
j. differential geometry

66 (2004) 289-301

CONFORMALLY FLAT METRICS ON 4-MANIFOLDS

Michael Kapovich

Abstract

We prove that for each closed smooth spin 4-manifold M there
exists a closed smooth 4-manifold N such that M#N admits a
conformally flat Riemannian metric.

1. Introduction

The goal of this paper is to prove:

Theorem 1.1. Let M4 be an closed connected smooth spin 4-mani-
fold. Then there exists a closed orientable 4-manifold N such that M#N
admits a conformally flat Riemannian metric. The manifold N is (in
principle) computable in terms of triangulation of M .

Recall that there are many closed 4-dimensional spin manifold which
admit no flat conformal structure; for instance, simply-connected man-
ifolds (not diffeomorphic to S4), manifolds with simple infinite funda-
mental group. (First examples of first 3-manifolds not admitting flat
conformal structure were constructed by W. Goldman in [5].) The
above theorem shows that if M admits a flat conformal structure, it
does not imply that all components of its connected sum decomposition
are also conformally flat.

Our motivation comes from the following theorem of C. Taubes [15]:

Theorem 1.2. Let M be a smooth closed oriented 4-manifold. Then
there exists a number k so that the connected sum of M with k copies
of CP2 admits a half-conformally flat structure.

Here CP2 is the complex-projective plane with the reversed orien-
tation. Recall that a Riemannian metric g on M is anti self-dual (or
half-conformally flat) if the self-dual part W+ of the Weyl tensor van-
ishes. Vanishing of both self dual and anti self-dual parts of the Weyl
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tensor (i.e., vanishing of the entire Weyl tensor) is equivalent to local
conformal flatness of the metric g.

Note that the assumption that M4 is spin is equivalent to vanish-
ing of all Stiefel–Whitney classes, which is equivalent to triviality of
the tangent bundle of M ′ = M \ {p}. According to the Hirsch-Smale
theory (see for instance [6, Theorem 4.7] or [13]), M ′ := M \ {p} is
parallelizable iff M ′ admits an immersion into R

4. Thus, by taking M
to be simply-connected with nontrivial 2-nd Stiefel–Whitney class, one
sees that M#N does not admit a flat conformal structure for any N :
otherwise the developing map would immerse M ′ into S4. Therefore the
vanishing condition is, to some extent, necessary. Note also that (unlike
in Taubes’ theorem) one cannot expect N to be simply-connected since
the only closed conformally flat simply-connected Riemannian manifold
is the sphere with the standard conformal structure.

Sonjong Hwang in his thesis [7], has verified that for 3-manifolds an
analogue of Theorem 1.1 holds, moreover, one can use a connected sum
of Haken manifolds as the manifold N . Similar arguments can be used
to prove an analogous theorem in the context of locally spherical CR
structures on 3-manifolds.

The arguments in both 3-dimensional and 4-dimensional cases, in
spirit (although, not in the technique), are parallel to Taubes’: we start
with a singular conformally-flat metric on M , where the singularity is
localized in a ballB ⊂M . The singular metric is obtained by pullback of
the standard metric on the 4-sphere under a branched coveringM → S4.
Then we would like to “resolve the singularity”. To do so we remove
an open tubular neighborhood U of the singular locus. Afterwards, use
the “orbifold trick” (cf. for instance [3]) to eliminate the boundary of
M \ U : introduce a Möbius reflection orbifold structure on M \ U to
get a closed Möbius orbifold O which is a connected sum of M with an
orbifold. After passing to an appropriate finite manifold cover over O we
get a conformally-flat manifold which has M as a connected summand.

Lack of reflection groups in higher-dimensional hyperbolic spaces lim-
its this strategy to low dimensions. Using arguments somewhat similar
to the strict hyperbolization of Charney and Davis (see [2]) one can gen-
eralize Theorem 1.1 to higher-dimensional almost parallelizable mani-
folds. We will discuss this issue elsewhere.
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ity is gratefully acknowledged. The author is also grateful to Tadeusz
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2. Definitions and notation

We let Möb(S4) denote the full group of Möbius transformations of
S4, i.e., the group generated by inversions in round spheres. Equiva-
lently, Möb(S4) is the restriction of the full group of isometries Isom(H5)
to the 4-sphere S4 which is the ideal boundary of H

5. We will regard
S4 as 1-point compactification R

4 ∪ {∞} of then Euclidean 4-space.

