- Bj — Ai0:(\'0.¢;5) + &ley5)
=LyB; - Bj +&iley;) +&le;):

This finishes the proof. q.e.d.

REMARK 3.2. From Corollary 8.1 and the above lemma, when we use
the normal coordinates on the moduli space with respect to the Weil—-
Petersson metric, we have the clean formula (0 + 1)vk(e;5) = &ie;) +

fk(eij)-

The main result in this section is the curvature formula of the Ricci
metric. The terms produced here are very symmetric with respect to
indices. For convenience, we introduce the symmetrization operator.

Definition 3.5. Let U be any quantity which depends on indices
i, k,a,7,l, 8. The symmetrization operator o1 is defined by taking the
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summation of all orders of the triple ( k, ) That is
+U(k,i,« EZB)—FU(k,a,z 373)
o 173

+U(,i,k, 5,0, 8) + U, kyi, 5,1, 5).

Similarly, oo is the symmetrization operator of 7 and B and o7 is the
symmetrization operator of 7, | and [3.

Now, we are ready to compute the curvature of the Ricci metric. For
the first order derivative, we have

Theorem 3.2.
(3.14) Otz = he? {Ul /X (Ek(eij)eqap) d’u} Tyl ik

where I’Pk 1s the Christoffell symbol of the Weil-Petersson metric.

Proof. From Lemma 3.1, we know that (O + le; = f;- By using
Lemma 3.6 and Theorem 8.1, we have

(3.15)
8kRz]aﬁ 8;€ /X (eijfozﬁ + eiﬁfoﬁ) dv

- /X (vrlec) s + eqon( ) + V(i) fo + cazon(fo)) dv

s

_ / (O + Dvgles)ens + e0x(Fag) + (O + Doglegg)ea;
+ eiﬁvk(faﬁ)) dv

= /X (vk(fi7)eqs + e7on(fog) + vk(fig)eq;
+ eiﬁvk(faﬁ)) dv

+ /X (Ek(e)ens + Eulez)ess) dv

~ [ (@B e+ (LuBa-B)eg

+ (LkBZ . B_ﬂ)eaj + (LkBa . Fj)ezﬁ) dv

=+ / ((Bz . Lij)eaE + (Ba . Lk‘B—ﬂ)eiE + (BZ . Lk'B_,G)ea]

+ (Ba : Lij)ezﬁ) dv + [){ (§k(ei3)€a5 + §k(€iﬁ)ea3) dv.
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Now, we simplify the right-hand side of (8.15). Since By,---,B, is a
basis of TsM,, we know that the first line of the right-hand side of

(8.19) is
(3.16)

/((LkB B) ﬁ—l-(LkB Bg)e +(LkB Bﬂ)

E]

+ (LkBa - Bj)ez) dv

:/ (LiBi - (Bjeqg + Bpeay) + LiBa - (Bjejz + Bseyg)) dv
Xs

:hpé/ (LiB; - By) d’”/X (Bp - (Fjeaﬁ +B_ﬁ€a3) dv
+hpa/ (LkBa-Fq)dv/ (By - (Bje5 + Bpeyg) dv

=h1Okhig R o + W Okhoq Rz, = pjaf ijpB
We deal with the second line of the rlght—hand side of (3.18) by using
Lemmas 8.3 and 8.6 to get
(3.17) B; - Lij = —Aiaz()\ilazekj) = §Z(e,€3)
This implies
G139 [ (B LiBes+ (Ba- LiBo)e

s

+ (BZ . LkB_ﬁ)eaj + (Ba . Lij)eZB) dv

= /X (&ileypleas + &aleggles + &ilegp)e g + Salegles) du.
We also have

(3.19)

Oi; = WP Rz 5+ O6h®P Rz 5 = h°P (0 Rz 5 — R 5.

By combining (3.17), (3.16), (8.18) and (3.19), together with the fact

that &; is a real symmetric operator and the definition of T3, we have
proved this theorem. q.e.d.

ijo

To compute the second order derivative, we need to compute the
commutator of £ and v;. We have

Lemma 3.7. For any smooth function f € C*°(Xy),

(320) (&) — &(TLf) = Pley) P(f) — 2fy0f +X"10: f30=f.
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Proof. We will fix local holomorphic coordinates and compute locally.
First, we know that the commutator of 7; and 0, is

Similarly, the commutator of 7; and A\~19, is
(3.22) TN, — Ao = (A TH o, + A (1o, — 0.1)

= \"'0zm0. — AT A0
The above two formulae imply
(3.23)
—(WP — Pvy) = —0(9.(A\"10.)) + 9.(\ 10w
= (407 — 0.o)(A102) + 0.(m(A10.) — A dzm0,
+ A TA0;)
= Z0:(A10,) — 0.(A\"'0=@0.) + 0. (A A0x)
= A T20:0A,0, + N1 A,0,05 + A T20,005a;0,
— A0 4,0, — A1 0:a0.0.
— ATPOAA0: + N0 A0z + A AD.0;.
By using the harmonicity, we have dz(AA;) = 0 which implies 9:4; =
—A"19:)4;. By plugging this into formula (3.23), we have
(3.24) —(TP — P1y) = — 24,0+ A 20,000, — A\~ 105a;0,0.
— AP0 N0z + A O. A 02
= — 94,0 — &za;P — N\ 20, \A,05 + N\ 10, 4,05.
Now, since &, = —Ap P, we have
(3:25) W&k f) — &r(Uif) = —(AR) P(f) — Ax(mP(f) — Pui(f))
= — ((Ak) + Adza) P(f) — 2f30f
— AN TPONALAOf + AT ARD ArDsf.
From the proof of lemma 8.3, we know v;(Ag) + Axdza; = —P(ey;). By

using the harmonicity, we have —A719,\A, = 0.A;. So, from (3.25),
we have

(3:26)  m(&xS) — & (@) =P(ey) P(f) — 2f0f + A1 0. A Ai0=f
+ AT ARDAO= f
=P(eg)P(f) = 2fq0f + X 10.f10=f.
This finishes the proof. q.e.d.
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From the above lemma, it is convenient to define the commutator of
&, and 77 as an operator.

Definition 3.6. For each k,l, we define the operator Q,; which acts
on a function to produce another function by

(3.27)  Quf) = Pleg) P(f) = 2fq0f + A0 fyy0=f.

Now, we are ready to compute the curvature tensor of the Ricci met-
ric. The formula consists of four types of terms.

Theorem 3.3. Let s1,--- , s, be local holomorphic coordinates at s €
M. Then at s, we have
(3.28)

s

R =h" {0102/ {(D+1)_1(§k(€i3))§(eag)

+ (O + 1)_1(§k(€i3))5ﬁ(€az)} dv}

+ haﬁ {o’l / Qki(eﬁ)eaﬁ dv}
X
_quhaﬁh')/(;{ i gk(ezq alg }{0_1/ él p] ’Yé }

+7, hququl

Proof. By Lemma 8.4, we know that Lj,B; is harmonic. Since By, --- , B,
is a basis of harmonic Beltrami differentials, from the proof of Theorem
8.11 we have

(3.29) L.B; = %, B,.
We first compute 05 [y &k(e;7)e,5 dv. By Lemmas 8.6 and 8.7, we have

a_/ gk Z] aﬂ

(Wi (&k(e7))enz + Eulez)tile,5)) dv

E]

(Ee(Wilez))e,z + &lez)vile,5) + Quilez)e,5) dv

s

k(e p)uies) + &ule)tile,5) + Quiles)e,s) dv

s

O+ 1) (&lep) O+ 1)(Tile)) dv

s

——
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+ [ @) o) O+ DEleyg) do
+ Qe
= [ O D Gl ol + il do
+ [ O ) o) Eleng) + 750

/ le ’L] aﬂ

- /X (O+ 1) (€x(e,5)Eles)
O+ 1) (Ele)Eleny)) do
[ @0 ) Eleg) + i L) do
X

+ / O+ 1)~ (les;)) Esley) + Ao - LiAg) dv

+ [ ey

Now, by using (3.29), we have

(3.31)
/X (O + 1) (Exleaz)(Ai - L) + O+ 1) (€x(e) (Aa - LA)) dv

:/X (O + 1) (&hle,5) T A - &)
+(O+ 1) (e ))(ngA - Ay)) do

_F]l/ gk \:‘—l—l A At) dv
+rm/ &) O+ 1) (Aq - A7) dv

—Ft/ k(e eztdv—l-I’m/ k(e 2]6 dv.
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(3.32)
& /X Exle)ens dv = / O+ 1) () Gulens) + Ealen) dv

s

+ / O+ 1) (Exleny)) Enleig) + E5(e)) do

s

+F_§l/X k(e g)eq dv +F—El/x i(e)eqs dv

+ /XS Qrile;z)e,s dv.
We also have
Ty, =0;(h? 1Ochig) = —hpﬁhaaa?haﬁakhﬁ T hpa%akhiq
:hpq(aiakhia - hag@iho@akhiﬁ) = hquiakZ'
From Theorem 3.2, formula (3.32) and (3.33), we derive
(3.34)

oiny =007) {1 [ ateglens v} <17 ot [ alegles dvf

+h° {51 / Gileyzless d”} T+ 1l B + 75 Rigyg

Xs
=— h"fl“_ft {01 / Eklej)eqs d”}
Xs

17 o [ (@417 e Elers) +Eole)

+ heB {01/ Qki(eﬁ)eaﬁ dv} T haﬁr_?l {Ul/ fk(eﬁ)eag dv}
X, s

+ haEF_tﬁl{Ul /X Ek(ez)eat dv} + 0" {51 /X &iley5)ess d“} I

_TP 14 N _
+ gl + TP Ry

(3.33)

Now, frozn_ the above formula, by using Theorem 5:2, we can easily check the
formula (8.2§). q.e.d.

The curvature formula of the Ricci metric would be simpler if we
have used the normal coordinates. However, when we estimate the
asymptotic behavior of the curvature, it is hard to describe the normal
coordinates near the boundary points. Thus, we will use this general
formula directly in our computations. The estimates are quite subtle.
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4. The asymptotic of the Ricci metric and its curvatures

From formula (3.4), we can easily see the sign of the curvature of the
Weil-Petersson metric directly. However, the sign of the curvature of
the Ricci metric cannot be derived from formula (3.28). In this section,
we estimate the asymptotic of the Ricci metric and its curvatures. We
first describe the local pinching coordinates near the boundary of the
moduli space due to the plumbing construction of Wolpert. Then, we
use Masur’s construction of the holomorphic quadratic differentials to
estimate the harmonic Beltrami differentials. Finally, we construct '52-3
which is an approximation of e;5- By doing this, we avoid the estimates
of the Green function of [J + 1 on the Riemann surfaces.

