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CONFORMALLY FLAT METRICS ON 4-MANIFOLDS

MICHAEL KAPOVICH

Abstract

We prove that for each closed smooth spin 4-manifold M there
exists a closed smooth 4-manifold N such that M#N admits a
conformally flat Riemannian metric.

1. Introduction

The goal of this paper is to prove:

Theorem 1.1. Let M* be an closed connected smooth spin 4-mani-
fold. Then there exists a closed orientable 4-manifold N such that M+#N
admits a conformally flat Riemannian metric. The manifold N is (in
principle) computable in terms of triangulation of M.

Recall that there are many closed 4-dimensional spin manifold which
admit no flat conformal structure; for instance, simply-connected man-
ifolds (not diffeomorphic to S*), manifolds with simple infinite funda-
mental group. (First examples of first 3-manifolds not admitting flat
conformal structure were constructed by W. Goldman in [5].) The
above theorem shows that if M admits a flat conformal structure, it
does not imply that all components of its connected sum decomposition
are also conformally flat.

Our motivation comes from the following theorem of C. Taubes [15]:

Theorem 1.2. Let M be a smooth closed oriented 4-manifold. Then
there exists a number k so that the connected sum of M with k copies
of CP? admits a half-conformally flat structure.

Here CP2 is the complex-projective plane with the reversed orien-
tation. Recall that a Riemannian metric g on M is anti self-dual (or
half-conformally flat) if the self-dual part W, of the Weyl tensor van-
ishes. Vanishing of both self dual and anti self-dual parts of the Weyl
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tensor (i.e., vanishing of the entire Weyl tensor) is equivalent to local
conformal flatness of the metric g.

Note that the assumption that M* is spin is equivalent to vanish-
ing of all Stiefel-Whitney classes, which is equivalent to triviality of
the tangent bundle of M’ = M \ {p}. According to the Hirsch-Smale
theory (see for instance [6, Theorem 4.7] or [13]), M’ := M \ {p} is
parallelizable iff M’ admits an immersion into R*. Thus, by taking M
to be simply-connected with nontrivial 2-nd Stiefel-Whitney class, one
sees that M#N does not admit a flat conformal structure for any N:
otherwise the developing map would immerse M’ into S*. Therefore the
vanishing condition is, to some extent, necessary. Note also that (unlike
in Taubes’ theorem) one cannot expect N to be simply-connected since
the only closed conformally flat simply-connected Riemannian manifold
is the sphere with the standard conformal structure.

Sonjong Hwang in his thesis [7], has verified that for 3-manifolds an
analogue of Theorem 1.1 holds, moreover, one can use a connected sum
of Haken manifolds as the manifold N. Similar arguments can be used
to prove an analogous theorem in the context of locally spherical CR
structures on 3-manifolds.

The arguments in both 3-dimensional and 4-dimensional cases, in
spirit (although, not in the technique), are parallel to Taubes’: we start
with a singular conformally-flat metric on M, where the singularity is
localized in a ball B C M. The singular metric is obtained by pullback of
the standard metric on the 4-sphere under a branched covering M — S*.
Then we would like to “resolve the singularity”. To do so we remove
an open tubular neighborhood U of the singular locus. Afterwards, use
the “orbifold trick” (cf. for instance [3]) to eliminate the boundary of
M \ U: introduce a Mdébius reflection orbifold structure on M \ U to
get a closed Mobius orbifold O which is a connected sum of M with an
orbifold. After passing to an appropriate finite manifold cover over O we
get a conformally-flat manifold which has M as a connected summand.

Lack of reflection groups in higher-dimensional hyperbolic spaces lim-
its this strategy to low dimensions. Using arguments somewhat similar
to the strict hyperbolization of Charney and Davis (see [2]) one can gen-
eralize Theorem 1.1 to higher-dimensional almost parallelizable mani-
folds. We will discuss this issue elsewhere.
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2. Definitions and notation

We let M&b(S*) denote the full group of Mébius transformations of
5%, i.e., the group generated by inversions in round spheres. Equiva-
lently, M&b(S?) is the restriction of the full group of isometries Isom(H?)
to the 4-sphere S* which is the ideal boundary of H°. We will regard
S% as 1-point compactification R* U {oo} of then Euclidean 4-space.

