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Abstract

We introduce quasi-symplectic groupoids and explain their re-
lation with momentum map theories. This approach enables us
to unify into a single framework various momentum map theories,
including ordinary Hamiltonian G-spaces, Lu’s momentum maps
of Poisson group actions, and the group-valued momentum maps
of Alekseev—Malkin—Meinrenken. More precisely, we carry out the
following program:

(1) We define and study properties of quasi-symplectic group-
oids.

(2) We study the momentum map theory defined by a quasi-
symplectic groupoid I' = P. In particular, we study the reduction
theory and prove that J~1(O)/T is a symplectic manifold for any

Hamiltonian T-space (X 5 P wy) (even though wx € Q%(X)
may be degenerate), where O C P is a groupoid orbit. More gen-
erally, we prove that the intertwiner space (X1 x p X2)/T" between
two Hamiltonian I'-spaces X; and X, is a symplectic manifold
(whenever it is a smooth manifold).

(3) We study Morita equivalence of quasi-symplectic groupoids.
In particular, we prove that Morita equivalent quasi-symplectic
groupoids give rise to equivalent momentum map theories. More-
over the intertwiner space (X; xp X2)/T' depends only on the
Morita equivalence class. As a result, we recover various well-
known results concerning equivalence of momentum maps includ-
ing the Alekseev—Ginzburg—Weinstein linearization theorem and
the Alekseev—Malkin—Meinrenken equivalence theorem between
quasi-Hamiltonian spaces and Hamiltonian loop group spaces.
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1. Introduction

“Momentum” usually refers to quantities whose conservation under
the time evolution of a physical system is related to some symmetry
of the system. Noether [2§], in the course of developing ideas of Ein-
stein and Klein in general relativity theory, found a very general equiv-
alence between symmetries and conservation laws in field theory; this
is now known as Noether’s theorem. Focusing on the relation between
symmetries and conserved quantities, the study of momentum maps
has received much attention in the last three decades, continuing to
the present day with the formulation of new notions of symmetry. In
geometric terms, a phase space with a symmetry group consists of a
symplectic (or Poisson) manifold X and an Hamiltonian action of a Lie
group G. By the latter, we mean a symplectic (or Poisson) action of
G on X together with an equivariant map J : X — g* such that for
each £ € g, the one-parameter group of transformations of X gener-
ated by £ is the flow of the Hamiltonian vector field with Hamiltonian
(J(z),&) € C°(X). The map J is called the momentum (or moment)
map of the Hamiltonian action. One very important aspect of the mo-
mentum map theory is the study of Marsden—Weinstein (or symplectic)
reduction, which is the simultaneous use of symmetries and conserved
quantities to reduce the dimension of a Hamiltonian system.

With the advance of physics and mathematics, new notions of sym-
metry and momentum have appeared. For instance, a Poisson group
symmetry is the classical limit of a “quantum group symmetry” in quan-
tum group theory [12]. Lu’s momentum map theory [19] for Poisson
Lie group actions is a theory adapted from the usual Hamiltonian the-
ory which incorporates the Poisson structure on the symmetry group
G. Computations of the symplectic structures on moduli spaces of
flat connections on surfaces have led to another notion of Hamiltonian
symmetry known as quasi-Hamiltonian symmetry. In this new theory,
the 2-form w on the phase space is neither closed nor non-degenerate,
but these “defects” are compensated for by the presence of an auxil-
iary structure on the group. This is the starting point of the theory
of quasi-Hamiltonian G-spaces with group-valued momentum maps of
Alekseev-Malkin-Meinrenken (AMM) [2]. All these momentum map
theories share many similarities, but involve different techniques and
proofs. It is also known that some of these momentum theories are
equivalent to one another. For instance, for compact groups, the AMM
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group-valued momentum map theory is equivalent to the Hamilton-
ian momentum map theory of loop groups of Meinrenken—Woodward
[23, 24, 25|, and for compact Bruhat—Poisson groups, Lu’s momentum
map theory is equivalent to the usual Hamiltonian momentum map
theory [i}]. However, these results are fragmentary and their geometric
significance remains unclear. It is therefore natural to investigate the re-
lations between these theories, and to seek a uniform framework, which
is an open question raised by Weinstein [351:] A unified approach would
seek to develop a single momentum map theory which reduces to the
theories already established under special circumstances. While neces-
sarily generalizing the problem, this would allow a direct comparison of
the features of the various momentum maps in a more intrinsic manner.
The importance of such a single momentum map theory is not merely to
give another interpretation of these existing momentum map theories,
but rather to explore the intrinsic ingredients of these theories so that
techniques in one theory can be applied to another. This is particularly
important in the study of group-valued momentum map theory where
there are still many open problems, including the quantization problem
which we believe will be the main application of our approach [17].

The approach taken in this paper involves extending the notion of
symmetry from actions of groups to actions of groupoids. This was
motivated by the work of Mikami-Weinstein [26] who showed that the
usual Hamiltonian momentum map is in fact equivalent to the sym-
plectic action of the symplectic groupoid T*G = g*, which integrates
the Lie-Poisson structure on g*. Similarly, in [35], Weinstein and the
author proved that the momentum map theory of Lu for an Hamilton-
ian Poisson group G-space is equivalent to the symplectic action of the
symplectic groupoid G x G* = G* integrating the dual Poisson group
G* [20]. By a symplectic action of a symplectic groupoid I' = P on a
symplectic manifold X, we mean a map J : X — P equipped with a I'-
action I' x p X — X which is compatible with the symplectic structures
[26]. In this case, X is called an Hamiltonian-T" space.

There is strong evidence that the AMM group-valued momentum
map is closely related to the transformation groupoid G x G = G.
Here, G acts on itself by conjugation. However, G x G == G is no longer
a symplectic groupoid since the closed 3-form, i.e., the Cartan form €2
on G, must now play a role. In fact, one can show that the standard
AMM 2-form w € Q?(G x G) together with 2 € Q3(Q) gives a 3-cocycle
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of the total de Rham complex of the groupoid and defines a non-trivial
class in the equivariant cohomology HZ(G) [€].

This example suggests that one must enrich the notion of a symplec-
tic groupoid in order to include such “twisted” symplectic structures
on the groupoids. Thus, we arrive at quasi-symplectic groupoids, the
main subject of the present paper. A quasi-symplectic groupoid is a
Lie groupoid I' = P equipped with a 2-form w € Q%(T") and a 3-form
Q € Q3(P) such that w + Q is a 3-cocycle of the de Rham complex of
the groupoid, where w must satisfy a weak non-degeneracy condition.
When w is honestly non-degenerate, this is the so-called twisted sym-
plectic groupoid studied by Cattaneo and the author [10] as the global
object integrating a twisted Poisson structure of Severa—Weinstein [B0].
In particular, when Q vanishes, it reduces to an ordinary symplectic
groupoid.

It turns out that much of the theory of Hamiltonian I'-spaces of a sym-
plectic groupoid I' can be generalized to the present context of quasi-
symplectic groupoids. In particular, one can perform reduction and
prove that J~1(0)/T is a symplectic manifold (even though wy € Q2(X)
may be degenerate), where @ C P is an orbit of the groupoid. More
generally, one can introduce the classical intertwiner space (X1 x pXo)/I’
between two Hamiltonian I'-spaces X; and X, generalizing the same
notion studied by Guillemin—Sternberg [14] for the ordinary Hamilton-
ian G-spaces. One shows that this is a symplectic manifold (whenever
it is a smooth manifold).

As for symplectic groupoids, one can also introduce Morita equiva-
lence for quasi-symplectic groupoids. In particular, we prove the follow-
ing main result. (i) Morita equivalent quasi-symplectic groupoids give
rise to equivalent momentum map theories in the sense that there is an
equivalence of categories between their Hamiltonian I'-spaces; (ii) the
symplectic manifold (X; x p X5)/I" depends only on the Morita equiv-
alence class of I'. As a result, we recover various well-known results
concerning equivalence of momentum maps including the Alekseev—
Ginzburg—Weinstein linearization theorem and Alekseev—Malkin—Mein-
renken equivalence theorem for group-valued momentum maps. They
are essentially due to the Morita equivalence between the Lu—Weinstein
symplectic groupoid G x G* = G* and the standard cotangent symplec-
tic groupoid T*G = g*, where G is a compact simple Lie group equipped
with the Bruhat—Poisson group structure, and the Morita equivalence
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between the symplectic groupoid (LG x Lg = Lg,wraxrg) and the
AMM quasi-symplectic groupoid (G x G = G,w + Q).

Another main motivation of the present work is the quantization
problem. It is natural to study the geometric quantization of the sym-
plectic reduced space J~(O)/T" or more generally the symplectic inter-
twiner space (X; xp X3)/T, and prove the Guillemin-Sternberg con-
jecture that “[Q, R] = 0”: quantization commutes with reduction, for
Hamiltonian I'-spaces. As an application, our uniform framework nat-
urally leads to the following construction of prequantizations. A pre-
quantization of the quasi-symplectic groupoid (I' = P,w + ) is an
Sl-gerbe over the stack corresponding to the groupoid I' = P, while a
prequantization of an Hamiltonian I'-space is a line bundle L on which
the gerbe acts. A prequantization of the symplectic intertwiner space
(X1 xp X3)/T can be constructed using these data. For symplectic
groupoids, such a prequantization was studied in [37]. Details of this
construction for quasi-symplectic groupoids appear elsewhere [I7]. Note
that in the usual Hamiltonian case, since the symplectic 2-form defines
a zero class in the third cohomology group of the groupoid T*G = g*,
which in this case is the equivariant cohomology Hg (g*), gerbes do not
enter explicitly. However, for a general quasi-symplectic groupoid (for
instance the AMM quasi-symplectic groupoid), since the 3-cocycle w2
may define a non-trivial class, gerbes are inevitable in the construction.

Recently, Zung proved the convexity theorem for Hamiltonian I'-
spaces of proper quasi-symplectic groupoids, which encompasses many
classical convexity theorems in the literature [B88]. Finally, we note
that recently Bursztyn—Crainic—Weinstein—-Zhu showed that infinitesi-
mally quasi-symplectic groupoids (which are called twisted presymplec-
tic groupoids in [8]) correspond to twisted Dirac structures. They also
studied the infinitesimal version of our Hamiltonian I-spaces. We refer
to [8] for details.

2. Quasi-symplectic groupoids

In this section, we introduce quasi-symplectic groupoids and discuss
their basic properties.

2.1. Pre-quasi-symplectic groupoids. A simple and compact way
to define a pre-quasi-symplectic groupoid is to use the de-Rham double
complex of a Lie groupoid. First, let us recall its definition below.
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Let I' = I'g be a Lie groupoid with source and target maps s,¢: ' —
T'g. Define for all p > 0

I'y=TIxp, -+ xp, I,
—_—————
p times

i.e., I', is the manifold of composable sequences of p arrows in the
groupoid I' = I'g. We have p + 1 canonical maps I', — I',_1 giving
rise to a diagram

(1) "'F2—>F1:>>F0.