Definition 2.1. Let Q be a unit cube in R
4. We define the PL

inversion J in the boundary of Q as follows: let h : S4 → S4 be a PL
homeomorphism which sends Σ = ∂Q onto the round sphere S3 ⊂ R

4

and h(∞) = ∞. Let j : S4 → S4 be the ordinary inversion in S3. Then
J := h−1 ◦ j ◦ h.

Definition 2.2. A Möbius or a flat conformal structure on a smooth
4-manifold M is an atlas {(Vα, ϕα), α ∈ A} which consists of diffeomor-
phisms ϕα : Vα → Uα ⊂ S4 so that the transition mappings ϕα ◦ ϕ−1

β

are restrictions of Möbius transformations.

Equivalently, one can describe Möbius structures on M as conformal
classes of conformally-Euclidean Riemannian metrics on M . Each con-
formal structure on M gives rise to a local conformal diffeomorphism,
called a developing map, d : M̃ → S4, where M̃ is the universal cover
of M . If M is connected, the mapping d is equivariant with respect to
a holonomy representation ρ : π1(M) → Möb(S4), where π1(M) acts
on M̃ as the group of deck-transformations. Given a pair (d, ρ), where
ρ is a representation of π1(M) into Möb(S4) and d is a ρ-equivariant
local diffeomorphism from M̃ to S4, one constructs the corresponding
Möbius structure on M by taking a pullback of the standard flat con-
formal structure on S4 to M̃ via d and then projecting the structure to
M .

Analogously, one defines a complex-projective structure on complex
3-manifold Z, as a CP

3-valued holomorphic atlas on Z so that the tran-
sition mappings belong to PGL(3,C).

The concept of Möbius structure generalizes naturally to the category
of orbifolds:

A 4-dimensional Möbius orbifold O is a pair (X,A), where X is a
Hausdorff topological space, the underlying space of the orbifold, A is
a family of local parameterizations ψα : Uα → Uα/Γα = Vα, where
{Vα, α ∈ A} is an open covering of X, Uα are open subsets in S4, Γα
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are finite groups of Möbius automorphisms of Uα and the mappings ψα

satisfy the usual compatibility conditions:
If Vα → Vβ is the inclusion map then we have a Möbius embedding

Uα → Uβ which is equivariant with respect to a monomorphism Γα →
Γβ, so that the diagram

Uα → Uβ

↓ ↓
Vα → Vβ

is commutative. The groups Γα are the local fundamental groups of the
orbifold O.

We refer the reader to [11] for a more detailed discussion of geometric
structures on orbifolds.

For a Möbius orbifold one defines a developing mapping d : Õ → S4

(which is a local homeomorphism from the universal cover Õ of O) and,
if O is connected, a holonomy homeomorphism ρ : π1(O) → Möb(S4),
which satisfy the same equivariance condition as in the manifold case.
Again, given a pair (d, ρ), where d is a ρ-equivariant homeomorphism,
one defines the corresponding Möbius structure via pullback.

Example 2.3. Let G ⊂ Möb(S4) be a subgroup acting properly dis-
continuously on an open subset Ω ⊂ S4. Then the quotient space Ω/G
has a natural Möbius orbifold structure. The local charts φα appear in
this case as restrictions of the projection p : Ω → Ω/G to open subsets
with finite stabilizers.

Example 2.4. In particular, suppose that G is a discrete subgroup
of Möb(S4) generated by reflections in faces of a spherical polyhedron
D ⊂ S4. Let Ω denote a G-invariant component of the domain of
discontinuity of G. Then the quotient reflection orbifold Q := Ω/G can
be identified with the intersection D ∩ Ω.

Example 2.5. Another example is obtained by taking a manifold M
and a local homeomorphism h : M → S4, so that Q ⊂ h(M). Then
we can pull back the Möbius orbifold structure on Q to an appropriate
subset X of M , to get a 4-dimensional Möbius orbifold. As another
example of a pullback construction, let O be a Möbius orbifold and
M → O be an orbifold cover such that M is a manifold. Then one can
pull back the Möbius orbifold structure from O to an ordinary Möbius
structure on M .
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Although the Möbius structures on 4-dimensional manifolds and orb-
ifolds constructed in this paper definitely do not arise as reflection orb-
ifolds and pullbacks, the above Examples 2.4 and 2.5 will appear as
“building blocks” in our construction.

