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THE HILBERT COMPACTIFICATION OF THE
UNIVERSAL MODULI SPACE OF SEMISTABLE
VECTOR BUNDLES OVER SMOOTH CURVES

Alexander Schmitt

Abstract

We construct the Hilbert compactification of the universal mod-
uli space of semistable vector bundles over smooth curves. The
Hilbert compactification is the GIT quotient of some open part of
an appropriate Hilbert scheme of curves in a Graßmannian. It has
all the properties asked for by Teixidor.

Introduction

For every smooth curve C and integers χ and r > 0, one has the pro-
jective moduli space U(C;χ, r) of semistable vector bundles E of rank
r and Euler characteristic χ(E) = χ. An automorphism σ of C acts on
U(C;χ, r) via [E ] �−→ [σ∗E ]. Let Mg be the moduli space of smooth
curves of genus g. It is possible to construct a universal moduli space
U(g;χ, r) −→ Mg, such that the fibre over [C] is U(C;χ, r)/Aut(C).
This leads to the problem of compactifying U(g;χ, r) over Mg, the mod-
uli space of stable curves of genus g. There are two natural approaches
to this [19]: first, given a stable curve C of genus g, one can look at
torsion-free sheaves E of uniform rank r on C with Euler characteristic
χ(E) = χ which are semistable w.r.t. the canonical polarization. These
objects form again a projective moduli space U(C;χ, r). Pandharipande
[14] has constructed a projective moduli space U(g;χ, r) −→ Mg, such
that the fibre over a stable curve [C] is U(C;χ, r)/Aut(C). Second, for
a stable curve C, instead of looking at torsion-free sheaves on C, one
can look at vector bundles on semistable models of C. This viewpoint
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has advantages for certain degeneration arguments. As an approach to
the above problem, it has been formalized by Gieseker [6] and further
studied by Gieseker and Morrison [7], Nagaraj and Seshadri [12], Teix-
idor i Bigas [19], Kausz ([8],[9]), and the author [16]. It was also used
by Caporaso [2] to solve the problem for r = 1. Without loss of gener-
ality, we may assume that, for every smooth curve of genus g and every
semistable vector bundle E on C of rank r with χ(E) = χ, E is globally
generated, H1(E) = 0, and the evaluation map ev : H0(E) ⊗ OC −→ E
gives rise to a closed embedding C ↪→ Gr(H0(E), r) into the Graßman-
nian of r-dimensional quotients of H0(E). Thus, we fix a vector space
V χ of dimension χ, define G := Gr(V χ, r), and look at H(g;χ, r), the
closure of the Hilbert scheme of smooth curves in G with Hilbert poly-
nomial P (m) = d · m + (1 − g) in the whole Hilbert scheme. Here,
χ = d + r(1 − g) and G is polarized by OG(1), the determinant of
the universal quotient bundle. Note that we have a natural action of
SL(V χ) on H(g;χ, r). Our candidate for the Hilbert compactification
is, therefore, HC(g;χ, r) := H(g;χ, r)//SL(V χ). Before we can form the
GIT-quotient, we have, however, to find appropriate linearized ample
line bundles on H(g;χ, r). First, there are some obvious ones. For this,
let C ⊂ G×H(g;χ, r) be the universal curve. For every natural number
m, we have, on G × H(g;χ, r), the exact sequence

0 −→ IC ⊗ π∗GOG(m) −→ π∗GOG(m) −→ (
π∗GOG(m)

)
|C −→ 0.

For large m, πH(g;χ,r)∗ of this sequence leads to a surjective homomor-
phism of vector bundles

ΨH(g;χ,r) : SmV χ ⊗OH(g;χ,r) −→ Em := πH(g;χ,r)∗
((
π∗GOG(m)

)
|C
)
.

The rank of Em is P (m), and ∧P (m)ΨH(g;χ,r) yields a closed immersion

H(g;χ, r) ↪→ P
(P (m)∧

SmV χ
)

which is equivariant w.r.t. the SL(V χ)-actions. Let Lm := Lm(g;χ, r) :=
det(Em) be the pullback of O(1). Then, we can define HCm(g;χ, r) :=
H//Lm SL(V χ). This, space will be, however, only useful, if we can settle
the following properties:

1) If [C] ∈ H(g;χ, r) is a smooth curve and qC : V χ⊗OC −→ E is the
pullback of the universal quotient, then [C] is (semi)stable w.r.t.
the linearization in Lm, if and only if E is a (semi)stable vector
bundle.
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2) If [C] ∈ H(g;χ, r) is semistable w.r.t. the linearization in Lm and
qC : V χ⊗OC −→ E is the pullback of the universal quotient, then
C is a semistable curve and V χ −→ H0(E) is an isomorphism.

Points (1) and (2) have been settled in the rank two case by Gieseker
and Morrison [7], and (1) in general by the author [16]. Unfortunately,
nothing is known about (2) in general, and, even if it were true, the com-
putations of the correct notion of semistability would still be extremely
difficult (cf. [19]). The way out is to adapt a strategy due to Nagaraj
and Seshadri [12]. In our setting, it is described as follows: for every
stable curve C, let Q(C;χ, r) be the quot scheme parameterizing quo-
tients V χ⊗OC −→ E where E is a coherent sheaf of uniform rank r with
Euler characteristic χ(E) = χ. From Pandharipande’s construction, we
get a universal quot scheme Q(g;χ, r) −→ Mg, such that the fibre over
[C] is just Q(C;χ, r)/Aut(C), and a natural SL(V χ)-linearized ample
line bundle N on Q(g;χ, r). Next, let H0(g;χ, r) ⊂ H(g;χ, r) be the
open part corresponding to semistable curves with the following prop-
erty: if π : C −→ C ′ is the projection onto the stable model and if
qC : V χ⊗OC −→ E is the pullback of the universal quotient on G, then
π∗(qC) : V χ ⊗ OC′ −→ π∗(E) is surjective and π∗(E) is a torsion-free
sheaf which is semistable w.r.t. the canonical polarization. There is a
natural map H0(g;χ, r) −→ Q (g;χ, r), landing in the N-semistable lo-
cus. Let Ĥ(g;χ, r) ⊂ H(g;χ, r) × Q(g;χ, r) be the closure of the graph
of the above morphism. This is an SL(V χ)-invariant subscheme. For
a� 0, the semistable points w.r.t. the linearization in

La,m := La,m(g;χ, r) :=
(
π∗H(g;χ,r)Lm(g;χ, r) ⊗ π∗

Q(g;χ,r)
N⊗a

)
|Ĥ(g;χ,r)

will lie in the set of the preimages of the points in Q(g;χ, r) which are
semistable w.r.t. the linearization in N. Note that, for every l ≥ 0, we
can perform the same constructions w.r.t. g, r, and χl := χ+l·r·(2g−2).
The result of this note is:

Main Theorem. There exist an l0 and for every l ≥ l0 an m(l),
such that for all l ≥ l0 and m ≥ m(l) the following properties hold true:

i) All points in Ĥ(g;χl, r) which are semistable w.r.t. the lineariza-
tion in La,m(g;χl, r) for all a� 0 lie in the graph of the morphism
H0(g;χl, r) −→ Q(g;χl, r).

ii) Let [C] be contained in the graph of the morphism H0(g;χl, r) −→
Q(g;χl, r), and let qC : V χl ⊗ OC −→ E be the pullback of the
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universal quotient. Then, [C] is (semi)stable w.r.t. the lineariza-
tion in La,m(g;χl, r) for all a� 0, if and only if (C, E ⊗ ω⊗−l

C ) is
H-(semi)stable in the sense of Definition 2.2.10.

Remark.

i) If E is a vector bundle of rank r on the semistable curve C and if
π : C −→ C ′ is the map onto the stable model, then the condition
that π∗(E) be torsion-free is a precise condition on the restriction
of E to any chain R of rational curves attached at only two points,
say p1 and p2. Namely, there must not exist a nonzero section of
E|R vanishing in both p1 and p2. This implies, for example, that
R has at most r components and that E|R is strictly standard, i.e.,
for any component Ri ∼= P1 of R, E|Ri

∼= O⊕εi
Ri

⊕ORi(1)⊕(r−εi) with
0 ≤ εi < r, i = 1, . . . , s. For the detailed discussion, we refer the
reader to [12].

ii) The condition to be semistable with respect to the linearization
in La,m(g;χl, r) for all a � 0 is explained as follows: let G be
a reductive algebraic group, ρi : G −→ GL(Wi), i = 1, 2, two
finite-dimensional representations, and Ĥ ⊂ P(W1) × P(W2) a G-
invariant closed subscheme. Denote by La,m the restriction of
OP(W1)×P(W2)(m, a) to Ĥ and by Ĥ

(s)s
a,m the set of points which are

(semi)stable w.r.t. the linearization in La,m. Then, there is an ε∞,
such that

π−1
2

(
P(W2)s

) ⊂ Ĥ
(s)s
a′,m′ = Ĥ(s)s

a,m ⊂ π−1
2

(
P(W2)ss

)
whenever both m′/a′ and m/a are smaller than ε∞. This follows
from the corresponding assertion for C∗-actions and the master
space construction of Thaddeus ([20], [13]).

iii) The intrinsically defined concept of H-(semi)stability has the fol-
lowing properties:
• For smooth curves, it agrees with Mumford-(semi)stability.
• If (C, E ⊗ ω⊗−l

C ) is H-semistable and π : C −→ C ′ is the mor-
phism to the stable model, then π∗(E ⊗ ω⊗−l

C ) is semistable
w.r.t. the canonical polarization.

• A pair (C, E⊗ω⊗−l
C ) with C a semistable curve and π∗(E⊗ω⊗−l

C )
a stable sheaf, π : C −→ C ′ being the morphism to the stable
model, is H-stable.
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Therefore, HC(g;χ, r) := Ĥ(g;χl, r)//La,m(g;χl,r) SL(V χl) with l ≥ l0,
m ≥ m(l), and a� 0 is a well-defined moduli space which compactifies
U(g;χ, r) over Mg and, furthermore, maps to U(g;χ, r).

We remark that the authors of [12] were well aware of the fact that
their approach might be used in this generality. The formulation of an
intrinsic semistability concept for vector bundles on semistable curves,
however, seems to be new.

The final section of this paper is devoted to the study of the geometry
of the Hilbert compactification and its map to the moduli space of stable
curves.

Notation. Let C be a semistable curve. Then, OC(1) will stand for
the canonical sheaf ωC , although this line bundle will be ample if and
only if C is stable. Likewise, if E is a coherent sheaf on C, we write
P (E) for the polynomial l �−→ χ(E(l)). A scheme will be a scheme of
finite type over the field of complex numbers.

Acknowledgments. The author wishes to thank the referee for some
valuable suggestions and Professor Newstead for pointing out reference
[1] to him.

1. Preliminaries

1.1. Suitable linearizations. Let ρi : G −→ GL(Wi), i = 1, 2, two
representations of a reductive group G. This yields an action of G
on P(W1) × P(W2). Assume X is a G-invariant subscheme, and let
π : X −→ P(W2) be the induced morphism. Finally, let Ln1,n2 be the
G-linearized ample line bundle OP(W1)×P(W2)(n1, n2)|X. Define X

(s)s
n1,n2 as

the set of points in X which are (semi)stable w.r.t. the linearization in
Ln1,n2 . Likewise, P(W2)(s)s is defined. The following is well-known and
easy to prove.

Proposition 1.1.1. If n2/n1 is large enough, then

π−1
(
P(W2)s

) ⊂ Xs
n1,n2

⊂ Xss
n1,n2

⊂ π−1
(
P(W2)ss

)
.