In fact, I', is a simplicial manifold. Consider the double complex
Q(T,):

(2)

00(Ty) — 2= QO(1y) =2 QO(1y) 2~ - -

Its boundary maps are d : QF(I',) — QFF1(T)), the usual exterior deriv-
ative of differentiable forms and 9 : Q¥(T,) — QF(T',41), the alternating
sum of the pull-back maps of (). We denote the total differential by
d = (=1)Pd + 0. The cohomology groups of the total complex Q*(T,)

HYR(T)) = H*(Q*(T,))

are called the de Rham cohomology groups of I' = I'g. We now intro-
duce the following;

Definition 2.1. A pre-quasi-symplectic groupoid is a Lie groupoid
I' = P equipped with a two-form w € Q') and a three-form Q €
Q3(P) such that
(3) d2=0, dw=0%, Jw=0.

In other words, w + Q is a 3-cocycle of the total de-Rham complex of
the groupoid I' = P.

Remark 2.2. It is simple to see that the last condition dw = 0 is
equivalent to that of the graph of the multiplication A C I' x I' x I is
isotropic. In this case, w is said to be multiplicative.
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By A — P, we denote the Lie algebroid of I' = P, where the anchor
map is denoted by a : A — TP. For any & € I'(A), by ? and ?
we denote its corresponding right- and left-invariant vector fields on I
respectively. The following properties can be easily verified (see also

aday).

Proposition 2.3. Let (I' = P,w + Q) be a pre-quasi-symplectic
groupoid.

(1) €'w =0, where € : P — I' is the unit map;

(2) "w = —w, where i : ' — T is the groupoid inversion;

(3) for any & € T(A),
W€, ) = —w(€,7), w(€,T) =0

(4) for any &,m € T'(A), w(?, ) is a right invariant function on T,
—

and w( € ,) is a left invariant function on T.

Proof. Let A = {(x,y,2)|z = zy, (z,y) € T3} C T x T x T be the
graph of groupoid multiplication. Thus, A is isotropic with respect to
(w,w, —w).

(1) For any 8/, o/ € T,,, P, since (0,,0..,0..), (6,6 o) € TA, it

m)»“m>Vm m?m? U m
follows that w(d,,d) = 0.

(2) Ve € T and Vo, 67 € T,T, it is clear that (0,40, s.0)),
(07,007, s,.0!) € TA. Thus, using (1), we have
w(0L,07) + w(ixd, i.00) = 0,

T T

and therefore (2) follows.

(3) Since i, € = —€ and i, 77 = —7, from (2) it follows that
—_— «—
w(€,7) = —w(€&,7). Now, for any z € I', since both vectors
— —

(¢
(&€ (x), Oyzy, € () and (05, 7 (t(z)), 7 (x)) are tangent to A, we thus
have w(?(m), 7 (z)) = 0.
(4) It is simple to see that, for any &, € I'(4) and any composable
pair (,y) € Ta, (€ (2),0, € (2y)), (77 (x),0,, 7 (y)) € TA. Thus
—

W(€ (@), 7 () — (€ (xy), 7 (xy)) = 0.

.
Hence, w( &, 7) is a right invariant function on I'. Similarly, one proves

that w( £, n) is a left invariant function on I'. q.e.d.
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We next investigate the kernel of w along the unit space P. For any
m € P, there are two ways to identify elements of A,, as tangent vectors

of ', namely vectors tangent to the t-fiber £ — ?(m), or to the s-fiber
«—
& — & (m). Write
— — — «—
4 Al ={&MmN e An},  Aln={¢ (m)|V€ € An}.
Thus, we have the following decomposition of the tangent space:
(5) Tl = Al @ TP = Al @ TP, ¥m € P.
Corollary 2.4. Under the same hypothesis as in Proposition 2.3, we
have, for any m € P,
(1) kerwy, = (ker wym N Alm) @ (ker wy, N T P),
—
(2) if £ (m) € kerwyy,, then a(€) € ker wy,,
= —
(3) for any & € A, € (m) € kerwy, if and only if £ (m) € ker wy,.

Proof. To prove (1), it suffices to show that if ?(m) + v € kerwp,

where ¢ € A, and v € T}, P, then both ?(m) and v belong to ker wy,.
According to Proposition 2.3 (1), for any u € T,, P, we have

w(€ (m),u) = w(€ (m) + v,u) = 0.

On the other hand, for any n € A,,, we have w(?(m),?(m)) =0
- —

according to Proposition 2.3 (3). Thus, it follows that & (m) € ker wy,,

which also implies that v € ker wy,.

(2) Note that a(§) = ?(m) - <g(m) Hence, for any n € A,,, we have

w(a(®), 7 (m)) = w(€ (m) — € (m), 77 (m))

—
=w(&(m), 77 (m)) —w(& (m), 77 (m)) =0.
It thus follows that a(§) € ker wy, since €*w = 0 according to Proposition
2.3 (1).
«—

(3) follows from (2) since a(§) = ?(m) — & (m). q.e.d.

2.2. Quasi-symplectic groupoids. Let us set
(6) ker wy, N Ay ={£ € Am|?(m) € kerwy, }.

Corollary 2.4 implies that the anchor induces a well-defined map from
ker wy, N A, to ker w,, N1, P. Now, we are ready to introduce the non-
degeneracy condition.
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Definition 2.5. A pre-quasi-symplectic groupoid (I' = P,w + Q) is
said to be quasi-symplectic if the following non-degeneracy condition is
satisfied: the anchor

a : kerw,, N A, — kerw,, NT,, P

is an isomorphism.

Given a pre-quasi-symplectic groupoid (I' = P,w + ), the two-form
w induces a well-defined linear map:

W TP — A5, (@'(0),8) = w(v, € (m), Yo € TP, € € An.
Indeed, one easily sees that w® induces a well-defined map:
TP Am *
M) o ker w,, N1, P - <kerwmﬂAm) '
—
(B[], [€]) = (W*(v),€) = w(v, €(m)) Vv € TyP, €€ An.

The following result plays an essential role in understanding the non-
degeneracy condition.

Proposition 2.6. Assume that (I' = P,w + Q) is a pre-quasi-sym-
plectic groupoid. Then, ¢ is a linear isomorphism.

Proof. Assume that ¢[v] = 0 for v € T,,P. Then, w(v,?(m)) =
0, V¢ € A,,, which implies that v € kerw,, since ¢*w = 0. Hence,
[v] = 0. So ¢ is injective.

Conversely, assume that £ € A, satisfies the property that (¢[v], [£])
=0, Yv € T,,P. Hence, w(?(m),v) =0, Yv € T,, P. This implies that
?(m) € kerwy,. Therefore, £ € kerw,, N A, or [§] = 0. This implies
that ¢ is surjective. q.e.d.

An immediate consequence is the following result, which gives a useful
way of characterizing a quasi-symplectic groupoid.

Proposition 2.7. A pre-quasi-symplectic groupoid (I' = P,w + Q)
18 a quasi-symplectic groupoid if and only if

(1) the anchor a : ker wy, N Ay, — kerwy, N T, P is injective, and

(2) dimT' = 2dim P.

Proof. By Proposition .6 and using dimension counting, we have

(8) dim(ker wy,, N A4,,) — dim(ker w,,, N T, P) = dimI" — 2dim P.
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Assume that (I' = P,w+) is a quasi-symplectic groupoid. Equation
(8) implies that dimI" = 2dim P. The converse is proved by working
backwards. q.e.d.

A special class of quasi-symplectic groupoids are the so called twisted
symplectic groupoids [10], which are pre-quasi-symplectic groupoids
(T' = P,w + ) such that w is honestly non-degenerate. In particu-
lar, symplectic groupoids [32] are always quasi-symplectic. In the next
subsection, we will discuss another class of quasi-symplectic groupoids
motivated by the Lie group valued momentum map theory of Alekseev—
Malkin-Meinrenken [2].

2.3. AMM quasi-symplectic groupoids. First of all, let us fix some
notations. Assume that a Lie group G acts smoothly on a manifold M
from the left. By a transformation groupoid, we mean the groupoid
G x M = M, where the source and target maps are given, respectively,
by s(g,x) = gz, t(g,z) =z, ¥(g9,z) € G x M, and the multiplication is
(91,%) - (92,9) = (9192, ), where x = gay.

Let G be a Lie group equipped with an ad-invariant non-degenerate
symmetric bilinear form (-,-). Consider the transformation groupoid
G x G = G, where G acts on itself by conjugation. Following [2],
we denote by @ and 6 the left and right Maurer-Cartan forms on G
respectively, i.e., § = g7'dg and 6 = dgg~'. Let Q € Q3(G) denote
the bi-invariant 3-form on G corresponding to the Lie algebra 3-cocycle
(1/12)(- -, ) € Ag:

1 1
and w € Q?(G x G) the two-form:

(0.10,01)

1 * * * * n
(10) w|(g,ac) = _5[(14% pry 0, pry ) + (pry 0, pr3(0 + 0))],

where (g, x) denotes the coordinate in G x G, and pry and pry : GXG —
G are the natural projections.

Proposition 2.8. Let G be a Lie group equipped with an ad-invariant
non-degenerate symmetric bilinear form (-,-). Then, the transformation
groupoid (G x G = G,w + Q) is a quasi-symplectic groupoid, called the
AMM quasi-symplectic groupoid.

Proof. First, one needs to check that w 4 ) is a 3-cocycle. This can
be done by a tedious computation, and is left for the reader.
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It remains to check the non-degeneracy condition, which is in fact
embedded in the proof of Proposition 3.2 [2]. For completeness, let us
sketch a proof below.

The Lie algebroid A of G x G = G is a transformation Lie algebroid:
g x G — @G, where the anchor map a : g x G — T'G is given by a(§,z) =
r2(§) — 1(€), V¢ € g. Therefore, a(¢,z) = 0 if and only if Ad,§ = &.
On the other hand, for any £ € g being identified with an element in
Ay, we have € |(14) = (£,0) € T}, (G x G). For any 6, € T,G, let
5(12@ = (0,62) € T 2)(G x G). Clearly, (1 ;) is a tangent vector to the
unit space.

It follows from Equation (10) that

w(?’(lyx)’ 5(1745)) = w((§70)7 (Oaézv)) = _%53; _ (f, 0+ é)

Therefore, we have 6*(?‘(1@) w) = 1(&,0+6). Hence, ?‘(l,x) Jw=0
if and only if (Ad,; + 1)¢ = 0. This implies that a : kerw, N A, —
ker w, N TG is injective. Therefore, it follows from Proposition 2.7 that
(G x G = G,w+ Q) is indeed a quasi-symplectic groupoid. q.e.d.

Remark 2.9. From the above proposition, we see that [w+ 2] defines
a class in the equivariant cohomology Hé(G) When G is a compact
simple Lie group with the basic form (-,-), [w + €] is a generator of
H g(G) In Cartan model, it corresponds to the class defined by the d¢-
closed equivariant 3-form g (£) = Q— %(0—1—5, §:g— U(G), Véeg
(see [8, 22)).

3. Hamiltonian I'-spaces

3.1. Definitions and properties. In this section, we introduce the
notion of Hamiltonian I'-spaces for a quasi-symplectic groupoid I' = P,
which generalizes the usual notion of Hamiltonian spaces of symplectic
groupoids in the sense of Mikami-Weinstein [26].