Definition 2.1. Let @ be a unit cube in R?. We define the PL
inversion J in the boundary of Q as follows: let h : S* — S% be a PL
homeomorphism which sends ¥ = 9Q onto the round sphere S3 C R*

and h(co) = co. Let j : S* — S* be the ordinary inversion in S®. Then
J:=h"lojoh.

Definition 2.2. A Mébius or a flat conformal structure on a smooth
4-manifold M is an atlas {(Va, ¥a), @ € A} which consists of diffeomor-
phisms ¢, : Vi, — U, C S* so that the transition mappings ¢, o cpgl
are restrictions of Mobius transformations.

Equivalently, one can describe Mobius structures on M as conformal
classes of conformally-Euclidean Riemannian metrics on M. Each con-
formal structure on M gives rise to a local conformal diffeomorphism,
called a developing map, d : M — S*, where M is the universal cover
of M. If M is connected, the mapping d is equivariant with respect to
a holonomy representation p : w1 (M) — Mob(S*), where (M) acts
on M as the group of deck-transformations. Given a pair (d, p), where
p is a representation of (M) into M&b(S*) and d is a p-equivariant
local diffeomorphism from M to 5S4, one constructs the corresponding
Mébius structure on M by taking a pullback of the standard flat con-
formal structure on S to M via d and then projecting the structure to
M.

Analogously, one defines a complex-projective structure on complex
3-manifold Z, as a CP3-valued holomorphic atlas on Z so that the tran-
sition mappings belong to PGL(3,C).

The concept of Mobius structure generalizes naturally to the category
of orbifolds:

A 4-dimensional Mébius orbifold O is a pair (X,.A), where X is a
Hausdorff topological space, the underlying space of the orbifold, A is
a family of local parameterizations ¢, : Uy, — U,/T'o = Vi, where
{V4,a € A} is an open covering of X, U, are open subsets in S*, T,
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are finite groups of Mobius automorphisms of U, and the mappings v,
satisfy the usual compatibility conditions:

If Vi, — V3 is the inclusion map then we have a Mdbius embedding
Uy — Upg which is equivariant with respect to a monomorphism I', —
I's, so that the diagram

Us — Ug
! !
Vo — V3

is commutative. The groups I', are the local fundamental groups of the
orbifold O.

We refer the reader to [11] for a more detailed discussion of geometric
structures on orbifolds.

For a Mobius orbifold one defines a developing mapping d : O — st
(which is a local homeomorphism from the universal cover O of O) and,
if O is connected, a holonomy homeomorphism p : w1 (0) — M&b(S5%),
which satisfy the same equivariance condition as in the manifold case.
Again, given a pair (d, p), where d is a p-equivariant homeomorphism,
one defines the corresponding Mobius structure via pullback.

Example 2.3. Let G C M6b(S?) be a subgroup acting properly dis-
continuously on an open subset 2 C S%. Then the quotient space /G
has a natural Mobius orbifold structure. The local charts ¢, appear in
this case as restrictions of the projection p : Q@ — Q/G to open subsets
with finite stabilizers.

Example 2.4. In particular, suppose that G is a discrete subgroup
of Mob(S*) generated by reflections in faces of a spherical polyhedron
D c S* Let Q denote a G-invariant component of the domain of
discontinuity of G. Then the quotient reflection orbifold Q := /G can
be identified with the intersection D N €.

Example 2.5. Another example is obtained by taking a manifold M
and a local homeomorphism h : M — S* so that Q C h(M). Then
we can pull back the Mobius orbifold structure on () to an appropriate
subset X of M, to get a 4-dimensional Mobius orbifold. As another
example of a pullback construction, let O be a Mobius orbifold and
M — O be an orbifold cover such that M is a manifold. Then one can
pull back the Md&bius orbifold structure from O to an ordinary Mébius
structure on M.
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Although the Mdbius structures on 4-dimensional manifolds and orb-
ifolds constructed in this paper definitely do not arise as reflection orb-
ifolds and pullbacks, the above Examples 2.4 and 2.5 will appear as
“building blocks” in our construction.