Idea of the construction. We first produce a class of compact
spherical polyhedra D ⊂ S4 which have prescribed combinatorics, i.e.,
the nerve of the associated family of round balls in R

4 is the 1-st barycen-
tric subdivision of the prescribed 2-dimensional finite subcomplex of the
standard cubulation of R

4; this is done in Section 3. We then construct
a certain open 4-dimensional manifold W and a local diffeomorphism
h : W → S4. Taking the pullback of the Möbius orbifold structure from
D = Ω/G to W via h we obtain a Möbius orbifold O whose underlying
set XO is a compact submanifold with boundary in W . This is done
in Section 4. The open manifold W (and the manifold with bound-
ary XO) are constructed in such a way that the given smooth compact
spin-manifold M appears as a connected summand of W and of XO.
Therefore the orbifold O is the connected sum of the manifold M with
a certain closed orbifold. This proves an orbifold version of Theorem 1.1.
To prove Theorem 1.1 we construct a finite manifold cover Õ over O to
which the submanifold M \B4 ⊂ O lifts homeomorphically. Then Õ is
a conformally-flat closed 4-manifold which contains M as a connected
summand.

3. Reflection groups in S4 with prescribed combinatorics of
the fundamental domains

Consider the standard cubulation Q of R
4 by the Euclidean cubes

with the edges of length 2 and let X denote the 2-skeleton of this cubu-
lation. Given a collection of round balls {Bi, i ∈ I} in R

4, with the nerve
N , we define the canonical simplicial mapping f : N → R

4 by sending
each vertex of N to the center of the corresponding ball and extending
f linearly to the simplices of N . For a subcomplex K ⊂ X ⊂ Q define
its barycentric subdivision β(K) to be the following simplicial complex:
subdivide each edge of K by its midpoint. Then subdivide each 2-cube
Q in K by coning off the barycentric subdivision of ∂Q from the center
of Q, see Figure 1 for the barycentric subdivision of the 2-cube.

Proposition 3.1. Suppose that K ⊂ X is a 2-dimensional compact
subcomplex such that each vertex belongs to a 2-cell. Then there exists a
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Figure 1. Barycentric subdivision of a square.

collection of open round 4-balls Bi, i = 1, . . . , k, centered at the vertices
of β(K), so that:

(1) The Möbius inversions Ri in the round spheres Si = ∂Bi generate
a discrete subgroup G ⊂ Möb(S4).

(2) The complement S4 \ ∪k
i=1Bi is a fundamental domain Φ of G.

(3) The canonical mapping from the nerve of {Bi, i = 1, . . . , k} to R
4

is a simplicial isomorphism onto β(K).

Proof. We begin by constructing the family of spheres Si, i ∈ N cen-
tered at certain points of X. For each square Q in X we pick 9 points
x1, . . . , x9: x5, . . . , x8 are the vertices of Q, x1, . . . , x4 are midpoints of
the edges of Q and x9 is the center of Q. Pick radii r,R, ρ so that:

(a) The spheres S1 = S(x1, r), S5 = S(x5, R) are orthogonal.
(b) The (exterior) angle of intersection between the spheres S(x1, r)

and S9 = S(x9, ρ) equals π/3.
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(c) The (exterior) angle of intersection between the spheres S(x5, R)
and S(x9, ρ) equals π/5. (Actually the latter angle can be taken
π/4 as well, but π/3 would not suffice.)

Then for the radii r,R, ρ we get:

R ≈ 0.8534646790, r ≈ 0.5211506901, ρ ≈ 0.6317819089.

In particular, r and ρ are both less than 1/
√

2 ≈ 0.7071067810.
We then consider the collection of round balls B(x9, ρ), B(xi, r), i =

1, . . . , 4 and B(xi, R), i = 4, . . . , 8; see Figure 2. The condition r <√
2/2 and our choice of the angles of intersection between the spheres

imply that the nerve of the above collection of balls is the barycentric
subdivision of Q. See Figure 1 for the Coxeter graph of the Coxeter
group generated by inversions in the spheres S1, . . . , S9.

