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LOCAL FORMULA FOR THE INDEX OF A FOURIER
INTEGRAL OPERATOR

ERIC LEICHTNAM, RYSZARD NEST & BORIS TSYGAN

Abstract
Let X and Y be two closed connected Riemannian manifolds of the same
dimension and φ : S∗X �→ S∗Y a contact diffeomorphism. We show that
the index of an elliptic Fourier operator Φ associated with φ is given by∫

B∗(X) eθ0 Â(T ∗X)−∫B∗(Y ) eθ0 Â(T ∗Y ) where θ0 is a certain characteristic

class depending on the principal symbol of Φ and, B∗(X) and B∗(Y ) are the
unit ball bundles of the manifolds X and Y . The proof uses the algebraic
index theorem of Nest-Tsygan for symplectic Lie Algebroids and an idea of
Paul Bressler to express the index of Φ as a trace of 1 in an appropriate
deformed algebra.

In the special case when X = Y we obtain a different proof of a theorem
of Epstein-Melrose conjectured by Atiyah and Weinstein.

1. Introduction

Let X and Y be two smooth closed connected Riemannian manifolds
of the same dimension such that there exists a contact diffeomorphism
φ : S∗X �→ S∗Y between the two unit cotangent bundles which induces
a homogeneous symplectomorphism, still denoted by φ, from T ∗X \ X
onto T ∗Y \ Y .

We first recall the definition of the index of φ, which is defined only
when dim X ≥ 3, following [15]. We will denote by Ω 1

2
the half-density

bundle over X or Y . Let Cφ be the graph of φ−1 in (T ∗Y \Y )×(T ∗X\X)

and LCφ
be the associated Maslov bundle. Let A : L2

(
X, Ω 1

2

)
→

L2
(
Y,Ω 1

2

)
be an elliptic Fourier integral operator of order zero whose

canonical relation is Cφ and whose principal symbol is an invertible
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270 e. leichtnam, r. nest & b. tsygan

section of the bundle Ω 1
2
⊗ LCφ

→ Cφ (see [15], [7]) for details). Sup-

pose that B : L2
(
Y,Ω 1

2

)
→ L2

(
X, Ω 1

2

)
is an elliptic Fourier integral

operator of order zero whose canonical relation is Cφ−1 . Then B ◦ A :

L2
(
X, Ω 1

2

)
→ L2

(
X, Ω 1

2

)
is an elliptic scalar pseudo-differential oper-

ator of order zero. Since dim X ≥ 3 there exists a smooth non vanishing
function x ∈ X → a(x) ∈ C

∗ such that the principal symbol of B ◦ A
is homotopic to (x, ξ) ∈ T ∗X → a(x) ∈ C

∗. In particular the index of
B ◦A is zero. Thus IndB = −IndA for any Fourier integral operators A
and B as above, and, as the corollary of this fact, IndA does not depend
on the choice of A. Since it only depends on the transformation φ, it
is called the index of φ and denoted by Indφ. A. Weinstein has proved
(see [15]) that the integer Indφ naturally appears if one wants to com-
pare the spectrum ( λk(X) )k∈N of the Laplace Beltrami operator ∆X of
X (associated with the metric gX) with the one of ∆Y (associated with
the metric gY ); for instance if T ∗X \ X is simply connected then the
sequence (λk(X) − λk−Indφ(Y ))k∈N is bounded.

The goal of this paper is to provide a geometric formula for the index
of an elliptic Fourier integral operator Φ of order zero whose canonical
relation is Cφ (we do not assume dim X ≥ 3).

Let us first fix some notation. Given a smooth manifold X, we
will use T ∗X to denote the cotangent bundle of X and B

∗
X to denote

the projective compactification of T ∗X. We will use M to denote the
smooth manifold obtained by glueing at infinity B

∗
X and B

∗
Y with

the help of the map
φ′ : (x, ξ) → φ(x,−ξ).

Let S0(T ∗X) and S0(T ∗Y ) denote the algebras of asymptotic symbols
of pseudodifferential operators of order at most zero on X and Y . Given
an element a ∈ S0(T ∗X), we denote by a� the symbol a scaled by � in
the cotangent direction and by Op(a) the pseudodifferential operator
associated to a. Given a pseudodifferential operator A, we denote by
σ(A) its full symbol (for the precise definition see the next section).

