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STRONG MARKED ISOSPECTRALITY
OF AFFINE LORENTZIAN GROUPS

Virginie Charette & Todd Drumm

Abstract

The Margulis invariant α is a function on H1(Γ,R2,1), where
Γ is a group of Lorentzian transformations acting on R

2,1, that
contains no elliptic elements. The spectrum of Γ is the image of
all γ ∈ Γ\ (Id) under the map α. If the underlying linear group of
Γ is fixed, Drumm and Goldman proved that the spectrum defines
the translational part completely. In this note, we strengthen this
result by showing that isospectrality holds for any free product
of cyclic groups of given rank, up to conjugation in the group of
affine transformations of R

2,1, as long as it is non-radiant, and
that its linear part is discrete and non-elementary. In particular,
isospectrality holds when the linear part is a Schottky group.

1. Introduction

The Margulis invariant, α(γ), of a fixed point free affine hyperbolic
transformation γ measures oriented translation along the unique γ-
invariant line in A

2,1, affine 2+1 Minkowski space. This is an important
invariant, which Margulis used in [6, 7] to prove the existence of proper
actions by purely hyperbolic affine groups on R

3. In a previous paper,
we extended its definition to affine transformations with parabolic linear
part [2].

Let Γ0 ⊂ SO(2, 1)0. Since SO(2, 1)0 ∼= Isom(H2), the group of isome-
tries of the hyperbolic plane, an element is hyperbolic, parabolic or
elliptic, depending on its fixed point set. An affine deformation of Γ0 is
an isomorphism into the group of affine transformations of A

2,1:

φ : Γ0 → Aff(A2,1)
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such that L ◦ φ = Γ0, where L denotes projection onto the linear part.
A Schottky subgroup of SO(2, 1)0 is a discrete, freely generated sub-
group of SO(2, 1)0 whose non-identity elements are hyperbolic. Drumm–
Goldman [3] proved that, given a fixed linear part Γ0 ⊂ SO(2, 1)0 that
is Schottky, the marked Margulis spectrum determines the affine defor-
mation up to translational conjugacy:

Theorem 1.1 (Weak Isospectrality (Drumm–Goldman)). Let Γ0 be
a discrete, purely hyperbolic, free subgroup of SO(2, 1)0, and φ1, φ2, a
pair of affine deformations of Γ0 such that, for every γ ∈ Γ0:

α(φ1(γ)) = α(φ2(γ)).

Then φ1 = T ◦ φ2 ◦ T−1, where T is a translation.

Kim [5] generalized this result to higher dimensions.
In this paper, we generalize Theorem 1.1 by removing the assumption

that the linear part Γ0 is known. We thus consider isomorphisms from
an abstract group G, which is assumed to be a finitely generated free
product of cyclic groups, to Aff(A2,1):

φ : G −→ Aff(A2,1).

A group Γ ∈ Aff(A2,1) is called radiant if there is a point x ∈ A
2,1

fixed by Γ. By Drumm–Goldman’s theorem, a group freely generated
by hyperbolic isometries is radiant if and only if the Margulis invariant
is identically zero on Γ. We will show that if φ(G) is not radiant, and if
L ◦φ is an isomorphism onto a discrete, non-elementary subgroup, then
the growth of the Margulis invariant as a function of word length in the
group determines the Aff(A2,1)-conjugacy class of φ(G). (Recall that a
group G ⊂ Isom(H2) is elementary if it admits a finite orbit.)

Theorem 1.2 (Strong isospectrality). Let G be a finitely generated,
free product of cyclic groups. Let φ1 and φ2 be isomorphisms:

φi : G −→ Aff(A2,1),

such that φi(G) is not radiant, and L ◦ φi is an isomorphism onto a
discrete and non-elementary subgroup of SO(2, 1)0. Suppose that for
every g ∈ G such that both φ1(g) and φ2(g) are hyperbolic:

α(φ1(g)) = α(φ2(g)).

Then φ1(G) and φ2(G) are Aff(A2,1)-conjugate.