Let M, be the moduli space of Riemann surfaces of genus g > 2
and let M, be its Deligne-Mumford compactification [8]. Each point
Yy e ﬂg\Mg corresponds to a stable nodal surface X,. A point p € X,
is a node if there is a neighborhood of p which is isometric to the germ
{(u,v) |uwv =0, |ul,|v| <1} C C%

We first recall the rs-coordinate on a Riemann surface defined by
Wolpert in [18]. There are two cases: the puncture case and the short
geodesic case. For the puncture case, we have a nodal surface X and
anode p € X. Let a,b be two punctures which are glued together to
form p.

Definition 4.1. A local coordinate chart (U,u) near a is called rs-
coordinate if u(a) = 0 where u maps U to the punctured disc 0 < |u| < ¢
with ¢ > 0, and the restriction to U of the Kdahler—FEinstein metric on
X can be written as WWUP. The rs-coordinate (V,v) near b is

g [ul)
defined in a similar way.

For the short geodesic case, we have a closed surface X, a closed
geodesic v C X with length [ < ¢, where c, is the collar constant.

Definition 4.2. A local coordinate chart (U, z) is called rs-coordinate

at v if v C U where z maps U to the annulus cfl\t\% <z < c\t\%, and

T 1 wlog |z[\2
— CSC
Tog 7] [2] € Tog 11T )

the Kahler—Einstein metric on X can be written as %(
|dz|?.

REMARK 4.1. We put the factor % in the above two definitions to
normalize metrics such that (2.1) hold.

By Keen'’s collar theorem [4], we have the following lemma:

Lemma 4.1. Let X be a closed surface and let v be a closed geodesic
on X such that the length | of v satisfies | < c.. Then, there is a collar
Q on X with holomorphic coordinate z defined on ) such that
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7.—2
1) z maps Q to the annulus %6_2T < |z| < ¢ for ¢ > 0;
2) the Kdahler—Einstein metric on X restricted to Q0 is given by

1
(4.1) <§u2r2 csc? T> |dz|?

l

where u = 5=, r = |z| and T = ulogr;

w2

3) the geodesic 7y is given by the equation |z| = e~ T .

We call such a collar Q a genuine collar.

We notice that the constant ¢ in the above lemma has a lower bound
such that the area of €2 is bounded from below. Also, the coordinate
z in the above lemma is rs-coordinate. In the following, we will keep
using the above notations u, r and 7.

Now, we describe the local manifold cover of ﬂg near the bound-
ary. We take the construction of Wolpert [18]. Let X0 be a nodal
surface corresponding to a codimension m boundary point. X have
m nodes p1,--- ,Pm. Xo = Xoo \ {P1, - ,Pm} is a union of punctured
Riemann surfaces. Fix the rs-coordinate charts (U;,n;) and (V;,(;) at
p; for i = 1,--- ,m such that all the U; and V; are mutually disjoint.
Now, pick an open set Uy C Xy such that the intersection of each
connected component of Xg and Uy is a non-empty relatively com-
pact set and the intersection Uy N (U; U'V;) is empty for all i. Now,
pick Beltrami differentials v4,,41,- - , v, which are supported in Uy and
span the tangent space at Xg of the deformation space of Xy. For
S = (Sma1, " ,Sn), let v(s) = Z?:mﬂ siv;. We assume |s| = (D |sz|2)%
small enough such that |v(s)| < 1. The nodal surface Xy s is obtained
by solving the Beltrami equation dw = v(s)0w. Since v(s) is sup-
ported in Uy, (U, n;) and (V;, (;) are still holomorphic coordinates on
Xo,s- Note that they are no longer rs-coordinates. By the theory of
Alhfors and Bers [I] and Wolpert [18], we can assume that there are
constants 0,¢ > 0 such that when |s| < §, n; and (; are holomorphic
coordinates on Xy ¢ with 0 < |n;| < c and 0 < |(;| < ¢. Now, we assume
t = (t1,- -+ ,tm) has small norm. We do the plumbing construction on

Xo,s to obtain X;s. We remove from Xg s the discs 0 < |n;| < ‘t—cz|

and 0 < || < % for each i = 1,--- ,m, and identify % <Imi| < ¢
with % < |¢i| < ¢ by the rule n;(; = t;. This defines the surface Xy .
The tuple (t1,- -+ ,tm, Smit1,- -+ ,Sp) are the local pinching coordinates
for the manifold cover of M,. We call the coordinates n; (or ¢;) the

[t
C

plumbing coordinates on X;, and the collar defined by < Inil < ¢

the plumbing collar.
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REMARK 4.2. From the estimate of Wolpert [17], [L8] on the length

of short geodesic, we have u; = QZ—;F ~ _1ogﬂT'
K2

We also need the following version of the Schauder estimate proved
by Wolpert [18].

Theorem 4.1. Let X be a closed Riemann surface equipped with the
unique Kdhler—FEinstein metric. Let f and g be smooth functions on X
such that (O+1)g = f. Then, for any integer k > 0, there is a constant
cr such that ||g||k+1 < ck||f||x where the norm is defined by (3.2).

Now, we estimate the asymptotic of the Ricci metric in the pinch-
ing coordinates. We will use the following notations. Let (¢,s) =
(t1, -+ ytmsSm+1,- - ,Sn) be the pinching coordinates near Xgo. For
I(t,s)] < 8, let QF be the j-th genuine collar on X, which contains
a short geodesic ~; with length [;. Let u; = %, uy = ZTZl uj +
> i—my1l8ils 75 = |zj| and 7; = u;logr; where z; is the properly nor-
malized rs-coordinate on 2 such that
. _2n?

QO ={zj|cle b <|z|<c}
From the above argument, we know that the Kahler-Einstein metric A
on X, s restrict to the collar Q7 is given by

(4.2) A= %u?rj_Q csc? 7.

For convenience, we let . = Tzlﬁé and R, = X5\ Q.. In the
following, we may change the constant ¢ finitely many times. Clearly,
this will not affect the estimates.

To estimate the curvature of the Ricci metric, the first step is to find
all the harmonic Beltrami differentials By, - , B,, which correspond to
the tangent vectors %,--~ ,%. In [11], Masur constructed 3g — 3
regular holomorphic quadratic differentials 11, --- ,, on the plumbing
collars by using the plumbing coordinate n;. These quadratic differen-
tials correspond to the cotangent vectors dtq,--- ,ds,,.

However, it is more convenient to estimate the curvature if we use the
rs-coordinate on X; ¢ since we have the accurate form of the Kahler—
Einstein metric A in this coordinate. In [15], Trapani used the graft
metric constructed by Wolpert [18] to estimate the difference between
the plumbing coordinate and rs-coordinate and gave the holomorphic
quadratic differentials constructed by Masur in the rs-coordinate. We
collect Trapani’s results (Lemma 6.2-6.5, [15]) in the following theorem:
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Theorem 4.2. Let (t,s) be the pinching coordinates on Mg near Xo o
which corresponds to a codimension m boundary point of ﬂg. Then,
there exist constants M,0 > 0 and 1 > ¢ > 0 such that if |(t,s)| < 6,

then the j-th plumbing collar on X4 contains the genuine collar 2.

Furthermore, one can choose rs-coordinate z; on the collar Qﬁ properly
such that the holomorphic quadratic differentials 1y, 1, correspond-
ing to the cotangent vectors dty,--- ,ds, have the form 1; = @i(zj)dz]z

on the genuine collar Qo for 1 < j <m, where
1) ¢i(z) = L(qf-'(f%?j) +B) ifi = m A+ 1;
2) pilz) = (—#)%(qg(zg) +8;) if i =j;
3) ilz) = (—%)%(qi (z) + B)) if 1 <i<mandi#j.

Here, ﬁg and (B are functions of (t, s), qzj and q; are functions of (t, s, z;)

given by
qZ (24) Zazktst kzk—i-Zozzkts
k<0 k>0
and
zj) = Zajk(t, s)tj_sz + Zajk(t, s)z;
k<0 k>0
such that

1) Ypcoladle™ < M and 3, lad, |t < M ifi # j;
2) > k<o lojkle™® < M and Zk>0 vk |c® < M;

3) |67] = O(1t;]37) with € < § if i # j;

4) 1Bj| = (1 + O(uo))-

An immediate consequence of the above theorem is the following re-
fined version of Masur’s estimates of the Weil-Petersson metric. In the
following, we will fix (¢, s) with small norm and let X = X, ,.

Corollary 4.1. Let (t,s) be the pz’nching coordinates. Then

1) 1" = 2u;?[t;*(1 + O(uo)) and hg = 577 L (14 O(ug)) for 1 <i <

<
<
Il
)
=
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Proof. We need the following simple calculus results:

C
1
(43) / 721Lv2 —'Sin2 Tj dT‘j :Ujl(g +O(UJ))
cle 9 Ty
For any k£ > 1,
C
(4.4) / -2 rfflsiHQ 7 drj = O(u?)ck'
cte

and for k < —1,

c _2n2 k
(4.5) / _2q2 r;-gfl sin? 7 dr; = O(u?)c_k (e lj ) .
cle '

On the collar O, the metric A is given by (4.2). h% is given by the
formula

R = / Pib A" 2dw.
X

By using the above calculus facts, we can compute the above integral
on the collars. The bounds on R. was calculated in [11]. A simple
computation shows that the first parts of all of the above claims hold.
The second parts of these claims can be obtained by inverting the matrix
(h#) together with Masur’s result on the non-degenerate extension of

the submatrix (hiE)i7j>m. This finishes the proof. q.e.d.

Now, we are ready to compute the harmonic Beltrami differentials
B; = 4,0, ® dz.

Lemma 4.2. For ¢ small, on the genuine collar QZ, the coefficient
functions A; of the harmonic Beltrami differentials have the form:

1) A= Zsin 75 (pl(z) + b)) if i £ J;
2) Aj = Zsin® 75(p;(2;) + b))
where
1) pl(2) = X1 @lypp ¥ b + Spsy @l b if i # j;
2) pj(z) = k<1 ajkﬂszf + D k1 ajsz

2

27

In the above expressions, p; = e Y and the coefficients satisfy the

following conditions:

1) D p< lal|c™F = O(u;Z) and Yy |al, |cF = O(u;Z) ifi > m+1;

2) Ypeolafle™ = O(U]_Q)O(\TQ) and 35y |aj)|c* = O(u; Q)O(M—Q)
ifit <m andi#j;
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3) Yic—1lajele™ = O(ih) and sy lajelc® = O(5h);
4) H|: O(u )zfz>m—|—1

5)\f| O(u;)0 (m)zfz<mcmdz7éj,

6) b; —:—t—j(l—l—O(uo)).

Proof. The duality between the harmonic Beltrami differentials and
the holomorphic quadratic differentials is given by

(4.6) Bi=XA"Y hy
=1

which implies 4; = A\~! > i1 h;%1. Now, by Wolpert’s estimate on the
length of the short geodesic v; in [18], we have [; = 1Og \t ‘(1 +O(uy)).
This implies there is a constant 0 < p < 1 such that ult;| < p; < p~1t;].