The general strategy is as follows. We interpret conjugation by Φ
as an isomorphism of the algebras of pseudodifferential operators (mod-
ulo the smoothing ones) on X and Y . Translated into terms of formal
deformations of the cotangent bundles, this allows us to construct a for-
mal deformation A

�(M) of C∞(M) which represents on T ∗X and T ∗Y
the calculus of differential operators, while on the common cosphere at
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infinity it represents the calculus of pseudodifferential operators. While
the symplectic structures on T ∗X and T ∗Y do not glue together (so
there is in general no almost complex structure on B∗X∪φ′ B∗Y ), there
is a (noncanonical) symplectic Lie algebroid structure (E , [·, ·], ω) over
M and A

�(M) is a deformation associated to it in the sense of [10]. The
usual traces on the algebras of smoothing operators on X and Y give
rise to a trace τcan on A

�(M) such that ind Φ = τcan(1). An application
of the general algebraic index theorem from [10] gives the local formula
for the index.

The content of the paper is given below.

• In the first section we recall the relation between the calculus of
smoothing operators on X and a formal deformation of T ∗X which
is basically given by the full symbol of a pseudodifferential operator.

• The manifold B
∗
X carries a structure of symplectic Lie algebroid

(EX , [, ], ω) described in Section 2. The symbolic calculus of pseudod-
ifferential operators gives rise to a formal deformation of the sphere at
infinity of B

∗
X which, together with the formal deformation of T ∗X

given above, gives rise to a formal deformation A
�(X) of B

∗
X associ-

ated to (EX , [, ], ω).

• Let us fix an almost unitary elliptic Fourier integral operator Φ whose
canonical relation is given by the graph of φ−1. In Section 4 we show
how to glue together the deformations A

�(X) and A
�(Y ) into a for-

mal deformation A
�(M) of M associated to a symplectic Lie algebroid

structure (E , [, ], ω) on M . The construction is based on the following
strengthening of the Egorov theorem (see Theorem 2).

1. The map which to any a ∈ S0(T ∗X) associates the asymptotic ex-
pansion at � = 0 of (σ(ΦOp(a�)Φ∗))�−1 induces an algebra isomorphism

Φ̃ : S0(T ∗X) → S0(T ∗Y ).

2. For each k ∈ N
∗, there exists an EX−differential operator Dk on

B
∗
X such that, for any a ∈ S0(T ∗X), the following identity holds:

Φ̃(a) =

a +
∑
k≥1

�
kDk(a)

 ◦ φ−1.
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Egorov’s theorem corresponds to the leading term in the above ex-
pansion.

The real symplectic vector bundle E is isomorphic to TM (as a vector
bundle over M) and hence TM is the realification of a complex vector
bundle on M which will be denoted by EC.

• In Section 5 we identify the space traces on A
�(M) and relate it to the

traces on the algebras of smoothing and of pseudodifferential operators.

• In Section 6 we identify the index of the Fourier integral operator
with the value of the trace τcan on the unit 1 in the formal deformation
algebra A

�(M).

The local index formula for Ind Φ follows from the algebraic index
theorem of [10], the class θ0 being the coefficient of �

0 in the charac-
teristic class θ (cf. [5], [10]) of the deformation. Notice that the first
algebraic type index theorem was proved in [5] where θ appears as the
curvature of a suitable connection.

The main result can be formulated as follows:

3. Let Φ be a Fourier integral operator and A
�(M) the formal deforma-

tion of M associated to it as in Definition 3. Then

ind Φ =
∫

M
eθ0Â(M),

where θ0 denotes the characteristic class of the deformation of the Lie
Algebroid (E , [ , ], ω) given by A

�(M).

4. Let ∇X be a connection on the tangent bundle T (B∗
X) and Â(T ∗X)

an associated representative form of the Â-class of ∇X . The symplec-
tomorphism φ induces a connection φ∗(∇X) on the tangent space of
B

∗
Y \ B∗(Y ). Let ∇Y denote its extension to a connection of T (B∗

Y )
and Â(T ∗Y ) an associated representative differential form of the Â-class
of ∇Y . Then

ind Φ =
∫

B∗(X)
eθ0Â(T ∗X) −

∫
B∗(Y )

eθ0Â(T ∗Y ).(1)

Remark 1. It is easy to see that our local formula implies the
following fact:

If φ extends as a symplectomorphism : T ∗X → T ∗Y up to the zero
section, then Ind Φ = 0.
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• The computation of the characteristic class of the deformation is given
in the last section, where we simultaneously construct a deformation of
M and the Fourier integral operator whose index is given by the trace of
the 1 in the deformed algebra. As the starting point we give a somewhat
nonstandard definition of the characteristic class of a formal deformation
which is more amenable to computations in the case of deformations
associated to (twisted) differential or pseudodifferential operators.