First, we need the following:

Definition 3.1. Given a quasi-symplectic groupoid (I' = P,w + ),
let J: X — P be a left I'-space, i.e., I' acts on X from the left. By a
compatible two-form on X, we mean a two-form wx € Q%(X) satisfying

(1) dwx = J*Q and
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(2) the graph of the action A = {(r,z,rz)[t(r) = J(z)} CT x X x X
is isotropic with respect to the two-form (w,wx, —wx).

Then, (X J, P,wx) is called a pre-Hamiltonian I'-space.

In the sequel, we simply refer to the second condition as to “the graph
of the action A C I' x X x X is isotropic”, where the bar on the last
factor X indicates that the opposite two-form is used.

To illustrate the intrinsic meaning of the above compatibility condi-
tion, let us elaborate it in terms of groupoids. Let Q ;=1 xp X = X
denote the transformation groupoid corresponding to the I'-action, and,
by abuse of notation, J : @ — I the natural projection. It is simple to
see that

(11) Q—1>r

-
-
<

is a Lie groupoid homomorphism. Therefore, it induces a map, i.e., the
pull-back map, on the level of de-Rham complex

J QNI — Q°(Q.).

Proposition 3.2. Let (I' = P,w+ Q) be a quasi-symplectic groupoid
and J : X — P a left T-space. Then, wx € Q%(X) is a compatible
two-form if and only if

(12) J(w+ Q) = dwx.
Proof. Note that
dwx = (s"wx — tfwy) + dwx,

where s,t : I'x p X — X are the source and target maps of the groupoid
I' xp X = X. So, Equation (12) is equivalent to
sfwx —tfwx = Jw and dwy = JQ.

It is simple to see that the first equation above is equivalent to that the
graph of the action A C I' x X x X is isotropic by using the source and
target maps s(r,z) =r-x and t(r,x) =z, V(r,z) € I xp X. q.e.d.
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Remark 3.3. As a consequence, J* : H3 p(I'.) — H3 p(Q.) maps
[w + Q] into zero. When [w + €] is of integral class, it defines an S*-
gerbe over the stack Xr corresponding to the groupoid I' = P, the
above proposition implies that the pull-back S'-gerbe over Xq is always
trivial.

If I is the symplectic groupoid T*G = g*, @ can be identified with the
transformation groupoid G x X = X and the groupoid homomorphism
J:Q (2 GxX)—T (2 Gxg*)issimply idxJ. In this case, H} p(I',) =
H}(g*) and H}5(Q,) = H(X). In Cartan model, Equation (12) is
equivalent to

dewx = J*xa(§).
Here, x¢ € Q2,(g*) is the equivariant closed 3-form defined as y(§) =
—d{a,§), where a : g* — g* is the identity map. Similarly, if I" is the
AMM quasi-symplectic groupoid G x G = G, @ is isomorphic to the
transformation groupoid G' x X = X. Then, the relevant dg-closed
equivariant 3-form yg € Q2 (G) is

XGl(€) =0 - 5(0+0,6).

See Remark 2.1 of 2.

Note that in the first case, x¢ € 2,(g*) defines a zero class in Hg(g*),
while in the case of the AMM quasi-symplectic groupoid, x¢ € Q%(G)
defines a non-zero class in H2,(G). This fact is the key ingredient for
explaining the difference of their quantization theories, while in the
latter case, S'-gerbes are inevitable in the construction [17].

As is well known, a Lie groupoid action induces a Lie algebroid action,
called the infinitesimal action, which can be described as follows. For
any r € X and any £ € A,,, where J(z) = m, let v(¢) be a path in the
t-fiber t=1(m) of I through the point m such that ¥(0) = ?(m), and
define & (x) € T, X to be the tangent vector corresponding to the curve
v(t) - = through the point z. In this way, one obtains a linear map

called the infinitesimal action. In particular, this action induces a Lie
algebra homomorphism I'(A) — X(X). One also easily checks that

The following lemma follows easily from the compatibility condition
in Definition 3.1 (2).
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Lemma 3.4. Let (I' = P,w + Q) be a quasi-symplectic groupoid.
If a U'-space J : X — P equipped with a two-form wx satisfies the
compatibility condition in Definition 3.3 (2), then for any z € X such
that J(z) = m and any & € A,,, we have

~

(13) J (€ (m) Jw) = €(z) Jwy.

Proof. Tt is simple to see that for any £ € A,,, (?(m),(),é(:r)) is
tangent to A. On the other hand, V9, € T, X, (Ju0z,0,,9;) is also
tangent to A. Thus, it follows that

— ~
w( § (m)v J*(S:v) - wX(&(x)aézv) =0.
Equation (I3) thus follows immediately. q.e.d.

From this lemma, one easily sees that if ?(m) € kerw, then £(x)
automatically belongs to the kernel of wx. As in [2], we impose the
following minimal non-degeneracy condition.

Definition 3.5. Let (I' = P,w + ) be a quasi-symplectic groupoid.
A Hamiltonian I'-space is a left I'-space X — P equipped with a com-
patible two-form wy such that Va € X,

(14)  kerwyl, = {£(2)|¢ € Ay such that € (J(z)) € kerw}.

For any z € X, by A7, we denote the linear subspace of A, con-

xT?

sisting of those vectors { € A ;) such that £(z) = 0.

Lemma 3.6. Assume that (I' = P,w + Q) is a quasi-symplectic
groupoid and J : X — P is a I'-space equipped with a compatible two-
form wx. Then

(1) dim J,(T, X) < rank A — dim A%,

(2) if, moreover, (X L p, wx) is an Hamiltonian T'-space, then

(a) kerw sy N Ay — kerwx|e, § — () is an isomorphism and
(b) ker J, Nker wg( =0.
Proof.
(1) Vo, € T, X and & € AZ, we have
_ .
(0 J:0a], [€]) = w(Jiba, € (J(2))) = —wx (&(x),02) =0,

where ¢ is the linear isomorphism defined by Equation (7). This implies
that

olpry (Ju(To X))] € (prp A7)
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where
Ty P

ker W) N TJ(x)P

prq TJ(I)P —

and
A

ker W) N AJ(I)

pry: Ajz) —

are projections.
Second, we note that pr, is injective when being restricted to AZ.
To see this, we only need to show that A7 N (kerw ) N Aj,)) = 0.

Assume that § € A7 N (kerw ;) N Aj)). Then, we have {(x) = 0 and
€ (J(z)) Jw = 0. Hence, a(¢) = J.£(x) = 0, which implies that £ = 0
by Definition 2.5. As a consequence, we have dim(pry AZ) = dim AZ.
Hence,
dim J, (7, X) — dim(ker W(z) N TJ(I)P)
< dimpr;(J« (73 X)) (since ¢ is a linear isomorphism)
= dim ¢[pr, (J«(T:: X))]
< dim(pry A7)*
= [rank A — dim(kerw;(x) N A;(x))] — dim(pry A7)
= [rank A — dim(kerw;(z) N A;(z))] — dim AJ.
Thus (1) follows immediately since I' is a quasi-symplectic groupoid.
2a) By the minimal non-degeneracy assumption, we know that the
map R
ker wy(z) N A j(z) — kerwx|y, & — &(x)
is surjective. To show that it is injective, assume that
§ € kerwy(y) N Ay such that {(z) = 0. Then, a(§) = J.&(z) = 0.
Since w is non-degenerate in the sense of Definition 2.5, we have £ = 0.
2b) Assume that §, € ker J, N kerwg(. Since J : X — P is an
Hamiltonian T'-space, by assumption, we have d, = {(x), where £ €
— A~
Aj(gy such that & (J(x)) Jw = 0. Hence, a(§) = J.&(z) = Jud, = 0,
and therefore, ¢ = 0 since I' is a quasi-symplectic groupoid.
This completes the proof. q.e.d.

For a subspace V C T, X, by V¥X we denote its wx-orthogonal
subspace of V. As a consequence, we have the following proposition
which plays a key role in our reduction theory.
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Proposition 3.7. Assume that (I' = P,w+ Q) is a quasi-symplectic
groupoid, and (X I, P,wx) an Hamiltonian I'-space. Then

(15) (ker J, )X = {{(z)|[V £ € Ay}

Proof. 1t is simple to see that (ker J,)“X = [w% (ker J,)]*. Therefore,
it follows that
dim(ker J, )X
= dim X — dim[w% (ker J,)]
(since w is injective when being restricted to ker .J,)
= dim X — dim ker J,
= dim J,(T,X) (by Lemma 3.6)
<rank A — dim A}

= dim{é(2)|V £ € Ay }-
On the other hand, clearly, we have

{E(@)IV € € Ay} C (er J, )=

according to Equation (13). Thus, Equation (15) follows immediately.
q.e.d.

3.2. Two fundamental examples. Below, we study two fundamental
examples of Hamiltonian ['-spaces, which are naturally associated to a
quasi-symplectic groupoid.

Proposition 3.8. Assume that (I' =% P,w + Q) is a quasi-symplectic
groupotid. Then

(1) J : T — P x P is an Hamiltonian T x T-space, where J(r) =
(s(r),t(r)), ¥Yr € T', and the action is defined by

(ri,re) -z = rlxrgl, t(r1) = s(x), t(z) = t(ry).

(2) Given any orbit O C P, there is a natural two-form wo € Q?(0)
so that the natural inclusion i : O — P defines an Hamiltonian
I'-space under the natural T'-action.

Proof.
(1) It is clear, from definition, that dw = J*§. To check the second
compatibility condition of Definition .1, it suffices to show that

{(r1, 72, z,riary )| t(r1) = s(z), t(x) =t(r2)} CTXxT xT' xT
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is isotropic. This can be proved using the multiplicativity assumption
on w, ie., dw = 0, as in [B3]. To check the minimal non-degeneracy
condition, note that for any &, € I'(A4), the vector field on I" generated
by the infinitesimal action of (£,7) is given by ?(x) — % (z). Next, note
that for any ¢, € T,I', £ € I'(A), we have

(16)

— — — —
w(§ (2),02) = w(& (t(2)), 10e),  w(&(2),00) = w( & (5(2)), 540z).

These equations follow essentially from Equation (13) since s : I' — P
equipped with the natural left I'-action (or ¢ : I' — P with the left I'-
action: r -z = xr~ !, respectively) satisfies the hypothesis of Lemma

Now, assume that &, € kerw. Then, t,6, € kerw by Equation (16),
since P is isotropic. By the non-degeneracy assumption, we have t,0, =
a(n) for some 1 € Al such that 77 (t(z)) € kerw. Hence, 7 (t(z)) €
kerw by Corollary 2.4 (3), which in turn implies that % (z) € kerw
according to Equation ([6). Let ¢, = d, + 7 (z). Then,

te0l, = 0y + 1.7 (z) = t.0, — a(n) = 0.

-
Also, we know that ¢!, € kerw. Therefore, one can write 0, = & (x)

where £ € Ay, such that ?(s(x)) € ker w. We thus have proved that
0r = ?(x) — N (z), where 77 (t(z)) € ker w and ?(s(m)) € kerw.