Suppose now that Q4 is a 4-cube in the cubulation Q, apply the above
construction to each 2-face of Q4. Then the condition ρ, r <

√
2/2

implies that the the nerve NQ4 of the resulting collection of balls {Bi}
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is such that the canonical mapping NQ4 → β((Q4)(2)) is a simplicial
isomorphism.

Now we are ready to construct the covering {Bi : i = 1, . . . , k} of the
2-complex K. For each 2-face Q of K introduce the family of nine round
spheres Si constructed above, consider the inversions Ri is these spheres;
the spheres Si bound balls {Bi : i = 1, . . . , k}. The fact that for each
4-cube Q4 the mapping NQ4 → β((Q4)(2)) is a simplicial isomorphism,
implies that the mapping from the nerve of the covering {Bi : i =
1, . . . , k} to β(K) is a simplicial isomorphism as well. Thus the exterior
angles of intersections between the spheres equal π

2 , π
3 and π

5 , thus we can
apply Poincare’s fundamental polyhedron theorem [10] to ensure that
the intersection of the complements to the balls Bi is a fundamental
domain for the Möbius group G generated by the above reflections.

q.e.d.

Remark 3.2. Instead of collections of round balls based on a cubu-
lation of R

4 one could use a periodic triangulation of R
4, however in

this case the construction of a collection of balls covering the 2-skeleton
of a 4-simplex would be more complicated.

4. Proof of Theorem 1.1

Recall that the manifold M is almost parallelizable, i.e M◦ = M \{p}
is parallelizable; hence, by [6], there exists an immersion f : M◦ → R

4.
Let B denote a small open round ball centered at p and let M ′ denote
the complement M \ B. We retain the notation f for the restriction
f |M ′. We next convert to the piecewise-cubical setting: consider the
pullback of the standard cubulation Q of R

4 to M ′ via f . The image
f(M ′) is compact; hence, after replacing if necessary Q by its sufficiently
fine cubical subdivision, we may assume that for each point x ∈ M ′

there exists a cube Qx ∈ Q and a component Q̃x ⊂ M◦ of f−1(Q) so
that f |Q̃x : Q̃x → Qx is a homeomorphism. In particular, if C ⊂ M ′

denotes the union of the cubes Q̃x, x ∈M ′, then C is a compact cubical
complex. After replacing B by a slightly larger open ball B′ we get:
∂B′ ⊂ int(C). Let M• denote the complement M \ B′. Now consider
the 2-nd cubical subdivision C ′′ of C and the regular neighborhood
N := N(FrM (C)) in C ′′ of the frontier FrM (C): the frontier of N in
C is a 3-dimensional submanifold Y ⊂ B′ which is contained in the 3-
skeleton of C ′′. Thus f(Y ) is also contained in the 3-skeleton of Q′′. Let
M ′′ denote the closure of the component of M \Y which is disjoint from
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p. Clearly, M ′′ is a compact cubulated manifold with the boundary Y .
We retain the notation f for the restriction f |M ′′. We now double M ′′
across its boundary Y , the result is a closed cubulated manifold DM , let
τ : DM → DM denote the involution fixing Y pointwise; the mapping f
extends to DM \M ′′ by f ◦τ . Thus we get a globally defined piecewise-
linear map F : DM → R

4, which is a homeomorphism on each 4-cube
in DM and is a local diffeomorphism on M•. By cutting DM along the
sphere ∂M• we get a connected sum decomposition DM = M#W . We
orient DM so that F preserves the orientation on M•.

We now borrow the standard arguments from the proof of Alexander’s
theorem which states that each closed n-dimensional PL manifold is a
branched cover over the n-sphere, see e.g., [4]. For each cube Q′ ⊂
DM such that F |Q′ is orientation-reversing we replace F |Q′ with the
composition J ◦ F |Q′, where J is the PL inversion in the boundary
of the unit cube F (∂Q′) (see Definition 2.1). The resulting mapping
h : DM → S4 has the property that it is a local PL homeomorphism
away from a 2-dimensional subcomplex L ⊂ DM\M ′′, which is therefore
disjoint from M•. (Note that L has dimension 2 near every point: each
vertex in L belongs to a 2-cube in L.) Thus the mapping h is a branched
covering over S4 with the singular locus L contained in DM \M•, the
branch-locus of h is the compact subcomplex K = h(L) ⊂ R

4. The
branched covering h has the property that for each point x ∈ K there
exists a neighborhood U(x) ⊂ R

4 such that h−1(U(x)) is a disjoint union
of balls V (y), y ∈ h−1(x) ∈ DM \M ′′, (whose interiors contain y), so
that for each y ∈ h−1(x), the restriction h|V (y) is a branched covering
onto U(x). Moreover, each branched covering h|V (y) is obtained by
coning off a branched covering from the 3-sphere ∂V (y) to the 3-sphere
U(x).