As a corollary we get the following result:

5. There exists an almost unitary Fourier integral operator Φ0 whose
canonical relation is Cφ and such that:

ind Φ0 =
∫

M
Â(M)e

1
2
c1(EC).

6. If the dimension of M is at least three, then

ind(φ) =
∫

M
Â(M)e

1
2
c1(EC)

(cf. [4], [14]).

In the case when X = Y Epstein and Melrose ([4]) had shown that
ind Φ0 is equal to the index of the Dirac operator associated to the
Spinc-structure of the mapping torus of (X, φ) then, using the Atiyah-
Singer index formula they proved the following Theorem which provides
a geometric formula for ind Φ0. We show how to derive this Theorem
from our previous result.

Theorem 1 ([4], Section 7). Let φ be a contact automorphism of
S∗X, denote by Zφ the mapping torus of (S∗X, φ) which, as explained in
Section 3 of [4], is endowed with a “positive” almost complex structure.
Then:

ind Φ0 =
∫

Zφ

exp
(

c1(T 1,0Zφ)
2

)
Â(Zφ).(2)

Proof. Recall that the mapping torus of φ is given by

Zφ = {S∗X × [0, 1]}/{(ξ, 0) ∼ (φ(ξ), 1)}.

We will write it as the manifold obtained from glueing together two
copies of {ξ ∈ B

∗
X | 1 ≤ ||ξ|| ≤ ∞}, where at the sphere ||ξ|| = 1 we
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use the identity map, while at ||ξ|| = ∞ we use φ. We can choose two
connections ∇1 and ∇2 on T ∗X which coincide at ||ξ|| ≤ 1

2 and are
related by φ at ||ξ|| ≥ 2 They glue together to a connection ∇ on the
mapping torus Zφ. One can use the Mayer-Vietoris exact sequence for
the cohomology of Zφ associated to the open covering by two open sets
— a neighbourhood of ||ξ|| = 1 and a neighbourhood of ||ξ|| = ∞ — to
evaluate the right hand side of (2). But, provided that the above ∇ is
used to compute the characteristic classes appearing, the result becomes
the same as the left hand side of (1) expressed with connections ∇1 and
∇2. q.e.d.

Remark 2. The methods of this paper extend in a fairly straight-
forward manner to the case of a Fourier integral operator Φ between L2

sections of vector bundles E and F of the same dimension on X and
Y . In the case when both X and Y possess a metalinear structure, the
corresponding index formula is given by the expression

ind Φ =
∫

B∗(X)
ch(L)Â(T ∗X) −

∫
B∗(Y )

ch(L)Â(T ∗Y ).

Here L is the vector bundle over M obtained by glueing together pull-
backs (by the canonical projections π∗

X and π∗
Y ) to the cotangent bundles

of X (resp. Y ) of the bundles Λ
n
2 (X)⊗E and Λ

n
2 (Y )⊗F with the help

of the symbol of Φ.
Note that existence of an isomorphism of π∗

X(Λ
n
2 (X) ⊗ E) and

π∗
Y (Λ

n
2 (Y ) ⊗ F ) over φ

′
is equivalent to existence of an elliptic Fourier

integral operator from L2(X, E) to L2(Y, F ).

Acknowledgements. The authors are very grateful to the referees,
whose detailed observations and comments have allowed us to improve
the exposition of this paper.

2. Symbolic calculus for ΨDO’s and formal deformations

2.1 Deformation of T ∗X

We will recall the pertinent facts from [12].
Let χ be a smooth, nonnegative function on X × X satisfying the

following conditions:
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(1) χ(x, y) = χ(y, x).

(2) χ ≡ 1 on an open set containing the diagonal in X × X.

(3) For each x ∈ X, the set Dx = {y ∈ X/ (x, y) ∈ supp χ} is geodesi-
cally convex.