(2) Let O C P be the groupoid orbit through the point my € P.
It is standard that t=(mg) = O is a I'"-principal bundle, where I
denotes the isotropy group at mg. From the multiplicativity assumption
on w, it is simple to see that wl;—1(y,), the pull-back of w to the t-
fiber t=1(myg), is indeed basic with respect to the Iho-action. Hence, it
descends to a two-form wp on O. That is, w|;-1(py) = s*wo. It thus
follows that

s*dwo = (8"Q — Q) |1 (1),

which implies that dwp = i*€). It is also clear that the two-form we is
compatible with the groupoid I'-action since w is multiplicative. To show
the minimal non-degeneracy condition, assume that = € t~1(my) is an
arbitrary point, and &, € T,t~!(mg) such that [6,] = s.0, € kerwo|m,
where m = s(z). By definition, w(d,,8.) = 0, V&, € Tt~ (my). It thus
follows that w(ry-104,7,-19,) = 0. Let {,n € Ay, such that r,-10, =
?(m) and r,-16,, = 7 (m). Thus, we have w(?(m), 7(m)) =0, Vn €
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A,,. Therefore
w(a(®), 7 (m)) = w( € (m) = € (m), 7 (m))
= w(€ (m), 7 (m)) = 0, Vn € Ay

It thus follows that a(&) € ker w since w(a(§), 1), P) = 0. That is, a(§) €
ker w,, N T, P. By the non-degeneracy assumption on w (see Definition

2.5), we deduce that there exists ; € Ay, such that g(m) € ker w and
a(&1) = a(€). So & — & belongs to the isotropy Lie algebra at m. As a
result, it follows that the minimal non-degeneracy condition is indeed

satisfied since [0,] = 5,0, = £(m) = & (m). q.e.d.

3.3. Examples of Hamiltonian I'-spaces. In this subsection, we list
various examples of momentum maps appeared in the literature, which
can be considered as special cases of our Hamiltonian I'-spaces. In fact,
our definition is a natural generalization of Hamiltonian I'-spaces of a
symplectic groupoid of Mikami-Weinstein [26], which include the usual
Hamiltonian momentum maps and Lu’s momentum maps of Poisson
group actions as special cases.

Example 3.9. Consider the symplectic groupoid (T%G = g*,w),
where w is the standard cotangent symplectic structure. Then, its
Hamiltonian spaces are exactly the Hamiltonian G-spaces J : X — g¢g*
in the ordinary sense.

Example 3.10. When P = G*, the dual of a simply connected com-
plete Poisson Lie group G, its symplectic groupoid I is a transformation
groupoid: G x G* = G*, where G acts on G* by left dressing action
[20]. In this case, Hamiltonian I'-spaces can be described in terms of the
so-called Poisson G-spaces. Recall that a symplectic (or more generally
a Poisson) manifold X with a left G-action is called a Poisson G-space
if the action map G x X — X is a Poisson map. A Poisson morphism
J : X — G* is said to be a momentum map for the Poisson G-space
9], if
(17) X € g —mlt(J(X")) € X(X)

is the infinitesimal generator of the G-action, where X" denotes the
right-invariant one-form on G* with value X € g* at the identity, and 7x
is the Poisson tensor on X. An explicit relation between Hamiltonian
I-spaces and Poisson G-spaces can be established as follows [85]. If
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J : X — G* is an Hamiltonian I'-space, then X is a Poisson G-space
with the action:

(18) gr = (g,J(x)) - =

for any g € G and = € X, where (g, J(z)) is considered as an element
in ' = G x G* and the dot on the right-hand side refers to the groupoid
I'-action on X. Then, J is the momentum map of the induced Poisson
G-action, in the sense of Lu [19]. Conversely, if a symplectic manifold X
is a Poisson G-space with a momentum mapping J : X — G*, Equation
(18) defines an Hamiltonian I'-space.

Example 3.11. Let (+,-) be an ad-invariant non-degenerate symmet-
ric bilinear form on g. It is well-known that (-,-) induces a Lie algebra
2-cocycle A € A?(Lg*) on the loop Lie algebra defined by [29]:

(19)  AX,Y) = % /0 "(X(s),Y'(s))ds ¥X(s), Y (s) € Lg

and therefore defines an affine Poisson structure on Lg. Its symplec-
tic groupoid I' can be identified with the transformation groupoid
LG x Lg = Lg, where LG acts on Lg by the gauge transformation [6]:

(20) g-&=AdE+g'g7" Vg€ LG, €€ Lg.

This is the standard gauge transformation when Lg is identified with
the space of connections on the trivial G-bundle over the unit circle
S1. The symplectic structure on LG x Lg can be obtained as fol-
lows. By [//5, we denote the corresponding Lie algebra central exten-
sion. Assume that A satisfies the integrality condition (i.e., the cor-
responding closed two-form wrg € Q?(LG)C is of integer class). It
defines a loop group central extension S' — LG =+ LG. Consider
7: LG x Lg — LG x Lg, where T = 7 X id. Let i denote the embedding
LG x Lg =~ LG x (Lg x {1}) € LG x Lg = T*LG. Then
T'WLGxLg = i*wT*fé.
In this case, the corresponding Hamiltonian I'-spaces are exactly

Hamiltonian loop group spaces studied extensively by Meinrenken—
Woodward [23, 24, 25].

Example 3.12. Let I' be the AMM quasi-symplectic groupoid
(G xG =2 G,w+ Q). It is simple to see that Hamiltonian I'-spaces
correspond exactly to quasi-Hamiltonian G-spaces with a group valued
momentum map J : X — G in the sense of [2], namely those G-spaces X
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equipped with a G-invariant two-form wyx € Q(X)% and an equivariant
map J € C®(X,G)Y such that

(B1) The differential of wx is given by
de = J*Q.
(B2) The map J satisfies

. 1 _
§ Jwx = 5‘]*(570 +0),V¢ € g.
(B3) At each z € X, the kernel of wx is given by
kerwy |, = {€(x)] € € ker(Ad ) +1)}.

3.4. Hamiltonian bimodules. A useful way to study Hamiltonian I'-
spaces is via the Hamiltonian bimodules.

Definition 3.13. Given quasi-symplectic groupoids
(G = Go,wg + Q) and (H = Hy,wy + Qp), an Hamiltonian G-H-
bimodule is a manifold X equipped with a two-form wx € Q?(X) such
that

(1) Go £ X % Hyis a left G-space and a right H-space, and the two
actions commute;

(2) X 2% Gy x Hy is an Hamiltonian G x H-space, where the action
is given by (g,h) -x = gzh™!, Vg€ G, h € H, x € X such that
t(g) = p(z) and t(h) = o (x).

In particular, an Hamiltonian I"-space can be considered as an Hamil-
tonian I'---bimodule, where - denotes the trivial quasi-symplectic group-
oid - = -

Given an Hamiltonian G—H-bimodule Gy <= X % Hy, let Q = X be
the transformation groupoid

Q= (G x H) X(GoxHy) X = X.

Then, the natural projections pr; : ¢ — G and pry : Q — H are
groupoid homomorphisms. As an immediate consequence of Proposition
3.2, we have the following

Proposition 3.14. If (G = Go,wg + Qg) and (H = Ho,wy + Qpr)
are quasi-symplectic groupoids, and G £ X 2% Hy is an Hamiltonian
G-H-bimodule, then

pri(we + Qa) — pry(wy + Qi) = dwx.
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Therefore, on the level of cohomology, we have
pr1[wa + Qal = pra[wn + Qul,
where pri : H}5(G.) — H}5(Q.) and pry : Hyp(H,) — HpH(Q.)
are the homomorphisms of cohomology groups induced by the groupoid
homomorphisms pr; : Q — G and pry : Q — H, respectively.

Let (GjGo,wG—FQG), (H:§H0, wH—l—QH), and (K = K(),wK—I—QK)
be quasi-symplectic groupoids. Assume that Gy 2 x & Hyis an
Hamiltonian G-H-bimodule, and H 2y 2 Ky an Hamiltonian H-
K-bimodule. Moreover, we assume that the fiber product X xg, Y is
a manifold (for instance, this is true if o1 X po : X XY — Hy x Hy
is transversal to the diagonal) and the diagonal H-action on X X, Y,
h-(z,y) = (x-h~' h-y), is free and proper so that the quotient space
is a smooth manifold, which is denoted by X x g Y. That is

Let p3: X xgY — Gg and 03 : X xg Y — Ky be the maps given
by ps([z,y]) = p1(z) and o3([x,y]) = o2(y), respectively. Define a left
G-action and a right K-action on X xg Y by

(21) g-[v,y=lg-2y] and [z,y]-k=[z,y- k],

whenever they are defined. It is clear that G 2 xx 1Y 2 K, becomes
a left G- and right K-space, and that these two actions commute with
each other.

To continue our discussion, we need to make a technical assumption.

Definition 3.15. We say that two smooth maps 7; : X; — M, i =
1,2, are clean, if
(1) the fiber product X; X3 X9 is a smooth manifold;
(2) for any (x1,22) € X1 xXar Xo, ful(z, 20)(X1 Xn X2) is equal to
either 7,1, X1 or 1,1, Xo, where f: X5 x5 Xo — M is defined
as f(fl‘l,xg) = Tl(xl) = TQ(.CI?Q).

For instance, two maps are clean if one of them is a submersion. The
main result of this subsection is the following

Theorem 3.16. Let (G = Go,wg + Qa), (H = Ho,wng + Qu),
and (K = Ko,wx + Qk) be quasi-symplectic groupoids. Assume that
Gy 2 x4 Hy is an Hamiltonian G—-H -bimodule, and Hy 2y 2 Ky
1s an Hamiltonian H-K-bimodule. If Z := X xXgY is a manifold, then
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(1) the two-form i*(wx ®wy) € Q*(X xp, Y), where i : X xp, Y —
X XY is the natural inclusion, descends to a two-form wy on Z
and

(2) if, moreover, it is assumed that o1 and ps are clean, then (Z,wy),
equipped with the left G- and right K -actions as in Equation (21),
is an Hamiltonian G-K-bimodule.

Proof. First, note that for any (x,y) € X xp, Y, the tangent space to
the H-orbit is spanned by vectors of the form (£(z),£(y)), V€ € Ag|m,
where Ay is the Lie algebroid of H, and m = oi(x) = pa2(y). Here,
we let H act on X from the left: h -z = zh~!, and £(z) denotes the
infinitesimal vector field generated by this action. Now

(€(x),E(y) Ji*(wx D wy)
= {() Jwx +E€(y) Joy
k* _k Iy k Xk -
= —07e" (& (m) Jwn) + p3e* (€ (m) Jwn)
=0.
Secondly, let £ be any local bisection of H = Hy. Then, £ induces
a local diffeomorphism on both X and Y, denoted by ®,. By the left

multiplication, £ also induces a local diffeomorphism on H itself, which
again, by abuse of notation, is denoted by ®,. We need to prove that

(22) @Z[i*(wx D wY)] = i*(wX D wy).
Given any tangent vectors (5;,,5;) € Tipu)(X xXg, Y), i = 1,2, let

ul = 01,0 = ,02*(5; € T,,Hy, where m = o1(z) = p2(y), and 52 =
Qru' € TpH. It is simple to see that (0,0;,6.,®r.6;) € TAy and
(6,5 0,05, @r.dy) € TAz, where Ay C G x H x X x X and Ay C H X
K xY xY are the corresponding graphs of the groupoid actions. From
the compatibility condition, it follows that

—wp (8}, 0%) + wx (63, 02) — wx (Pr.by, Predl) =0
and
wi (0}, 01) + wy (8}, 07) — wy (Pry0y, Prydl) = 0.