Idea of the construction. We first produce a class of compact
spherical polyhedra D C S* which have prescribed combinatorics, i.e.,
the nerve of the associated family of round balls in R* is the 1-st barycen-
tric subdivision of the prescribed 2-dimensional finite subcomplex of the
standard cubulation of R*; this is done in Section 3. We then construct
a certain open 4-dimensional manifold W and a local diffeomorphism
h: W — S84 Taking the pullback of the Mobius orbifold structure from
D =Q/G to W via h we obtain a Mdbius orbifold O whose underlying
set Xp is a compact submanifold with boundary in W. This is done
in Section 4. The open manifold W (and the manifold with bound-
ary Xo) are constructed in such a way that the given smooth compact
spin-manifold M appears as a connected summand of W and of Xop.
Therefore the orbifold O is the connected sum of the manifold M with
a certain closed orbifold. This proves an orbifold version of Theorem 1.1.
To prove Theorem 1.1 we construct a finite manifold cover O over O to
which the submanifold M \ B* C O lifts homeomorphically. Then O is
a conformally-flat closed 4-manifold which contains M as a connected
summand.

3. Reflection groups in S* with prescribed combinatorics of
the fundamental domains

Consider the standard cubulation Q of R* by the Euclidean cubes
with the edges of length 2 and let X denote the 2-skeleton of this cubu-
lation. Given a collection of round balls {B;,7 € I} in R*, with the nerve
N, we define the canonical simplicial mapping f : N' — R* by sending
each vertex of N to the center of the corresponding ball and extending
f linearly to the simplices of A/. For a subcomplex K C X C Q define
its barycentric subdivision 3(K) to be the following simplicial complex:
subdivide each edge of K by its midpoint. Then subdivide each 2-cube
@ in K by coning off the barycentric subdivision of Q) from the center
of ), see Figure 1 for the barycentric subdivision of the 2-cube.

Proposition 3.1. Suppose that K C X is a 2-dimensional compact
subcomplex such that each vertex belongs to a 2-cell. Then there exists a
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2 2

Figure 1. Barycentric subdivision of a square.

collection of open round 4-balls B;, i = 1,...,k, centered at the vertices
of B(K), so that:

(1) The Mébius inversions R; in the round spheres S; = 0B; generate
a discrete subgroup G C Mob(S%).

(2) The complement S*\ UX_, B; is a fundamental domain ® of G.

(3) The canonical mapping from the nerve of {B;,i =1,...,k} to R4
is a simplicial isomorphism onto B(K).

Proof. We begin by constructing the family of spheres S;,7 € N cen-
tered at certain points of X. For each square ) in X we pick 9 points
T1,...,T9: Ts,...,xs are the vertices of ), x1,..., x4 are midpoints of
the edges of @ and xg is the center of (). Pick radii r, R, p so that:

(a) The spheres S = S(x1,7),S5 = S(x5, R) are orthogonal.
(b) The (exterior) angle of intersection between the spheres S(z1,r)
and Sg = S(x9, p) equals /3.
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Figure 2.

(c) The (exterior) angle of intersection between the spheres S(zs5, R)
and S(z9, p) equals w/5. (Actually the latter angle can be taken
/4 as well, but 7/3 would not suffice.)

Then for the radii r, R, p we get:
R =~ 0.8534646790, r ~ 0.5211506901, p ~ 0.6317819089.

In particular, 7 and p are both less than 1/v/2 ~ 0.7071067810.

We then consider the collection of round balls B(zg, p), B(zi,r), i =
1,...,4 and B(x;,R), i = 4,...,8; see Figure 2. The condition r <
v/2/2 and our choice of the angles of intersection between the spheres
imply that the nerve of the above collection of balls is the barycentric
subdivision of ). See Figure 1 for the Coxeter graph of the Coxeter
group generated by inversions in the spheres Sq, ..., S9.