We denote by Exp−1
x the unique smooth inverse to the exponential

map:
Expx : Tx X → X

defined on Dx and such that Exp−1
x (x) = 0.

Given x ∈ X, y ∈ Dx, let z denote the midpoint of the unique
geodesic joining x and y within Dx, and let v ∈ TzX be given by

v/2 = Exp−1
x (y) = −Exp−1

z (x).(3)

Now, denote by Sm(T ∗X) the space of classical symbols of order m on
X, i.e., smooth functions θ on T ∗X satisfying estimates of the form:

sup
(x,ξ)

|∂α
x ∂β

ξ θ (x, ξ)| ≤ Cα,β (1 + |ξ|2)
m−|β|

2

Sm(T ∗X) is given the topology of (Frechet) topological vector space by
the “best” Cα,β .

We will denote by S∞(T ∗X) = ∪m∈RSm(T ∗X) the set of all classical
symbols on T ∗X.

With the above notation (3), the map:

Op : Sm(T ∗X) → End (C∞(X))

given by

Op(θ) (u) (x) =
∫

T ∗
z X

dξ

∫
dy χ(x, y) ei ξ.v θ(z, ξ) u(y)

defines a pseudo-differential operator. Conversely, if P is a pseudo-
differential operator on X we define its complete symbol to be:

σ(P )(z, ξ) = Py( χ(x, y) ei ξ.v )|x=y=z(4)

where z is the midpoint of the geodesic joining x and y and v satisfies
(3). We observe that P − Op(σ(P )) is a smoothing operator whose
Schwartz kernel vanishes to infinite order on the diagonal. Now, for a
given θ ∈ C∞(T ∗X), we set: θ�(x, ξ) = θ(x, �ξ).
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Following [12], we endow the algebra

A
�(T ∗X) = C∞(T ∗X) ⊗C C[[�]]

with a star product �X by defining, for any symbols θ1, θ2,∈ Sm(T ∗X),
θ1 �X θ2 to be the asymptotic expansion at � = 0 of:

σ( Op(θ1
�) ◦ Op(θ2

�) )�−1(x, ξ) = σ( Op(θ1
�) ◦ Op(θ2

�) )(x, �−1ξ).(5)

One sees immediately that �X extends to A
�(T ∗X).

Recall that there exists, unique up to normalization, a canonical
trace on (A�(T ∗X), �X), TrX

can, given by:

∀a ∈ S−∞(T ∗X),

TrX
can (a) = Tr( Op(a�) ) =

1
n! �n

∫
T ∗X

a (ωX)n ∈ C[�−1, �]].

(See Proposition 2.5 (3) of [12], the uniqueness is addressed in [5, p. 172]
and in [11]).

2.2 Lie algebroid structure and deformation quantization
of the projective completion B

∗
X

For any x ∈ X, we set B∗
xX = R+⊕T ∗

x X
R∗

+
\ {(0, 0)}, and embed T ∗

xX in

B
∗
xX by sending ξ to the class of 1⊕ ξ. We view B∗

xX as a compactifi-
cation of T ∗

xX. Then we consider the fiber bundle B
∗
X over X defined

by B
∗
X = ∪x∈XB∗

xX. Therefore B
∗
X is a compactification of T ∗X

and a smooth compact manifold with boundary: ∂B
∗
X = B

∗
X \ T ∗X.

Similarly one defines the bundle B
∗
Y over Y . We observe that the map

from S∗X into B
∗
X given by ξ → 0⊕ξ defines an isomorphism between

S∗X and B
∗
X \ T ∗X. For any ξ = (x, ξx) ∈ T ∗

xX we will define −ξ to
be (x,−ξx) ∈ T ∗

xX. Clearly, φ induces a natural smooth isomorphism
of manifolds with boundary:

φ′ : B
∗
X \ X �→ B

∗
Y \ Y

defined by

φ′(λ ⊕ ξ) = (λ ⊕ φ(−ξ)) if ξ ∈ T ∗X \ X andλ ≥ 0,

∀λ ∈ R
+∗, φ′(λ ⊕ 0) = (λ ⊕ 0).
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By glueing B
∗
X and B

∗
Y along the boundary B

∗
X \T ∗X with the

help of φ′, we define the following smooth compact manifold M :