STRONG MARKED ISOSPECTRALITY 439

This includes the case where the linear parts of φ1(G) and φ2(G) are
both Schottky subgroups of SO(2, 1)0.

We do not require a priori that φ1(g) and φ2(g) be of the same type
(i.e., hyperbolic, parabolic or elliptic), given g ∈ G. But our assump-
tions do impose the following restrictions: Since L◦φi is an isomorphism
onto a discrete group, g ∈ G is of finite order if and only if φi(g) has
elliptic linear part. Furthermore, no two elements share common fixed
points unless they are powers of each other. Finally, the fact that φi(G)
is non-elementary implies the existence of a hyperbolic element whose
fixed point set is not invariant under the action of any elliptic element
in the generating set.

The outline of the proof is as follows: Choose an appropriate gener-
ating set for G, so that the generating sets of both φ1(G) and φ2(G)
consist entirely of hyperbolic elements.

Next, reduce to the case of rank two groups whose linear parts are
Schottky. Choose appropriate conjugates of φ1(G) and φ2(G) so that
the eigensystem of one corresponding pair of generators is the same, and
the other corresponding pair of generators shares one eigendirection.

Equality of the Margulis invariant on hyperbolic words of the form
ηnγm determines the remaining eigendirections. We then show that the
eigenvalues are also the same, thus concluding that the linear parts are
equal.

By Theorem 1.1, the affine groups are thus equal up to translational
conjugacy. We will include a proof of Theorem 1.1 here for the sake of
completeness.

2. Preliminaries

Let A
2,1 denote three-dimensional affine space with the following ad-

ditional structure. Its associated vector space of directions

R
2,1 = {p− q | p, q ∈ A

2,1},
which is isomorphic to R

3 as a vector space, is endowed with the stan-
dard Lorentzian scalar product:

B(x, y) = x1y1 + x2y2 − x3y3,

where x = [x1 x2 x3]T , y = [y1 y2 y3]T ∈ R
3. Thus, A

2,1 is Minkowski
(2 + 1)-spacetime.
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A non-zero vector x is said to be null (resp. timelike, spacelike) if
B(x, x) = 0 (resp. B(x, x) < 0, B(x, x) > 0). A null vector is future-
pointing if its third coordinate is positive – this corresponds to choos-
ing a connected component of the set of timelike vectors, or a time-
orientation.

The Lorentzian cross-product is the unique bilinear map:

� : R
2,1 × R

2,1 −→ R
2,1

such that B(u, v � w) = Det([u v w]). It has the following properties:

• B(u, v � w) = B(v,w � u);
• B(v, v � w) = 0;
• B(v � w, v � w) = B(v,w)2 − B(v, v)B(w,w).

2.1. Affine deformations of a linear group. Let Aff(A2,1) denote
the group of all affine transformations that preserve the Lorentzian
scalar product on the space of directions. Choosing an origin in A

2,1 al-
lows one to write an affine transformation as the composition of a linear
transformation with a translation:

γ(x) = g(x) + vg;

g is the linear part of γ and vg its translational part.
Thus, Aff(A2,1) is isomorphic to O(2, 1) � R

2,1. Denote projection
onto the linear part of an affine transformation by:

L : Aff(A2,1) → O(2, 1).

Let G be a finitely generated group and φ : G −→ Aff(A2,1) an
isomorphism; denote the linear part of φ by Φ = L ◦ φ. We call φ an
affine deformation of Φ.

Fix the linear part GΦ = Φ(G). The left action induces a GΦ-module
structure on R

2,1, which we will denote by VΦ. Now φ is a homomor-
phism if and only if the translational part satisfies the cocycle condition:

vgh = vg + g(vh),

for every g, h ∈ GΦ. Thus, an affine deformation of Φ may be interpreted
as a cocycle u ∈ Z1(GΦ, VΦ), where u(g) = vg. So, we write:

φ = (Φ, u).