Suppose now that @4 is a 4-cube in the cubulation Q, apply the above
construction to each 2-face of @*. Then the condition p,r < /2/2
implies that the the nerve Nga of the resulting collection of balls {B;}
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is such that the canonical mapping Ng: — ,6’((@4)(2)) is a simplicial
isomorphism.

Now we are ready to construct the covering {B; : i =1,...,k} of the
2-complex K. For each 2-face Q) of K introduce the family of nine round
spheres S; constructed above, consider the inversions R; is these spheres;
the spheres S; bound balls {B; : i = 1,...,k}. The fact that for each
4-cube Q* the mapping Ng: — f3 (QH®@) is a simplicial isomorphism,
implies that the mapping from the nerve of the covering {B; : i =
1,...,k} to B(K) is a simplicial isomorphism as well. Thus the exterior
angles of intersections between the spheres equal 5, § and %, thus we can
apply Poincare’s fundamental polyhedron theorem [10] to ensure that
the intersection of the complements to the balls B; is a fundamental
domain for the Md6bius group G generated by the above reflections.

q.e.d.

Remark 3.2. Instead of collections of round balls based on a cubu-
lation of R* one could use a periodic triangulation of R however in
this case the construction of a collection of balls covering the 2-skeleton
of a 4-simplex would be more complicated.

4. Proof of Theorem 1.1

Recall that the manifold M is almost parallelizable, i.e M° = M\ {p}
is parallelizable; hence, by [6], there exists an immersion f : M° — R%.
Let B denote a small open round ball centered at p and let M’ denote
the complement M \ B. We retain the notation f for the restriction
fIM’'. We next convert to the piecewise-cubical setting: consider the
pullback of the standard cubulation Q of R* to M’ via f. The image
f(M'") is compact; hence, after replacing if necessary Q by its sufficiently
fine cubical subdivision, we may assume that for each point z € M !
there exists a cube @, € Q and a component Q, C M° of f~1(Q) so
that f]@x : Qp — Q is a homeomorphism. In particular, if C C M’
denotes the union of the cubes va, x € M’, then C is a compact cubical
complex. After replacing B by a slightly larger open ball B’ we get:
OB’ C int(C). Let M* denote the complement M \ B’. Now consider
the 2-nd cubical subdivision C” of C' and the regular neighborhood
N := N(Frp(C)) in C” of the frontier Frp (C): the frontier of N in
C' is a 3-dimensional submanifold Y € B’ which is contained in the 3-
skeleton of C”. Thus f(Y) is also contained in the 3-skeleton of Q”. Let
M" denote the closure of the component of M \' Y which is disjoint from
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p. Clearly, M" is a compact cubulated manifold with the boundary Y.
We retain the notation f for the restriction f|M”. We now double M”
across its boundary Y, the result is a closed cubulated manifold DM, let
7: DM — DM denote the involution fixing Y pointwise; the mapping f
extends to DM \ M" by for. Thus we get a globally defined piecewise-
linear map F : DM — R*, which is a homeomorphism on each 4-cube
in DM and is a local diffeomorphism on M*®. By cutting DM along the
sphere OM*® we get a connected sum decomposition DM = M#W. We
orient DM so that F' preserves the orientation on M*®.

We now borrow the standard arguments from the proof of Alexander’s
theorem which states that each closed n-dimensional PL. manifold is a
branched cover over the n-sphere, see e.g., [4]. For each cube Q' C
DM such that F|@Q’ is orientation-reversing we replace F|Q’ with the
composition J o F|Q', where J is the PL inversion in the boundary
of the unit cube F(9Q’) (see Definition 2.1). The resulting mapping
h : DM — S* has the property that it is a local PL homeomorphism
away from a 2-dimensional subcomplex L € DM\ M" | which is therefore
disjoint from M*®. (Note that L has dimension 2 near every point: each
vertex in L belongs to a 2-cube in L.) Thus the mapping h is a branched
covering over S* with the singular locus L contained in DM \ M*, the
branch-locus of h is the compact subcomplex K = h(L) C R* The
branched covering h has the property that for each point x € K there
exists a neighborhood U (z) C R* such that h~!(U(x)) is a disjoint union
of balls V(y),y € h=1(x) € DM \ M", (whose interiors contain ), so
that for each y € h=!(z), the restriction h|V (y) is a branched covering
onto U(x). Moreover, each branched covering h|V(y) is obtained by
coning off a branched covering from the 3-sphere 0V (y) to the 3-sphere
U(x).