M = B
∗
X ∪φ′ B

∗
Y.(6)

Let ΠX : B
∗
X → X be the projection map. We denote by ΞX the

set of smooth vectors fields of B
∗
X which are tangent to all the subman-

ifolds Π−1
X (x)∩(B∗

X \T ∗X), x ∈ X. Let (x, ξ) = (x1, . . . , xn; ξ1, . . . , ξn)
be a local chart of T ∗X and (ρ, θ) be the polar coordinates: ρ = ||ξ||, θ =

ξ
||ξ|| , where || · || denotes the Euclidean norm of T ∗X. Then a local chart

of B
∗
X near B

∗
X \ T ∗X is given by(

x1, . . . , xn; t =
1
ρ
, θ = (θ1, . . . , θn−1)

)
t ≥ 0, θ ∈ Sn−1.(7)

In this local chart, ΞX is generated by the vector fields t ∂
∂xj

, t ∂
∂t ,

∂
∂θl

,
where 1 ≤ j ≤ n, 1 ≤ l ≤ n − 1. We will make several applications of
the following lemma. It is easily proved using polar coordinates.

Lemma 1. The vector fields ∂
∂ξj

(1 ≤ j ≤ n) belong to the

C∞(B∗
X)-module tΞX generated by t2 ∂

∂t , t ∂
∂θl

(1 ≤ l ≤ n − 1).

Moreover we observe that the set of classical symbols of order zero
on T ∗X is nothing else but C∞(B∗

X).
Before we continue, let us recall the definition of a symplectic Lie

algebroid (see for instance [8], [10]).

Definition 1.

1) A symplectic Lie algebroid on M is a quadruple (E , ρ, [ , ], ω) on
M , where E is a smooth vector bundle on M , [ , ] is a Lie algebra
structure on the sheaf of sections of E , ρ is a smooth map of vector
bundles,

ρ : E → TM,

such that the induced map

Γ(ρ) : C∞(M, E) → C∞(M, TM)

is a Lie algebra homomorphism and, for any sections σ and τ of
E and any smooth function f on M , the following identity holds:

[ σ, fτ ] = ρ(σ)(f).τ + f [σ, τ ].
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Lastly, ω is a closed E-two form on M such that the associated
linear map:

C∞(M, E) × C∞(M, E) � (U, V ) �→ ω(U, V ) ∈ C∞(M)

defines a symplectic structure on E .

2) The ring of E-differential operators is by definition the ring gen-
erated by smooth functions on M and smooth sections of E .

3) We denote by EΩ• = C∞(M, Λ•E∗) the set of smooth sections on
M of the bundle of alternating multilinear forms on E .

The following proposition will allow us to construct the relevant Lie
algebroid E over M .

Proposition 1. For any p ∈ B
∗
X, we set

EX
p =

ΞX

IpΞX

where Ip is the set of smooth real-valued functions on B
∗
X which vanish

at p. Then:

1) (EX
p )p∈B

∗
X form a smooth vector bundle, denoted EX , over B

∗
X

such that the set of smooth sections over B
∗
X of EX coincides

with ΞX . If U, V ∈ ΞX then the Lie bracket [U, V ] also belongs to
ΞX .

2) The fundamental two-form ωX(=
∑n

j=1 dξj∧dxj) of T ∗X induces

a smooth form, still denoted ωX , in C∞(B∗
X; EXΩ2 ). Moreover,

(EX , [, ], ωX) defines a symplectic Lie algebroid over B
∗
X.

Proof. We shall use the local coordinates (7).
1) Near a point p0 = (x0; 0 = t, θ0), each vector field U of ΞX is of

the form:
n∑

j=1

Aj(x; t, θ)t
∂

∂xj
+ An+1(x; t, θ)t

∂

∂t
+

2n∑
j=n+2

Aj(x; t, θ)t
∂

∂θj−n−1
.