Thus, we have

(wx & WY)(((S:L 5;)7 (5:%7 5;))

= (wx ®wy)((PLady, Predy), (Prudy, Prady)).
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Equation (22) thus follows. Therefore, we conclude that there is a two-
form wz on Z := X xpg Y such that

= i*(wX D wy),

where m: X xp, Y — Z is the projection.
It is straightforward to check that

dwz = (p3 x 03)*[Qc © QK|

and the two-form wy is compatible with the action of the quasi-symplec-
tic groupoid G x K = G x K.

It remains to prove the minimal non-degeneracy condition. First, we
need the following

Lemma 3.17. Let (G = Go,wg + Q¢) and (H = Ho,wy + Qg)
be quasi-symplectic groupoids, Gy £ X % Hy an Hamiltonian G-H-
bimodule with wx € Q*(X). Then

(23) (ker p,)*X = {€(z)|¢ € Aclp@z)} +kerwx and
(24) (ker 0,) = {£(2)[€ € Aprlyn)} + kerwy,
where Ag and A denote the Lie algebroids of G and H, respectively.

Proof. Tt is obvious that {£(z)|¢ € Aclp@) ) +kerwyx C (ker p,)“X.
Now

dim(ker p,)“X

= dim X — dim % (ker p,)
= dim p, (T, X) 4 dim ker p, — dim % (ker p,)
= dim p, (T, X) + dim(ker wx Nker p,) (by Lemma 8.6 (1))
<rank Ag — dim(Ag|%) + dim(kerwx N ker p,.)
= dim{{(2)[¢ € Ay} + dim(ker wx Nker p,).

On the other hand, using Lemma 8.6 (2), it is easy to check that

(25)  (kerwx Nkerp,) @ (kerwyx N {E(z)|€ € AGlp@) }) = kerwx.

To prove this equation, first, one easily sees that ker wx can be written
as the sum of the two subspaces on the left-hand side. To show that
this is a direct sum, it suffices to show that the intersection of these two
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subspaces is zero. This is because
(kerwy Nker p,) N {€(2)|€ € Ag|p(a)}
C ker wx Nker p, Nker o,
= kerwy Nker(p x o), (by Lemma 8.6 (2)b)
=0.
From Equation (25), it follows that

dlm({é(:r)]é’ € Ag|pa)} + kerwx)
= dim{(a)|¢ € Ac|p@) } +dimkerwy
— dim(kerwx N {&(2)|¢ € Aclp@m)})
= dim{(a)|¢ € Ag|pz)} + dim(ker wx Nker p.).

Thus Equation (23) follows immediately. Similarly, Equation (24) can
be proved. This concludes the proof of the lemma. q.e.d.

Assume that [(0;,d,)] € Tjy) 2, Where (0x,0y) € T(yy)(X XpH, Y),
is in the kernel of wz. Then

(26) wX((Sx,(S;) + wy(dy, (5;) =0 V((S;, (5;) S T(:t,y)(X X Hy Y)

By letting &), = 0, it follows that wx(ds,d;) = 0 for any d;, € ker oy,
Therefore, according to Lemma 3.17, we have
b, € (ker 01.)°% = {(®)[n € Aptlyy ey} + erwx.

It thus follows that we can always write 6, = &£(z) + 1jy () for some
£ € Aclyy (@) and m1 € Aply, (o) such that Ej(pl(:c)) € kerwg.

Similarly, one shows that d, = 7j2(y) 4 ((y), for some 9o € Ag|,, ()
and ¢ € Ak|q,(y) such that ?(Jg(y)) € kerwg.

Now, 0140, = —aay(m) and p2.dy = aa,(n2). Thus, we have
m — n2 € ker a,,. From Equations (26) and (i13), it follows that

wa (€ (m), p1e6,) — wir (T (n), 715

+ (B (n), p2.8)) — wic(C (p), 92.8,) = 0,

where m = pi(z), n = o1(x) = p2(y) and p = o2(y). Hence,
_

wr(m —n2(n),0,) = 0 for any 6, € fiTl(z,)(X xg, Y), where

f:X xp, Y — Hyis the map f(z,y) = o1(x). By the clean assump-

tion, we may assume that f.7(, ,)(X X g, Y) = 01.(T: X) (or p2.(T;,)Y),



MOMENTUM MAPS AND MORITA EQUIVALENCE 313

in which case, a similar proof can be carried out). Thus, we have
wi (M —n2(n), o1.(T X)) =0, which implies that 1) (z) —1j2(z) € ker wb.
On the other hand, since (p1 X 01)« (71 (z) —72(x)) = (0, a4, (M —n2)) =
0, we have 7jy(z) — 72(z) = 0 according to Lemma 3.6 (2)b. It thus
follows that

[(82,6,)] = [(€(2) + 171 (), 772(y) + C(y)]
= [(€(2) +1i2(2). 72(y) + ()] = [(€(2), <)),

which implies the minimal non-degeneracy condition. This completes
the proof. q.e.d.

3.5. Reduction. Theorem .16 has many important consequences. As
an immediate consequence, we have the following reduction theorem.

Theorem 3.18. Let (I' = P,w + Q) be a quasi-symplectic groupoid,

and (X EA P,wyx) an Hamiltonian I'-space. Assume that m € P is a
regular value of J and T'" acts on J~1(m) freely and properly, where
'™ denotes the isotropy group at m. Then, J~1(m)/T™ is a sym-
plectic manifold. More generally, if (I'; = Pi,w; + ), i = 1,2, are

quasi-symplectic groupoids, (X J1xJ Py, x Py,wx) is an Hamiltonian

I’y x T'y-space, m € Py is a regular value for Jo : X — Py, and (I'y)
acts on Jy '(m) freely and properly, then Jy ' (m)/(T9)™ is naturally an
Hamiltonian 'y -space.

Proof. Note that (X X P1x Pp,wy) being an Hamiltonian I'; x Ty~
space is equivalent to X being a I';-I'o-bimodule by considering X as
a right I's-space. Let O C P, be the groupoid orbit of I'y through

m. Then, Py, <~ O — - is an Hamiltonian I's--bimodule according to
Proposition §.8. The clean assumption is satisfied since Jp : J; 1 (O) —
O is a submersion. By Theorem 3.16, X X1y O is an Hamiltonian I';-
--Hamiltonian bimodule, i.e., a Hamiltonian I';-space. It is easy to see
that X X O is naturally diffeomorphic to J;*(m)/(T2)7. q.e.d.

Remark 3.19. As a consequence, X/I" (assuming being a smooth
manifold) is naturally a Poisson manifold. One should also be able to
see this using the reduction of Dirac structures, as an Hamiltonian I'-
space infinitesimally corresponds to some particular Dirac structure [8].
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Various reduction theorems in the literature are indeed consequences
of Theorem B.1§. In particular, applying Theorem 3.18 to the AMM
quasi-symplectic groupoids, we recover the Hamiltonian reduction theo-
rem of quasi-Hamiltonian G-spaces of Alekseev—Malkin-Meinrenken [2].

Corollary 3.20. Let X be a quasi-Hamiltonian G x Ga-space and
let f € Go be a reqular value of the momentum map Jo : X — Ga.
Then, the pull-back of the 2-form w to J{l(f) descends to the reduced
space

Xy = J5 (1) (Ga)y
(assuming it is a smooth manifold) and makes it into a quasi-Hamilton-
ian G-space. Here, (Go)y is the isotropy group of Go at f. In particu-
lar, if Gy = {e} is trivial, then Xy is a symplectic manifold.

Another immediate consequence of Theorem 3.1§ is the following

Theorem 3.21. Let (I' = P,w + Q) be a quasi-symplectic groupoid,

and (X A P,wy), and (Y % P,wy) be Hamiltonian I'-spaces. Assume
that J; : X — P and Jy :' Y — P are clean. Then, X XrY 1is a
symplectic manifold.

We will call X xr Y the classical intertwiner space between X and
Y. When I' = P is the symplectic groupoid T*G = g*, this reduces to
the classical intertwiner space (X x Y)y of Hamiltonian G-spaces [14].
We refer the reader to [37] for the detailed study of classical intertwiner
spaces of symplectic groupoids.

4. Morita equivalence

This section is devoted to the study of Morita equivalence of quasi-
symplectic groupoids. The main result is that Morita equivalent quasi-
symplectic groupoids define equivalent momentum map theories. See
Theorem %.19 and Corollary 4.20.

4.1. Morita equivalence of quasi-symplectic groupoids. Morita
equivalence is an important equivalence relation for groupoids. Indeed,
groupoids moduli Morita equivalence can be identified with the so called
stacks, which are useful in the study of singular spaces such as mod-
uli spaces. Morita equivalence of symplectic groupoids were studied in
[B6]. Here, we will generalize this notion to quasi-symplectic groupoids.
Let us first recall the definition of Morita equivalence of Lie groupoids

18, 84].
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Definition 4.1. Lie groupoids G = Gy and H = Hj are said to
be Morita equivalent if there exists a manifold X together with two
surjective submersions

Go & X % Hy
a left action of G' with respect to p, a right action of H with respect to
o such that

(1) the two actions commute with each other;

(2) X is a locally trivial G-principal bundle over X % Hy,

(3) X is a locally trivial H-principal bundle over G L x.

In this case, Gy L x 2 Hy is called an equivalence bimodule between
the Lie groupoids G and H.

It is known that de-Rham cohomology groups are invariant under
Morita equivalence.

Proposition 4.2 ([8, %, 15]). If G = Gy and H = Hy are Morita
equivalent Lie groupoids, then

H}p(G.) — Hpp(H.).

Definition 4.3. Quasi-symplectic groupoids (G = G, wg+g) and
(H = Hy,wy + Qp) are said to be Morita equivalent if there exists a
Morita equivalence bimodule G £ X 2 Hy between the Lie groupoids
G and H, together with a two-form wy € Q?(X) such that X is also an
Hamiltonian G-H-bimodule.

Suppose that G =% Gy and H == Hy are Morita equivalent Lie
groupoids with equivalence bimodule G L X % Hy. We say that
m € Gy and n € Hy are related if p~(m) N o1 (n) # (. The following
are basic properties [B6].

Proposition 4.4. If G = Gg and H = Hy are Morita equivalent
Lie groupoids with equivalence bimodule Gy L X % Hy. Assume that
mo € Go and ng € Hy are related. Then

(1) dimG+dim H = 2dim X,

(2) an element n € Hy is related to mg if and only if n lies in the
same groupoid orbit as ng; and conversely, m € Gq is related to
no if and only if m lies in the same groupoid orbit as mg, and

(3) the isotropy groups at mg and ng are isomorphic.
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Theorem 4.5. Morita equivalence is indeed an equivalence relation
for quasi-symplectic groupoids.