Question 4.1. Given a local diffeomorphism f : M° — R?*, is it
possible to modify f within the ball B to make it a branched cover
M — S* which is ramified over a smooth surface in S*? This can be
easily arranged in the case of 3-manifolds. In dimension 4 this would
be a relative version of a recent theorem of Iori and Piergallini [8].

Let T denote a regular neighborhood of K in R*, so that U(x) C T
for each z € K. Next, subdivide the cubulation of R* and scale the
subdivision up to the standard unit cubulation, so that the discrete
group G and the collection of balls {B;,j = 1,...,k} associated with
the subcomplex K in Section 3 have the properties:

1. T C UF_ By
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2. Each ball Bj, j = 1,...,k, (centered at x; € K) is contained in
the neighborhood U (z;).

We set W := DM \ L; this is an open submanifold of DM which
admits a local diffeomorphism h : W — S*. Observe that M appears as
a connected summand of W. By pullback via h we of course get a M6bius
structure on W, our goal however is to produce a Md&bius structure on
a compact orbifold. To do so we consider a compact submanifold with
boundary Xp C W which is the complement DM \N?(L), where NO(L)
is an open tubular neighborhood of the subcomplex L C DM.

We now use the branched covering h to introduce a Mobius orbifold
structure O on the space Xp as follows:

For each ball B; C U(x;) centered at z; € K and for each y; €
h=1(z;) N L, such that the restriction h|V (y;) is not a homeomorphism
onto its image, we let E(yj) denote the inverse image h=1(B;) NV (y;).
It follows that each E(yj) is a polyhedral 4-ball in M and the union
of these balls is a tubular neighborhood N(L) of L. The boundary of
N (L) has a natural partition into subcomplexes: “vertices”, “edges”,
“2-faces” and “3-faces”:

e The “vertices” are the points of triple intersections of the 3-spheres
0B(y;), 0B(y:), 0B(u1).

e The “2-faces” are the connected components of the double inter-
sections of the 3-spheres 0B(y;), 0B(yi).

e The “3-faces” are the connected components of the complements

0B (y;) \ Uiz B(y:)-

We declare each “3-face” a boundary reflector of the orbifold O. The
dihedral angles between the balls B; define the dihedral angles between
the boundary reflectors in O. Since the restriction h|M \ L is a local
homeomorphism, this construction defines a Mdbius orbifold O. The
mapping h|Xo is the projection of the developing mapping h : O — S*
of this Mobius orbifold. Let O® denote the orbifold with boundary
O\ M*; let O’ be the closed orbifold obtained by attaching 4-disk D*
to O® along the boundary sphere S3.

We next convert back to the smooth category. It is clear from the
construction that the orbifold O is obtained by (smooth) gluing of the
manifold with boundary M \ B and the orbifold with boundary O°.
Hence O is diffeomorphic to the connected sum of the manifold M with
the orbifold O’.
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It remains to construct a finite manifold covering M over the orbifold
O, so that M \ B lifts homeomorphically to M:; the construction is
analogous to the one used by M. Davis in [3]. The universal cover O is
a manifold since it admits a (locally homeomorphic) developing mapping
to S%. The fundamental group 71(O) is the free product 7 (M) *m(Q).
We have holonomy homomorphism

¢:m(0) =G,
the subgroup 71 (M) is contained in the kernel of this homomorphism;
by construction, the kernel of ¢ acts freely on O. The Coxeter group
G is virtually torsion-free, let § : G — A be a homomorphism onto a
finite group A, so that Ker(0) is torsion-free and orientation-preserving.
Then the kernel of the homomorphism ¢ = 6o ¢ : m(0) — A is a
finite index subgroup of 7m1(0), which contains m (M) and still acts
freely on O. Let M — O denote the finite orbifold cover corresponding
to the subgroup Ker(¢)). Then M is a smooth oriented conformally flat
manifold, the submanifold M* lifts diffeomorphically to M*® C M. Thus
the connected sum decomposition O = M#0O’ also lifts to M , so that

the latter manifold is diffeomorphic to the connected sum of M and a
4-manifold N. q.e.d.