Question 4.1. Given a local diffeomorphism f : M◦ → R
4, is it

possible to modify f within the ball B to make it a branched cover
M → S4 which is ramified over a smooth surface in S4? This can be
easily arranged in the case of 3-manifolds. In dimension 4 this would
be a relative version of a recent theorem of Iori and Piergallini [8].

Let T denote a regular neighborhood of K in R
4, so that U(x) ⊂ T

for each x ∈ K. Next, subdivide the cubulation of R
4 and scale the

subdivision up to the standard unit cubulation, so that the discrete
group G and the collection of balls {Bj , j = 1, . . . , k} associated with
the subcomplex K in Section 3 have the properties:

1. T ⊂ ∪k
i=1Bk.
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2. Each ball Bj , j = 1, . . . , k, (centered at xj ∈ K) is contained in
the neighborhood U(xj).

We set W := DM \ L; this is an open submanifold of DM which
admits a local diffeomorphism h : W → S4. Observe that M appears as
a connected summand ofW . By pullback via h we of course get a Möbius
structure on W , our goal however is to produce a Möbius structure on
a compact orbifold. To do so we consider a compact submanifold with
boundary XO ⊂W which is the complement DM \N 0(L), where N 0(L)
is an open tubular neighborhood of the subcomplex L ⊂ DM .

We now use the branched covering h to introduce a Möbius orbifold
structure O on the space XO as follows:

For each ball Bj ⊂ U(xj) centered at xj ∈ K and for each yj ∈
h−1(xj) ∩ L, such that the restriction h|V (yj) is not a homeomorphism
onto its image, we let B̃(yj) denote the inverse image h−1(Bj) ∩ V (yj).
It follows that each B̃(yj) is a polyhedral 4-ball in M and the union
of these balls is a tubular neighborhood N (L) of L. The boundary of
N (L) has a natural partition into subcomplexes: “vertices”, “edges”,
“2-faces” and “3-faces”:

• The “vertices” are the points of triple intersections of the 3-spheres
∂B̃(yj), ∂B̃(yi), ∂B̃(yl).

• The “2-faces” are the connected components of the double inter-
sections of the 3-spheres ∂B̃(yj), ∂B̃(yi).

• The “3-faces” are the connected components of the complements

∂B̃(yj) \ ∪i�=jB̃(yi).

We declare each “3-face” a boundary reflector of the orbifold O. The
dihedral angles between the balls Bj define the dihedral angles between
the boundary reflectors in O. Since the restriction h|M \ L is a local
homeomorphism, this construction defines a Möbius orbifold O. The
mapping h|XO is the projection of the developing mapping h̃ : Õ → S4

of this Möbius orbifold. Let O• denote the orbifold with boundary
O \M•; let O′ be the closed orbifold obtained by attaching 4-disk D4

to O• along the boundary sphere S3.
We next convert back to the smooth category. It is clear from the

construction that the orbifold O is obtained by (smooth) gluing of the
manifold with boundary M \ B and the orbifold with boundary O•.
Hence O is diffeomorphic to the connected sum of the manifold M with
the orbifold O′.
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It remains to construct a finite manifold covering M̂ over the orbifold
O, so that M \ B lifts homeomorphically to M̂ ; the construction is
analogous to the one used by M. Davis in [3]. The universal cover Õ is
a manifold since it admits a (locally homeomorphic) developing mapping
to S4. The fundamental group π1(O) is the free product π1(M)∗π1(Q).
We have holonomy homomorphism

φ : π1(O) → G,

the subgroup π1(M) is contained in the kernel of this homomorphism;
by construction, the kernel of φ acts freely on Õ. The Coxeter group
G is virtually torsion-free, let θ : G → A be a homomorphism onto a
finite group A, so that Ker(θ) is torsion-free and orientation-preserving.
Then the kernel of the homomorphism ψ = θ ◦ φ : π1(O) → A is a
finite index subgroup of π1(O), which contains π1(M) and still acts
freely on Õ. Let M̂ → O denote the finite orbifold cover corresponding
to the subgroup Ker(ψ). Then M̂ is a smooth oriented conformally flat
manifold, the submanifold M• lifts diffeomorphically to M• ⊂ M̂ . Thus
the connected sum decomposition O = M#O′ also lifts to M̂ , so that
the latter manifold is diffeomorphic to the connected sum of M and a
4-manifold N . q.e.d.