Remark 1.1.2. Let n2/n1 be so large that the conclusion of Propo-
sition 1.1.1 holds. Then, a point x ∈ X will be (semi)stable w.r.t. the
linearization in Ln1,n2 , if and only if π(x) is semistable and for every
one-parameter subgroup λ : C∗ −→ G with µOP(W2)(1)(λ, π(x)) = 0, one
has µOP(W1)(1)(λ, π

′(x)) (≥) 0, π′ : X −→ P(W1) being the induced mor-
phism.
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1.2. Pandharipande’s moduli space; the universal quot scheme.
Let C be a stable curve with irreducible components C1, ..., Cc, and
F a coherent sheaf on C. The tuple r(F) := (rkF|C1

, . . . , rkF|Cc
) is

called the multirank of F . We say that F has uniform rank r on C,
if r(F) = (r, . . . , r). Finally, set eι := degωC|Cι

, ι = 1, . . . , c. Then,
the total rank of F is the quantity trkF :=

∑c
ι=1 eι · rkF|Cι

. Now, a
coherent OC-module E is called (semi)stable, if it is torsion-free and for
every subsheaf 0 � F � E , the inequality

χ(F)
trkF (≤)

χ(E)
trk E

is satisfied. One also introduces the notions of S-equivalence and polysta-
bility. Pandharipande studies the functor U(g;χ, r) which associates to
every scheme S the set of equivalence classes of pairs (CS , ES), consist-
ing of a flat family π : CS −→ S of stable curves and an S-flat coherent
sheaf ES on CS such that ES|π−1(s) is a semistable sheaf of uniform rank
r and Euler characteristic χ on π−1(s) for all closed points s ∈ S.
Here, (CS , ES) and (C′

S , E ′
S) are considered equivalent, if there are an

S-isomorphism ψ : CS −→ C′
S and a line bundle LS on S such that

ES ∼= ψ∗E ′
S ⊗ π∗LS . In [14], a coarse moduli space U(g;χ, r) for the

functor U(g;χ, r) is constructed.
We now briefly review the construction, because we need some of the

details. If C is a stable curve, then OC(10) defines a closed embedding
C ↪→ PN , N := 10(2g−2)−g. Let Hg be the Hilbert scheme of curves in
PN with the respective Hilbert polynomial. There is a natural left action
of SL(N+1) on Hg together with a linearization in an ample line bundle
LHg . As Gieseker [5] has shown, the GIT quotient Hg//LHg

SL(N + 1)
yields Mg.

There is a constant l0, such that for every l ≥ l0, every stable curve C
of genus g, and every (semi)stable sheaf E of uniform rank r and Euler
characteristic χ on C, one has:

• E(10 · l) is globally generated.
• H1(E(10 · l)) = 0.
• After identification of H0(E(10 · l)) with a previously fixed vector

space V χ10·l of dimension χ10·l = χ+ 10 · l · r · (2g − 2), the point
ev : V χ10·l ⊗ OC −→ E(10 · l) in the quot scheme Q(C;χ10·l, r) is
(semi)stable.

Let Cg ↪→ Hg×PN be the universal curve. We then have a relative quot
scheme ρ : Q = Q(g;χ10·l, r) −→ Hg, such that the fibre over C ∈ Hg
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is the quot scheme Q(C;χ10·l, r) of quotients E of V χ10·l ⊗ OC with
χ(E ⊗OC

OPN
(l)) = χ + 10 · l · r · (2g − 2) for all l. The natural action

of SL(V χ10·l) × SL(N + 1) on Q is linearized in a suitable ρ-ample line
bundle LQ. For any a > 0, define La := LQ ⊗ ρ∗L⊗a

Hg
. For large a,

we have, by Proposition 1.1.1, Qss
La

⊂ ρ−1(Hss
g,LHg

). Then, U(g;χ, r) :=

Q//La

(
SL(V χ10·l) × SL(N + 1)

)
.

Now, we can form this GIT quotient in two steps [13]: first, we di-
vide by the SL(N + 1)-action and then by the SL(V χ10·l)-action. As
Hs
g,LHg

= Hss
g,LHg

(more precisely, this holds on an appropriate closed
subscheme, see [5], Proposition 2.0.0), 1.1.1 shows that a point (C, qC) ∈
Q is SL(N + 1)-semistable w.r.t. the linearization in LHg , if and only
if C is stable, i.e., there is no condition on the quotient qC . Define
Q(g;χ10·l, r) := Q//La SL(N + 1). Let Q(g;χ10·l, r) be the functor
which assigns to a scheme S the set of equivalence classes of pairs
(CS , qS : V χ10·l ⊗ OCs −→ ES) consisting of a flat family π : CS −→ S
of stable curves and a quotient qS onto an S-flat sheaf ES , such that
χ(ES|π−1(s)) = χ10·l for every closed point s ∈ S. Two families (CS , qS)
and (C′

S , q
′
S) will be considered equivalent, if there are an S-isomorphism

ψ : CS −→ C′
S and an isomorphism ϕS : ES −→ ψ∗E ′

S with ψ∗q′S =
ϕS◦qS . The space Q(g;χ10·l, r) obviously is the coarse moduli scheme for
the functor Q(g;χ10·l, r). In particular, the fibre over [C] ∈ Mg identi-
fies with Q(C;χ10·l, r)/Aut(C). As explained in the first section of [13],
there is an induced SL(V χ10·l)-action on Q(g;χ10·l, r) and some multiple
of La descends to an SL(V χ10·l)-linearized ample line bundle N. More-
over, the points in Q(g;χ10·l, r) which are SL(V χ10·l)-(semi)stable for the
given linearization are just the images of the (SL(V χ10·l)× SL(N + 1))-
(semi)stable points. Let us note the following elementary fact:

Lemma 1.2.1. Let C be a stable curve and qC : V χ10·l ⊗ OC −→ E
a quotient with χ(E) = χ10·l. Let h ∈ Hg be a point such that the
fibre of the universal curve over h is isomorphic to C. Then, for any
one-parameter subgroup λ : C∗ −→ SL(V χ10·l),

µLa

(
λ, (h, qC)

)
(≥) 0 ⇐⇒ µN

(
λ, [C, qC ]

)
(≥) 0.

Proof. The quotient morphism Q
SL(N+1)−ss
La

−→ Q(g;χ10·l, r) yields
the SL(V χ10·l)-equivariant and finite morphism

Qh := ρ−1(h) −→ Q(C;χ10·l, r)/Aut(C).

This immediately implies the assertion. q.e.d.
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1.3. Auxiliary results from Nagaraj and Seshadri. We here re-
call some results of the paper [12]. Additional information may be
found there. We also point out that [12] works with semistable curves
the stable model of which is an irreducible curve with exactly one node.
As one easily check, this assumption is not essential.

Proposition 1.3.1.
i) Let R be a chain of projective lines, and F a globally generated

torsion-free sheaf on R. Then, for any component Rι ∼= P1, the
restriction map H0(R,F) −→ H0(Rι,F|Rι

) is surjective. More-
over, H1(R,F) = 0.

ii) Let π : C ′ −→ C be a morphism between semistable curves which
contracts only some chains of projective lines. Suppose E is a
vector bundle on C ′ the restriction of which to every projective
line contracted by π has nonnegative degree. In that situation:
1) π∗OC′ = OC .
2) Riπ∗(E) = 0 for i > 0. In particular, Hj(C ′, E) = Hj(C, π∗(E))

for all j.
3) Let Rj be a chain of projective lines which is contracted by π

and attached at the points p1 and p2. Let C̃ be the closure
of C ′ \ Rj. If H1(C̃, Ip1,p2E|C̃) = H1(C ′, IRjE) = 0, then the
restriction map H0(C ′, E) −→ H0(Rj , E|Rj ) is surjective, so
that, by i), the restriction map H0(C ′, E) −→ H0(Rjι , E|Rj

ι
) to

any component Rjι of Rj is surjective, too.

Proof. Part ii) is Proposition 3 in [12].
Ad i): The restriction of F to a component Rι is of the form

OP1(a1) ⊕ · · · ⊕ OP1(arkF|Rι
) ⊕ Torsion

with ai ≥ 0, i = 1, . . . , rkF|Rι
. Therefore, H1(Rι,F|Rι

(−1)) = 0. By
successively removing components which are attached at one point only,
the result becomes an easy induction on the length of R. q.e.d.

Remark 1.3.2. In the situation of Proposition 1.3.1 ii), there are
precise conditions for π∗(E) to be torsion-free ([12], Proposition 5). In
particular, any chain of rational curves contracted by π can have length
at most rk E . This already bounds the family of semistable curves which
might appear in our investigations.

Proposition 1.3.3. Let C be a semistable curve containing the dis-
joint chains R1, . . . , Rc of projective lines which are attached at two



THE HILBERT COMPACTIFICATION 177

points only, define C̃j as the closure of C \ Rj, and let pj1, p
j
2 be the

points where Rj is attached, j = 1, . . . , c. Also set R :=
⋃c
j=1R

j and
define C̃ as the closure of C \ R. Suppose E is a vector bundle on C
which satisfies the following properties:

1) The restriction E|Rj
ι

of E to any component of Rj has positive
degree, j = 1, . . . , c.

2) H1
(
C̃j , Ipj

1,p
j
2
E|C̃j

)
= 0, j = 1, . . . , c.

3) The homomorphism

H0
(
C̃j , Ipj

1,p
j
2
E|C̃j

)
−→

(
I
pj
1,p

j
2
E|C̃j

)/(I2
pj
1,p

j
2

E|C̃j

)
is surjective, j = 1, . . . , c.

4) For any point x ∈ C̃ \ {pj1, pj2, j = 1, . . . , c}, the homomorphism

H0
(
C, IRE

) −→ E|C̃
/(I2

xE|C̃
)

is surjective.
5) For any two points x1 �= x2 ∈ C̃ \ {pj1, pj2, j = 1, . . . , c}, the

homomorphism

H0
(
C, IRE

) −→ E|{x1} ⊕ E|{x2}

is surjective.

Then, the evaluation map ev : H0(C, E) ⊗ OC −→ E yields a closed
embedding

C ↪→ Gr
(
H0(C, E), rk E).

Proof. This is proved like Proposition 4 in [12]. q.e.d.

Remark 1.3.4. Note that the conditions (2)–(5) will be satisfied for
E(l), l � 0.

Proposition 1.3.5 ([12], Lemma 4). Suppose we are given a com-
mutative diagram

Z
π−−−→ W

p

� �q
T T

in which p and q are projective, p is flat, and π∗OZ = OW . Assume
that EZ is a vector bundle on Z, such that, for every point t ∈ T , we
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have Riπt∗(EZ|p−1(t)) = 0 for all i > 0, πt : p−1(t) −→ q−1(t) being the
induced morphism. Then,

π∗(EZ)|q−1(t) = πt∗
(EZ|p−1(t)

)
, for all closed points t ∈ T .

Remark 1.3.6. Let OW (1) be a q-ample line bundle. Assume

H i
(
p−1(t), (EZ⊗π∗OW (n))|p−1(t)

)
= 0, for n� 0, i > 0, and all t ∈ T .

Then, q∗
(
(π∗EZ)(n)

)
= p∗

(EZ ⊗ π∗OW (n)
)

is locally free for all n� 0,
whence π∗EZ is T -flat.

1.4. Modules over Discrete Valuation Rings. Let (R, v : R −→ Z)
be a discrete valuation ring with uniformizing parameter t, i.e., v(t) = 1.
A finitely generated module M over R will be called almost torsion-free,
if its torsion submodule is annihilated by t. Likewise, a submodule M ′
of a free moduleM of finite rank is called almost saturated, if the module
M/M ′ is almost torsion-free.