Suppose now that ψ = τφτ−1, where τ ∈ Aff(A2,1) is the pure trans-
lation: τ(x) = x + v, v ∈ R

2,1. Then, the linear part of ψ is Φ and for
g ∈ G, the translational part of ψ(g) is u(φ(g)) + v − Φ(g)(v). In other
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words, the translational parts of φ(g) and ψ(g) differ by the coboundary
v − Φ(g)(v) ∈ B1(GΦ, VΦ). Thus, H1(GΦ, VΦ) corresponds to transla-
tional conjugacy classes of affine deformations of Φ.

2.2. Hyperbolic transformations. We shall restrict our attention to
those transformations whose linear parts are in SO(2, 1)0, thus pre-
serving orientation and time-orientation. The isomorphism between
SO(2, 1)0 and Isom(H2) gives rise to the following terminology:

Definition 2.1. Let g ∈ SO(2, 1)0 be a non-identity element;

• g is hyperbolic if it has three, distinct, real eigenvalues;
• g is parabolic if its only real eigenvalue is 1, corresponding to a

one-dimensional null eigenspace;
• g is elliptic if its only real eigenvalue is 1, corresponding to a one-

dimensional timelike eigenspace.

We also call γ ∈ Aff(A2,1) hyperbolic (resp. parabolic, elliptic), if its
linear part L(γ) is hyperbolic (resp. parabolic, elliptic). Denote by H
the set of hyperbolic affine transformations.

Suppose g ∈ SO(2, 1)0 is hyperbolic, with eigenvalues λg, 1, 1/λg , for
some 0 < λg < 1. Associated to g is a null frame:

{x0(g), x−(g), x+(g)},
where x−(g) (resp. x+(g)) is a null, future-pointing λg-eigenvector
(resp. 1/λg-eigenvector), chosen to be of unit Euclidean length, and
x0(g) is the unique 1-eigenvector such that B(x0(g), x0(g)) = 1 and
{x0(g), x−(g), x+(g)} is positively oriented. If γ ∈ H, we write:

{x0(γ), x−(γ), x+(γ)} := {x0(L(γ)), x−(L(γ)), x+(L(γ))}.
Observe that B(x0(g), x±(g)) = 0, and thus x0(g) is a positive scalar

multiple of x−(g)�x+(g). In fact, since B(x−(g)�x+(g), x−(g)�x+(g)) =
B(x−(g), x+(g))2:

(1) x0(g) =
−1

B(x−(g), x+(g))
x−(g) � x+(g).

The following fact will also prove useful.

Lemma 2.2. Let g ∈ SO(2, 1)0 be hyperbolic. Then, x0(g) � x+(g) =
x+(g) and x−(g) � x0(g) = x−(g).
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Proof. Since the vector x+(g) is Lorentz-perpendicular to both itself
and x0(g), we know that x0(g)�x+(g) = kx+(g). Taking the Lorentzian
inner product of both sides of the equation with x−(g) we get:

B(x0(g) � x+(g), x−(g)) = kB(x+(g), x−(g)).

The left-hand side can be rearranged via a property of � described
above:

B(x0(g) � x+(g), x−(g)) = B(x+(g) � x−(g), x0(g)),
Rewriting x+(g) � x−(g), using (1), we obtain the following:

B(x−(g), x+(g))B(x0(g), x0(g)) = kB(x+(g), x−(g)).

This implies that k = 1. The proof for x−(g) is similar. q.e.d.

2.3. The Margulis invariant. Every affine hyperbolic γ admits a
unique spacelike line that is γ-invariant, denoted Cγ . Furthermore, Cγ

is parallel to x0(γ), and γ acts by translation on Cγ . On the subset
H ⊂ Aff(A2,1) of hyperbolic elements, we define the Margulis invariant
of γ to be the function:

α : H → R

such that:

(2) α(γ) = B(γ(x) − x, x0(γ)),

where x is an arbitrary point on Cγ , the unique α-invariant line.
The action on Cγ is given by

γ(x) = x+ α(γ)x0(γ),

for every x ∈ Cγ .
The following are elementary consequences of the definition:

Lemma 2.3 (Properties of α). Suppose γ ∈ H;

(1) for any x ∈ A
2,1, α(γ) = B(γ(x) − x, x0(γ));

(2) α(γ) �= 0 if and only if γ acts freely;
(3) for any η ∈ Aff(A2,1), α(ηγη−1) = α(γ);
(4) for any γ ∈ Aff(A2,1), α(γn) = |n|α(γ).