Proof. From Proposition 8.8 (1), we know that Morita equivalence is
reflective. If Gy L x5 Hj is an Hamiltonian bimodule defining the
Morita equivalence between (G = Go,wg + Qg) and
(H = Hy,wg + Qp), then Hy & X £, Gy, with the reversed actions,
is an Hamiltonian bimodule defining the Morita equivalence between
(H = Hp,wyg+Qp) and (G = Gp,wg+Qa). So, the symmetry follows.
As for the transitivity, let (G = Go,wg + Q¢), (H = Ho,wy + Qp),
and (K = Ky,wg + Qk) be quasi-symplectic groupoids. Assume that
Go 22 X & Hyis a G-H equivalence bimodule, and H 2y 2 g,
an H-K-equivalence bimodule, respectively. It is known that
Z = X xpg Y is a bimodule defining the Morita equivalence between
the groupoids G = Gy and K = Kj. According to Theorem 3.1§, Z
is also an Hamiltonian G-K-bimodule. Thus, (G = Gp,wg + Q¢) and
(K = Ko,wk + Q) are Morita equivalent quasi-symplectic groupoids.

q.e.d.

In what follows, we describe some useful constructions of producing
Morita equivalent quasi-symplectic groupoids.

Let I' = P be a Lie groupoid, and w; +Q; € Q') @ Q3(P), i = 1,2,
be two cohomologous 3-cocycles. This means that there are B € Q?(P)
and 6 € Q1(T) such that

(w1 + Q1) — (w2 + Q) =6(B +0).

Following [0], we say that wy + Q1 and wy + Qs differ by a gauge trans-
formation of the first type if (w1 + Q1) — (w2 + Q2) = IB, i.e.,

wi —wy=8"B—-t*B, Q —Qy=dB.

And we say that wy + 7 and wsy + €y differ by a gauge transformation
of the second type if (w; + Q1) — (we + Q) = 40, i.e.,

Q1 =0, wi =wy—df for some § € Q") such that 99 = 0.
It is simple to see that gauge transformations of the first type trans-
form quasi-symplectic groupoids into quasi-symplectic groupoids (see

also [8]). Below, we see that the resulting quasi-symplectic groupoids are
indeed Morita equivalent (see [d] for the case of symplectic groupoids).
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Proposition 4.6. Assume that (I' = P,w+ Q) is a quasi-symplectic
groupoid. Then, (I = P, + ), where w' = w+ s*B — t*B and
V' = Q+dB, for any B € Q?(P), is a Morita equivalent quasi-symplectic
groupoid.

Proof. First, we need to show that w’ is non-degenerate in the sense
of Definition 2.5. By Proposition 2.7, it suffices to show that
a : kerw), N A, — kerw,, NT,P is injective. Assume that
¢ € kerw!, N A, such that a(§) = 0. Then, we have for any v € T, P,

0=w'(€,v) = (wts'B—t"B)(€,v) = w(&,v)+B(a(¢),v) = w (€, v).

Thus, we have £ € ker w,, N A,,, which implies that £ = 0.

To prove the Morita equivalence, let X =1 and wy = w + s*B. We
let (T'= P,w’ + ') act on X from the left by left multiplications and
let (' = P,w+ Q) act on X from the right by right multiplications.
It is simple to check that these actions are compatible with the quasi-
symplectic structures. It remains to check the minimal non-degeneracy
condition. Assume that d, € kerwy. Then, for any ¢ € Ay, we have,

0 = wx (8, € () = w(dss € (7)) + Bls:8s, 52 ¢ ) = (b, € ()

since 5*?(30) = 0. Hence, w(t.04, <Z(t(ac))) = 0 according to Equation
(16), which implies that ¢,d, € kerw. Therefore, t,5, = a(n) for some
n € Ay such that 7 (t(z)) € kerw. Hence, 7 (t(x)) € kerw by Corol-
lary 2.4 (3), which implies that 7 (z) € kerw. Set 8%, = 6,+% (x). Thus,
0! =t 0y +1. 7 (z) = t«6, —a(n) = 0. Hence, we may write §, = E)(:c)
for some § € A(,). Moreover, a simple computation yields that

E(z) J = 0, Jw' =6, Jwx — 6, It'B
= 0, Jwx =0, Jwx + 7 (z) Jw+ 7 (z) 1s*B =0.

Thus, ?(s(x)) € ker w’ according to Equation (i16). This concludes the
proof. q.e.d.

Remark 4.7. Note that quasi-symplectic groupoids are in general
not preserved under gauge transformations of the second type. For in-
stance, the symplectic structure w on the symplectic groupoid T*G = g*
is df, where § € Q'(T*@) is the Liouville one-form. It is simple to see
that 0 satisfies the condition 06 = 0. However, T*G = g* with the zero
two-form is clearly not quasi-symplectic.
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For a Lie groupoid I' = P and a surjective submersion ¢ : ¥ —
P, we denote by I'[Y] the subgroupoid of (Y x Y) x I' consisting of
{(y1,y2,7)| s(r) = &(y1), t(r) = ¢(y2)}, called the pull-back groupoid.
Clearly, the projection pr : I'[Y] — I defines a groupoid homomorphism.
By abuse of notations, we also use pr to denote the corresponding map
on the unit spaces ¢ : Y — P.

Proposition 4.8. Assume that (I' =% P,w + Q) is a quasi-symplectic
groupoid, and ¢ : Y — P a surjective submersion. Then,
(TY] = Y, prfw+pr* Q) is a quasi-symplectic groupoid Morita equiva-
lent to (I' = Pyw + Q).

Proof. 1t is obvious that pr*w + pr* € is a 3-cocycle since pr is a
Lie groupoid homomorphism. By Ay, we denote the Lie algebroid of
I'Y] = Y. It is simple to see that Yy € Y,

Ayly = {(0y,8)[0y € T,)Y, £ € Ay(yy such that ¢.d, = a(§)}

with the anchor ay: Ay —TY being given by the projection (d,,&) — dy,
where A is the Lie algebroid of I'. Therefore, an element (d,,&) € Ay |y,
where ¢.0, = a(§), belongs to ker(pr*w)|, N Ay|, if and only if
§ € ker wy(y) N Ag(y). This implies that

ay : ker(pr*w) N Ay — ker(pr*w)NTY
is indeed injective. It thus follows that (I'[Y] = Y,pr*w + pr* Q) is a
quasi-symplectic groupoid by dimension counting.

To show the Morita equivalence, let X = I' x; py ¥V and wx =
p*w, where p : X — I is the natural projection. It is standard that
P £ X %Y is a I-I'[Y]-bimodule defining a Morita equivalence be-
tween these two Lie groupoids, where

p(r,y) =s(r) and o(r,y) =y
and the left I'-action is
(27) T (’r,y) = (?ray)a t(ﬁ = S(T)a
while the right T'[Y]-action is

(28) (r,y) - (y1,y2,7) = (r7,92), y =11, t(r)=¢(y) = ¢(y1) = s(7).

It is also simple to check that wx is compatible with the I" x I'[Y]-
action. For the minimal non-degeneracy condition, assume that (d,, )
€ T,y X such that (,,0y) Jwx = 0, which is equivalent to that
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5, Jw = 0. By Proposition 8.8, we have §, = E)('r) — %7 (r), where
RN
£ € Agy and ) € Ay, such that & (s(r)) and 7 (t(r)) € kerw. Thus,

(0r,0y) = &(r,y) — 1 (r,y), where nf = (04,m) € Ay|y clearly satisfies the

—

condition that 7 (y) € ker(pr* w). This concludes the proof. q.e.d.

Combining Propositions .G and 4.8, we are lead to the following:

Theorem 4.9. Let (G = Go,wa + Q¢) and (H = Ho,wny + Qp)
be pre-quasi-symplectic groupoids, which are Morita equivalent as Lie
groupoids with an equivalence bimodule Gy L x % Hy. If
P (wa + Q¢a) and o*(wg + Qp), as de-Rham 3-cocycles of the groupoid
G[X] = H[X]| = X, differ by a gauge transformation of the first type,
then if one is quasi-symplectic, so is the other. Moreover, they are
Morita equivalent as quasi-symplectic groupoids.

4.2. Generalized homomorphisms of quasi-symplectic group-
oids. Recall that a generalized homomorphism from a Lie groupoid
G = Gy to H = Hy is given by a manifold X, two smooth maps
Go £ X % Hy, a left action of G with respect to p, a right action
of H with respect to o, such that the two actions commute, and X is
a locally trivial H-principal bundle over Gy < X [8]. In particular,
p: X — G must be a surjective submersion, and the (right) H-action
on X is free and proper.

Generalized homomorphisms can be composed just like the usual
groupoid homomorphisms; thus, there is a category G whose objects
are Lie groupoids and morphisms are generalized homomorphisms [15,
16, 31, where isomorphisms in the category G are just Morita equiva-
lences [27, B6].

Similarly, we can introduce the notion of generalized homomorphisms
between quasi-symplectic groupoids.

Definition 4.10. A generalized homomorphism from a quasi-sym-
plectic groupoid (G = Gyp,wg + Q¢) to a quasi-symplectic groupoid
(H = Hy,wg + Qp) is an Hamiltonian G—H-bimodule Gy £ X % Hy,
which is, in the same time, also a generalized homomorphism from G
to H.

Theorem 3.18 implies the following theorem.

Theorem 4.11. There is a category, whose objects are quasi-sym-
plectic groupoids, and morphisms are generalized homomorphisms of
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quasi-symplectic groupoids. The isomorphisms in this category corre-
spond exactly to Morita equivalences of quasi-symplectic groupoids.

It is known that a strict homomorphism of Lie groupoids must be
a generalized homomorphism. For quasi-symplectic groupoids, one can
also introduce the notion of strict homomorphisms.

Definition 4.12. A strict homomorphism of quasi-symplectic group-
oids from (G = Go,wa + Q¢) to (H = Hy,wy + Q) is a Lie groupoid
homomorphism ¢ : G — H satisfying

(1) ¢*(wH + Qi) = wa + Q¢ and
(2) if & € Apg|m satisfies the properties that agp(§) = 0 and
—
¢* (& (m) Jwy) =0, then £ = 0, where A is the Lie algebroid of
H = Hy and ay : Ay — T H denotes its anchor map.

Proposition 4.13. For quasi-symplectic groupoids, strict homomor-
phisms imply generalized homomorphisms.