Proposition 1.4.1. Let M = R⊕r be a free module of rank r and

(∗) 0 � M1 � M2 � · · · � Mn � M

a chain of almost saturated submodules. Then, there is a basis e1, . . . , er
for M , such that Mi is generated by ρi1e1, . . . , ρ

i
rkMi

erkMi
for appropriate

elements ρij ∈ R with v(ρij) ∈ {0, 1}, j = 1, . . . , rkMi, i = 1, . . . , n.

Note that we do not require rk(Mi) > rk(Mi−1), i = 2, . . . , n.

Proof. We carry out an induction over r, the case r = 1 being clear.
For the first submodule M1, we may find a basis e∗1, . . . , e∗r with the
asserted property [18], 10.5. Take e1 := e∗1. Then,

(∗∗) 0 � M̃1 := M1/(M1 ∩ 〈e1〉) � · · · � M̃n := Mn/(Mn ∩ 〈e1〉) �

� M̃ := M/〈e1〉
is a filtration of the free module M/〈e1〉 of rank r−1. We claim that M̃i

is an almost saturated submodule of M̃ , i = 1, . . . , n. If e1 ∈Mi, this is
just the isomorphism theorem. Otherwise, te1 ∈ Mi and M ′

i := M̃/M̃i

is a quotient of M ′′
i := M/Mi = (M/〈te1〉)/M̃i. As M ′

i and M ′′
i have

the same rank, no element of the free part of M ′′
i can map to the torsion

of M ′
i , i.e., the torsion of M ′

i is a quotient of the torsion of M ′′
i which

implies the claim.
Therefore, we can apply the induction hypothesis to (∗∗). Let e′2, ..., e′r

be any lift of the appropriate basis e2, . . . , er for M̃ . Suppose that we
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have already found a basis of the form e1, . . . , erkMi
, e′rkMi+1, . . . , e

′
r, so

that the assertion holds for M1, . . . ,Mi and e2, . . . , erkMi
also lift e2, . . . ,

erkMi
. Then, Mi+1 is spanned w.r.t. that basis by vectors of the form

vj =



∗j
0
...
0
qj
0
...
0


with qj , ∗j ∈ R, v(qj) ∈ {0, 1}, and qj at the j-th place, j = 1, . . . ,
rkMi+1. If v(q1) ≤ v(∗j), we may clearly set ∗j = 0. If v(q1) > v(∗j),
i.e., v(q1) = 1 and v(∗j) = 0, and also v(qj) = 0, we set ej := vj . In
fact, this case can only occur, if j > rkMi or in all the Mι with ι ≤ i,
t · ej was the respective basis vector. But then, the result still holds for
M1, . . . ,Mi and the basis e1, . . . , ej−1, vj , ej+1, . . . , erkMi

, e′rkMi+1, ..., e
′
r.

Finally, the case v(q1) = 1, v(∗j) = 0, and v(qj) = 1 cannot occur.
Indeed, in that case, the class of the vector (0, . . . , t, . . . , 0)T , t at the
j-th place, in M/Mi+1 is nonzero, i.e., the class of (0, . . . , 1, . . . , 0)T in
M/Mi+1 is not annihilated by t, a contradiction. q.e.d.

2. Proof of the main theorem

2.1. Construction of the Hilbert compactification. The set of
pairs (ν : C̃ −→ C, ν∗E), ν being a partial normalization of the stable
curve C and E a semistable sheaf of rank r with Euler characteristic χ
is clearly bounded. Therefore, we may find an l1, such that, for every
l ≥ l1, the following assumptions are met:

Assumption 2.1.1. For every stable curve C, every partial nor-
malization ν : C̃ −→ C, resolving the nodes, say, N1, . . . , Nκ, every
semistable sheaf E on C, any two points p1, p2 ∈ C̃ mapping to a node
of C, and Z := ν−1

({N1, . . . , Nκ}
)
, one has:

1) H1(C̃, Ip1,p2ν∗E(l)) = 0.
2) The homomorphism

H0
(
C̃, Ip1,p2ν∗E(l)

) −→ (Ip1,p2ν∗E(l)
)
/
(I2
p1,p2ν

∗E(l)
)
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is surjective.
3) For every x ∈ ν−1

(
C \ {N1, . . . , Nκ}

)
, the homomorphism

H0
(
C̃, IZν∗E(l)

) −→ ν∗E(l)/
(I2
xν

∗E(l)
)

is surjective.
4) For any two points x1 �= x2 ∈ ν−1(C \ {N1, . . . , Nκ}), the homo-

morphism

H0
(
C̃, IZν∗E(l)

) −→ ν∗E(l)|{x1} ⊕ ν∗E(l)|{x2}
is surjective.

In the following, l is assumed to be at least l1. Let H := H(g;χl, r)
be as in the introduction, and let CH ↪→ H × G be the universal curve.
Let H̃ be the open subset of points h for which Ch := CH ×H {h} is
semistable. Let q

H̃
: V χl ⊗OC

H̃
−→ E

H̃
be the pullback of the universal

quotient. Then, there is a flat family q : C∗
H̃

−→ H̃ of stable curves

together with an H̃-morphism π : C
H̃
−→ C∗

H̃
, such that π∗OC

H̃
= OC∗

H̃

and π is fibrewise the contraction onto the stable model. By 1.3.1 ii)
(2), we are in the position to apply Proposition 1.3.5. Moreover, we
see that the assumptions of Remark 1.3.6 are satisfied. We get the
homomorphism

π∗(qH̃) : V χl ⊗OC∗
H̃
−→ π∗EH̃

of H̃-flat sheaves. Let H0 be the open set of points h for which:
• (

π∗EH̃

)
|q−1(h)

is a semistable sheaf.
• π∗

(
q
H̃

)
|q−1(h)

is surjective.
• H0

(
π∗(qH̃)|q−1(h)

)
is an isomorphism.

Set C∗
H0 := C∗

H̃
×

H̃
H0. Then, the quotient family

πH0 := π∗(qH̃)|C∗
H0

: V χl ⊗OC∗
H0

−→ EH0 := (π∗EH̃
)|C∗

H0

defines a morphism H0 −→ Q(g;χl, r). Let X ⊂ H × Q(g;χl, r) be
the closure of the graph of the above morphism. Let La,m be as in
the introduction with a so large, that the semistable points in X lie in
the preimage of the points in Q(g;χl, r) which are semistable w.r.t. the
linearization in N.

Theorem 2.1.2. Let x ∈ X be a point which is semistable w.r.t. the
linearization in La,m, a� 0. Then, x is contained in the graph Γ of the
morphism H0 −→ Q(g;χl, r).
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Proof. By construction of H and X, the set of (semi)stable points y ∈
X corresponding to smooth curves is dense. Let y represent the smooth
curve C. By the result of [16], y is (semi)stable (w.r.t. the linearization
in La,m for all a� 0), if and only if V χl −→ H0(E(l)) is an isomorphism
and E is a (semi)stable bundle of rank r with Euler characteristic χ,
E := EH0|C . Hence, we may find a smooth curve K, a point k ∈ K,
and a morphism κ : K −→ X with κ(k) = x, such that κ(K \ {k})
is contained in the locus of pairs (C, qC : V χl ⊗ OC −→ E(l)) ∈ Γ for
which C is a smooth curve and E is a stable vector bundle. We have an
induced morphism κ : K −→ Q(g;χl, r) which lands, by assumption, in
the semistable locus. Without loss of generality, we may assume that
this morphism is induced by a family (C∗

K , qK : V χl ⊗ OC∗
K

−→ EC∗
K

).
The surface σ : S := C∗

K −→ K is smooth outside the nodes of σ−1(k)
and has singularities of type An in these nodes. We may resolve these
singularities in the usual way in order to get a flat family σ̃ : S̃ = C̃K −→
K of semistable curves with S̃ smooth. Let q̃K be the pullback of qK to
S̃. Then, q̃K defines a rational map S̃ −→ G which is defined outside
some nodes of σ̃−1(k). By blowing up these nodes and points which are
infinitely near to them, we get a new flat family σ′ : S′ = C′

K −→ K

and q′K : V χl ⊗OS′ −→ E ′
K where E ′

K is locally free. Set C ′
k := σ′−1(k).

Let C̃ be the closure of C ′
k with all chains of rational curves attached at

only two points removed. Then, ν : C̃ −→ C is a partial normalization
of C. By construction, the morphisms C̃ −→ G induced by q′

K|C̃ and

ν∗(qK|σ−1(k)) agree, whence these quotients are equivalent. Now, our
Assumptions 2.1.1 and Proposition 1.3.3 imply that the image of C ′

k
under the map S′ −→ G is a semistable curve C ′′

k , and π : C ′
k −→ C ′′

k
just contracts all rational chains on which E ′

K is trivial. Next, look at
the commutative diagram

C̃ C̃
ν−−−→ C∥∥∥ ⊂

� ∥∥∥
C̃

⊂−−−→ C ′
k

ν′−−−→ C∥∥∥ π

� ∥∥∥
C̃

⊂−−−→ C ′′
k

ν′′−−−→ C.
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The quotients π∗
(
q′
K|σ′−1(k)

)
|C̃

and ν∗(qK|σ−1(k)) are also equivalent.

Thus, there is an isomorphism α :
(
π∗E ′

K|σ′−1(k)

)
|C̃

−→ ν∗
(EK|σ−1(k)

)
,

making the following diagram commute:

V χl ⊗OC′′
k

π∗
(
q′
K|σ′−1(k)

)
−−−−−−−−−−→ π∗E ′

K|σ′−1(k)

restriction to C̃
� �restriction to C̃

V χl ⊗O
C̃

π∗
(
q′
K|σ′−1(k)

)
|C̃−−−−−−−−−−−→

(
π∗E ′

K|σ′−1(k)

)
|C̃∥∥∥ �α

V χl ⊗O
C̃

ν∗
(
qK|σ−1(k)

)
−−−−−−−−−→ ν∗EK|σ−1(k).

This latter diagram finally provides us, via projection onto C, with the
following commutative diagram:

V χl ⊗OC

ν′′∗ π∗
(
q′
K|σ′−1(k)

)
−−−−−−−−−−−−−−−−−−−−−−−−−−→ ν ′′∗π∗E ′

K|σ′−1(k)� �
V χl ⊗ ν∗OC̃

ν∗ν∗
(
qK|σ−1(k)

)
−−−−−−−−−−−−−−−−−−−−−−−−−→ EK|σ−1(k) ⊗ ν∗OC̃

.

Furthermore, we have the commutative diagram

V χl ⊗OC

qK|σ−1(k)−−−−−−−−−→ EK|σ−1(k)� �
V χl ⊗ ν∗OC̃

ν∗ν∗
(
qK|σ−1(k)

)
−−−−−−−−−−→ EK|σ−1(k) ⊗ ν∗OC̃

in which the vertical arrows are injective. Therefore, the image of
ν ′′∗π∗E ′

K|σ′−1(k)
in the sheaf EK|σ−1(k) ⊗ ν∗OC̃

is EK|σ−1(k). The kernel
of the surjection

ν ′′∗π∗E ′
K|σ′−1(k)

−→ EK|σ−1(k)

must be zero, because both sheaves have the same Hilbert polynomial
w.r.t. OC(1).
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To conclude, the quotient q′K defines a K-morphism ϑ : C′
K −→ K×G

and we have seen:
(a) The image is a flat family of curves σ′′ : C′′

K −→ K with C ′′ as the
fibre over k.

(b) The family q′′K := ϑ∗(q′K) : V χl ⊗OC′′
K

−→ EC′′
K

:= ϑ∗EC′
K

is a flat
quotient (by Proposition 1.3.5), such that σ′′∗(q′′K) is a quotient
onto a family of semistable torsion-free coherent sheaves.