Item (2) of Lemma 2.3 implies that if φ = (Φ, u) is radiant, then the
Margulis invariant is identically zero on the group (Theorem 1.1 proves
the converse). Any two hyperbolic elements in SO(2, 1)0 with the same
eigenvalues, or trace, are conjugate. Furthermore, it can be shown that
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any two hyperbolic elements in Aff(A2,1) with the same linear part and
Margulis invariant are conjugate by a translation. Thus, the trace of
the linear part and the value of α determine the conjugacy classes of
hyperbolic elements in Aff(A2,1).

Since x0(γ−1) = −x0(γ), we have that α(γ−1) = α(γ). When γ acts
freely, the sign of α(γ) indicates the direction in which γ displaces points
on Cγ .

Suppose that G is a finitely generated group, and let Φ : G −→
SO(2, 1)0 be an isomorphism. Keep in mind that we will be reducing
to the case where Φ(g) is hyperbolic for every g ∈ G \ (Id). So, we can
safely ignore non-hyperbolic elements in the group. Fix an ordering on
the hyperbolic elements of G \ (Id), [gi]i∈N

.
The marked Margulis spectrum is determined as follows: By Item (3)

of Lemma 2.3, two affine deformations of Φ yield the same values of α
if they are translationally conjugate. Define the following function:

αΦ : H1(GΦ, VΦ) −→ R
G

[u] �−→ [
B(u(Φ(gi)), x0(Φ(gi)))

]
i∈N

.

The marked Margulis spectrum of an affine deformation φ = (Φ, u)
is the image αΦ([u]).

3. Step one: Reduction to a simple case

In this section, we show how to reduce Theorem 1.2 to a simpler case.
Indeed, we may assume that our groups sharing a marked Margulis
spectrum are rank-two groups generated by hyperbolic isometries and
that their generators admit certain common characteristics.

Let {g1, . . . , gn} be a generating set for G, with no relations except,
possibly, g

mj

j = Id, for some of the j’s. Our first concern is for the
linear parts of φ1 and φ2, so it will be simpler for now to think of φ1

and φ2 as representations into Isom(H2). Thus, a hyperbolic element has
two fixed points on the boundary of the hyperbolic plane, a parabolic
element has one fixed point on the boundary of the hyperbolic plane,
and an elliptic element fixes a point inside the hyperbolic plane. Two
elements g, h ∈ Isom(H2) commute if and only if they share the same
set of fixed points.

Since φ1(G) is non-elementary, it contains a hyperbolic element g; we
may choose it such that its null eigenspace is not invariant under the
action of any of the elliptic elements in the generating set. Replacing one
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of the generators and re-indexing if necessary, we may assume without
loss of generality that φ1(g1) is hyperbolic.

Then φ2(g1) is either hyperbolic or parabolic, since it must also be of
infinite order (the L ◦ φi’s are isomorphisms onto discrete subgroups of
SO(2, 1)0). If it happens to be parabolic, then φ2(g1g

k
2) is hyperbolic for

large enough |k| and its fixed point set is not invariant under the action
of any elliptic generator. Choose |k| large enough so that φ1(g1g

k
2) is

also hyperbolic and its fixed point set is not invariant under the action
of any elliptic generator. Thus, substituting g1 for g1g

k
2 if necessary, we

may assume without loss of generality that both φ1(g1) and φ2(g1) are
hyperbolic, and their respective fixed point sets are not invariant under
the action of any elliptic generator.