We observe that the proof of Theorem 1.1 can be modified to prove
the following:

Theorem 4.2. Suppose that M is a closed smooth 4-manifold whose
orientable 2-fold cover is Spin. Then there exists a closed smooth 4-
manifold N so that M̂ = M#N admits a conformally-Euclidean Rie-
mannian metric.

Proof. The difference with Theorem 1.1 is that M can be nonori-
entable. Let M̃ → M be the orientable double cover with the deck-
transformation group D ∼= Z/2. Then all Stiefel–Whitney classes of
M̃ are trivial. As before, let p ∈ M , {p1, p2} be the preimage of {p}
in M . Consider a Euclidean reflection τ in R

4 and an epimorphism
θ : D → 〈τ〉. Then, arguing as in the proof of Hirsch’s theorem [6, The-
orem 4.7], one gets a θ-equivariant immersion f̃ : M̃ \ {p1, p2} → R

4.
This yields a D-invariant flat conformal structure on M̃ \ {p1, p2} via
pullback of the flat conformal structure from R

4. Let B1 � B2 be a D-
invariant disjoint union of open balls around the points p1, p2. Then the
rest of the proof of Theorem 1.1 goes through: replace the ball B1 with
a manifold with boundary N1 so that the flat conformal structure on
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M̃ \(B1∪B2) extends over N1. Then glue a copy of N1 along the bound-
ary of B2 in D-invariant fashion. Note that the quotient of the manifold
P := (M̃ \ (B1 ∪ B2)) ∪ (N1 ∪ N2) by the group D is diffeomorphic to
a closed manifold M#N , where N is obtained from N1 by attaching
the 4-ball along the boundary. Finally, project the D-invariant Möbius
structure on P to a Möbius structure on the manifold M#N . q.e.d.

As a corollary of Theorem 1.1 we get:

Corollary 4.3. Let Γ be a finitely-presented group. Then there exists
a 3-dimensional complex manifold Z which admits a complex-projective
structure, so that the fundamental group of Z splits as Γ ∗ Γ′.

Proof. Our argument is similar to the one used to construct 3-dimen-
sional complex manifolds with the prescribed finitely-presented funda-
mental group. We first construct a smooth closed oriented 4-dimensional
spin manifold M with the fundamental group Γ. This can be done for
instance as follows: let 〈x1, . . . , xn|R1, . . . , R�〉 be a presentation of Γ.
Consider a 4-manifold X which is the connected sum of n copies of
S3 × S1. This manifold is clearly spin. Pick a collection of disjoint
embedded smooth loops γ1, . . . , γ� in X, which represent the conjugacy
classes of the words R1, . . . , R� in the free group π1(X). Consider the
pair (S4, γ), where γ is an embedded smooth loop in S4. For each i pick
a diffeomorphism fi between a tubular neighborhood T (γ) of γ in S4

and a tubular neighborhood T (γi) of γi in X. We can choose fi so that
it matches the spin structures of T (γ) and T (γi). Now, attach n copies
of S4 \ T (γ) to X \ ∪iT (γi) via the diffeomorphisms fi. The result is a
smooth spin 4-manifold M with the fundamental group Γ.

Next, by Theorem 1.1 there exists a smooth 4-manifold N (with the
fundamental group Γ′) such that M̂ = M#N admits a conformally-
Euclidean Riemannian metric. Applying the twistor construction to the
manifold M̂ we get a complex 3-manifold Z which is an S2-bundle over
M̂ and the flat conformal structure on M̂ lifts to a complex-projective
structure on Z, see [1]. Clearly, π1(Z) ∼= π1(M̂) = Γ ∗ Γ′. q.e.d.

Remark 4.4. We refer the reader to the papers [12], [9], [14] for fur-
ther discussion of complex-projective structures on higher-dimensional
manifolds.
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