Therefore, the family C′′
K defines a morphism κ′ : K −→ Γ ⊂ X. Since

we have not altered the original family outside the point k, κ′ agrees
with the original morphism κ outside k, and, thus, everywhere, because
X is separated. This shows x = κ′(k) ∈ Γ. q.e.d.

Remark 2.1.3. One could also use the arguments presented in the
paper [12]. We have chosen the alternative way, also suggested in [12],
because it reflects more of the moduli problem we are dealing with.

Therefore, the GIT-quotient H0//La,m SL(V χl) exists as a projective
scheme over Mg. It also comes with an Mg-morphism to U(g;χ, r). The
hard task will be to give it a modular interpretation.

2.2. Analysis of semistability. Fix the data g, χ, and r, and set
χl := χ + l · r · (2g − 2). Let C be a semistable curve of genus g. De-
note by π : C −→ C ′ the contraction onto the stable model of C. Let
E be a vector bundle of uniform rank r on C with Euler characteristic
χ(E) = χ, such that E has positive degree on each rational component
and π∗(E) is torsion-free. From Proposition 1.3.3, we infer that, for
sufficiently large l, H0(E(l))⊗OC −→ E(l) will give rise to a closed em-
bedding C ↪→ G(H0(E(l)), r) and H1(E(l)) = {0}. Identifying H0(E(l))
with some fixed vector space V χl of dimension χl, we may ask whether
[C] ∈ H0(g;χl, r) is SL(V χl)-(semi)stable w.r.t. the linearization in La,m
for large a. We already know from Pandharipande’s construction and
Proposition 1.1.1 that:

(a) If π∗(E) is stable w.r.t. the canonical polarization, then [C] will be
stable.

(b) If [C] is semistable, then π∗(E) is semistable w.r.t. the canonical
polarization.

If π∗(E) is properly semistable, then there will be additional conditions
for [C] to be (semi)stable. We will have to analyze those conditions.
Abstractly, by Remark 1.1.2, they can be described as follows: suppose
we are given qC : V χl⊗OC −→ E(l), such thatH0(qC) is an isomorphism
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and π∗(E) is semistable w.r.t. the canonical polarization. Then, [C] will
be SL(V χl)-(semi)stable, if and only if for every one-parameter subgroup
λ : C∗ −→ SL(V χl) with µN(λ, [π∗(qC)]) = 0, one has

µLm

(
λ,∧P (m)ΨH(g;χl,r)

)
(≥)0, ΨH(g;χl,r) as in the introduction.(1)

Let us first recall when µN(λ, [π∗(qC)]) = 0 happens. For this, suppose
λ is given with respect to the basis v1, . . . , vχl

by the weight vector

(2) γ =
χl−1∑
i=1

αi
(
i− χl, . . . , i− χl︸ ︷︷ ︸

i×
, i, . . . , i︸ ︷︷ ︸

χl×

)
,

αi ∈ Q≥0, i = 1, . . . , χl − 1,

and let i1 < i2 < · · · < ik be the indices with αi > 0. Then, we get
a filtration V • : {0} =: V0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ Vk+1 := V χl with
Vj := 〈 v1, . . . , vij 〉, j = 1, . . . , k. Recall that µN(λ, [π∗(qC)]) depends
only on the pair (V •, α), α := (αi1 , . . . , αik) ([11], Section 2.2). Set

F̃j := π∗
(
qC
(
Vj ⊗OC

)
(−l)

)
, j = 1, . . . , k.

Now, from the construction of U(g;χl, r) and Lemma 1.2.1, one knows
that the equality µN(λ, [π∗(qC)]) = 0 will occur, if and only if:

• ∑k
j=1 αij

(
P (π∗(E)) trk(F̃j) − P (F̃j) trk(E)

)
= 0, i.e., each F̃j de-

stabilizes E .
• H0(π∗(qC))(Vj) = H0(F̃j(l)), j = 1, . . . , k.

Recall that the family of pairs (C,F) with C a stable curve and F a
destabilizing subsheaf of a semistable torsion-free sheaf E of uniform
rank r on C with χ(E) = r is bounded. In view of Proposition 1.3.1,
we can find an l1, such that for all l ≥ l1, the following assumptions are
verified:

Assumption 2.2.1. Let [C] ∈ H0(g;χl, r) be semistable w.r.t. the
linearization in La,m(g;χl, r) for a � 0. Denote by π : C −→ C ′ the
contraction onto the stable model, and by qC : V χl ⊗ OC −→ E the
pullback of the universal quotient. Then, π∗(E(−l)) is, by definition,
semistable and H0(π∗(qC)) is an isomorphism. For every destabilizing
subsheaf F ′ ⊂ E(−l), define

F := qC

((
H0

(
π∗(qC)

)−1(
H0(F ′(l))

))⊗OC

)
.

Note that π∗(F(−l)) = F ′. Then, we assume:
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1) For every irreducible component Cι, the restriction homomor-
phism H0(C,F) −→ H0(Cι,F|Cι

) is surjective.
2) For every irreducible component Cι which is not a rational curve

attached at only two points and on which F has positive rank,
and any two points p1 �= p2 ∈ Cι, the evaluation map

H0(Cι,F|Cι
) −→ F|Cι

⊗OC
O{p1,p2}

is surjective.
3) For every irreducible component Cι which is not a rational curve

attached at only two points and on which F has positive rank and
any point p ∈ Cι, the evaluation map

H0(Cι,F|Cι
) −→ F|Cι

⊗OC

(
mp,Cι/m

2
p,Cι

)
is surjective.

Next, we fix a maximal filtration F• : 0 =: F ′
0 � F ′

1 � F ′
2 � · · · �

F ′
k � F ′

k+1 := π∗(E) of π∗(E) by destabilizing subsheaves and a vec-
tor α := (α1, . . . , αk) of nonnegative rational numbers. Let us also fix
some l and define Vj := H0(F ′

j(l)) under the identification of V χl with
H0(π∗(E)(l)) and Fj := qC(Vj ⊗OC), j = 1, . . . , k.

Remark 2.2.2. The Fj are saturated subsheaves of E , j = 1, . . . , k.
For, if F̃j is the saturation of Fj , then F̃j(l′) will be globally gener-
ated for some l′ large enough. This is clear for points which lie on a
component on which ωC is ample. Now, let R be the disjoint union
of all maximal chains of rational curves attached at only two points,
set C∗ := C \ R, let C∗ be the closure of C∗, and define x := C

∗ \
C∗. Then, H1

(
C

∗
, IxF̃j(l′)

)
is zero for l′ � 0, i.e., H0

(
C, F̃j(l′)

) −→
H0

(
R, F̃j|R(l′)

)
is surjective. As F̃j|R(l′) is globally generated, the

claim is settled. Now, if F̃j strictly contains Fj , then h0
(
C, F̃j(l′)

)
>

h0
(
C,Fj(l′)

)
for all l′ � 0. This is, however, not possible, because the

inclusion F ′
j(l + l′) = π∗Fj(l′) ⊂ π∗F̃j(l′) must be an equality as both

sheaves have the same multi-rank and F ′
j is saturated.

Note that, given a basis v1, . . . , vχl
of V χl such that 〈 v1, . . . , vdimVj

〉 =
Vj , j = 1, . . . , k, the vector α defines a one-parameter subgroup λ of
SL(V χl), by Formula (2). By [11], 2.2, again, the values µN(λ, [π∗(qC)])
and µLm(λ, [∧P (m)ΨH(g;χl,r)]) do not depend on the choice of such a ba-
sis. It will be our task to compute the value of µLm(λ, [∧P (m)ΨH(g;χl,r)]).
In other words, we will have to find a basis for H0(C,det(E(l)⊗m)) for
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which the weight of the associated element in Hom(∧P (m)SmV,C) be-
comes minimal. Then, µLm(λ,∧P (m)ψ) will be minus that weight.

Case A). The irreducible components of C are smooth. Write
C =

⋃c
ι=1 Cι as the union of its irreducible components and set

Lm := det(E(l))⊗m. For large m, the restriction map H0(C,Lm) −→
H0(Cι,Lιm), Lιm := Lm|Cι

, will be surjective for ι = 1, . . . , c. We
may, therefore, compute first the weights of a basis for H0(Cι,Lιm),
ι = 1, . . . , c. Set Eι := E(l)|Cι

and F ι
j := Im(Fj −→ Eι), j = 1, . . . , k, ι =

1, . . . , c. We also define Ṽj := 〈 vdimVj−1+1, . . . , vdimVj
〉, j = 2, . . . , k+1,

and Ṽ1 := V1. Then

r∧
V =

⊕
(ρ1,...,ρk+1):

∑
ρj=r

Wρ1,...,ρk+1
,

Wρ1,...,ρk+1
:=

ρ1∧
Ṽ1 ⊗

ρ2∧
Ṽ2 ⊗ · · · ⊗

ρk+1∧
Ṽk+1.

The spaces Wρ are weight spaces for λ for the weight

wαι,ρ(l) := ρ1 · γ1(l) + · · · + ρk+1 · γk+1(l)

where γj(l) is the weight of a section in Ṽj , j = 1, . . . , k+1. Formula (2)
shows that the γj(l) are, in fact, polynomials in l.

Remark 2.2.3. Let N ∈ C be a node of C, i.e., a point where two
components C1 and C2 of C meet. Then, the stalk of a torsion-free
sheaf of Q at N is of the form O⊕a1

C,N ⊕ O⊕a2
C1,N

⊕ O⊕a3
C2,N

([17], Huitiême
Partie, Proposition 3). Thus, if E is a torsion-free sheaf and F is a sat-
urated subsheaf, then the image F1of F in E|C1

is an almost saturated
subsheaf, because Tors(E|C1

/F1) ∼= C⊕a3 as OC1,N -module. Therefore,
Proposition 1.4.1 allows one to determine the vanishing orders of sec-
tions coming from a weight space Wρ. This observation will be crucial
for the following subtle analysis of weights and vanishing orders.

Let us look at some specific ι ∈ {1, . . . , c}. Then, the space of minimal
weight which produces sections which do not vanish on Cι is W ι

min :=
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WrkFι
1,rkFι

2−rkFι
1,...,rk Eι−rkFι

k
. The associated weight is

w
α
ι,min(l) :=

k∑
j=1

αj
(
dimVj · rk Eι − χl · rkF ι

k

)
=

k∑
j=1

αj
(
P (F ′

j)(l) · rk Eι − P (π∗(E))(l) · rkF ι
j

)
.

Let N ι
1, . . . , N

ι
νι

be the nodes of C located on Cι, i.e., the points where
Cι meets other components of C. Note that each F ι

j is a subbundle of
Eι outside the above points. This is because Fj is a saturated subsheaf
of E , by Remark 2.2.2, j = 1, . . . , k. Let us look at a specific node
N ∈ {N ι

1, . . . , N
ι
νι
}. Let E be the fibre of E at N , and Fj the image

of F ι
j in E, j = 1, . . . , k. Set aj := dim Fj , rj := rkF ι

j , and bj :=
min{aj − aj−1, rj − rj−1}, j = 1, . . . , k + 1. A general section of W ι

min
will vanish of order oN := r−bN atN . This is an immediate consequence
of Proposition 1.4.1.

Lemma 2.2.4.

i) The sections in the subspace W ι
min generate the line bundle

det
(E|Cι

(l)(−∑νι
s=1 oNsNs)

)
.

ii) The image of W ι
min in H0

(
det(E|Cι

(l)(−∑νι
s=1 oNsNs))

)
is a very

ample linear system, unless Cι is rational and attached at only two
points and det

(E|Cι
(l)(−∑νι

s=1 oNsNs)
)

is trivial.