The lemma, follows from equation (4. :)- by replacing ¢ by pc, a simple
computation together with Theorem #.2 and Corollary §.1. q.e.d.

To estimate the curvature of the Ricci metric, we need to estimate the
asymptotic of the Ricci metric by using Theorem 3.1 So, we need the
following estimates on the norms of the harmonic Beltrami differentials.

Lemma 4.3. Let || - ||x be the norm as defined in Definition &.3. We
have
) IAillon = O(2) and |Adlo xnas = O, if i < m;
2) [|Aillo = O(), if i = m+1;
u2 6
3) If;illon: = O(5) and lIf;llox\0i = O(5Hz), if i < my
)
)

[t
4) | fi5ll0 = O(1), z‘fz‘ P> m4+1;
ulu s
5) Ifijllo.e: = O(\t t |) and Hfz]”o ol = O(\tétﬁ) and HfﬁHO,X\(QgUQg) _
u3u3
O(|titjj|) Zfla.] <m andi ;éj’

6) I£5l0.00 = O(y) and | f5llox\0i = O(5), if i < m and j >

= Pw

m+1;
7) [l =0Q), ifi,j =m+1;
3
8) £l = O(ipy), if i <m and j > m+1;
u33
9) |fijler = O( 1;) ifi,j <m and i # j.

Proof. We choose ¢ small enough such that for each 1 < j < m,

tan(u;logc) < —10u;
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when |[(¢,s)| < 0. A simple computation shows that, when 1 < p < 10,
on the collar Q7, we have
ko k
|} sin 75| < c"|log cfFuf
if £ > 1, and
r¥ sin? 75| < ¢ log c|pp§u§

if k< —1. '
To prove the first claim, note that on 2%, we have

|sin 7, (D + )| < Y law|p; Frfsin® 7
k<-—-1

+ Z |agg|rF sin? 7 + |by]
k>1

4|

Zi
Z

<(log ¢)*u? Z |lagr]c™* + Z lagk|c® | + |bi]
k<—1 k>1

(i) st ) o) o )

Similarly, on © with j # i, we have |A;| = O(%) Also, on R, we

have |A;| = O([Z_?l) by the work of Masur [11], equation ({.6) together
with Theorem #.2 and Corollary #.1. This finishes the proof of the first
claim.

The second claim can be proved in a similar way. Claim (3)—(6) follow
from the first and second claims by using the fact that fﬁ = AZA_]
Claim (7) follows from claim (4) and the fact that the area of X is a
fixed positive constant using the Gauss—Bonnet theorem.

Now, we prove claim (9). On %, by using a similar estimate as above,
we have

|fi7l = sin® 7;(p7 + b;) (pz + b3)| < | sin* Tiﬁpﬂ + | sin? sz_lpﬂ

+ | sin? Tipib| + | sin? Tibibl|

3,3 3,3 2.3
SO( Z‘ ?)+‘Sin4Tibib§»|:O( ZA ‘])—i—O( Z‘ ?)sin T
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3,3 .

Similarly, |f;7],1 s < O(f4)- The estimate |f5], 1\ @iua) =
3,3

O(ﬁ;:") follows from claim (5). This proves claim (9). Similarly, we
ilj

can prove claim (8). q.e.d.

In the following, we will denote the operator (00 + 1)~! by 7. We
then have the following estimates about L? norms:

Lemma 4.4. Let f € C*(X,C). Then we have

(4.7) /X\TfP dvg/XTf-f dug/X|f|2 dv.

Proof. This lemma is a simple application of the spectral decompo-
sition of the operator (J + 1) and the fact that all eigenvalues of this
operator are greater than or equal to 1. One can also prove it directly
by using integration by part. q.e.d.

To estimate the Ricci metric, we also need to estimate the functions
e;- We localize these functions on the collars by constructing the fol-
lowing approximation functions.

Pick a positive constant ¢; < ¢ and define the cut-off function 7 €
C*(R,[0,1]) by

n(z) =1, x < logcy;
(48) na) =0,  @>loge
0<n(z)<1, loge <z <loge.

It is clear that the derivatives of i are bounded by constants which only
depend on ¢ and c1. Let e;z(z) be the function on X defined in the

following way where z is taken to be 2; on the collar Q¢:

1) ifi <m and j > m+ 1, then

% sin? Tib_ibz-, z € QZC i
e=(2) (% sin? Tib_ibé-)n(log i), z€Qand ¢; <71; < ¢
e=(z) = 7 :
Y (1 sin? 7ibib)n(log p; —logri), 2 € O and i < < e i
0

, zeX\Qé;
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2) if i,7 < m and i # j, then

( % sin? Tib_ibé-, z € Qil;
(1 sin? Tib_ibz»)n(log i), z€Qand ¢; <1y < ¢
(% sin? Ti_b_ibj»)n(log pi —logr;), z€ QL and ¢ 'pi<r;<cyps;
e5(2) = { §sin® m;blby, 2 e Qh;
(1 sin? 7;b7b;)n(log 1), z€ W and 1 <71j < ¢
(% sin? Tib_gbj)n(log pj —logrj), z € Q7 and clpi<ri<eps;
0 z€ X\ (QLUL);

-~

3) if i < m, then

%SiHZTi‘bi‘Q, A Qzl;

Lain2 +1p: 12 . i ) .
enz) = (% s%n2 TZ|bZ\2)n(logn), z € Q? and ¢; 1< ri < ¢ »

(5 sin” 7;|b;|*)n(log p; —logr;), z € Q and ¢ p; <1 <cy pis

0, zeX \ QZC

Also, let :} =(0O+ 1)5{3. It is clear that the supports of these approx-
imation functions are contained in the corresponding collars. We have
the following estimates:

1

Lemma 4.5. Let e~ be the functions constructed above. Then

J

~ iy
1) eu:eﬁ—i—O(‘ZiQ), if i < m;

—~ wdudy .. o
2) eij :eij—i_O(‘titﬁ); Zfzaj <m and 1 ;éj;

3

3) 61326134_0(%)’ ifi<m and j >m+1;
4) llezllo = O(Q1), if i,j > m+1.

Proof. The last claim follows from the maximum principle and
Lemma 4.3. To prove the first claim, we note that the maximum prin-
ciple implies

le;; — esillo < i3 = fiillo-
Now, we compute the right-hand side of the above inequality. Since
— o e 6
fii Ix\0i= 0, by Lemma 4.3, we know that [|f;; — fzllo x\0: = O ()

On €2, we have

6
- a4 4 a4 uf
\f7 = [l < Isin® mipibi| + | sin® 7;bipi| + | sin® 7papi| = O <|t.z|2>
7
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—~ 6 . .
which implies || f;; — fﬁHO’Qél = O( ZZ‘Q) On Q \ ¢, with ¢; <7 <,
we have
|fiz — ] <(1— n)\bi|2 sin7; + | sin? Tipibi| + | sin? Tibipi| + | sin? TiDiPi|

b‘2 =2|, b-2 =1,/

~o(j):

Similarly, on QF \ Qél with ¢ tp; < 1 < cflpi, we have [f: — fi| <

sin? 7;| sin 27|

4 —_—
O(‘Zﬁ) By combining the above estimate, we have ||f; — f;llo =

4
O(‘:ﬁ) which implies the first claim. The second and the third claims
can be proved in a similar way. q.e.d.

As a corollary, we prove the following estimates which are more re-
fined than those of Trapani’s on the Ricci metric [15]. The precise con-
stants of the leading terms will be used later to compute the curvature
of the Ricci metric.

Corollary 4. 2 Let (t,s) be the pinching coordinates. Then, we have
(14 O(ug)) and 77 = 422 '“‘ (1+ O(up)), if i < m;

i 47r2 \
2,2 —
2) T = <t’tj (u; —|—u])> and 7Y = O(\titj|), ifi,j <m and i # j;
2
3) TG = (%) and 79 = O(|ti]), ifi <m and j > m+1;
4) 7==0(1), ifi,j > m+ 1.

REMARK 4.3. The second part of the above corollary can be made
sharper. However, it will not be useful for our later estimates.

Proof. The second part of the corollary is obtained by inverting the
matrix (7,7) in the first part together with the fact that the matrix
(hij)i,jZm-i—l is non-degenerate which was proved by Masur and the fact
that the matrix (Ti3)17]’2m+1 is bounded from below by a constant mul-
tiple of the matrix (hij)i,jZm—I—l which was proved by Wolpert.

Now, we prove the first part. In the following, we use Cy to denote
all universal constants which may change. Recall that
(4.9) 75 =h"Rp 5.

To prove the last claim, let 4,7 > m + 1. We first notice that if a # 8
or « = > m+1, then |h*|||Aallo]|Asllo = O(1) by Lemma §.3 and
Corollary 4.1. In this case, we have
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R 3l < / ei:f.g dv —i—'/ ez fos dv
| J ﬁ‘ ‘ v B « B/ oy
<Co(llezlloll fozllo + llegzlloll fozll0)
<Co(|lf;5llollfapllo + [ flloll fazllo) = O) | Aalloll Asllo

which implies |ho‘ﬁ R O(1). If « = B < m, we have

Rzoal < ‘/X e;7fow dv| + ‘/X Ciafnz dv
+ </ ‘€Z‘a|2 dv/ |fa3|2 dv)2
<00 (25 )+ ([ 1l v [ 15,57 dv)
@
~0 (‘t |2> </ fifum dv/ forl dv) <0 (W)

u
+ 1A4lol4 ol ol 1 = O ( 25)

’L]Oz,@|

< llegzllol faa| L1

which implies |h** R oal = O(1). So, we have proved that last claim.
To prove the third claim, let ¢ < m and j > m+ 1. If o # § or
a=3>m+1in formula ({£.9), by using integration by part, we have

|R13013‘ S ‘A fijeaﬁ dU + ‘/}( f’iﬁeaj d?)
<Co(lle,zllol fi7lzr + lleazllol fizlLr)
<Co(|lfpllolfi7lzr + 1 fazllol fizlzr)

3
=0 () Mallol sl + O Aol 5l

By the above argument, we have |h°‘ﬂ0(‘t—?|) | Aallol|Agllo] = O(‘t—l‘) and
by Lemma 4.3, we have |haﬁ\|Aa||0|fiB\L1\ = O(ﬁ—%) So, the claim is

true in this case.
If « =3 <m and a # i, we have
+ ‘/ fianJ d’U .
X

‘Rﬁaa| < ‘/X fieow dv
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To estimate the second term in the above formula, we have
< lleggllolfizlrr < 1fa5llol fial o

‘/ fiaeaj dv
X
3,3 4
:o<u_a>o<uzu >:o<&a2>'
ltal [tital [til[ta]

To estimate the first term, we have

‘/ fijeaa dv| < ‘/ fﬁgaa dv
X X
Qg
U4 u3 uz.)’u?’
—Hfz ||Oﬂa‘eaa‘ 1+O< )O(—Z> :O(A)
’ g [tal? ] THITAE

which implies |hO‘O‘R O(u—?)