Then by considering the Taylor formulas:

Aj(x; t, θ) = Aj(x0; 0, θ0) +
n∑

k=1

(xk − x0
k)Bj,k(x; t, θ)

+ tCj,0(x; t, θ) +
n−1∑
l=1

(θl − θ0
l )Cj,l(x; t, θ)
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one sees immediately that EX
p defines a smooth vector bundle over B

∗
X

whose set of smooth sections coincides with ΞX . Next, working with
the vector fields

t
∂

∂xj
, t

∂

∂t
,

∂

∂θl

one checks immediately that for any U, V ∈ ΞX , [U, V ] is still in ΞX .
2) The fundamental form ωX is not defined on the boundary of

TB
∗
X but, using the polar coordinates (7), one checks easily for any

U, V ∈ ΞX , ωX(U, V ) is well defined up to the boundary of B
∗
X (=

{t = 0}). One then immediately gets the proposition. q.e.d.

Proposition 2. The star product �X on T ∗X extends to a star
product, still denoted �X , on B

∗
X such that for any f, g ∈ C∞(B∗

X)
we have:

f �X g = fg +
∑
n≥1

�
nA(n)(f , g)

where the A(n) are EX-bidifferential operators.

Proof. Let (x, ξ) = (x1, . . . , xn; ξ1, . . . , ξn) be a local chart of T ∗X.
Then for any f, g ∈ C∞(B∗

X) and (x, ξ) in the domain of this local
chart we have:

f �X g(x, ξ) =
∑

α,β∈Nn, |β|≤|α|

�
|α|

α!
cα,β(x)Dα

ξ f(x, ξ)
∂β

∂βx
g(x, ξ)

then, using the local coordinates (7) and Lemma 1, one gets easily all
the results of the proposition. q.e.d.

Proposition 1 allows us to formulate the following definition:

Definition 2.

1) A smooth real-vector bundle EY over B
∗
Y is defined by setting

EY
|T ∗Y = T (T ∗Y ) and EY

|B∗
Y \Y = φ∗

(
EX
|B∗

X\X

)
.

2) By glueing EX and EY along B
∗
X \ T ∗X with the help of φ′,

one defines a smooth vector bundle E over M which is isomorphic
to TM . A smooth exact differential form ω ∈ C∞(M ; EΩ2 ) is
defined by setting ω|B∗

X = ωX , ω|B∗
Y \Y = (φ−1)∗

(
ωX
|B∗

X\X

)
and

ω|T ∗Y = ωY (where ωY is the canonical two form of T ∗Y ).
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3) The natural injection

C∞(M, E) → C∞(M, TM)

is induced by a bundle map ρ : E → TM as in Proposition 1
and (E , ρ, [, ], ω) defines a symplectic Lie algebroid which will be
denoted (E , [, ], ω) in the sequel.

3. Regularized index formula for a Fourier integral operator

Let Cφ be the graph of φ−1 in (T ∗Y \Y )×(T ∗X \X) and LCφ
be the

associated Maslov bundle over Cφ. We fix Φ : L2
(
X, Ω 1

2

)
→ L2

(
Y,Ω 1

2

)
an elliptic Fourier integral operator of order zero whose canonical rela-
tion is Cφ and whose principal symbol a is a unitary section of the
bundle Ω 1

2
⊗ LCφ

→ Cφ: this means that a is homogeneous of de-
gree zero (i.e., constant on each ray) and that aa ≡ 1: see [15]. We
can, and will, assume in the sequel that ΦΦ∗ − Id and Φ∗Φ − Id are
smoothing. As observed in [15] Φ is Fredholm, with index defined by
ind Φ = dim ker Φ − dim cokerΦ. In order to give a formula “via reg-
ularization” for ind Φ we introduce the following algebra A which will
have a “regularized” trace:

A = {(A, B) ∈ Ψ0(X, Ω 1
2
) × Ψ0(Y,Ω 1

2
)| A − Φ∗BΦ is smoothing}.

Proposition 3.

1) The map τ : A → C given by

∀(A, B) ∈ A, τ(A, B) = Tr(A − Φ∗BΦ) − Tr(B(Id−ΦΦ∗))(8)

is a trace.

2) ind Φ = τ(Id, Id).

Proof. 1). If (A, B), (A′, B′) ∈ A are smoothing operators then one
immediately checks that

τ( (A, B) · (A′, B′) ) = Tr(AA′) − Tr(BB′) = τ( (A′, B′) · (A, B) ).(9)

Now if the operators (A, B), (A′, B′) are not smoothing one consid-
ers operators of the form

(
A ◦ χ

(
1
N

√
∆X

)
, B ◦ χ

(
1
N

√
∆Y

))
where χ ∈

C∞(R, [0, 1]) is equal to 1 on [−1, 1] and to zero on [−2, 2]. By applying
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Equation (9) and letting N go to ∞ one immediately gets part 1). Part
2) means that

ind Φ = Tr(Id−Φ∗Φ) − Tr(Id−ΦΦ∗),

which is well-known. q.e.d.