We observe that the proof of Theorem 1.1 can be modified to prove
the following:

Theorem 4.2. Suppose that M is a closed smooth 4-manifold whose
orientable 2-fold cover is Spin. Then there exists a closed smooth 4-
manifold N so that M = M#N admits a conformally-FEuclidean Rie-
manmnian metric.

Proof. The difference with Theorem 1.1 is that M can be nonori-
entable. Let M — M be the orientable double cover with the deck-
transformation group D = Z/2. Then all Stiefel-Whitney classes of
M are trivial. As before, let p € M, {p1,p2} be the preimage of {p}
in M. Consider a Euclidean reflection 7 in R* and an epimorphism
0 : D — (7). Then, arguing as in the proof of Hirsch’s theorem [6, The-
orem 4.7], one gets a #-equivariant immersion f M \ {p1,p2} — R
This yields a D-invariant flat conformal structure on M \ {p1, p2} via
pullback of the flat conformal structure from R*. Let B; U By be a D-
invariant disjoint union of open balls around the points pq, p2. Then the
rest of the proof of Theorem 1.1 goes through: replace the ball By with
a manifold with boundary N; so that the flat conformal structure on
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M \ (B1UB3) extends over Nj. Then glue a copy of N; along the bound-

ary of By in D-invariant fashion. Note that the quotient of the manifold

P := (M\ (B1UB3)) U (N1;UN3) by the group D is diffeomorphic to

a closed manifold M#N, where N is obtained from Nj by attaching

the 4-ball along the boundary. Finally, project the D-invariant Mébius

structure on P to a Mdobius structure on the manifold M#N.  q.e.d.
As a corollary of Theorem 1.1 we get:

Corollary 4.3. Let 1 be a finitely-presented group. Then there exists
a 3-dimensional complex manifold Z which admits a complex-projective
structure, so that the fundamental group of Z splits as T' x I".

Proof. Our argument is similar to the one used to construct 3-dimen-
sional complex manifolds with the prescribed finitely-presented funda-
mental group. We first construct a smooth closed oriented 4-dimensional
spin manifold M with the fundamental group I'. This can be done for
instance as follows: let (z1,...,2,|R1,...,Ry) be a presentation of T'.
Consider a 4-manifold X which is the connected sum of n copies of
53 x S'. This manifold is clearly spin. Pick a collection of disjoint
embedded smooth loops 71, ..., in X, which represent the conjugacy
classes of the words Ry,..., Ry in the free group m(X). Consider the
pair (%, ), where 7y is an embedded smooth loop in S%. For each i pick
a diffeomorphism f; between a tubular neighborhood T'(7) of v in S*
and a tubular neighborhood T'(;) of 7; in X. We can choose f; so that
it matches the spin structures of T'(y) and T'(+;). Now, attach n copies
of 84\ T(v) to X \ U;T(;) via the diffeomorphisms f;. The result is a
smooth spin 4-manifold M with the fundamental group T'.

Next, by Theorem 1.1 there exists a smooth 4-manifold N (with the
fundamental group I") such that M = M#N admits a conformally-
Euclidean Riemannian metric. Applying the twistor construction to the
manifold M we get a complex 3-manifold Z which is an $2-bundle over
M and the flat conformal structure on M lifts to a complex-projective

structure on Z, see [1]. Clearly, m(Z) = m (M) =T «T". q.e.d.

Remark 4.4. We refer the reader to the papers [12], [9], [14] for fur-
ther discussion of complex-projective structures on higher-dimensional
manifolds.
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