zyaa| = [t
Finally, if o = 8 = i, we have

+ ‘/X fﬁ(eaa — Cag) dv

+ lleam — Euallol £

R = 2' faeq dv) < 2llezllolfizler < 2l fzllolf5]0

-0 o (i) =< (i)

which implies |h7 R~ -| = (| . |) This proves the third claim.

i
The second claim can be proved in a similar way. Now, we prove the
first claim. If & #  or a = > m + 1 in formula (4.9), we have

Rﬁai < / f’igeai dv +‘/ fiieai dv
B! ‘ X b X
1
2
+ </ le;|? dv/ |fi5\2 d’u)
X X
1
<I\follol P | (5P dv)
<I[f,zllol fzler + |fozl” dv | |f5l" dv
X X

<(Ifozllo + 1AallollAsllo)] fi7] 1

. . . 3 u?
which implies |h°‘ﬁRﬁa5\ = O(W)
If a =8 <m and a # i, we have

[Rioml < ‘ /X e;ifam dv

< lleqgllolfil Lt

+ '/ eiafag dv| .
X
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To estimate the second term in the above inequality, we have

‘/ eiafaz dv
X

< lleillol fozlr < lfwllof fozler

|tita| ‘tita| ‘tita|2
To estimate the first term in the above inequality, we have

‘/ e,ﬁfaa dv S ‘/ fé/ﬁfaa dv / (Gﬁ - gﬁ)faa dv
X X X

/ gﬁfo@ dv
i

7
c

_l’_

< + lle;; — €zllol faal L

<l fozlloo: ezl + lleg — €zllol faml

. o 1L3
These imply |[h*“R _| = O(W)

{21eeY
Finally, we compute hﬁRi—-— Clearly, Rz =2 [ e;7f; dv and

217"

/ ezl dv :/ eifa dv+/ eilfa—Iz) d’0+/ (e — €3)fi7 dv.
X X X X

We also have

‘/X &l — fi) dv

o u!
< |If7 — fillolézlpr = O ( .Z4)

aln

d
[ sates - o] < e~ 2ol =0 (
u

Also, we have ||€ﬁ||07gé\gél = O(\tiIQ) and HE‘EHO,Q@\Q@I = O(|ZP)' So

/gﬁfﬁ d”:/, el d”+/. el dv
X i Qi
uy

3T (1 + O(ug)) + O
16 0 t]t)

201°
combining the above results, we have proved this corollary. q.e.d.

By using Corollary 4T, we have hiR . = %%(1 + O(up)). By
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It is well known that there is a complete asymptotic Poincaré metric
wp on M,. We briefly describe it here. Please see [10] for more details.

Let M be a compact Kihler manifold of dimension m. Let Y C M be
a divisor of normal crossings and let M = M\Y. Cover M by coordinate
charts Uy, -+ ,Up, -+, Uy such that (Up1U---UU,)NY = ®. We also
assume that, for each 1 < « < p, there is a constant n, such that
Us \Y = (A*)" x A™7 " and on U,, Y is given by 2{---z; = 0.
Here, A is the disk of radius % and A* is the punctured disk of radius
%. Let {n;}1<i<q be the partition of unity subordinate to the cover

{Uit1<i<q- Let w be a Kahler metric on M and let C be a positive
constant. Then, for C' large, the Kahler form

p—Cw—i-Z\/_@@(leoglog‘ Z‘>

defines a complete metric on M with finite volume since on each U; with
1 <4 < p, wp is bounded from above and below by the local Poincaré
metric on U;. We call this metric the asymptotic Poincaré metric.

As a direct application of the above corollary, we have

Theorem 4.3. The Ricci metric is equivalent to the asymptotic
Poincaré metric. More precisely, there is a positive constant C' such that

1
C™wp Sw; < Cwp.

Now, we estimate the holomorphic sectional curvature of the Ricci
metric. We will show that the holomorphic sectional curvature is nega-
tive in the degeneration directions and is bounded in other directions.
We will need the following estimates on the norms to estimate the error
terms.

Lemma 4.6. Let f,g € C>®(X,C) be smooth functions such that
(04 1)f =g. Then, there is a constant Cy such that

1) |Kof|rz < ColKoglr2;

2) [K1Koflr2 < Co|Koglr2;

Proof. Let h = |Kof|>. By using Schwarz inequality, we easily see
that the lemma follows from the Bochner formula:

Oh+ h+ | K1 Kof|* = Ko fKog + KofKog — | f — g*.
q.e.d.

We also need the estimates on the sections Ko f,;. We have:

Lemma 4.7. Let Koy and K; be the Maass operators defined in Sec-
tion 3. Then
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ub

u2
1) ||K0fﬁ‘|0’92 = O(W) and HKOfﬁHO,X\Q'; — O(‘ ;2)7 ZfZ < m;
2) |Kofizlo = OQ1), ifi,j >m+1;
uiud B
3) 1Ko fjloqs = O(fg)) and \|K0f23||09j = O(f) and
3
”KOquo X\ (QLud) — O(W) if 1,7 <m and i # j;
4‘) ||K0fz]HO,Qé - ( )
uld o .
and || Ko fijllox\ai = O(fy): f i <m and j > m+1;
r3 ud o
5) Iz — fal = O(W); if i <m.

This lemma can be proved by using similar methods as we used in
the proof of Lemma 4.3 together with direct computations. So are the
following L' and L? estimates:

Lemma 4.8. Let P = K1 Kq be the operator defined Section 3. We

have
1) ‘fﬁ‘%2: ( 4)7 if i <m;
2) |Kofal2e = O(h), if i < m:
3) |Kofgls = O(firts), if . < m and i # j;
4) [Kof 52, _0(|tj;), ifi<mandj>m+1;
5) \Kon]|L2:O( ifi,j >m+1;
6) |P <Z-;>|L1—o(ﬁ>,zfz<m

To estimate the curvature of the Ricci metric by using formula (3.28),
we first expand the term [ Qki(eﬁ)e op v A simple computation
shows that

Lemma 4.9. We have
/X Qki(eﬁ)eaﬁ dv = — /X sz(KoeﬁfoeaB +KO€'LEKO€0¢B) dv
— /X(DeinoeaBFOekz + DeaEK()ei;Foekz) dwv.

To estimate the holomorphic sectional curvature, in formula (3.28),

we let ¢ = j = k = 1. We decompose R into two parts:

ZZZZ

R.: =G+ Gy

2011
where G consists of those terms in the right-hand side of (3.28) with
all indices «, 3, v, d, p and ¢ equal to ¢ and Gy = R-- — (1 consists of

-—— 2111
those terms in (3.28) where, in each term, at least one of the indices «,
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B, v, d§, por qisnot i. If i <m, the leading term is G which is given
by

Gy =241" / O+ 1) (&ileg)Eiles) dv
X
+6h7 / Qile)e; dv
X

/X Sileg)eg; dv

(4.10) )

+ TﬁhZZR* =

it
The main theorem of this section is the following estimate of the
holomorphic sectional curvature of the Ricci metric.

Theorem 4.4. Let Xy € M, \ M, be a codimension m point and
let (t1,++ ,tm,Sm+1,- - ,Sn) be the pinching coordinates at Xy where
t1,-- ,t;m correspond to the degeneration directions. Then, the holo-
morphic sectional curvature is negative in the degeneration directions
and is bounded in the non-degeneration directions. More precisely, there
is a 0 > 0 such that, if |(t,s)] <0, then

(4.11) — R = —%(1 + O(ugp)) < 0
dit = g d|g |

if it < m and

(4.12) Ry =0(1)

ifi>m+1.

Furthermore, on My, the holomorphic sectional curvature, the bisec-
tional curvature and the Ricci curvature of the Ricci metric are bounded
from above and below.

Proof. We first compute the asymptotic of the holomorphic sectional
curvature. By Lemma 4.9, we know that

[ Qateqeg dv= [ |oegee; — 15 do
X X
By (J10), we have
(4.13)
G =24h“/ T(&ileq))8i(ez) dv + Gh“/ |[Koel*(2e5 — 4f7) dv
X X

/X Sileg)es dv

2 =
+ TﬁhuR: =

191"

. SGTii(hii)z
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We first consider the degeneration directions. Assume i < m. In this
case, (31 is the leading term. We have the following lemma.

Lemma 4.10. If i < m, then |Gs| = 0(%),

Proof. The lemma follows from a case by case check. We will prove
it in the appendix. q.e.d.

Now, we go back to the proof of Theorem #.4. We compute each
term of Gi. By the proof of Corollary 4.2, we know that hiiRigig =
2
%‘Zﬁ(l + O(up)). So, we have
iz 3u? 2 9u}
(110) it R (5 ) (1 0(u0)) = (14 O(ua)),
Now, we compute the second term. We have
(4.15)

/X ‘Koeiz|2(2€ﬁ — 4fﬁ) dU
= /X |K0€ﬁ‘2(2gﬁ - 4fﬁ) dv + /X(|K0€u"2 - \KOEﬁP)@Eﬁ - 4fﬁ) dv

+ /X |Koegl*(2(e; — 3) —A(f;; — f7)) dv.
For the second term in the above equation, we have

‘/ (1Koesl* — [Koez|*) (287 — 4f7) dv
X

< 1Koesl? — 1 KoZ Il /X (2] + 4IF) dv
< |[[Koez;] + [ Koegl ol Kole; — €;7)lo /){(2@| + 4 f]) dv

2N ([ .
=0 <|ti|2> © <|m2> © <W> =0 (|ti\6> '

For the second term in the above equation, we have
[ 1K (2eq = 0) =45 = ) do

< CollKoegllo(2lle;; — €gllo + 4ll.f57 — fiillo)

u} u} ud
=0 (W) © (W) =0 <|ti|6) '
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So, we get

/ ‘Koeiﬂ2(2€ﬁ — 4]‘;) dv
X

8

:/ |Koes)2(28;: — 4f) dv+0< o >

X AR
:/ |K0€”| (2/62;—4](:;) dv

U8
+/ | Koe;;(2€;; — 4fu) dv+ O ( 6>
Qi\Q;, |t

We also have the estimate

/ | Koe*(28; — 4f7) dv
QN

(4.16)

8
~ ~ s u,;
< C'o||K0€ﬁ”(2)(”eﬁ”o,ﬂg\ﬂgl + ||fﬁ||o,ﬂg\le) =0 <—|t-l|6> .
7
A direct computation shows that

~ 20~ = 3u!
/_ | Koeg|*(2€;; — 4f;) dv = m(l + O(uo)).
c1

So
it 2 9U4
(4.17) 6h |Koe:|*(2e: —4f) dv = ——————(1 4+ O(up)).
X 1 (A2 A2 16 4‘t ‘4

Now, we compute the third term. We have

418 /gl zze dv_/él 226 dv+/§l €ii)\&i; — ﬁ)dv
/{Z —€;)e; dv.