Proof. The assertion i) about global generation results immediately
from Assumption 2.2.1 (1). Likewise, 2.2.1 (2) and (3) settle the very
ampleness in ii) when Cι is not a rational component which is attached
at only two points. In the remaining case, Eι is of the form O⊕s

P1
⊕

OP1(1)⊕t. The F ι
j , as globally generated subsheaves of Eι, are also of

the form O⊕sj

P1
⊕ OP1(1)⊕tj , j = 1, . . . , k. Let r1, . . . , rb+1 be the ranks

occurring among the F ι
j , and for β = 1, . . . , b + 1, let Gβ be the first

among the F ι
j to attain that rank. There are now two possibilities:

either H0(Gβ+1)/H0(Gβ) contains a subspace H0(OP1(1)) for some β ∈
{0, . . . , b} or not. In the first case, by 2.2.1 (1), it is easy to explicitly
construct sections separating points and tangent vectors. The second
case, however, can only occur, if all the Gβ are trivial, again by 2.2.1.
But then, det

(E|Cι
(l)(−∑νι

s=1 oNsNs)
)

is obviously trivial. q.e.d.
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Corollary 2.2.5. The space SmW ι
min generates

H0

((
det(E(l))|Cι

(
−

νι∑
s=1

oNsNs

))⊗m)
for all m� 0.

Let d′ι be the degree of the line bundle det(E|Cι
(−∑νι

s=1 oNsNs)) and
eι := deg(ωC|Cι

). Because of Corollary 2.2.5, the elements in SmW ι
min

will contribute the weight

Kα
ι (l,m) := m · (m · (d′ι + l · r · eι) + 1 − g(Cj)

) · wαι,min(l)

to a basis of H0(Cι,Lιm). Thus, we only have to worry about sections
vanishing of lower order than m · oN at N . Note that Wρ1,...,ρk+1

will
produce sections which do not vanish on Cι if and only if the condition

j∑
i=1

ρi ≤ rj , j = 1, . . . , k,(3)

is satisfied. A tuple ρ = (ρ1, . . . , ρk+1) satisfying (3) will be called
admissible. Note that there are only finitely many admissible tuples.

Next, we let κ1 < · · · < κs be the elements in {1, . . . , k + 1} with
aκ − aκ−1 > rκ − rκ−1. Set

K := {κ1, . . . , κs} and K∗ := {1, . . . , k + 1} \K.
Lemma 2.2.6. Fix a vanishing order o < oN , and let wαι,ρ(l) be the

minimal weight of a section with vanishing order o. Then, ρ may be
chosen to satisfy

rκ − rκ−1 ≤ ρκ ≤ aκ − aκ−1 for κ ∈ K
aκ − aκ−1 ≤ ρκ ≤ rκ − rκ−1 for κ ∈ K∗.

Proof. We begin with the right-hand side inequalities. Suppose ρκ
violates the right-hand inequality. In particular, ρκ > rκ−rκ−1, whence∑κ−1

j=1 ρj < rκ−1. Define ρ′ = (ρ′1, . . . , ρ′k+1) by ρ′κ−1 := ρκ−1 + 1, ρ′κ :=
ρκ − 1, and ρ′j := ρj for j �= κ − 1, κ. Then, ρ′ is obviously admissible,
w
α
ι,ρ′(l) ≤ w

α
ι,ρ(l), and Wρ′ will still produce sections of vanishing order

o. The latter property results from the fact that ρκ was, by assumption,
strictly bigger than the maximal number of sections in Ṽκ with linearly
independent images in E.

The other inequality asserts ρj ≥ bj for j = 1, . . . , k + 1. For k + 1,
we have

∑k
j=1 ρj ≤ rk, so ρk+1 = r − ∑k

j=1 ρ ≥ rk+1 − rk. Suppose
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ρj0 < bj0 . Then, there is an index j′ > j0 with ρj′ �= 0. Otherwise,∑j0
j=1 ρj = r and then ρj0 ≥ rj0 − rj0−1 as before, a contradiction. Let

j′ be minimal with the above properties. Define ρ′ = (ρ′1, . . . , ρ′k+1)
with ρ′j0 := ρj0 + 1, ρ′j′ := ρj′ − 1, and ρ′j = ρj for j �= j0, j

′. As∑j0−1
j=1 ρj ≤ rj0−1 and ρj0 < rj0−rj0−1, ρ′ is again admissible. Moreover,

w
α
ι,ρ′(l) ≤ w

α
ι,ρ(l) and Wρ′ will still lead to sections of vanishing order o.

This time, the last assertion is the consequence of the assumption that
ρκ was strictly smaller than the maximal number of sections in Ṽκ with
linearly independent images in E. q.e.d.

Let I ⊂ K∗ ×K be the set of all (i, j) with i < j. Fix an order “�”
on I, such that (i′, j′) � (i, j) implies γj′(l)− γi′(l) ≤ γj(l)− γi(l). The
idea for the following investigations is the following: suppose we are
given an admissible tuple ρ, satisfying the inequalities of Lemma 2.2.6,
and (i, j) ∈ I. Then, we define a new tuple ρ′ with ρ′i := ρi − 1 and
ρ′j = ρj + 1 and let all other entries of ρ′ agree with those of ρ. As
i < j, ρ′ is still admissible. However, we will perform this operation
only if ρ′ still satisfies the inequalities of Lemma 2.2.6. In that case,
the generic vanishing order of sections in Wρ′ will be one less than the
generic vanishing order in Wρ. Thus, if we are given a specific vanishing
order o, we carry out s := oN − o operations of the above type as
follows: we start with (i, j) which is minimal w.r.t. “�” (because the
corresponding process will increase the weight the least), perform the
operation on (i, j) as many times as possible, say s(i,j) times, then pass
to the next pair (i′, j′) ∈ I w.r.t. the order “�” and so on, until we have
performed s such processes in total. Then, we arrive at a tuple ρ′, such
that the generic vanishing order of sections from Wρ′ is precisely o. The
difficult part is to show that the corresponding weight will be, in fact,
minimal.

Fix a vanishing order o < oN , let wαι,ρ(l) be the minimal weight of
a section which vanishes of order o, and assume that ρ satisfies the
inequalities of Lemma 2.2.6. Then, we define natural numbers s(i,j) for
(i, j) ∈ I inductively w.r.t. “�” as follows: for (i, j) ∈ I, set

ci =
∑

(i,j′)≺(i,j)

s(i,j′)

cj =
∑

(i′,j)≺(i,j)

s(i′,j),
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where empty sums are by definition zero. Then,

s(i,j) := min
{
ri − ri−1 − ρi − ci, ρj − rj + rj−1 − cj

}
.

Observation 2.2.7.

i) For every index κ ∈ K∗ and every admissible tuple ρ, satisfying
the conditions of Lemma 2.2.6, we have∑

i∈K:i<κ

(
ρi − ri + ri−1

) ≤ ∑
j∈K∗:j≤κ

(
rj − rj−1 − ρj

)
.

From this, one easily infers that

ρj = rj − rj−1 +
∑

(i,j)∈I
s(i,j) for j ∈ K

ρi = ri − ri−1 −
∑

(i,j)∈I
s(i,j) for i ∈ K∗,

so that the s(i,j) determine ρ.
ii) Suppose we are given a tuple s = (s′(i,j), (i, j) ∈ I) with 0 ≤ s′(i,j) ≤

s(i,j) for all (i, j) ∈ I. Define ρs by

ρ
s
j = rj − rj−1 +

∑
(i,j)∈I

s′(i,j) for j ∈ K

ρ
s
i = ri − ri−1 −

∑
(i,j)∈I

s′(i,j) for i ∈ K∗.

The tuple ρs is clearly admissible.

Lemma 2.2.8. Fix a vanishing order o < oN , and let wαι,ρ(l) be the
minimal weight of a section with vanishing order o where ρ fulfills the
conditions of Lemma 2.2.6. Then, ρ may be chosen in such a way that
the s(i,j) satisfy

s(i,j) = min

{
s−

∑
(i′,j′)≺(i,j)

s(i′,j′), ri − ri−1 − ai + ai−1 − ci,

aj − aj−1 − rj + rj−1 − cj

}
.

Here, s :=
∑
s(i,j), and ci and cj are as before.
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Proof. Assume that the assertion were wrong for s(i,j), i.e., s(i,j) is
strictly smaller than the right-hand side. Then, there are three cases.
In the first case, s(i,j) = ri− ri−1 − ρi− ci = ρj − rj + rj−1 − cj . In that
case

ρi > ai − ai−1 and ρj < aj − aj−1.(4)

Then, there is an (i′, j′) � (i, j) with s(i′,j′) > 0. Set ρ′ = (ρ′1, . . . , ρ′k+1)
with ρ′i′ := ρi′ + 1, ρ′j′ := ρj′ − 1, and ρ′j = ρj for j �= i′, j′. The tuple
ρ′ is still admissible, by Observation 2.2.7. It is, in fact, defined w.r.t.
s with s′(i,j) = s(i,j), (i, j) �= (i′, j′), and s′(i′,j′) = s(i′,j′) − 1. Introduce
ρ′′ = (ρ′′1, . . . , ρ′′k+1) by ρ′′i := ρ′i − 1, ρ′′j := ρ′j + 1, and ρ′′j′ := ρ′j′ for
j′ �= i, j. This is again admissible, wαι,ρ′′(l) ≤ w

α
ι,ρ(l), and Wρ′′ still

contains sections of vanishing order o, by (4). In other words, we set
s′(i,j) := s(i,j) + 1.

In the second case, s(i,j) = ri − ri−1 − ρi − ci < ρj − rj + rj−1 − cj .
Then, as ρj − rj + rj−1 − cj > 0, there is an index (i′, j) � (i, j) with
s(i′,j) > 0. One may now proceed as before. The last case, s(i,j) =
ρj − rj + rj−1 − cj < ri − ri−1 − ρi − ci, is handled the same way. q.e.d.

Given s, the condition in Lemma 2.2.8 uniquely determines a tuple
ρ with

∑
s(i,j) = s for which w

α
ι,ρ(l) becomes minimal. Note that Wρ

yields sections with vanishing order ≥ oN − s where “=” is achieved.
An immediate consequence is:

Corollary 2.2.9.
i) Fix a vanishing order o < oN , and let wαι,ρ(l) be the minimal weight

of a section with vanishing order o where ρ fulfills the conditions
of Lemmas 2.2.6 and 2.2.8. Then,

∑
s(i,j) = oN − o.

ii) Denote by wN,oι,α (l) the minimal weight of a section with vanishing
order o at N . Then,

wN,o−1
ι,α (l) − wN,oι,α (l) ≥ wN,oι,α (l) − wN,o+1

ι,α (l).

Define Oo := Wρ, where the tuple ρ is determined by the conditions
of Lemmas 2.2.6 and 2.2.8 and

∑
s(i,j) = oN − o, and O :=

⊕oN
o=0 Oo.

We have to find the minimal weights of sections in H0(Cι,Lιm) vanishing
of order 0 ≤ o′ ≤ m · oN − 1. We clearly have to look only at sections in

SmO =
⊕

m0,...,moN
:
∑
mν=m

Sm0O0 ⊗ · · · ⊗ SmoN OoN .
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Now, the sections in Sm0O0 ⊗ · · · ⊗ SmoN OoN vanish of order at least
m1 + 2 ·m2 + · · · + oN ·moN , and we can find some with exactly that
vanishing order. On the other hand, the weight of sections in that space
is

m0 · wN,0ι,α (l) + · · · +moN · wN,oN
ι,α (l)

= m · wN,0ι,α (l) −m0

(
wN,0ι,α (l) − wN,1ι,α (l)

)− · · · −
−moN

(
wN,0ι,α (l) − wN,oN

ι,α (l)
)

= m · wN,0ι,α (l) −m0

(
wN,0ι,α (l) − wN,1ι,α (l)

)− · · · −
−moN

(
(wN,0ι,α (l) − wN,1ι,α (l)) + · · · + (wN,oN−1

ι,α (l) − wN,oN
ι,α (l))

)
.