Remark 3. τ(A, B) is a ”regularization” of TrA − TrB.

4. Algebraization of a Fourier integral operator

We are going to use the following (deformed quantized algebra),
where the manifold Z is equal to X or Y :

B
�(B∗

Z) =
C∞(B∗

Z)
C∞

0 (B∗
Z)

⊗C C[[�]]

where C∞
0 (B∗

Z) denotes the set of smooth functions which vanish to
infinite order to B

∗
Z \T ∗Z. We observe that �Z induces a star-product,

still denoted �Z , on B
�(B∗

Z).

Theorem 2.

1) The map which to any a ∈ S0(T ∗X) associates the asymptotic
expansion at � = 0 of (σ(ΦOp(a�)Φ∗))�−1 induces an algebra iso-
morphism Φ̃ from (B�(B∗

X), �X) onto (B�(B∗
Y ), �Y ).

2) For each k ∈ N
∗, there exists an E-differential operator Dk on

B
∗
X such that for any a ∈ C∞(B∗

X) which is identically zero in
a neighborhood of the zero section, we have the following identity:

Φ̃(a) = (a +
∑
k≥1

�
kDk(a)) ◦ φ−1

in the vector space B
�(B∗

Y ).

Before proving this theorem we state the next proposition which is
an easy consequence of Proposition 2 and Theorem 2:

Proposition 4. The star product �Y on T ∗Y extends to a star
product, still denoted �Y , on B

∗
Y such that for any f, g ∈ C∞(B∗

Y )
we have:

f �Y g = fg +
∑
n≥1

�
nB(n)(f , g)

where the B(n) are EY -bidifferential operators.



282 e. leichtnam, r. nest & b. tsygan

Proof of Theorem 2. Let us first assume part 2). Then, using the
results of Section 2.1 and the fact that ΦΦ∗ − Id and Φ∗Φ − Id are
smoothing, one proves easily that Φ̃ is an isomorphism whose inverse is
given by:

b ∈ S0(T ∗Y ) → (σ(Φ∗Op(b�)Φ))�−1 .

Now let us prove part 2). Following [7] page 26, we recall that the
Schwartz kernel of Φ is the finite sum of a smooth function and of oscil-
latory integrals (supported in small coordinates charts) of the following
type:

K(y, x) =
∫

Rn

ei(ϕ(y,η)−x·η) b(y, η)dη(10)

where b(y, η) ∈ S0(T ∗Y ) vanishes for ||η|| ≤ 1, ϕ(y, η) is an homoge-
neous phase function parametrizing locally the graph Cφ of φ−1 which
satisfies det ∂2ϕ

∂y∂η �= 0 so that locally we have:

{(y, ϕ′
y(y, η); ϕ′

η(y, η), η)} = Cφ

and φ−1(y, ϕ′
y(y, η)) = (ϕ′

η(y, η), η). Notice moreover that (y, η) →
(y, ϕ′

y(y, η)) and (y, η) → (ϕ′
η(y, η), η) are local diffeomorphisms.

With these notations, the Schwartz kernel of Φ∗ is the finite sum
of a smooth function and of oscillatory integrals (supported in small
coordinates charts) of the following type:

K∗(x, y) =
∫

Rn

e−i(ϕ(y,η)−x·η) b1(y, η)dη.(11)

Let a ∈ C∞(B∗
X) which is identically zero in a neighborhood of the

zero section. Recall that our goal is to study the operator Φ◦Op(a�)◦Φ∗

and its complete symbol. We shall first analyze Φ ◦Op(a�), to this aim
it is enough to study the operator K ◦ Op(a�) where K denotes the
operator whose Schwartz kernel is given by (10).

The Schwartz kernel of K ◦ Op(a�) is given by

T (y, z) =
∫

Rn

∫
Rn

∫
Rn

ei(ϕ(y,η)−x·η) b(y, η) a(x, �ξ)ei(x−z)·ξdξdxdη.