By using the same method as above, we obtain

/X&('éﬁ)(eiz —ez) dv| < Goll&i(ez)llolle; — €5l
< CollAillol[ K1 Ko(ez)llollez — €:zllo
< CollAillollezll2lle;; — €llo

u; u? u?
=0 (W) © <\tz‘ 2) © <|ti|2>

u!
=0 <|ti|5>

0
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and

< ||&ile; —@i)\lo/ e; dv
X
< | Aillolle; — e,

ﬁ||2hﬁ

< [ Adlloll.fiz = fiallhiz

» ud 3
~o(g)o (@R (fe)
|t] |t;]? [t:]2

'/gz e dv

and

o o ol
|, 6@ ) < @ blEloone:, =0 (7))
QU\QL, | Z|

By putting the above results together, we get

/ﬁz e;)e; dv = G d’u—l—O( 275>
Ql |z|

On Qll, we have

~ Zi . —_ Zi . o
&i(e;) = — 2 sin? T;ib; P(e;;) — 2 gin? T:ipiP(e;;).
Z Z
5
However, we have £ sin? TiZTiP(gﬁ)Ho,le = O(IZZP) which implies

uj
=0 (lti|5> '

6
ZZ .2 — ~ —~ U,
/i _Z:i sin” 7,0, P(e;;))e;; dv = m(l + O(uo))

/_ z—sm T:ipiP(e;;)e; dv

Z;

A direct computation shows that

which implies

| &tees av= 32W3‘t (1 O(wo)).

So, we obtain
2
/ Silez)e; dv
X

3u4

4.19) 3670 (Bi1)2 o

(1 + O(uo)).

611
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Now, we estimate the first term. We have
[ TeteqElen) do = | TG@EEE) do
X X

+ /X Té (e — &)E(E5) dv
+ /X T€i(eq)Ci(ez — &7) dv.

By using the same method, we can get

/X T&i(e; — e;)&(€5) dv| <ColT€i(ez — €5)lollGi(E5) o

<Coll&i(ez —ez)lloll&(E5)llo
u ud ul
=0 (m) © (W) =0 (W) |
ul
=0 <|ti|6> |
Uu,

/X T&i(e;)Ei(es;) dv = /XT&'(%)@(%) dv+ O < : ) :

|t:]6

Similarly,

\ | TéteqEe; 2 o
X

So, we have

To estimate T'¢;(e;;), we introduce another approximation function.
Pick ¢3 < ¢; and let my; € C*(R, [0, 1]) be the cut-off function defined
by

m(x) =1, x < log cy;
(4.20) m =< m(x)=0, x >logey;
0<m(z) <1, logecs <z <loge.

For i < m, define the function d; by

—é sin? 7; cos 27‘i|bi|2b_i_, ze€Q;
di(2) (— 1 sin® 7; cos 27;(b; |*b; )y (log 74, z €, and ¢ <1i < ey
i(2) = - ;

! (-3 sin® 7; cos 27;]b;[2b;)m (log p; — logr;), 2 € QL and ¢y 'p; < 1 < c3'py;
0, ze X\ Q.

A simple computation shows that

5
1) — @+ Ddillo = O (““')

which implies
5
ul

|T€i(e7) — dillo = O <|tii3) :
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So
/TM%E@ﬂwj/M%ww+/Hm%%mE@ﬂw
X X X
We have the estimate
[ @) - aygie) o
X
which implies
_ _ ul
[ reteaEteq do= [ agien avro ().

We also have

8
Uy

< Co||T& (&) — dillol|€(E7)llo = O (We)

=~ Zi . =/~ Z . =/~
di&i(e;) = —dij sin® 7;b; P(€5) — di% sin® 7;p; P(€;).
(2 (2
8 s . e/~
"6) and Hdl§ sin? Tibip(eﬁ)”()’gzl \Q%,

Since ||d1§: sin® 7;p; P(€5)]o = O( |Z‘

= O(%)7 we get

/x Téi(e;)8i(e;) dv = /Q

A direct computation shows that

/ Té ()& (e) dv
X

4@ dv+o
zgz(eﬁ) v+ (|t1|6>

i
e

3u?
256 L T Owo)

which implies

_ — Qu
@21) 2407 | T(eq)Eieq) do = gt (1 + O(uo).

By combining formulas (4.21), (4.17), (4.19) and (4.14), we obtain

3uf
— (140 .
St O
Together with Lemma @: 1:q, we proved formula @: 1:]:) The formula (2_1-_1-_2) can
be proved using similar method with a case by case like the proof of Lemma
gl

Gy =

s
IQI

Now, we give a weak estimate on the full curvature of the Ricci metric. Let
1) A= ﬁ‘ if 1 <m;
2) Aj=1ifi>m+1.

We can check the following estimates by using the methods in the proof of

Lemma 4.10. We have

(4.22) Ry =0(1)
if4,7,k,1>m+1 and

(4.23) Riz7 = O(AijARA)O(uo)
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if at least one of these indices 1, j, k, [ is less than or equal to m and they are
not all equal to each other.

Now, we prove the boundedness of the curvatures. We first consider the
holomorphic sectional curvature. We need to show that there is a positive
constant ¢ such that for each point p € M, and each tangent vector v € T, My,
|R(v,7,v,0)| < c|lv|]|2. We first check on a pinching coordinate chart near a
codimension m boundary point. Assume the coordinates are (¢1,--- ,s,). We
assume v =y ., ai% 3 mt aja%j. By Corollary 4.2, we know that there
is a constant cg > 0 such that

n
loll2 = co S JasA2.

i=1

Now, we have
|R(v,5,0,8)| < ) |asajaparl|Rzyl-
ik,

The conclusion follows from Theorem @.4, formulas (4.11), (4.12) and Schwarz
inequality.

We cover the divisor ¥ = Mg \ M, by such open coordinate charts. Since
Y is compact, we can pick finitely many such coordinate charts =1,---, =,
such that ¥ c J?_, E,. Clearly, there is an open neighborhood N of Y such
that N C J?_, Z,. From formulae (4.22), (4.23) and the above argument, we
know that the holomorphic sectional curvature of 7 is bounded from above and
below on N. However, M, \ N is a compact set of Mg, so the holomorphic
sectional curvature is also bounded on M, \ N which implies the holomorphic
sectional curvature is bounded on M.

The boundedness of the bisectional curvature and the Ricci curvature of the
Ricci metric can be proved by using (4.22), (4.23) and a similar argument as
above, together with the covering and compactness argument. This finishes
the proof. q.e.d.

REMARK 4.4. The estimates of the bisectional curvature and the Ricci
curvature are not optimal. A sharper estimate will be given in our next

paper 7).
5. The perturbed Ricci metric and its curvatures

In this section, we introduce another new metric, the perturbed Ricci
metric. This metric is obtained by adding a constant multiple of the
Weil-Petersson metric to the Ricci metric. By doing this, we construct a
natural complete metric whose holomorphic sectional curvature is nega-
tively bounded. We will see that the holomorphic sectional curvature of
the perturbed Ricci metric near an interior point of the moduli space is
dominated by the curvature of the large constant multiple of the Weil-
Petersson metric. Similar argument holds for the holomorphic sectional
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curvature of the perturbed Ricci metric in the non-degenerate directions
near a boundary point.

Definition 5.1. For any constant C > 0, we call the metric
T== Ti; + Chzg
the perturbed Ricci metric with constant C'.

We first give the curvature formula of the perturbed Ricci metric. We
use Pz‘jki to denote the curvature tensor of the perturbed Ricci metric.

Theorem 5.1. Let sy, ---,8, be local holomorphic coordinates at
s € My. Then at s, we have
(5.1)

P =1 (v [ {0+ 1) euleg ite,)

s

+O+1) 7 (Eleg)Esley) } dv}

+ haﬂ {0'1 A Qki(eij)eaﬁ d’l)}

— FPApOB 0 {01 Skleig)es d’u} {&1 El(ezﬁ)evg) dv}

Xs Xs
+ Tthquiéki + CRZEkZ
Proof. Let s1,---,s, be normal coordinates at a point s € M, with

respect to the Weil-Petersson metric. By formula (3.12), at the point
s, we have

(52) kT = OkTi; + COkhys
haB {01 / (Sk(eﬁ)eaﬁ) dv} + ijl“fk + Cakhzg
X

o [ (leges) )

since ka = 8khi3 = 0 at this point. Now, at s the curvature of the
Weil-Petersson metric is

Rigi7 = O0khy.
The theorem follows from formulas (3.3), (5.2) and (3.34). q.e.d.

Now, we estimate the curvature of the perturbed Ricci metric using
formula (5.1). The following two linear algebra lemmas will be used
to handle the inverse matrix 7% near an interior point and a boundary
point.
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Lemma 5.1. Let D be a neighborhood of 0 in C™ and let A and B be
two positive definite n X n Hermitian matriz functions on D such that
they are bounded from above and below on D and each entry of them are
bounded. Then, each entry of the inverse matriz (A+CB)~! = O(C™1)
when C' is very large.

Proof. Consider the determinant det(A 4+ C'B). It is a polynomial of
C of degree n and the coefficient of the leading term is det(B) which is
bounded from below. All other coefficients are bounded since they only
depend on the entries of A and B. So, we can pick C large such that
det(A+CB) > 1 det(B)C™. Now, the determinant of the (4, j)-minor of
A+ CB is a polynomial of C' of degree at most n— 1 and the coefficients
are bounded since they only depend on the entries of A and B. From the
fact that the (i, j)-entry is the quotient of the determinant of the (i, j)-
minor and the determinant of the matrix A + C'B, the lemma follows
directly. q.e.d.

Lemma 5.2. Let Xy € ﬂg be a codimension m boundary point
and let (t1,---,8n) be the pinching coordinates near Xo. Then, for
|(t,s)] <0 with & small, we have that, for any C > 0,

1) 0< Fil < i for all i;

2) 79 = O(|tit;]), if i,7 <m and i # j;

3) O(|ti]), if i <m and j > m+1;

4) O), ifi,j >m—+1.
Furthermore, the bounds in the last three claims are independent of the
choice of C.