It follows easily from Corollary 2.2.9 ii) that the elements in SmO pro-
ducing sections of minimal weight vanishing of order o with (t−1) ·m ≤
o ≤ t ·m− 1 lie in

m⊕
i=1

SiOt−1 ⊗ Sm−iOt, t = 1, . . . , oN .

These contribute the weight

m · wN,tι,α (l) +
m(m− 1)

2
(
wN,t−1
ι,α (l) − wN,tι,α (l)

)
to a basis for H := H0(Cι,Lιm)/H0

((
det(E(l))|Cι

(−∑νι
s=1 oNsNs)

)⊗m).
The total contribution to a basis for H, coming from the node N , thus
amounts to

CN,αι (l,m) := m
(
wN,0ι,α (l) + · · · + wN,oN

ι,α (l)
)

+
m(m− 1)

2
(
wN,0ι,α (l) − wN,oN

ι,α (l)
)
.

All in all, a basis for H0(Cι,Lιm) will have minimal weight

Cαι (l,m) := Kα
ι (l,m) +

νι∑
n=1

CNn,α
ι (l,m).

Let N be an intersection of two components Cι and Cι′ of C. Then,

wN,0ι,α (l) = wN,0ι′,α(l) =: wNα (l).

Let N be the set of nodes of C. For large m, there is the exact sequence

0 −→ H0(C,det E⊗m) −→
c⊕
ι=1

H0(Cι,Lιm) −→
⊕
N∈N

C · eN −→ 0.
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This shows that

H0(C,det E⊗m) =
c⊕
ι=1

H0

(
Cι,Lιm

(
−

νι∑
n=1

N ι
n

))
⊕

⊕
N∈N

C · eN .

Thus, we see that the minimal weight of a basis for H0(C,det E⊗m) is

P
α
F•(l,m) :=

c∑
ι=1

Cαι (l,m) −m ·
∑
N∈N

wNα (l).

Note that this polynomial is intrinsically defined in terms of the curve
C, the filtration F•, and α.

Case B). C has nodal irreducible components. In this case, we
pass to the semistable curve π : C ′ −→ C, where we introduce a projec-
tive line for every node at which C is irreducible and the filtration by the
Fj is not a filtration by subbundles, and pullback E to E ′ on C ′. Now,
let C ′

ι be any irreducible component of C ′. Then, νι := π|C′
ι
: C ′

ι −→ Cι
is a partial normalization. For any node N ∈ Cι which is resolved by
νι, W ι

min will produce sections of det(E ′(l)) which vanish at both points
pN,1 and pN,2 in ν−1

ι (N). As the space of sections of det(E(l)) vanishing
at N identifies with the space of sections of det(E ′(l)) vanishing at both
pN,1 and pN,2, it is easy to see that the analogs of Lemma 2.2.4 and
Corollary 2.2.5 continue to hold. The rest of the considerations clearly
go through as before.

H-semistability. We are now ready to define our semistability concept.

Definition 2.2.10. A pair (C, E), consisting of a semistable curve
C and a vector bundle E of rank r on C with χ(E) = χ, will be called
H-(semi)stable, if it satisfies the following conditions:

1) The push forward π∗(E) to the stable model via π : C −→ C ′ is a
semistable torsion-free sheaf (see the remark in the introduction).

2) For every maximal filtration of F• of π∗(E) by destabilizing sub-
sheaves and every vector α of nonnegative rational numbers, there
exists an index l∗, such that for all l ≥ l∗

P
α
F•(l,m) (�) 0 as polynomial in m.

Note that this semistability concept has all the properties that were
asserted in the introduction. Part ii) of the main theorem is a direct
consequence of:
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Theorem 2.2.11. There exist an index l0 and for every l ≥ l0 an
index m(l), such that for every l ≥ l0, m′ ≥ m(l), and every pair (C, E),
consisting of a semistable curve C and a vector bundle E of rank r on
C with χ(E) = χ, which satisfies (1) and (2) of Definition 2.2.10

P
α
F•(l,m

′) (≤) 0 ⇐⇒ P
α
F•(l,m) (�) 0 as polynomial in m

for every filtration F• and every tuple α.

Proof. First note that, given α, PαF• depends only on the following
data:

• The tuples (rkF ι
1, . . . , rkF ι

k), ι = 1, . . . , c. These determine all
the Hilbert polynomials of the F ′

j , j = 1, . . . , k, because these are
destabilizing sheaves.

• The tuples (aN1 , . . . , a
N
k ), N a node of C, and aNj the dimension of

the image of Fj in the fibre of E at N , j = 1, . . . , k.

By boundedness, the sets of data of the above type is in fact finite.
Therefore, we will be done, once we have shown that, for a given set of
such data, we have to take only finitely many vectors α into account.

Given tuples (rι1, . . . , r
ι
k), ι = 1, . . . , c, and (aN1 , . . . , a

N
k ), N a node of

C, we define sets KN,ι and K∗
N,ι as before. Note that in our construction

before, we had to look at the quantities γj(l)−γi(l), (i, j) ∈ K∗
N,ι×KN,ι.

By Formula (2),

γj(l) − γi(l) =
j−1∑
t=i

αt · χl.

For every ordering “�N,ι” of K∗
N,ι ×KN,ι, we get the set of inequalities

j′−1∑
t=i′

αt ≤
j−1∑
t=i

αt, (i′, j′) �N,ι (i, j).(∗)�N,ι

Let Q ⊂ Rk be the quadrant of vectors all the entries of which are
nonnegative. This is a rational polyhedral cone. For a given ordering
“�N,ι”, the inequalities (∗)�N,ι define a proper rational polyhedral sub-
cone of Q. Given two distinct orderings, the resulting cones will meet
only along faces, i.e., if we let “�N,ι” vary over all possible orderings,
we get a fan decomposition Q =

⋃BN,ι

β=1 Q
N,ι
β of Q.

We have seen that once the ordering “�N,ι” is fixed, every given van-
ishing order o uniquely determines a vector ρ with wαι,ρ(l) = wN,oι,α (l) for
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all α in the cone QN,ιβ cut out by the inequalities (∗)�N,ι . In particular,

for α, α′ ∈ QN,ιβ

wN,oι,α+α′(l) = wN,oι,α (l) + wN,oι,α′ (l)(5)

for all possible vanishing orders.
As the intersection of two rational polyhedral cones is again a rational

polyhedral cone, we can form the rational polyhedral cones of the form
QN1,ι1
β1

∩· · ·∩QNν ,ιν
βν

. Here, N1, . . . , Nν are the nodes of C (or, in Case B,
the nodes of the corresponding partial normalization), ιi is an index such
that Cιi contains Ni, and βi ∈ {1, . . . , BN,ιi}, i = 1, . . . , ν. This defines
a fan decomposition Q =

⋃B
β=1QB.

Let F• be a maximal filtration, realizing the data (rι1, . . . , r
ι
k),

ι = 1, . . . , c, and (aN1 , . . . , a
N
k ), N a node of Q. Then, for every β ∈

{1, . . . , N}, and any α, α′ ∈ Qβ, we have, by (5),

P
α+α′
F• (l,m) = P

α
F•(l,m) + P

α′
F•(l,m).(6)

For every edge e of the cone Qβ, denote the minimal integral generator
by αe,β. Then, by (6), we have to verify the inequalities in Defini-
tion 2.2.10 only for α in the finite set{

αe,β |β = 1, . . . , B, e an edge of Qβ
}
.

The theorem is now settled. q.e.d.

2.3. The Hilbert compactification as a moduli space. Introduce
the functors

HC(s)s(g;χ, r) : SchemesC −→ Sets

which assign to every scheme S the equivalence classes of pairs (CS , ES)
where π : CS −→ S is a flat family of semistable curves, and ES is an
S-flat sheaf, such that, for every closed point s ∈ S, the restriction
ES|π−1(s) is an H-(semi)stable vector bundle of uniform rank r and Euler
characteristic χ. Two families (CS , ES) and (C′

S , E ′
S) are equivalent, if

there are an isomorphism ϕS : C′
S −→ CS and a line bundle LS on S,

such that

ϕ∗
S

(ES ⊗ π∗(LS)
) ∼= E ′

S .

Then, our considerations imply:
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Theorem 2.3.1.
i) There is a natural transformation

ϑ : HCss(g;χ, r) −→ hHC(g;χ,r),

such that for every other scheme S and every other natural trans-
formation ϑ′ : HCss(g;χ, r) −→ hS, one has a unique morphism

t : HC(g;χ, r) −→ S

with ϑ′ = h(t) ◦ ϑ.
ii) The space H C (g; χ, r) contains an open subscheme HC(g;χ, r)s

which is a coarse moduli scheme for HCs(g;χ, r).

3. Properties of the Hilbert compactification

3.1. Dimension and smooth points. We will call a pair (C, E) with
C a semistable curve and E a vector bundle on C strictly H-stable, if it
is H-stable and there is no automorphism ϕ : C −→ C with ϕ∗E ∼= E .

Remark 3.1.1. If (C, E) is strictly H-stable, then E must be a sim-
ple bundle, i.e., End(E) ∼= C · idE . In fact, the universal bundle on
Ĥ := Ĥ(g;χl, r) possesses a GL(V χl)-linearization whence the GL(V χl)-
stabilizers of a point in Ĥ corresponding to a strictly H-stable pair (C, E)
identify with the automorphisms of E on C which form a dense set in
the space of endomorphisms. Therefore, End(E) can have dimension at
most one, because the GL(V χl)-stabilizer may have dimension at most
one.

Let HC(g;χ, r)� ⊂ HC(g;χ, r) be the open subset parameterizing the
strictly H-stable curves.

Theorem 3.1.2.
i) The Hilbert compactification is a normal variety of dimension 3g−

3 + r2(g − 1) + 1.
ii) The subset HC(g;χ, r)� is smooth.

Proof. Let κg : HC(g;χ, r) −→ Mg be the natural morphism. The
irreducibility and the dimension statement in i) are clear, because they
are known for the preimage U of the moduli space Mg of smooth curves
under κg (see [14]), and we have seen in Theorem 2.1.2 that U is dense
in the Hilbert compactification.

Let H0(g;χ, r) be as in the introduction, and H†(g;χ, r) ⊂ H0(g;χ, r)
the open subset of those (C, qC : V χ ⊗ OC −→ E) for which H1(EC)
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vanishes. As our considerations in Chapter 2 show, the Hilbert com-
pactification is a quotient of an open subset of H†(g;χ, r). Please accept
for the moment the following statement:

Proposition 3.1.3. The scheme H†(g;χ, r) is smooth.

This proposition settles i). Let H�(g;χ, r) be the open part of the
Hilbert scheme which parameterizes the strictly H-stable objects. Now,
statement ii) follows, because the quotient morphism H�(g;χ, r) −→
HC(g;χ, r)� is a principal PGL(V χl)-bundle.

We now turn to the proof of Proposition 3.1.3. Let M�
g be the moduli

space of automorphism free smooth curves, and set

U� := κ−1
g

(
M�

g

) ∩ HCs.