Let j ∈ {2, . . . , n}; then both φ1(g
kj

1 gj) and φ2(g
kj

1 gj) are hyper-
bolic for large enough |kj |. Substituting if necessary, we may thus as-
sume that for i = 1, 2, φi(G) is freely generated by hyperbolic elements
φi(g1), . . . , φi(gn).

Next, the following result allows us to further reduce to the case of
a rank two group. Recall that G ⊂ Isom(H2) is a Schottky subgroup of
Isom(H2) if it admits generators g1, . . . gn, called Schottky generators,
such that the following holds: there exist 2n disjoint closed intervals A±

i

on the boundary of the hyperbolic plane, with gi(A−
i ) = cl(∂H

2 \ A+
i ),

i = 1, . . . , n, where cl denotes closure. In particular, if w = gj1
i1
· · · gjk

ik
,

jk ∈ Z, is reduced (i.e., gim+1 �= gim , m = 1, . . . , k − 1), then x+(w) ∈
A

σ(j1)
i1

and x−(w) ∈ A−σ(jk)
ik

, where σ(j) is the sign of j.

Proposition 3.1 (Rank-two free subgroups suffice). Let G be a fi-
nitely generated free product of cyclic groups, with generating set g1, . . . ,
gn. Suppose φ1, φ2 : G −→ Aff(A2,1) are isomorphisms, such that each
L ◦ φi is an isomorphism onto a discrete subgroup of Isom(H2) and for
i = 1, 2, φi(G) is freely generated by hyperbolic elements φi(g1), . . . ,
φi(gn). Suppose, furthermore, that for every rank two subgroup, H =
〈gi, gj〉 ⊂ G, the restriction of φ1 ◦ φ−1

2 to φ2(H) extends to an inner
automorphism of Aff(A2,1). Then φ1 ◦ φ−1

2 extends to an inner auto-
morphism of Aff(A2,1).

Proof. The result is clear if the linear parts are the same, so assume
that φ1(G), φ2(G) ⊂ SO(2, 1)0 ∼= Isom(H2). Also, we assume that
n = 3; the general result is obtained by induction.
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Suppose G = 〈g, h, i〉 and G′ = 〈g′, h′, i′〉 are discrete subgroups of
Isom(H2), with hyperbolic generators, such that:

〈g′, h′〉 = ρ〈g, h〉ρ−1,

〈g′, i′〉 = ψ〈g, i〉ψ−1,

〈h′, i′〉 = π〈h, i〉π−1,

for some ρ, ψ, π ∈ SO(2, 1)0. We may further assume that g, h, i (resp.
g′, h′, i′) are Schottky generators for G (resp. G′). Indeed, g, h, i must
have distinct fixed point sets; we get Schottky subgroups by substituting
for high enough powers of the generators, without affecting ρ, ψ and π.
Then ψ−1ρgρ−1ψ = g, i.e., ψ−1ρ = ζg, where ζg commutes with g and
thus admits the same null frame. Also:

〈g′, h′〉 = ρ〈g, h〉ρ−1,

〈g′, i′〉 = ρζg〈g, i〉ζ−1
g ρ−1,

〈h′, i′〉 = ρζh〈h, i〉ζ−1
h ρ−1,

for some ζh commuting with h. But then ζgζ−1
h commutes with i, imply-

ing that they share the same null frame. This is impossible: φ2(G) being
a Schottky group, there are pairwise disjoint sets of future-pointing null
vectors, one containing the attracting eigenvectors of both g and ζgζ−1

h ,
and the other containing the attracting eigenvector of i. q.e.d.

Suppose then that φ1, φ2 : G −→ Aff(A2,1) are isomorphisms satisfy-
ing the conditions of Proposition 3.1. Via conjugation, we may further
reduce Main Theorem 1.2 to a technical restatement of the theorem, as
follows. Let φ = φ2 ◦ φ−1

1 : φ1(G) → φ2(G). We will use the following
notation:

Γ = φ1(G) = 〈γ, η〉,
Γφ = φ2(G) = 〈γφ, ηφ〉,

where γφ = φ(γ) and ηφ = φ(η). We will denote the linear part and
smallest eigenvalue of γφ (resp. ηφ) by gφ and λgφ

(resp. hφ and λhφ
).