7il
Fii

Proof. The first claim is a general fact of linear algebra. To prove the
last three claims, we denote the submatrices (7,7)ij>m+1 and (h;3)i j>m+1
by A and B. These two matrices represent the non-degenerate direc-
tions of the Ricci metric and the Weil-Petersson metric respectively. By
the work of Masur, we know that the matrix B can be extended to the
boundary non-degenerately. This implies that B has a positive lower
bound. By Corollary (§.1), we know that B is bounded from above.
Now, by the work of Wolpert, since w,; > éww p where C only depend
on the genus of the Riemann surface, we know that A has a positive
lower bound. By Corollary 4.2, we know that A is bounded from above.
So, both matrices A and B are bounded from above and below and all
their entries are bounded as long as |(t, s)| < 0.
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By Corollarys .1 and 4.2, we know that

@ﬂ:<%%Af;B>

where T is an m X m matrix given by

(g )14 O(u)) .. R (O(ug) + COuru))
T= : : :
W (O(uo) + CO(urtn)) .. iy (g2 + C2)(1 + O(up))

which represent the degenerate directions of the perturbed Ricci metric and
U is an m X (n —m) matrix given by

B(O(1) +CO(w)) ... E(0Q)+CO))

tl‘

Y (O(1) + CO(up)) .. 2 (O(1) + CO(um))

‘tm ‘ ‘tm ‘

which represents the mixed directions of the perturbed Ricci metric.
A direct computation shows that

- e ou? 3 Cu;
1=1

where the O(uo) term is independent of C'. Let ®;; be the (4, j)-minor of (7;7)

obtained by deleting the i-th row and j-th column of (ﬁ;) By using the fact

that

det (I)ij
det T

the lemma follows from a direct computation of the determinant of ®;;. g.e.d.

|;ﬁ| = )

Now, we prove the main theorem of this section.

Theorem 5.2. For a suitable choice of positive constant C, the per-
turbed Ricci metric ?2-3 = T+ Chﬁ is complete and its holomorphic
sectional curvatures are negative and bounded from above and below by
negative constants. Furthermore, the Ricci curvature of the perturbed
Ricci metric is bounded from above and below.

Proof. 1t is clear that the metric 772.3 is complete as long as C' > 0
since it is greater than the Ricci metric which is complete.

Now, we estimate the holomorphic sectional curvature. We first show
that, for any codimension m point Xy € ﬂg \ My, there are constants
Cp, 6 > 0 such that, if (¢,s) = (t1, - ,tm, Sm+1,- -, Sp) is the pinching
coordinates at Xo with [(¢,s)| < § and C > (Y, then the holomorphic
sectional curvature of the metric 7 is negative. We first consider the
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degeneration directions. Let ¢ = j = k = [ < m. As in the proof of
Theorem .4, we let

(5.3)
Gy = 241 / T(€(e)E (e,5) do + Gh™ / Koer2(2e — Af,) dv

/fz e;)e; dv

and G be the summation of those terms in (5.1) in which at least one
of the indices p, q, o, 3,7,0 is not i. We have P;- = G1+ Go + Cﬁ_ﬁﬁ
We notice here that we can use Lemma .2 instead of Corollary 4.2 in

the proof of Lemma %.10, without changing any estimate. This implies

— 367" (h'")? + 70" Rz

111

that |Gy| = (‘t ‘4) By the proof of Theorem 4.4, we have

9 3 2m2Cu;\ T ul
5.4) Gy — |1 - 1+0
(54) (167r 1674 ( T3 ) > AL+ Owo))

which implies

9 3 om2Cu;\ 1\ ul
5.5 P.. = _ 1 i
(5.5) v ((1674 1674 < * 3 > ) |t:]

;”02 |f|4) (14 O(u)) > 0

as long as ¢ is small enough. Furthermore Pz~ is bounded above and

below by constant multiple of 7. 7'2.2. where the constants may depend on
C. However, when C' is fixed, the constants are universal if § is small
enough.

Now, we let i = j = k =1 > m + 1. By the proof of Theorem 4.4
and Lemma 5.2, we know that P;: = O(1)+ CR.:. We also know that

111 1990 °

Rs:7 >0 has a positive lower bound. Again, by using the extension

theorem of Masur, we can choose Cjy large enough such that, when
C > Cp, we have P;. > 0. Furthermore, P;; is bounded from above
and below by constant multiples of 72 TS where the constants may depend
on C',m,n, X and the choice of v, 11, , v, if § is small enough. We

also have estimates similar to (1.22) and (4.23):

(5.6) Py =O0(1) + CR;

if 4,7,k,l > m+ 1 and
(5.7) szki = O(AZA]AkAl)O(uO) + CRZ}I{Z
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if at least one of these indices i, j, k, [ is less than or equal to m and they
are not all equal to each other. So, we can choose § small such that, if
|(t,s)] < 4, then the holomorphic sectional curvature is bounded from
above and below by negative constants which may depend on C.

Now, we consider the interior points. Fix a point p € M, and a
small neighborhood D of p such that D C M,. Since the Ricci metric
and Weil-Petersson metric are uniformly bounded in D, we have P- - =

211
O(1) + CR;-. Using a similar argument as above, we can choose a

Co such thg‘éz, when C > (), the holomorphic sectional curvature is
bounded from above and below by negative constants which may depend
on C.

Since the divisor ﬂg \ My is compact, we can find finitely many
boundary charts of M, described above such that the holomorphic sec-
tional curvature of 7 is pinched by two negative constants which de-
pend on C' on these charts. Furthermore, there is a neighborhood N of
M\ M, in M, such that N is contained in the union of these charts. It
is clear that we can find a constant C; such that on N, the holomorphic
sectional curvature of T is pinched by negative constants when C > (4.

Also, since the set M, \ N is compact, by the above argument, we can
find finitely many interior charts described above such that their union
covers M, \ N and a constant Cs, such that the holomorphic sectional
curvature of 7 is pinched by negative constants when C' > C5. Again,
the bounds may depend on C. By taking a constant C' > max{C4, Cs},
we have proved the first part of the theorem. The Ricci curvature can
be estimated in a similar way as we did in the proof of Theorem #.4
together with Lemmas 5.1 and p.2. q.e.d.

REMARK 5.1. By using the negativity of the Ricci curvature of the
Weil -Petersson metric and estimates (5.5), (5.6) and (5.7), we can ac-
tually show that the Ricci curvature of the perturbed Ricci metric is
pinched between two negative constants. The detail will be given in our
next paper.

6. Equivalent metrics on the moduli space

In this section, we prove the equivalence among the Ricci metric,
perturbed Ricci metric, Kdhler—Einstein metric and the McMullen met-
ric. These equivalences imply that the Teichmiiller metric is equivalent
to the Kahler—Einstein metric which gives a positive answer to Yau’s
Conjecture. The main tool we use is the Schwarz—Yau Lemma. Also,
to control the McMullen metric, we give a simple formula of the first
derivative of the geodesic length functions.
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Lemma 6.1. The Weil-Petersson metric is bounded above by a con-
stant multiple of the Ricci metric. Namely, there is a constant o > 0
such that wyp < aw;.

Proof. This lemma follows from Corollarys 4. and .2. It also follows
directly from Schwarz—Yau Lemma. q.e.d.

By using this simple result, we have

Theorem 6.1. The Ricci metric and the perturbed Ricci metric are
equivalent.

Proof. Since ?ﬁ =75+ Chij and C' > 0, we know that the Ricci
metric is bounded above by the perturbed Ricci metric. By using the

above lemma, we also have the bound of the other side. q.e.d.

By the work of Cheng and Yau [2], there is a unique complete Kéhler—
Einstein metric on the moduli space whose Ricci curvature is —1. One of
the main results of this section is the equivalence of the Kdhler—Einstein
metric and the Ricci metric. To prove this result, we need the following
simple fact of linear algebra.

Lemma 6.2. Let A and B be positive definite n x n Hermitian
matrices and let o, be positive constants such that B > oA and
det(B) < [det(A). Then, there is a constant v > 0 depending on
a, B and n such that B < vA.

Theorem 6.2. The Ricci metric is equivalent to the Kdhler—FEinstein
metric gx g .

Proof. Consider the identity map i : (My,9xE) — (Mg, 7). We
know that the Kahler—Einstein metric is complete and its Ricci curva-
ture is —1. By Theorem 5.2, we know that the holomorphic sectional
curvatures of the perturbed Ricci metric is bounded above by a negative
constant. From the Schwarz—Yau Lemma, there is a constant ¢y > 0
such that

9KE = CoT.
From Theorem [.I, we know that the Kéihler—Einstein metric is bounded
below by a constant multiple of the Ricci metric

(6.1) JKE > 507’.

Now, we consider the identity map j : (My,7) — (Mg, 9xE). By
Theorem #.4, we know that the Ricci curvature of the Ricci metric is
bounded from below. Also, the Ricci curvature of the Kahler—Einstein
metric is —1. From the Schwarz—Yau Lemma for volume forms, there is
a constant ¢; > 0 such that
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(6.2) det(grp) < c1 det(T).
By combining formula (b.1), (6.2) and Lemma 6.2, we have proved the
theorem. q.e.d.

Now, we consider the McMullen metric. In [12], McMullen con-
structed a new metric g; ; on My which is equivalent to the Teichmiiller
metric and is Kéhler hyperbolic. More precisely, let Log : Ry — [0, 00)
be a smooth function such that

1) Log(z) =logz if x > 2;

2) Log(x) =0if x < 1.

For suitable choices of small constants d,e > 0, the Kéhler form of the
McMullen metric gy is

Wi/ =wwp — 0 Z 85Logl£
1y (X)<e v
where the sum is taken over primitive short geodesics v on X. We will
also write this as w)y.
To compare the Ricci metric and the McMullen metric, we compute
the first order derivative of the short geodesics.

Lemma 6.3. Let Xj € Mg be a codimension m boundary point and
let (t1,--- ,sn) be the pinching coordinates near Xo. Let l; be the length

of the geodesic on the collar SY.. Then
8Z~lj = —WUjb_g

if i #£ j and N
8ilj = —7T’U,jbi

if i =j. Here, bg and b; are defined in Lemma . 2.

Proof. It is clear that on the genuine collar 2, \A; is an anti-holo-
morphic quadratic differential. By using the rs-coordinate z on Q, we
can denote A\A; by k;(Z)dz?. We consider the coefficient of the term z—2
in the expansion of x; and denote it by C_s(k;). From formula (4.2)
and Lemma 4.2, we know that
(6.3) Ca(k) = %u?bg.

Now, we use a different way to compute C_a(k;). Fix (to, so) with small
norm and let X = Xy, ,,. Let w be the rs-coordinates on the j-th collar
of X;s and let z be the rs-coordinate on the j-th collar of X. Clearly,
w = w(z,t,s) is holomorphic with respect to z and when (¢, s) = (to, So),
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we have w = z. We pull-back the metric on the j-th collar of X;  to X.
We have

ow |?

] 2 esc? (u; log [w]) | Z

0z

is the Kahler-Einstein metric on the j-th collar of X;,. Now, from
formulae (2.2) and (2.3), at point (¢, o), a simple computation shows
that

(64)  wi(2) ==~ + =0 |(t,50) —— 27— 0i05T 050

— 0;0:0:051 (45,5 -

uluy  uj L uj +1

From the above formula, we can see that C_s(k;) = —u;0;u; since the
contribution of the last three terms in the above formula to C_a(k;) is
0. By comparing equations (b.3) and (6.4), we have

1 Iy
Oiuj = —§Ujbg.

The lemma follows from the fact that I; = 27u;. Again, the above
argument also works when i = j. In this case, we replace b} by b;. q.e.d.