Then, U� is a smooth quasi-projective variety of dimension 3g−3+r2(g−
1) + 1. Since the quotient morphism is over U� a principal PGL(V χl)-
bundle, the preimage of U� under the quotient morphism is a smooth
quasi-projective variety of dimension 3g− 3+ r2(g− 1)+χ2

l . Moreover,
by Theorem 2.1.2, it is dense in H†(g;χ, r), whence the latter is an
irreducible scheme of the same dimension. To prove smoothness, we
have to determine the dimension of the tangent spaces. If x ∈ H†(g;χ, r)
corresponds to the curve Cx ↪→ G, the tangent space to H†(g;χ, r) at x
is given by Hom

(ICx/I2
Cx
,OCx

)
. Since C is a local complete intersection

(which is an intrinsic property by [10], Prop. 3.2.1 and Cor. 3.2.2), the
conormal sheaf ICx/I2

Cx
is locally free, and we have the exact sequence

0 −−−→ ICx/I2
Cx

−−−→ Ω1
G|Cx

−−−→ Ω1
Cx

−−−→ 0.

Here, the left exactness follows, because (a) the sequence is in any case
exact away from the nodes of Cx and (b) since ICx/I2

Cx
is torsion-free,

it does not contain any subsheaf the support of which has dimension
strictly less than one. We derive the exact sequence

0 −→ Hom(Ω1
Cx
,OCx) −→ H0(TG|Cx

) −→
−→ Hom

(ICx/I2
Cx
,OCx

) −→ Ext1(Ω1
Cx
,OCx) −→ H1(TG|Cx

).

We claim that H1(TG|Cx
) vanishes. For this, we use the exact sequence

0 −−−→ End(EG) −−−→ E⊕χl
G −−−→ TG −−−→ 0.

Let E be the restriction of EG to the curve Cx, so that we obtain the
exact sequence

0 −−−→ End(E) −−−→ E⊕χl −−−→ TG|Cx
−−−→ 0.
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Now, our assumption is that H1(E)⊕χl = H1(E⊕χl) vanishes, and, for
dimension reasons, H2(End(E)) = 0, whence also H1(TG|Cx

) = 0, as
asserted. We also see that

h0(TG|Cx
) = χl · h0(E) − χ(End(E)) = χ2

l + r2(g − 1).

Next, by Serre duality

dim
(
Hom(Ω1

Cx
,OCx)

)−dim
(
Ext1(Ω1

Cx
,OCx)

)
= χ(Ω1

Cx
⊗ωCx) = 3g−3.

The exact sequence above thus shows

dim
(
Hom(ICx/I2

Cx
,OCx)

)
= h0(TG|Cx

) + χ(Ω1
Cx

⊗ ωCx)

= χ2
l + r2(g − 1) + 3g − 3.

This proves that x is a smooth point of H†(g;χ, r). q.e.d.

Remark 3.1.4.
i) Deligne and Mumford [3] applied Schlessinger’s deformation theory

[15] in order to show that any semistable curve C admits a miniversal
deformation over the base scheme M := SpecC[[t1, . . . , tN ]] with N :=
dim

(
Ext1(ΩC ,OC)

)
. This means that there is a family CM −→ M of

curves parameterized by M with C as the fibre over the origin, such
that for any flat family of curves CB −→ B with B the spectrum of
a local Artin algebra and C as the fibre over the closed point there
is a morphism ϕ : B −→ M with CB ∼= CM ×M B. Moreover, ϕ is
unique in case B = Spec

(
C[ε]/〈ε2〉). The tangent space to 0 ∈ M thus

identifies with Ext1(ΩC ,OC). Finally, suppose C has M nodes, then
the space of local deformations is the deformation space of this set of
nodes and, thus, identifies with Mloc = SpecC[[u1, . . . , uM ]]. Here, one
can arrange the generators t1, . . . , tN and u1, . . . , uM in such a way that
the natural morphism M −→ Mloc comes from the homomorphism
C[[u1, . . . , uM ]] −→ C[[t1, . . . , tN ]], ui �−→ ti, i = 1, . . . ,M .

Now, let x ∈ H†(g;χ, r), and let U be its formal neighborhood. By
the smoothness of M and its versality, the universal curve over the
Hilbert scheme H†(g;χ, r) provides us with a morphism ϕ : U −→ M
the differential of which is the map

Hom
(ICx/I2

Cx
,OCx

) −→ Ext1(Ω1
Cx
,OCx).

As we have seen before, this map is surjective, so that ϕ is a submersion
whence a smooth morphism.

ii) If we work in the setting of Artin and Deligne-Mumford stacks, we
can sharpen the second statement of Theorem 3.1.2. We will do this in
Section 3.4 below.
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3.2. Existence of universal families. The aim of this section is to
prove:

Theorem 3.2.1. Suppose χ and r are coprime. Then, every point
x ∈ HC(g;χ, r)� possesses an étale neighborhood U , such that there exists
a universal family over U .

3.2.1. The universal curve over HC(g; χ, r)s. Let C
Ĥ
↪→ Ĥ × G

be the universal closed subscheme. It is clearly invariant under the
SL(V χl)-action on Ĥ×G. On Ĥ, we choose a line bundle O

Ĥ
(1) := La,m

where m and a � 0 are chosen in such a way that the conclusion of
the main theorem holds, and on G the usual ample line bundle OG(1).
Then, for positive integers s and t,

Ls,t :=
(
π∗

Ĥ
O

Ĥ
(s) ⊗ π∗GOG(t)

)
|C

Ĥ

is an ample SL(V χl)-linearized line bundle on C
Ĥ
. If we choose s/t large

enough, Proposition 1.1.1 grants that points in the preimage Cs
Ĥ

of the

points in Ĥ which are stable w.r.t. the linearization in La,m are stable
w.r.t. the linearization in Ls,t. Therefore, the geometric quotient

CHCs := Cs
Ĥ
//SL(V χl)

exists. Here, we have set HCs := HC(g;χ, r)s. Moreover, there is a
natural morphism

σ : CHCs −→ HCs.

We call CHCs — abusively — the universal curve. For an H-stable pair
(C, E), define

Aut(C, E) :=
{
α : C

∼=−→ C |α∗E ∼= E }.
From the GIT set up, it follows that the PGL(V χl)-stabilizer of a stable
point (C, q : V χl ⊗OC −→ E) in Ĥ identifies with the group Aut(C, E).
Thus, we see:

Corollary 3.2.2. For any point [C, E ] ∈ HCs, the fibre σ−1[C, E ] is
isomorphic to the curve C/Aut(C, E).

In particular, we may hope for a universal family only over the open
subset HC(g;χ, r)�.
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3.2.2. Proof of Theorem 3.2.1. Now, let x ∈ HC� := HC(g;χ, r)�.
Then, x has an étale neighborhood U , such that the family σU : CU :=
CHC� ×HC� U −→ U possesses a section which meets every fibre in a
smooth point. Then, LU := OCU

(
σU (U)

)
is a relative ample invert-

ible sheaf. Let U� ⊂ Ĥ be the SL(V χl)-invariant open subset which
parameterizes the strictly H-stable points, and let ψ : U� −→ HC� be
the quotient morphism. Then, since Mumford’s GIT supplies universal
geometric quotients, the map ψU : U := U�×HC� U −→ U is a geometric
quotient, too. For the same reason, the vertical maps in the following
Cartesian diagram are both geometric quotients:

CU := CHC� ×HC� U σU ��

ψCU

��

U
ψU

��
CU �� U.

Define LU as the pullback of LU under the quotient morphism ψCU
.

This is obviously an SL(V χl)-linearized relative ample invertible sheaf.
We have seen that the SL(V χl)-stabilizer of a point u ∈ U correspond-

ing to a strictly H-stable object consists exactly of the scalar matrices
(Remark 3.1.1). The same holds for the points x ∈ CU . Let µχl

⊂ C∗
be the subgroup generated by a primitive χl-th root of unity ζ. For any
point u ∈ U or x ∈ CU , the SL(V χl)-stabilizer now identifies with µχl

.
If F is an SL(V χl)-linearized sheaf on U or CU , we will say that it is of
weight k, if µχl

acts by ζk · idF〈x〉 for all x ∈ U or x ∈ CU , respectively.
For example, LU is of weight zero.

By construction, we have the quotient qU : V χl ⊗OU −→ EU , and the
question we have to answer is whether EU descends — possibly after
tensorizing it with the pullback of a line bundle on U — to the quotient
CU . By Kempf’s descent lemma (see [4]), an SL(V χl)-linearized vector
bundle E on CU descends to the quotient, if and only if it is of weight
zero. Now, the sheaf EU is of weight one. Thus, our task will be to
find an SL(V χl)-linearized invertible sheaf AU of weight one. Then,
EU ⊗ σ∗U

(A∨
U
)

will descend to CU , and we will be done.
For any m, the sheaf EU [m] := EU ⊗ L⊗m

U is an SL(V χl)-linearized
vector bundle of weight one, and, if m is sufficiently large,

Fm := σU∗
(EU [m]

)
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will be an SL(V χl)-linearized vector bundle of rank χl+r ·m and weight
one. Then, for m� 0,

NU := det(Fm+1) ⊗ det(Fm)∨

is a line bundle of weight r. Since χ and r and thus also c := χl + r ·m
and r are coprime, we may find integers α and β with α · c+ β · r = 1,
so that

AU := det(Fm)⊗α ⊗N⊗β
U

will indeed have weight one. q.e.d.

3.3. The fibres of the morphism κg . As before, let κg : HC(g;χ, r)
−→ Mg be the natural morphism. By M

�
g, we denote the quasi-pro-

jective moduli space of automorphism free stable curves. In this section,
we want to establish:

Theorem 3.3.1. For any stable curve C0 without automorphisms,
the variety

κ−1
g

(
[C0]

) ∩ HCs(g;χ, r)

has only analytical normal crossings as singularities.

We will follow the strategy of Gieseker’s paper [6] in order to prove
the result.

3.3.1. A family of semistable curves with fixed stable model.
Let C0 be a fixed stable curve. Then, by the results of Deligne and Mum-
ford [3], C0 has a universal deformation over M := SpecC[[t1, . . . , tN ]]
with N := dim

(
Ext1(ΩC0 ,OC0)

)
= 3g − 3. Moreover, let Mloc =

SpecC[[u1, . . . , uM ]] be the deformation space of the nodes of C0. Fi-
nally, there is the morphism M −→ Mloc normalized in such a way that
C[[u1, . . . , uM ]] −→ C[[t1, . . . , tN ]] is given by ui �−→ ti, i = 1, . . . ,M , and
ti = 0 is the equation of the i-th node of C0, i = 1, . . . ,M .

Next, let C be a semistable curve the stable model of which is C0,
and let π : C −→ C0 be the contraction map. Let R1, . . . , RS be the
maximal connected chains of rational curves which are contracted by π.
We label the nodes c1, . . . , cM of C0 in such a way that {ci} = π(Ri),
i = 1, . . . , S. We then define

N :=
{
ti = 0, i = S + 1, . . . , N

} ⊂ M.

By restriction of the universal family over M to N , we obtain the family
σN : CN −→ N which is smooth outside the nodes “which don’t move”,
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i.e., outside the nodes cS+1, . . . , cM . For i = 1, . . . , S, let di,j , j =
1, . . . , ιi, be the nodes of C mapping under π to ci. Define

Q := Spec
(
C[[xi,j ; i = 1, . . . , S, j = 1, . . . , ιi ]]

)
.