Since we are interested in conjugacy classes of Γ, we can explicitly
choose particularly nice representatives of the conjugacy class in order to
simplify our calculations. For any hyperbolic g and h in SO(2, 1)0 which
generate a non-elementary group, and any three distinct future pointing
vectors of unit Euclidean length v1, v2, v3, there is an element f ∈ O(2, 1)



446 V. CHARETTE & T. DRUMM

such that x+
(
fgf−1

)
= v1, x−

(
fgf−1

)
= v2 and x−

(
fhf−1

)
= v3. This

follows directly from the fact that O(2, 1) acts transitively on triples of
distinct points on the boundary of the hyperbolic plane, and that:

f (x±(g))
‖f (x±(g)) ‖ = x±(fgf−1).

Accordingly, conjugate Γφ by f so that:

x+(η) = x+(ηφ),

x−(η) = x−(ηφ),

x−(γ) = x−(γφ).

In particular, the linear part of h is determined up to a choice of eigen-
value λh.

Finally, conjugating by a pure translation translates the invariant
line of a Lorentzian transformation. We may already assume that the
invariant lines Cη and Cηφ

are parallel. Further conjugate Γφ by a pure
translation taking Cηφ

to Cη. The translational part of an isometry is
determined by the displacement factor along its invariant line, which is
equal to the Margulis invariant. Thus, if α(η) = α(ηφ), the translational
parts of η and ηφ are equal.

Consequently, it suffices to prove the following restatement of our
Main Theorem 1.2.

Theorem 3.2 (Technical version of strong isospectrality). Let Γ =
〈γ, η〉,Γφ = 〈γφ, ηφ〉 ⊂ Aff(A2,1) be non-radiant groups with respective
linear parts GId and Gφ, such that the generators are all hyperbolic. De-
note by u, uφ, the corresponding cocycles in Z1(GId,R

2,1), Z1(Gφ,R
2,1),

respectively. Let φ : Γ → Γφ be an isomorphism such that φ(γ) = γφ

and φ(η) = ηφ. Suppose that:

x+(η) = x+(ηφ),

x−(η) = x−(ηφ),
Cη = Cηφ

,

x−(γ) = x−(γφ),

and furthermore, that the marked Margulis spectra are equal:

αId([u]) = αL(φ)([uφ]),

where Γ \ Id and Γφ \ Id are given compatible orderings. Then, φ is a
pure translation.
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The theorem follows from Lemma 5.1, and will thus be proved at the
end of Section 5.

4. Step two: Estimates for the rate of convergence of the
eigenvectors

We first need to establish a few technical lemmas.
Let d(v,w) = ‖v−w‖ denote the Euclidean distance between the end-

points of v and w emanating from the origin. As x±(ω) are normalized
to have Euclidean length 1, we define U to be the set of future point-
ing Euclidean unit vectors. For any given g ∈ SO(2, 1)0, we define an
associated map g̃ : U → U defined as follows:

g̃(v) =
g(v)
‖g(v)‖ .

Lemma 4.1. Given any hyperbolic element g ∈ SO(2, 1)0 and any
ε > 0, there exists an N such that for all n ≥ N , if v ∈ U such that
d(v, x−(g)) > ε, then g̃n(v) ∈ U satisfies d(g̃n(v), x+(g)) < ε.

This lemma is a crude, but particularly clean, version of a description
of the action of a hyperbolic element on null vectors. For vectors outside
the ε-neighborhood of x−(g), we have the following lemma about how
fast the vectors approach x+(g):

Lemma 4.2. If g ∈ SO(2, 1)0 is hyperbolic and v ∈ U \{x−(g)}, then
d(g̃n(v), x+(g)) ∼ O(λn

g ).