Proof. Assume that ¢ : G — H is a strict homomorphism of quasi-
symplectic groupoids from (G = Go,wg + Qa) to (H = Ho,wi + Q).
Let X = Go X¢,H,y,s H, and set p(go,h) = go, 0(go, h) = t(h). Define a
left G- and a right H-action on X, respectively, by

9-(90,h) = (s(9), (g)h) and  (go,h) - B = (go, hh').
One checks that this defines a generalized homomorphism from G = G
to H = Hj [:_i_g] Let wx = i*(O,wH), where 7 : G X¢,HO,SH C Gy x H
is the inclusion. It is simple to see that wx is compatible with the G-H-
bi-actions. It remains to prove the minimal non-degeneracy condition.
Note that for any £ € I'(Ag) and n € I'(Ag), the vector field on X
generated by the infinitesimal action of (£,7) is given by

—

2 —
(& D )90, 1) = (ac(§)(90), p:£(h) = 7 (h)) Y(go. D) € X.
Assume that 6, = (0g,,05) € kerwx, where x = (go,h) € X. This
implies that
(29) ¢50gy = 5:0p  (thus ¢(go) = s(h)) and
(30) wp (6p,0;) =0, Vo), € Tp,H such that s.6;, € Im(¢.).

In particular, for any ¢ € Aglyp), since s*?(h) = 0, which is always

in the image of ¢., we have wH(6h,?(h)) = 0. From Equation (ilG),
—
it thus follows that wg (t.0p, ¢ (t(h))) = 0, which implies that ¢.d;, €



MOMENTUM MAPS AND MORITA EQUIVALENCE 321

ker wy. By the non-degeneracy assumption of Definition 2.5, we have
t.0n = am(n), where n € Aplypy such that 77 (£(h)) € kerwy. Hence
7 (t(h)) € kerwy according to Corollary 2.4 (3), which implies that
% (h) belongs to kerwy by Equation (16). Let 6, = &, + 7 (h). Then,
we have £,0), = t,0 4,7 (h) = t.6, —am(n) = 0. Thus, &), = g(h) for
some & € Apyly(p), and hence we have 6, = g(h) — 7 (h). On the other
hand, for any x 6_1_)40\90, since s*a;((h) = ap(pX) = Prac(x) € Im ¢y,

we have wg (9x, d+x(h)) = 0 by Equation (8d). Now
Wi (S, Sex(h)) = wir (&1 (h) = 7 (h), gux(h))
— wir (&1 (h), gox(h))

— —
= wr(s:£1(h), Pxx(5(h))),
where we used Equation ({6) in the last equality.

Now, s*g(h) = 5.(0n + N (h)) = 5.0n = ¢udy,. Therefore, we
have wH(gb*égo,qI)é(s(h))) = 0, Vx € Aglg. It thus follows that
dgo € ker(¢*wp). Since (G = Go, ¢*wy + ¢*Qpy) is quasi-symplectic,
by the non-degeneracy assumption, we conclude that d,, = ag(§) for

some £ € Aglg, such that ?(go) € ker(¢p*wp). Therefore, for any
— —
Ogy € Tgo Go, wi (948 (s(h)), dx0g,) = (¢"wm) (& (90), Jg,) = 0.

— — —

Hence, wir(€1 (5(h)) — 5o (5(h), 6u8)y) = wir(E: (s(1), Guly). Since
s: H — Hy is a submersion, we may assume that ¢,y = s.0) for some
0y € Ty, H, and therefore

= ! = 1! = 1!
wa(&1(s(h)), ¢:0y) = wu(&i(s(h)), s«6,) =wu(&1(h), o)
= wu(6n+ 7 (h), 6y) =wn (b, 0;) =0
by Equation (3U) since s,6) = @5;0 € Im ¢,. On the other hand, since

—
ap(§1—¢:8) = s:& (M) —an(9:§) = s.0p—Pu(ag(§)) = 86— @sdg, = 0,
it follows that £ —¢.& = 0. Therefore, we conclude that 6, = (dg,,05) =

—

(€ @ 1) (go, h), where € (go) € ker(¢*wp) and 77 (t(h)) € kerwyr. q.e.d.

Remark 4.14. Note that the second condition in Definition §.12
is necessary for Proposition #.13 to hold. For instance, given a quasi-
symplectic groupoid H = Hy and a fixed point in Hy, one may always
think of this point as a groupoid homomorphism from - = - to H =
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Hy. The first condition is satisfied automatically. However, - L HS
Hy is, in general, not a generalized homomorphism of quasi-symplectic
groupoids since H is not, in general, an Hamiltonian H-space under the
right H-action.

The following proposition describes the precise relation between gen-
eralized homomorphisms and strict homomorphisms for quasi-symplectic
groupoids.

Proposition 4.15. Any generalized homomorphism of quasi-sym-
plectic groupoids is equivalent to the composition of a Morita equivalence
with a strict homomorphism.

Proof. The inverse direction follows from Proposition .13 and The-
orem {.11, so it remains to prove the other direction.

Assume that Gy < X % Hyis a generalized homomorphism of quasi-
symplectic groupoids from (G = Go,wa + Qa) to (H = Ho,wy + Q).

Consider the transformation groupoid @ := (G x H) X (gyx 1) X = X
as in Proposition 3.14. One easily checks that () = X is isomorphic to
G[X] = X, where the isomorphism is given by (g, h, ) — (x,g ‘xh, g),
Y(g,h,z) € (G x H) X(Goxm,) X- Therefore, we have two groupoid ho-
momorphisms pry : G[X]| — G and pry : G[X] — H. Equip G[X]| = X
with the 3-cocycle

waix) + Qapx) = pri(we + Qa) — dwx.

By Theorem 4.9, we know that (G[X] = X,wqx)+Qq(x)) is Morita
equivalent to (G = Gp,wg + Qg). On the other hand, according to
Proposition .14, we have warx) + Qapx) = pra(wn + Qu). It thus fol-

lows from Theorem 3.1§ that X & X Xo.Ho.s H 2> Hp is an Hamilton-
ian G[X]-H bimodule defining a generalized homomorphism of quasi-
symplectic groupoids from (G[X]= X, wgx)+Qax)) to (H = Ho,wp+
Q). Here, the two-form wyz on Z := X X, p, s H is given by wy =
i*(0,wy ), where i : Z — X x H is the inclusion. By Lemma 3. 2(b),
one easily sees that Condition (2) in Definition 4,12 is satisfied so that
pry : G[X] — H is indeed a strict homomorphism of quasi-symplectic
groupoids. This completes the proof. q.e.d.

The proof of the above proposition also yields the following:

Corollary 4.16. If f : Gy L X % Hyis a generalized homo-
morphism of quasi-symplectic groupoids from (G = Goy,wa + Qg) to
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(H = Ho,wyg + Qn), then f*lwg + Q| = [wg + Qg], where
[* 0 HYp(H,) — H3}o(G.) is the induced homomorphism of the de
Rham cohomology groups.

In particular, if (G = Go,wg + Q¢) and (H = Hy,wg + Qp)
are Morita equivalent quasi-symplectic groupoids, then [wg + Q¢g] and
[wi + Q) define the same class under the isomorphism H3p(G,) ~
H%R(Ho)

4.3. Hamiltonian spaces for Morita equivalent quasi-sym-
plectic groupoids.

Definition 4.17. Assume that (G = Gp,we + Qg) and
(H = Ho,wg + Qp) are Morita equivalent quasi-symplectic groupoids
with an equivalence bimodule Gg L x 2 Hy. Let ¢ : F — G be an
Hamiltonian G-space, and ¢ : E — Hy an Hamiltonian H-space. We
say that I and E are a pair of related Hamiltonian spaces if there is an
isotropy submanifold  C X x F x E, such that

(1) Q is a graph over both X x¢, F and X xp, E and

(2) (yz=Y)-f =y(z=(f)) and (z7'2)-e = 271(2(e)), whenever either
side is defined for any z,y,z € X,e € E and f € F, where by
z71(f) (or z(e) resp.), we denote the unique element in E (or F'
resp.) such that (z, f,27(f)) € Q (or (2,z(e),e) € Q resp.) and
yr~! (or 2712 resp.) denotes the corresponding element [y, z] (or
[z, z] resp.) in the groupoid G (or H resp.) under the identifica-
tion: G = (X xpg, X)/H (or H= G\ (X X¢g, X) resp.)

The following property follows immediately from definition .17

Proposition 4.18.
(1) z=Yx(e)) = e and (=1 (f)) = f for all composable x € X,e € E
and f € F;
(2) for all composable g € G,x,y € X,h € H,f € F and e € E,
(g-2) (=27 g™ f)s (9-9)(e) =g yle),
(@-h) " () =h7" @), (y-h)(e) =y(h-e).

We are now ready to prove the main result of this section.

Theorem 4.19. Suppose that (G = Go,wa+Qq) and (H = Hy,wg+
Q) are Morita equivalent quasi-symplectic groupoids with an equiva-

lence bimodule Gy L x 2 Hy. Then,
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(1) corresponding to any Hamiltonian G-space ¢ : F — Gy, there is
a unique (up to isomorphism) Hamiltonian H-space ¢ : E — Hy
such that F' and E are a pair of related Hamiltonian spaces and
ViCe VETSa.

(2) let ¢; - F; — Go, i = 1,2, be Hamiltonian G-spaces and ¢; : F; —
Hy, i = 1,2, their related Hamiltonian H-spaces. If ¢1 and ¢o
are clean, then v and o are clean, and the classical intertwiner
spaces Fy xq Fy and By xg Ey are symplectically diffeomorphic.

Proof. The proof is a simple modification of Theorem 4.2 in [B§].

(1) Suppose that ¢ : F' — Gy is an Hamiltonian G-space. Then,

Go EF . is an Hamiltonian G---bimodule. Since Hy < X 2 Gy
is an Hamiltonian H-G-bimodule, from Theorem B.18, it follows that

E =X X F is an Hamiltonian H---bimodule, i.e., an Hamiltonian

H-space. Here, ¢ : E — Hy and the H-action on E are defined by
Y([z, f]) = o(x)

and

h[xvf] = [x'hilvf]'

Let Q@ = {(a, f, [z, f{)V(z,f) € X Xg, F} C X x F x E. Tt is
straightforward to check that 2 is an isotropy submanifold, and is indeed
a graph over both X xg, F' and X xp, E/. Hence, ¢ : FF — G and
1 . — Hy are a pair of related Hamiltonian spaces. Conversely, one
easily sees that F' = X x gy E by working backwards.

(2) Let Q; C X x F; x E;, i = 1,2, be as in (1). Then, Q; x Qs C
X x F} x By x X x Fy x E5 is an isotropy submanifold, which is a graph
over X xg, F1 x X xg, F». Given any [(f1, f2)] € F1 xg F», take any
element x € X such that p(x) = ¢1(f1) = ¢2(f2). Let e; € Ey, and
es € Ey such that (z, f1,e1,x, fa,e2) € Q1 x Qy. Then, it is simple to
see that (ej,e2) € By X, Ey and [e1,e2] € By X Es is independent of
the choice of x and (f1, f2). Thus, we obtain a well-defined map:

O F xg Fy — By xg By, [f1, fo] — [e1,ea).

It is simple to check that ® is a bijection, which is indeed a symplectic
diffeomorphism by using the fact that €2y x €25 is isotropic. q.e.d.
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Corollary 4.20. Assume that (G = Go,wa+Q¢) and (H = Ho,wg+
Q) are Morita equivalent quasi-symplectic groupoids, and ¢ : F' — G
and v : E — Hy are a pair of related Hamiltonian G- and H-spaces
respectively. Let n € Hy and m € Gg be a pair of related points. Then,
the reduced spaces ¢~1(m)/G™ and =1 (n)/H? are symplectically dif-
feomorphic.