Now, we can prove another main theorem of this section.

Theorem 6.3. The Ricci metric is equivalent to the McMullen met-
ric, the Teichmauller metric and the Kobayashi metric.

Proof. Royden proved that the Teichmiiller metric is the same as the
Kobayashi metric. Also, the equivalence of the McMullen metric and
the Teichmiiller metric was proved by McMullen [12]. We only need to
show the equivalence between the Ricci metric and the McMullen g,
metric.

Since the Ricci curvature of the gy, metric is bounded from below
and it is complete, by the Schwarz—Yau lemma, we know that

T<T< 0091 /1
for some constant Cy. Now, we prove the other bound. Fix a boundary

point Xy and the pinching coordinates near Xy. By Theorems 1.1 and
1.7 of [12], we know that there are constants ci,cy such that, when
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1 < m,
(6.5)
a | 3 |? a |? a |
== < — < — dlogl,)—
(gl/l)m Hati , c1 Bt || = 62<H8t2 Z (0log )8 t )
1/1 ly<e
a |? Z 2
7j=1
By Lemma 6.3, we know that
' ' 2 ﬂu]b] B 1 j
|0;log 1;|” = 7@- =1 b;
From Lemma 4.2, we have
Z 10; log 1;|* = 2\t ‘2(1 + O(up)).

From the above formulae and Corollarys 4.1 and .2, we know that there
is a constant c3 such that

a L
Ha +Z|8iloglj\2 SCgTﬁ
T ]:1
which implies
(6.6) (911)5 < et

where ¢4 is another constant. The same argument works when ¢ > m+1.
So formula (6.6) holds for all 7. Since the McMullen metric is bounded
from below by a constant multiple of the Ricci metric and the diagonal
terms of its metric matrix is bounded from above by a constant multiple
of the diagonal terms of matrix of the Ricci metric, a simple linear
algebra fact shows that there is a constant cs such that

T 2 C591/1-

The theorem follows from a compactness argument as we have used in
previous sections. q.e.d.
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7. The Carathéodory Metric and the Bergman Metric

In this section, we prove that the Carathéodory metric and the Bergman
metric on the Teichmiiller space are equivalent to the Kobayashi met-
ric by using the Bers’ embedding theorem. This achieves one of our
initial goals on the equivalence of all known complete metrics on the
Teichmiiller space. The proof of these equivalences can be applied to
holomorphic homogeneous regular manifolds.

We first describe the idea. By the Bers’ embedding theorem, we
know that for each point p in the Teichmiiller space 7;, we can find an
embedding map of the Teichmiiller space into C" with n = 3g — 3 such
that p is mapped to the origin and the image of the Teichmiiller space
contains the ball of radius 2 and is contained inside the ball of radius
6. The Kobayashi metric and the Carathéodory metric of these balls
coincide and can be computed directly. Also, both of these metrics have
restriction property. Roughly speaking, the metrics on a submanifold
are larger than those on the ambient manifold. We use explicit form of
these metrics on the balls together with this property to estimate the
Kobayashi and the Carathéodory metric on the Teichmiiller space and
compare them on a smaller ball. On the other hand, the norm defined
by the Bergman metric at each point can be estimated by using the
quotient of peak sections at this point. We use upper and lower bounds
of these peak sections to compare the Bergman metric, the Kobayashi
metric and the Euclidean metric on a small ball in the image under the
Bers’ embedding of the Teichmiiller space.

At first, we briefly recall the definitions of the Carathéodory, Bergman
and Kobayashi metric on a complex manifold. Please see [§] for details.

Let X be a complex manifold of dimension n. let Ar be the disk in C
with radius R. Let A = A; and let p be the Poincaré metric on A. Let
p € X be a point and let v € T, X be a holomorphic tangent vector. Let
Hol(X, Ar) and Hol(Ag, X) be the spaces of holomorphic maps from
X to Ar and from Ag to X respectively. The Carathéodory norm of
the vector v is defined to be

[vllc = sup [[fsvlla,
fEHOI(X,A)

and the Kobayashi norm of v is defined to be

, 2
||k = inf —.
feHOl(AR,X), f(0)=p, f'(0)=v R

Now, we define the Bergman metric on X. Let Kx be the canonical
bundle of X and let W be the space of L? holomorphic sections of Kx
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in the sense that if o € W, then
ol = [ (/=T FonT <o
The inner product on W is defined to be
(0,0) = /X (V=D)"oAp

for all o,p € W. Let 01,09, - be an orthonormal basis of W. The
Bergman kernel form is the non-negative (n,n)-form

(0.0
2
Bx = Z(\/ —1)” 0; NTj.
j=1
With a choice of local coordinates z;,--- , z,, we have

Bx = BEx(2,2)(V=1)"dz1 A -+ Adzn AdZ1 A+ A dZn

where BEx(z,%) is called the Bergman kernel function. If the Bergman
kernel By is positive, one can define the Bergman metric

B 0?log BEx (2,7%)
b 82’1’82]' '
The Bergman metric is well-defined and is non-degenerate if the ele-

ments in W separate points and the first jet of X.
We will use the following notations:

Definition 7.1. Let X be a complex space. For each point p € X
and each holomorphic tangent vector v € T,X , we denote by ||v| B x p,
lvllc,xp and ||v]|k,x,p the norms of v measured in the Bergman met-
ric, the Carathéodory metric and the Kobayashi metric of the space X
respectively.

Now, we fix an integer g > 2 and denote by 7 = 7, the Teichmiiller
space of closed Riemann surface of genus g. Our main theorem of this
section is the following:

Theorem 7.1. Let T be the Teichmiiller space of closed Riemann
surfaces of genus g with g > 2. Then, there is a positive constant C
only depending on g such that for each point p € T and each vector
v e T,T, we have

CHollxzp < lvlsrp < ClullkTy
and
Cllkzp < IleTp < Clvllkzp-
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Proof. We will show that the norms defined by these metrics are
uniformly equivalent at each point of 7. We first collect some known
results in the following lemma. q.e.d.

Lemma 7.1. Let X be a complex space. Then

D[ llex <1 llxx;

2) Let'Y be another complex space and f: X —Y be a holomorphic
map. Letp € X and v € T,X. Then, \|f*(v)\|ay7f(p) < ||v|le,xp
and || £ (0) iy ) < [0l xp

3) If X C Y is a connected open subset and z € X is a point. Then,
with any local coordinates, we have BEy (z) < BEx(z);

4) If the Bergman kernel is positive, then at each point z € X, a
peak section o at z exists. Such a peak section is unique up to a
constant factor ¢ with norm 1. Furthermore, with any choice of
local coordinates, we have BEx (z) = |o(2)|?;

5) If the Bergman kernel of X is positive, then || - |c.x < 2| - |lB,x;

6) If X is a bounded convex domain in C", then | - |lcx = - ||k, x;

7) Let B, be the open ball with center O and radius r in C™. Then,
for any holomorphic tangent vector v at 0,

2
olle.s,.0 = llx.8..0 = ~Io]

where |v| is the Fuclidean norm of v.

Proof. The first six claims are Propositions 4.2.4, 4.2.3, 3.5.18, 4.10.4
and 4.10.3, Theorems 4.10.18 and 4.8.13 of [&].

The last claim follows from the second claim easily. By rotation,
we can assume that v = ba%l. Let A, be the disk with radius r in
C with standard coordinate z and let v = b% be the corresponding
tangent vector of A, at 0. Now, consider the maps i : A, — B, and
j: By — A, given by i(z) = (2,0,---,0) and j(z1, - ,2n) = 21. We
have i,(v) = v and j.(v) = v. By the Schwarz lemma, it is easy to see
that [|9]|c,a,.0 = 2[0]. So, we have

. _ 2 2
lvlle,B,.0 = ll7«(W)lcan0 = [[Ullc.an0 = ;\Ul = ;I’UI

and

.~ ~ 2
lvle.Br0 = llix(@)lie.s.0 < Wlc.an0 = lvl

This shows that the last claim holds for the Carathéodory metric. By
the sixth claim, we know that the last claim also holds for the Kobayashi
metric. This finishes the proof. q.e.d.
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Now, we prove the theorem. We first compare the Carathéodory
metric and the Kobayashi metric. By the above lemma, it is easy to see
that if X C Y is asubspace, then [ [lc.y < [-lc.x and /Iy < |I-llxx-
Let p € 7 be an arbitrary point and let n = 3g — 3 = dimc 7. Let
fp + T — C" be the Bers’ embedding map with f,(p) = 0. In the
following, we will identify 7 with f,(7") and 1,,7 with T,C". We know
that

(7.1) By C T C Bg.

Let v € ToC™ be a holomorphic tangent vector. By using the above
lemma, we have

(7.2) [vllcro < llvllx70
and
1 1
(7.3) IWManHﬂa&@=§WF=§MbBw

1 1
= 3lvllx.B20 = SlvllxT0-

By combining the above two inequalities, we have

1
jMMmMﬂMbﬁMﬂMMIO

Since the above constants are independent of the choice of p, we proved
the second claim of the theorem.

Now, we compare the Bergman metric and the Kobayashi metric. By
the above lemma, we know that the Bergman norm is bounded from
below by half of the Carathéodory norm provided the Bergman kernel
is non-zero. For each point p € 7y, let f, be the Bers’ embedding map
with f,(p) = 0. Since f,(74) C Bg, by the above lemma, we know that
BEy, (1,)(0) > BEpg,(0). However, we know that the Bergman kernel
on By is positive. This implies that the Bergman kernel is non-zero at
every point of the Teichmiiller space.

By the above lemma and the equivalence of the Carathéodory metric
and the Kobayashi metric, we know that the Bergman metric is bounded
from below by a constant multiple of the Kobayashi metric.

When we fix a point p and the Bers’ embedding map f,, from in-
equality (7.3), we know that

(7.4) ol < 3[lvlle,r0 < 3llvllxT 0

Let z1,---, 2z, be the standard coordinates on C" with r; = |z| and
let dV = (vV=1)"dz1 AdZ A -+ Adz, A dZ, be the volume form. Let
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o = a(z)dz; A --- Adz, be a peak section over 7 at 0 such that

/ la* dV = 1.
T

Then, we have BE7(0) = |a(0)]?>. Now, we consider a peak section
o1 = aq(2)dz A+ ANdz, over Bg at 0 with st |a1|? dV = 1. Similarly,
we have that BEg,(0) = |a1(0)|?. By the above lemma and (7.1), we
have

1 1
(7.5) la(0)] = (BE7(0))? = (BEB,(0))2 = |a1(0)].
Let v, = fBl dV be the volume of the unit ball in C™ and let
1
wn:—/ (2 + -+ a2y -z day - - - dry,
n 23+ Fa2<4, 2,20
where x1,--- ,x, are real variables. We see that both v, and w, are

positive constants only depending on n = 3g — 3.
Now, we consider the constant section oo = a dz; A --- Adz, over Bg

n 1
where a = 6™ 2v, 2. we have st a’? dV = 1. Since o is a peak section
at 0, we know that |a1(0)| > a. By using inequality (i7.5), we have

n 1

(7.6) la(0)| > 6" 2wy, 2.