Proof. Given any distinct x−(g), x+(g), and v there is a fixed h ∈
SO(2, 1)0 such that for gc = hgh−1, we have the following:

(3) x−(gc) =




0
β
β


 , x+(gc) =




0
−β
β


 , vc =



β
0
β


 ,

where β =
√

2/2 and vc = h̃(v). The map h̃ changes distances between
points on U by a bounded multiple. But conjugation by h does not
affect the eigenvalues, i.e., λgc = λg.

Therefore, it is enough to show this lemma in the special case where
the vectors are given above. By direct calculation, we have the following:

(4) d
(
x+(gc), g̃c

n(vc)
)

= λn
g

√
1 + λ2n

g

β(1 + λ2n
g )

.

q.e.d.
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Now, fix a hyperbolic isometry g ∈ SO(2, 1)0; given another hyper-
bolic isometry h ∈ SO(2, 1)0, we assert that the distance between their
respective fixed eigenvectors is of the same order as the distance between
their expanding and contracting eigenvectors. In other words, if we let h
vary so that its expanding and contracting eigenvectors approach those
of g, the distance between x0(g) and x0(h) also decreases.

Lemma 4.3. Given a fixed hyperbolic element g ∈ SO(2, 1)0 and
another hyperbolic element h ∈ SO(2, 1)0, then

d(x0(g), x0(h)) ∼ O
(
max

(
d(x−(g), x−(h)), d(x+(g), x+(h))

))
.

Proof. It is enough to show this lemma when one pair of expanding
or contracting eigenvectors for g and h are the same. That is, let
(5)

x−(g) = x−(h) =




0
β
β


 , x+(g) =




0
−β
β


 , and x+(h) =



β sin δ
−β cos δ

β


 .

By direct calculation

d(x+(g), x+(h)) =
√

1 − cos δ and d(x0(g), x0(h)) =
√

2| sin δ|/(1+cos δ).

Then:

lim
δ→0

√
1 − cos δ

(
√

2| sin δ|)/(1 + cos δ)
= lim

δ→0

β| sin δ|
β| sin δ| = 1.

q.e.d.

5. Step three: Equality of the eigenvectors and eigenvalues of
the generators

At this time, we can attack the main lemma needed to prove Theo-
rem 3.2. Recall that the linear part of γ (resp. η, γφ, ηφ) is denoted g
(resp. h, gφ, hφ). Also we are assuming that x±(ηφ) = x±(η) and that
x−(γφ) = x−(γ).

We need only consider those words of the form ηnγm and ηn
φγ

m
φ ,

n,m ≥ 0. (Similar calculations were done by Goldman [4], and the first
author [1].) We may assume that these words are all hyperbolic, for
large enough m,n. Define:

(6) x0(g, h) =
−1

B(x−(g), x+(h))
x−(g) � x+(h).
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This is a unit-spacelike vector to which both x0(hngm) and x0(hn
φg

m
φ )

converge, as n,m→ ∞. In fact, by Lemmas 4.2 and 4.3, as n,m→ ∞,
the distance between x0(hngm) and x0(g, h) decreases as max(λn

h, λ
m
g ),

and the distance between x0(hn
φg

m
φ ) and x0(g, h) decreases as

max(λn
hφ
, λm

gφ
).

Lemma 5.1. If the hypotheses in Theorem 3.2 are satisfied, then
x+(γ) = x+(γφ).

Proof. For any hyperbolic ω ∈ Aff(A2,1), we define E±(ω) to be the
plane containing Cω and parallel to x±(ω).

Let q = Cγ ∩ E−(η) and pm = γ−m(q), for m ≥ 0. Then q =
r + κx−(h), for some r ∈ Cη and κ ∈ R. (See Figure 1.)

r

κx−(h)

p2

p1

q

Cγ

Cη

Figure 1. q = Cγ ∩E−(η) and pm = γ−m(q), m = 1, 2.
Then, q = r + κx−(h), for some r ∈ Cη and κ ∈ R.