Remark 4.21. Corollary .20 indicates that the reduction of Hamil-
tonian spaces of quasi-symplectic groupoids is of stack natural.

In fact, the same argument in the proof of Theorem 4.19 leads to the
following more general result.

Theorem 4.22. Assume that f : Gy & X % Hy is a generalized
homomorphism of quasi-symplectic groupoids from (G = Go,wa + Qa)
to (H = Hy,wy + Q). Then

(1) if ¢ : E — Hq is an Hamiltonian H-space, and the maps ¢ and o
are clean, then : F' — Gy, where F = X x g E, is an Hamiltonian
G-space, called the pull-back Hamiltonian space and denoted by
[E,

(2) let ¢; : E; — Hp, i = 1,2, be Hamiltonian H-spaces and v; : F; —
Go, © = 1,2, their pull-back Hamiltonian G-spaces. If ¢1 and ¢o
are clean, then 1 and 19 are clean, and moreover, there exists
a natural symplectic immersion between their classical intertwiner
spaces Fy xqg Fy — Ey Xz Es.

4.4. Examples. In this section, we will discuss various examples of
Morita equivalent quasi-symplectic groupoids and derive some familiar
corollaries as a consequence. We start with a general set-up.

Let (I' = P,w + Q) be a quasi-symplectic groupoid and ¢ : ¥ — P
a surjective submersion. Consider (I'Y] = Y,w' + ), where o' =
(B,B,w) € Q*(I']Y]) and ' = ¢*Q — dB (in applications, normally
#*Q = dB for some B € Q%(Y), so ' = 0). According to Propositions
4.6 and 4.8, this is a quasi-symplectic groupoid Morita equivalent to

(' = P,w+ Q). Applying Theorem %.19, we obtain the following

Proposition 4.23.

(1) There is a bijection between Hamiltonian I'-spaces and Hamilton-
ian T'[Y]-spaces.

More precisely, if (M J, P,wyr) is an Hamiltonian T'-space,

then (N EA Y,wn) is an Hamiltonian T'[Y]-space, where N is the
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fiber product Y xp M, jN: N — Y s the projection to the first
component, and wy = —J*B + p*wyr. Here, p: N — M s the
projection to the second component.

Conversely, if (N I, Y,wn) is an Hamiltonian T'[Y]-space, its
corresponding I'-space (M I, P,wyr) is given as follows. M is
the quotient space N/T[Y]', where T[Y] is the subgroupoid of T'[Y]
consisting of all elements (y1,y2,u) with y1,y2 € Y and u € P
satisfying ¢(y1) = é(y2) = u, J : M — P is given by J([n]) =
(¢oJ)(n), and the two-form wyr on M is defined by the equation:

rwoyp = wN —I—j*B.

Here, m : N — M denotes the natural projection map.

(2) If (M L p, wyr) and (N Ly, wn) are a pair of Hamiltonian I'-
and T'[Y]-spaces as above, and O C P and Oy C Y are a pair
of related groupoid orbits, then the reduced spaces J~1(O)/T and
JHOy)/T[Y] are symplectic diffeomorphic.

Proof. As in the proof of Propositions 4.6 and 4.8, the Morita equiv-
alence Hamiltonian bimodule is given by P L X %Y, where X =
I'x;pg Y and wx = (w,B). The left I'- and right- I'[Y]-actions are
given by Equations (27) and (28), respectively.

Now, we are ready to apply Theorem 1.19. If J : M — P is an
Hamiltonian I'-space, then its corresponding Hamiltonian I'[Y]-space is
N = X xp M, which is the quotient by I" of the space {(r,y, m)[t(r) =
o(y), J(m) = s(r)}. It is simple to see that the latter is diffeomorphic
to the fiber product Y x p M, and, under this diffeomorphism, the two-
form on X xpr M goes to —J*B + pfw.

Conversely, assume that J : N — Y is an Hamiltonian I'[Y]-space.
Then, M =X xppyN 2 (X xy N)/T[Y]. Now, X xy N ={(r,y,n)|t(r) =
d(y), J(n) = y}. It is simple to see that, under the I'[Y]-action,
any element in X Xy N is equivalent to (u,y,n) where y = j(n) and
u = ¢(J(n)). Any two such elements (u,y,n) and (u/,y/,n') are equiv-
alent if and only if n’ =" - n where 4/ € T[Y]'. As a result, M can be
identified with N/T'[Y]’, and the two-form (w, B,wy) on X Xy N goes
to wy + J* B under the identification

{(w,y,m)lVn € N, y = J(n), u=(J(n))} = N.
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Therefore, we have m*wy; = wy + J*B. L
The rest of the claims follows easily from Theorem #%.19. q.e.d.

We now consider various special cases of the above proposition.

Let G be a compact connected Lie group equipped with the Bruhat—
Poisson group structure [21], and g be its Lie algebra. By G*, we denote
its simply-connected dual Poisson group. It is known that there exists
a diffeomorphism [, 8]:

E:g"— G,
which is G-equivariant with respect to the coadjoint action on g* and
the left dressing action on G*. Let us recall the construction briefly.
Here, we follow the presentation of [8].

Let x : g© — g© be the Cartan involution given by the complex
conjugation, and let f : g© — g® be the anti-involution ¢f = —xk(&).
We also denote by t the induced anti-involution of G, considered as a
real group. Let B? : g* — g be the isomorphism induced by the Killing
form B. For any u € g*, the element g = exp(iB*(1)) € G© admits a
unique decomposition g = I, for some | € G*. Then, E is defined by
E(u) =1. i

Let 8 € Q'(g*) be the one-form [B]

(31) g %H(E*B‘C(H, o),

where § € QY(G*) ® g* is the left-invariant Maurer-Cartan form, and
67 its image under the map 1 : g* C g© — g% H : Q*(g*) — Q@*(g*)
is the standard homotopy operator for the de Rham differential. Let
B =djs € Q*(g").

The following proposition also follows from Ginzburg—Weinstein the-
orem [L13].

Proposition 4.24. The Lu-Weinstein  symplectic — groupoid
G x G* = G* is Morita equivalent to the standard cotangent symplectic
groupoid TG = g*.

Proof. Since E : g* — G* is G-equivariant, the pull-back groupoid
(G x G*)[g*] = g* is clearly isomorphic to the transformation groupoid
G x g* = g%, which is naturally isomorphic to T*G = g*. Moreover,
from Lemma 2 (2) in 1] (or Proposition 3.1 in [3]), it follows that

E* —w = 0B.
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Therefore, these two symplectic groupoids are Morita equivalent since
dB = 0. q.e.d.

As an application, we are lead to the following Alekseev—Ginzburg—
Weinstein linearization theorem [1].

Corollary 4.25. Let G be a connected compact Lie group equipped
with the Bruhat-Poisson group structure. Then

(1) (M,war) is an Hamiltonian Poisson group G-space with the mo-
mentum map J : M — G* if and only if (M,w,) is a usual
Hamiltonian G-space with the momentum map J : M — g*, where

J=EoJ, why=wy—JB.

(2) If O is a coadjoint orbit in g* and O = E(O) is its correspond-
ing dressing orbit in G*, then the reduced spaces J~*(O)/G and
J7Y0O) /G are symplectically diffeomorphic.

Next, we consider the AMM quasi-symplectic groupoid
(G xG = Gw+ Q). Let Hol : Lg — G be the holonomy map,
i.e., the time-1 map of the differential equation:

Hols(r)lagHols(r) =r, Holy(r) =e.
s

Then, we have Hol*Q = du, where y is the two-from on Lg [2].

1 1
= — Hol*f#, — Hol*
i 2/0< o1L0, ~Fol2f)ds,

where 6 € Q'(G) ® g is the right Maurer—Cartan form.

The pull-back groupoid of the AMM-groupoid under the holonomy
map is isomorphic to the transformation groupoid LG x Lg = Lg, where
LG acts on Lg by the gauge transformation (20). To see this, note that

(G % G)[Lg] = {(11(5), 72(s), 9)lr (5), ma(s) € Lg, g € G
such that ¢~ Hol(ry)g = Hol(rg)}.
Define
(32) 7: (G xG)[Lg] — LG x Lg, (r1(s),r2(s),9) — (9(s),71(3)),
where g(s) is defined by
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_1dg(s
(33)  Adggon(s) — o) 2 Z ) g0) =4
It is simple to see that 7 is indeed a diffeomorphism, under which the
groupoid structure on (G x G)[Lg] becomes the transformation groupoid

LG x Lg = Lg.

Proposition 4.26. [6] The symplectic groupoid (LG x Lg = Lg,
wraxLg) 15 Morita equivalent to the AMM quasi-symplectic groupoid
(GxGE=Gw+Q).

Proof. From the above discussion, we know that LG x Lg = Lg is the
pull-back groupoid of G x G = G under the holonomy map Hol. Denote
by f the groupoid homomorphism from LG x Lg = Lgto G x G = G,
where on the space of morphisms and the space of objects, f is given,

respectively, by f(g(s),r(s)) = (g(0),Hol(r)) and f(r(s)) = Hol(r),
Vg(s) € LG, r(s) € Lg. Then, a simple computation yields that
wraxrg — [ (w+ Q) = dp.
Thus, the conclusion follows from Propositions 4.6 and .8 immediately.
q.e.d.

Remark 4.27. The above result was used in [B] to construct an
equivariant S'-gerbe over the stack G/G.

An immediate consequence is the following equivalence theorem of
Alekseev—Malkin—Meinrenken [2].
Corollary 4.28.

(1) There is a bijection between Hamiltonian LG-spaces and quasi-
Hamiltonian G-spaces.

More precisely, if (M J, G,wnr) is a quasi-Hamiltonian G-
space, then (N I, Lg,wy) is an Hamiltonian LG-space, where N
is the fiber product Lg xg M, J : N — Lg is the projection map to
the first component, and wy = —J*u + p*wps. Here, p: N — M
1s the projection to the second component.

Conversely, if (N J, Lg,wn) is an Hamiltonian LG-space, its

corresponding quasi-Hamiltonian G-space (M EA G,wyr) is given
as follows. M is the quotient space N/QG, where QG is the based
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loop group QG C LG, J : M — G is given by J([n]) = (HolJ)(n),
and the two-form on M is defined by

Ty = wn + j*u,
where m: N — M denotes the projection.

(2) Let (M EA G,wyr) and (N iNLg,wN) be as above. Then, the
reduced spaces J~1(e)/G and J~Y(0)/LG are symplectically dif-
feomorphic.

Proof. This essentially follows from Proposition #.23. Note that un-

der the isomorphism (32), the subgroupoid (G x G)[Lg]’ of (G x G)[Lg]
corresponds to the transformation groupoid Lg x QG = Lg. q.e.d.

Remark 4.29. For a quasi-Manin triple (d, g, ), Alekseev and
Kosmann—Schwarzbach introduced a momentum map theory with tar-
get space D/G [4]. It would be interesting to investigate what the cor-
responding quasi-symplectic groupoid is. In particular, different choices
of complements h should give rise to Morita equivalent quasi-symplectic
groupoids.
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