To estimate the Bergman norm of v, by rotation, we may assume
v = b%. So |v| = |b|. Let 7 = f(2)dz1A---Adz, be an arbitrary section
over T with f(0) =0 and [ |f[> dV = 1. We have [, [f[* dV < 1.

Let I be the index set I = {(i1, -+ ,i,) | @4z > 0, > i > 1}. Since
f(0) = 0 and f is holomorphic, we can expand f as a power series on
Bs as

f) = D i
(i1, yin)EL

This implies df (v) = aip..0b. Since [ |fI> dV < [, [f[* dV =1, we
have

= / 71 av :/ Z @iy i |30 dV
b2 B2 (il)"'yin)GI

> / ‘(110...0‘27‘% dv
B>

= \010---0\2(4@”/ 3y oy dry - dry,
r%+~~~+r%§4

= |a1g...0*(47)"wy,
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which implies

n —4i
(77) |CL10...0| S (471')_5’[1)” 2,

So, we have
(78) 47(0)] = loro-.ollb] < (4m) i *Jo].
Let W' be the set of sections over 7 such that
W' ={r=f(2)dzy A--- Ndz, | f(0) =0, /T|f|2 dv =1}
By combining (7.4), (V.6) and (/.8), we have

1
4m) " S wy, 2
lollp.70= sup |df (v)] - (4m) " 2wn *fv| _ <i

TEW! ‘O‘(O)‘ N 6—%1);%

n 1
3\2 (v, \?2
()" (2) Iolkro
T Wy,

Since the constant in the above inequality only depends on the dimen-
sion n, we know that the Bergman metric is uniformly equivalent to the
Kobayashi metric. This finished the proof. q.e.d.

)
3
"
S|
7N
[
GRE
~_
[SIE
=

(7.9)

REMARK 7.1. After we proved this theorem, the second author was
informed by McMullen that the equivalence of the Carathéodory metric
and the Kobayashi metric may be already known. A more interesting
question is whether these two metrics coincide or not. We would like to
study this problem in the future.

Finally, we introduce the notion of holomorphic homogeneous regular
manifolds. This generalizes the idea of Morrey.

Definition 7.2. A complex manifold X of dimension n is called holo-
morphic homogeneous reqular if there are positive constants r < R such
that for each point p € X, there is a holomorphic map f, : X — C"
which satisfies

1) folp) = 0;

2) fp: X — fp(X) is a biholomorphism;

3) B, C f,(X) C Bgr where B, and Br are Euclidean balls with

center 0 in C™.

The following theorem follows from the proof of Theorem i7.1 directly.

Theorem 7.2. Let X be a holomorphic homogeneous regular man-
ifold. Then, the Kobayashi metric, the Bergman metric and the
Carathéodory metric on X are equivalent.
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We will study in detail the holomorphic homogeneous regular mani-
folds and the possible complete Kéahler—Einstein metric on them in our
future paper [8].

=

8. Appendix: the proof of Lemma 4.10

We will prove Lemma .10 in this appendix which consists of some
computational details. We fix a nodal surface Xy which corresponding
to a codimension m boundary point in M,. Let (t,s) be the pinching
coordinates near Xy such that X o = Xo. Fix (¢, s) with small norm, we
denote X; s by X. In the curvature formula (3.28), we let i = j = k =
I <'m. The term G3 is a summation of the following four types of terms:

1) 1 =17 {0103 [ {T(&le)Elens) + T(Enleg)Eslen) | dv}
with (a, ) # (i,);
2) 11 = 1% {o1 [ Quleg)e,s dv} with (@, 8) # (i,);

9 11 o [ e ) {7 e ) )
4) IV =1, h quk;l w1th (p, ) # (1,1)

where T = (O + 1)~!. Now, we check that the norm of each type is

5
bounded by O(‘:ﬁ) In the following, Cy will be a universal constant

which may change, but is independent of the Riemann surface as long
as (t,s) has small norm.

Case 1. We check that each term in the sum IV has the desired
bound. By Corollary 4.2 and its proof, we have

5
O(‘:?'S), if ¢g>m+1;
i

= O(—), if ¢ <m, and q # 1i;

igii PREID
)Tt

O(‘t;|4), if g =1.

£

By using the above formula and Corollarys #.1' and 4.2, and by a case
by case check, we have

7
Uy

|7,;hP R, 0(@)-

1qil ‘ -

5

This proves that the norm of the last term is bounded by = O(ﬁﬁ)
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Case 2. We check that each term in the sum I has the desired bound.
Firstly, when i = j = k = [, we have

(8.1)
0102 { T(6(e)E(€a) + T(Eule))Esle.) |

=2 {T(i(e)Eile.5) + 2T (Eile;3))Eilead) + T(Ele)Eslen) |
+2{T(&(e.)Ei(e;3) + 2T (Eile,5)Eleq) + T(Eled))Eale) |
+ 2{T(€ale)Eiles5) + T(Eales3)Eiler) + Tleale))Enles) }
+ 2T (Eale5)Eile):

We estimate the integration of each term in the above summation. To
estimate these terms, we note that, if « # 8 or a = > m + 1, then

(8.2)

B f 5| = 0(1).
Also, we have

(8.3) 1P(e,5)ll0 < llezllz < Coll ozl

These formulae can be checked easily by using Theorem 4.1 Corol-
lary 4.1, Lemmas 4.3 and .7
Now, we estimate ‘haﬂ Jx T(&iles)Ei(e,5) d ‘ fa#Bora=p>

m + 1, we have
[ e o < ([ et a [ P dv>
< ( [ 16l o / Eileas)l? dv)

( [ talPlea do [ fiPees)F dv)

w5
< [IP(eg)llollPlegp)llohs = Collfllill fapllihaz = O (ﬁ) /a5l

ui). Together with formula (8.2), we have

ti|
uf
=0 (W) '

since || fll = O(

w7 [ T(etenNEe,5) o
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‘ / (&(eq) E (o) dv

‘/ (&i(ez))(eam — eam) dv|.

If a =8 <m and « # 7, we have

‘/ 62 € éz eaa dv

From Lemma 4.7, we have

4
— — —— u
||P(€aa - eaa)HO S Heaa - eaEHQ S ||fa5 - €aaH1 = O <_a> .

PAE
So
‘/ T(gi(eﬁ))gi(eo@ — €am) dv
X
< [ P(ean — a0 / T (e Ai] do
< HP(eaa eaa HO </ |T 67, “ |2 d’l)/ f d’l})
(8.5)

< ||P(eaa — €aa)llo </ &i(es)? dv/ fi dv)
HP(eaa _€aa HO </ fzz‘P ” |2 dv/ f dv

U,

u
< P aa — Caa = <
H (6 € )H0||€u||2 i 0 <|ta‘2> o <|t2|4>

Since the support of eqq is inside Qf, we know the support of P(eqqa) is
inside Q2. From Lemma 4.8, we have

(8.6)
[ Tt o) =| [ T E o) do

< [[Aillo.aa 1T (&i(ei)) o] Peam) Lt < [ Aillo.0q I€i(ez) ol Peam)] 1
= [|4illo,0¢ | Asllol[ P (eiz) lo| P(eam)| 1

=0 (i) e (i) e (ir) o (i)

0) O Ual ) O Uak) @\
b ug

‘O<\ti\4>o<|ta\2>‘
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By combining the inequalities (8.5) and (8.6), we know that

‘/X T(&i(e:)€(Cam) dv

From Lemma 4.1, we have

W ud
= @R

5
Uy

= O(\ti\‘l)'

o /X T(€(es5))Es(Can) dv

We finish the estimate of the first term in the sum (8.1). The integration
of other terms in this sum can be estimated in a similar way.

Case 3. We check that each term in the sum [1] has the desired
bound. By Lemma 4.2, we first prove that when ¢ # i and k = 4,

heB {01/ Ele)e de: (%

JO() ifa<m
u?
O(tzP) ifg>m+1
Again, we do a case by case check. First, we estimate ‘ho‘ﬁ J < &ileig)e B dv|.
Ifa#pBora=0>m+1, we have

' /X Eieig)ens du :' /X etile,g) dv

< ([ tetes av [ feaP dv)é
(33) < ([ sartePas [ 11aP dv)%
< 1Pl ([ swao [ st dv)

< [[P(eqp)llollAgllohi = O (|t |2)Hfa,g|| 1[[Agllo-

haB /X §i(e¢§)e

If « =8 <m and « # 7, we have

'/X&(eiq)eaa dv| < '/X&(eiq)a‘; dv

= oo

[

(8.7)

This implies

u3

o = 0(5) I4ql

+ '/Xﬁz‘(eiq)(eaa — €am) dv|.
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For the second term in the above formula, we have

\ [ i(en)con — 2am) a0

1
2
- ‘ | entilcan — eam) o] < ( [ el dv [ 16cam - )P dv>
X X X

< ( [l dv [ salPleos — ezl dv>2

1
< [[P(eam = am)llo </ fiilda dv/ fii dv) < llea — €aall2/|Aqllof2;;

__ ul u
< e — @l Aotz = 0 (225) 0 () Lyl

For the first term in the above formula, we have

‘/ &i(eig)eaa dv| =
X
3

u
< ||Aillozlleglls [ eam dv < O(—55)0 (on )Hfzq”l
Qo ltal It

< || 4illo.cg | P(ei) o / 6o dv
Qa

c

§i(eig)ean dv
Q2

By combining the above two formulae, we have the desired bound for
| [ &i(eig)eaa dv).
When o« = 8 = 4, by usmg a similar method, we can show that

hit Jx Gileiq)es; dv‘ = (‘t |2)||A llo- From the above estimates, we

have proved that the term ‘haﬂ [x Gileig)eys dv‘ in formula (8.7) has

the desired estimate. By using similar method, we can show that the

other terms in (8,7) have the desired estimate. This proves formula (8.7).
In a similar way, in the case ¢ = i, we can prove that, when k = 4,

3
i

- O(mts), if a=p=1;
haﬂ{ i d}‘z i
Ul/)(gk(e(»eaﬁ ! O( ?3), if « #£i or B #i.

z

e &

(8.9)

By combining formulas (8.8) and (8.9), we conclude that each term in

the sum I17 is of order O(%)
C%se 4. We need to show that each term in the sum I is of order
O(‘ . ‘4) This case can be proved by a case by case check by using the

similar estimates as in the third case together with Lemma 4.9. This
finishes the proof. q.e.d.
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REMARK 8.1. The method we estimate these terms can be directly
applied to the computations of the full curvature tensor and we can get
certain bounds for the bisectional curvature and the Ricci curvature of
the Ricci metric as well as the perturbed Ricci metric.
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