We can choose similar points for γφ and ηφ; denote by κφ ∈ R the
scalar corresponding to κ. We will show that κ = κφ. To this end, we
compute α(ηnγm):

α(ηnγm) = B(ηnγm(pm) − pm, x
0(hngm)).
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Write ηnγm(pm) − pm as ηn(q) − q + q − pm. Then:

q − pm = mα(γ)x0(g),

ηn(q) − q = nα(η)x0(h) + κ(λn
h − 1)x−(h).

Since x0(hngm) converges to x0(g, h) faster than n and m, α(ηnγm)
asymptotically approaches:

mα(γ)B(x0(g), x0(g, h)) + nα(η)B(x0(h), x0(g, h))

+ κ(λn
h − 1)B(x−(h), x0(g, h)).

By Lemma 2.2 and Equation (6):

B(x0(g), x0(g, h)) =
−1

B(x−(g), x+(h))
B(x0(g), x−(g) � x+(h))

=
−1

B(x−(g), x+(h))
B(x+(h), x0(g) � x−(g))

=
1

B(x−(g), x+(h))
B(x+(h), x−(g)) = 1.

Thus α(ηnγm) asymptotically approaches:

mα(γ) + nα(η) + κ(λn
h − 1)B(x−(h), x0(g, h)),

and in the same fashion, α(ηn
φγ

m
φ ) asymptotically approaches:

mα(γφ) + nα(ηφ) + κφ(λn
ηφ

− 1)B(x−(hφ), x0(g, h)).

Since α(ηn
φγ

m
φ ) = α(ηnγm) for all n,m ≥ 0, and since x−(hφ) = x−(h),

it follows that κ = κφ, as claimed.
We have assumed that Cηφ

= Cη; thus, Cγ and Cγφ
must intersect

the line Cη − κx−(h).
By similar reasoning, replacing η and ηφ with their inverses above,

we know that Cγ and Cγφ
must also intersect the line Cη − κ−x+(h),

where κ−x+(h) is a vector which points from a point on Cγ to a point
on Cη. That is, Cγ and Cγφ

must both lie in the plane defined by the
disjoint parallel lines Cη − κx−(h) and Cη − κ−x+(h).

We have assumed that x−(g) = x−(gφ). The planes E−
γ and E−

γφ

are Lorentzian perpendicular to x−(g) and x−(gφ), so E−
γ and E−

γφ
are

parallel. The lines Cγ and Cγφ
are the intersections of two parallel

planes with one fixed plane, so they must be parallel. Alternatively,
x0(γ) = x0(γφ) so x+(γ) = x+(γφ). q.e.d.
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Lemma 5.1 can be restated as follows.

Lemma 5.2 (Fixed point isospectrality). Consider a discrete G ⊂
Isom (H2) which is purely hyperbolic, i.e., all non-identity elements are
hyperbolic. Let:

f : G −→ ∂H
2 × ∂H

2

g �−→ (x+(g), x−(g)),

where x+(g) (resp. x−(g)) is the attracting (resp. repelling) fixed point
of g. Then f completely determines the group G.

Proof of Theorem 3.2. The hypotheses and Lemma 5.1 imply that the
eigenspaces of g and gφ are the same, as are those of h and hφ. Also,
by hypothesis, vh = vhφ

.
The equalities λγ = λγφ

and λη = ληφ
follow immediately from

Lemma 5.1. Indeed, substituting ghg−1 for h, we obtain x+(ghg−1) =
x+(gφhφg

−1
φ ). The fact that x+(ghg−1) is parallel to g(x+(h)) uniquely

determines λγ . We show that λh = λhφ
in a similar fashion, by consid-

ering hgh−1.
Finally, we consider the translational parts of γ and γφ. The proof

of Lemma 5.1 shows that Cγ and Cγφ
are parallel; as a matter of fact,

since both lines intersect Cη + κx−(h), Cγφ
can be translated to Cγ by

a translation τ that is parallel to x0(h). This conjugation preserves Ch,
thus η. Therefore:

Γ = τΓφτ
−1,

where τ is a pure translation. q.e.d.
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