The homomorphism

ϕ∗ : C[[ t1, . . . , tS ]] −→ C[[xi,j ; i = 1, . . . , S, j = 1, . . . , ιi ]]
ti �−→ xi,1 · · · · · xi,ιi , i = 1, . . . , S,

defines a morphism ϕ : Q −→ N . The pull back of the family CN
provides us with the family σQ : CQ −→ Q of stable curves. Near the
i-th node, the family CQ is defined by the equation

yi · zi − xi,1 · · · · · xi,ιi = 0,

for appropriate parameters yi and zi, i = 1, . . . , S.
Now, let

ϑ : ĈQ −→ Q
be the blow up of the curve CQ along the ideal generated by y1 and x1,1.
Near the node c1, we may embed CQ into

A = Spec
(
C[[ y1, z1, xi,j ; i = 1, . . . , S, j = 1, . . . , ιi ]]

)
.

The blow up Â of A along y1 and x1,1 is the scheme

Â :=
{(

(y1, z1, xi,j ; i = 1, . . . , S), [w0 : w1]
) ∣∣ y1·w0 = x1,1·w1

}
⊂ A×P1.

One checks that the strict transform of CQ is given in the chart w0 = 1
by the equation

w1 · z1 − xi,2 · · · · · xi,ι1 = 0
and in the chart w1 = 1 by

w0 · y1 − xi,1 = 0.

We may now iterate the blow up, i.e., blow up ĈQ at the ideal generated
by w1 and xi,2 and so on and perform the same procedure at the other
nodes, too, in order to construct a flat family

σ̃Q : C̃Q −→ Q
with C as the fibre over the origin. By construction, C̃Q is given near
the node di,j by the equation

yi,j · zi,j − xi,j = 0

for suitable local parameters yi,j and zi,j , i = 1, . . . , S, j = 1, . . . , ιi.
In particular, it is near di,j isomorphic to the miniversal deformation



THE HILBERT COMPACTIFICATION 203

of that node, and xi,j = 0 is the locus where the node di,j “is kept”,
i = 1, . . . , S, j = 1, . . . , ιi.

By X ↪→ Q, we denote the subscheme defined by the equations

xi,1 · · · · · xi,ιi = 0, i = 1, . . . , S.

The scheme X obviously has only analytical normal crossing singulari-
ties.

3.3.2. The versality property of C̃Q. The family σ̃Q : C̃Q −→ Q to-
gether with the Q-morphism πQ : C̃Q −→ CQ has the following property:

Proposition 3.3.2. Let τ : S := Spec(A) −→ N be an N -scheme
where A is a local Artin algebra. Suppose that there is a flat family
σS : CS −→ S of semistable curves over S together with an S-morphism
πS : CS −→ τ∗CN . Suppose that the closed point s of S maps to the
origin of N and that πS|σ−1

S (s) equals the map π.
Then, there is an N -morphism ψ : S −→ Q, such that CS is over

τ∗CN = ψ∗CQ isomorphic to ψ∗C̃Q.

Proof. First note that the homomorphism

H1
(Hom(Ω1

C ,OC)
) −→ H1

(Hom(π∗Ω1
C0
,OC)

)
is injective. In fact, as the computations in [6] used for proving the
analogous statement (Corollary 4.4) are completely local, they apply to
our situation, too. The rest of the proof may now be copied from [6],
proof of Proposition 4.5. q.e.d.

3.3.3. Proof of Theorem 3.3.1. Let H†(g;χ, r) be as in Section 3.1.
There is a morphism

κ† : H†(g;χ, r) −→ Mg,

and we define
HC0 := κ†−1

(
[C0]

)
.

Let σHC0
: CHC0

−→ HC0 be the restriction of the universal family. A
suitably high power of the relative dualizing sheaf ωCHC0

/HC0
will yield

a morphism
CHC0

ι−−−→ P
σHC0

� �
HC0 HC0 ,
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where P is some projective bundle. The image of ι is a flat family of
stable curves, all of which are isomorphic to C0. As C0 does not have
any automorphisms, this family is trivial. Let

ϕHC0
: CHC0

−→ C0 × HC0

be the induced morphism. Let x ∈ HC0 be a point and U its formal
neighborhood. Denote the fibre of the family CHC0

over x by C, and let
τ : U −→ N be the constant map to the origin. Finally, define

σU : CU −→ U

as the restriction of the family CHC0
. By Proposition 3.3.2, there is a

morphism
ψ : U −→ X ↪→ Q.

Our observation in Remark 3.1.4 i) implies that the morphism ψ is
smooth. Therefore, HC0 has only analytic normal crossing singularities
at x. Finally, as C0 does not have any automorphisms, the quotient
morphism

HC0 ∩ H0(g;χ, r)s −→ κ−1
g

(
[C0]

) ∩ HCs(g;χ, r)

is a principal PGL(V χl)-bundle. This proves the theorem. q.e.d.

Remark 3.3.3. If the automorphism group of C0 is nontrivial, the
same arguments show that the fibre κ−1

g

(
[C0]

)∩HCs(g;χ, r) is the quo-
tient of a variety with analytical normal crossings by the automorphism
group of C0. However, even if C0 is a smooth curve, the action of the
group Aut(C0) on the moduli space of semistable bundles has not been
thoroughly studied, so far. We refer the reader to the paper [1] for
information concerning the action of a single automorphism.
3.4. The moduli stacks. In the following, let SchemesC be the cat-
egory of schemes of finite type over C, viewed as a 2-category, and
Groupoids the 2-category of groupoids, that is the 2-category whose
objects are groupoids, i.e., categories in which all morphisms are isomor-
phisms, the 1-morphisms are functors and the 2-morphisms are natural
transformations between functors.

As usual, defining presheaves of groupoids and establishing isomor-
phisms between them involves many schemes characterized by some
universal property, such as fibre products. However, these schemes will
be defined only up to canonical isomorphy and there is no equivalence
relation which compensates for this. Thus, we have to fix a priori a rep-
resentative for every such isomorphy class. In the following, we assume
to have done this.
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Next, we introduce the 2-functors

HC(s)s
g/χ/r : SchemesC −→ Groupoids.

For any scheme S of finite type, the objects of HC(s)s
g/χ/r(S) are fami-

lies (CS , ES) of H-(semi)stable vector bundles as before, the morphisms
between (C′

S , E ′
S) and (CS , ES) are pairs (ϕS , ψS), consisting of an S-

isomorphism ϕS : C′
S −→ CS and an isomorphism ψS : E ′

S −→ ϕ∗
SES .

For any morphism f : T −→ S pullback of families defines a natural
transformation

HC(s)s
g/χ/r(f) : HC(s)s

g/χ/r(S) −→ HC(s)s
g/χ/r(T ).

On the other hand, there are the quotient stacks
[
Hss/GL(V χl)

]
and[

Hs/GL(V χl)
]
. Here, H(s)s is the open part of H0(g;χl, r) which pa-

rameterizes the (semi)stable objects. For any scheme S, the objects
of

[
H(s)s/GL(V χl)

]
are pairs

(
ϑS : P −→ S, ηS : P −→ H(s)s

)
where

ϑS : P −→ S is a principal GL(V χl)-bundle and ηS is an equivariant
morphism. One has a natural notion of isomorphism and, as before,
pullback defines the functor associated with a morphism f : T −→ S.

Theorem 3.4.1. The presheaves HC(s)s
g/χ/r and

[
H(s)s/GL(V χl)

]
are

isomorphic.

Proof. The assertions amount to prove that, for every scheme S, the
groupoids HC(s)s

g/χ/r(S) and
[
H(s)s/GL(V χl)

]
(S) are equivalent.

First, suppose
(
ϑS : P −→ S, ηS : P −→ H(s)s

)
is an object of the

groupoid
[
H(s)s/GL(V χl)

]
(S). Then, by means of pullback, the mor-

phism ηS yields a GL(V χl)-invariant, P-flat family of semistable curves
of genus g

CP ↪→ P × G

and a GL(V χl)-linearized vector bundle EP on CP . Now, as S is the
geometric quotient of P by the GL(V χl)-action, the same arguments
which were used in Section 3.2 show that we have the curve πS : CS −→
S. This time, as there are no stabilizers present, every fibre of πS is
indeed a semistable curve of genus g. We have to check that the family
CS is indeed S-flat. For this, choose a Zariski-open set U ⊂ S over which
the principal bundle P is trivial (this is possible, since we are dealing
with GL(V χl).) Set V := U × GL(V χl). We will show that CS|V is
in fact GL(V χl)-equivariantly a product CU × GL(V χl) for some U -flat
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family CU . This clearly settles the affair. By the GL(V χl)-equivariance
of ϑS , we have the commutative diagram

(x, g, h)
�

��

∈ U × GL(V χl) × GL(V χl)

��

ηS|V ×id
�� H(s)s × GL(V χl)

��
(x, g · h) ∈ U × GL(V χl)

ηS|V �� H(s)s.

Now, consider the map

V = U × GL(V χl) −→ (
U × GL(V χl)

)× GL(V χl)
(x, g) �−→ (x, idV χl , g).

Define η0 : U −→ H(s)s by η0(x) := ηS|V (x, idV χl ). The content of the
diagram before may then be summarized by the suggestive formula

ηS|V (x, g) = η0(x) · g.

Finally, the morphism η̃ : V −→ H(s)s, (x, g) �−→ η0(x)·g, is by definition
of the group action obtained in the following manner: let (CU , EU ) be the
family induced by the morphism η0. Note that we get even a quotient

qU : V χl ⊗OCU
−→ EU .

Let

Γ: V ⊗OGL(V χl ) −→ V ⊗OGL(V χl )

be the tautological automorphism. Then, define the following quotient
on CU × GL(V χl):

qV : V ⊗OCU×GL(V χl )

π∗
GL(V χl )

(Γ)

−−−−−−−→ V ⊗OCU×GL(V χl )

π∗
CU

(qU )
−−−−−→ π∗CU

EU .

This quotient defines an embedding CU × GL(V χl) −→ V × G, and the
resulting morphism V −→ H(s)s is just η̃ = ηS|V . In particular, CS|V
is GL(V χl)-equivariantly isomorphic to CU × GL(V χl), as asserted. By
Kempf’s descent lemma, the bundle EP descends to CS , so that (CS , ES)
is an object of HC(s)s

g/χ/r(S). An isomorphism in
[
H(s)s/GL(V χl)

]
(S) will

clearly lead to a unique isomorphism in HC(s)s
g/χ/r(S).
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Now, suppose we are given a scheme S and a family (πS : CS −→
S, ES) of H-(semi)stable vector bundles. Then, we know that

ϑS : Isom(V χl ⊗OS , πS∗ES) −→ S

is a principal GL(V χl)-bundle. On P := Isom(V χl ⊗OS , πS∗ES), there
is the tautological isomorphism

τP : V χl ⊗OP −→ ϑ∗SπS∗ES .
Now, form the cartesian diagram

CP ψ−−−→ CS
πP
� �πS

P ϑS−−−→ S.

By flat base change

ϑ∗SπS∗ES ∼= πP∗ψ∗ES .
If we set EP := ψ∗ES , then

V χl ⊗OCP
π∗
PτP−→ π∗PπP∗EP ev−→ EP

defines a morphism P −→ H(s)s which is by construction GL(V χl)-
equivariant. Again, isomorphisms in the category HC(s)s

g/χ/r(S) will lead

canonically to isomorphisms in the groupoid
[
H(s)s/GL(V χl)

]
(S).

The two operations just introduced clearly establish the desired equiv-
alence of categories. q.e.d.

Now, by the results of Section 3.1, we know that the schemes Hss and
Hs are smooth. Moreover, the quotient map H(s)s −→ [

H(s)s/GL(V χl)
]

is smooth, whence
[
Hss/GL(V χl)

]
and

[
Hs/GL(V χl)

]
are a smooth

Artin stack and a smooth Deligne-Mumford stack, respectively.

Corollary 3.4.2. The Hilbert compactification HCss
g/χ/r is a smooth

Artin stack, and its open substack HCs
g/χ/r is a smooth Deligne-Mumford

stack.
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