In this integral we replace a(x, �ξ) by its Taylor expansion:∑
α∈Nn

1
α!

∂α
x a(z, �ξ)(x − z)α.
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Using the following two identities

(x − z)αei(x−z)·ξ = Dα
ξ (ei(x−z)·ξ)∫

Rn

eix·(ξ−η)dx = (2π)nδξ=η

and integrating by parts we see that T (y, z) is the sum of a smooth
function and of H(y, z) =∫ ∫ ∫

ei(ϕ(y,η)−x·η) b(y, η)
∑

α∈Nn

1
α!

(−�)|α|∂α
x Dα

ξ a(z, �ξ)ei(x−z)·ξdξdxdη

= (2π)n

∫
Rn

ei(ϕ(y,η)−z·η) b(y, η)
∑

α∈Nn

1
α!

(−�)|α|∂α
x Dα

ξ a(z, �η)dη.

Now for α ∈ N
n we set

cα(z; �η) = ∂α
x Dα

ξ a(z, �η)

and we consider

Hα(y, z) =
∫

Rn

ei(ϕ(y,η)−z·η) b(y, η) cα(z, �η)dη.

If we replace cα(z, �η) by its Taylor expansion∑
β∈Nn

1
β!

∂β
z cα(ϕ′

η; �η)(z − ϕ′
η)

β

then, using integrations by parts as above and the formula

∂β
η

(
ei(ϕ(y,η)−z·η)

)
= (−1)|β|(z − ϕ′

η)
βei(ϕ(y,η)−z·η),

it follows easily that Hα(y, z) is the sum of a smooth function and of∫
Rn

ei(ϕ(y,η)−z·η)
∑

β∈Nn

1
β!

Dβ
η

(
b(y, η) ∂β

z cα(ϕ′
η; �η)

)
dη.

We observe that if we apply the Leibniz rule for the term Dβ
η

(
....
)

in the
previous integral then the following differential operators will appear

Dβ−γ
η b(y, η) Dγ−γ′

η (ϕ′
η)D

γ′
η ∂β

z .(12)
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It is clear from Lemma 1 that, expressed in the coordinates (ϕ′
η(y, η), η),

these differential operators (12) are E-differential operators. Therefore
we have just proved that T (y, z) is the sum of a smooth function and
of: ∫

Rn

ei(ϕ(y,η)−z·η)
∑
k∈N

�
kPk(a)(ϕ′

η(y, η), �η)dη

where the Pk are E-differential operators.
Now we recall that the Schwartz kernel of Φ∗ is the finite sum of a

smooth function and of terms of the type (11). So in order to study the
complete symbol of Φ ◦ Op(a�) ◦ Φ∗ it is enough to study the operator
K ◦ Op(a�) ◦ K∗ whose Schwartz kernel is the finite sum of a smooth
function and of integrals of the type∫ ∫ ∫

ei(ϕ(y,η)−x·η)e−i(ϕ(y′,η′)−x·η′)Pk(a)(ϕ′
η(y, η), �η)b1(y′, η′)dxdη′dη

= (2π)n

∫
Rn

ei(ϕ(y,η)−ϕ(y′,η)Pk(a)(ϕ′
η(y, η), �η)b1(y′, η)dη.(13)

Moreover we can write ϕ(y, η) − ϕ(y′, η) = (y − y′).η̂(y, y′, η) where
η̂(y, y, η) = ϕ′

y(y, η) and we can assume (at the expense of shrinking the
local coordinates charts) that η → η̂(y, y′, η) is a local diffeomorphism
whose inverse is denoted η̂ → η(y, y′, η̂). With these notations, we set:

Ak(y, y′, �, η̂) = Pk(a)(ϕ′
η(y, η) , �η)b1(y′, η).

Then a change of variable formula allows us to see that the oscillatory
integral (13) is equal to

(2π)n

∫
Rn

ei(y−y′)·η̂ Ak(y, y′, �, η̂)
∣∣∣∣Dη

Dη̂

∣∣∣∣ dη̂.

We observe that, expressed in the coordinates (ϕ′
η(y, η), η), the vector

fields ∂η(ϕ′
η)∂y are E-differential operators. Therefore one proves easily

the assertion of part 2) of the Theorem by replacing Ak(y, y′, �, η̂) by
its Taylor expansion∑

β∈Nn

1
β!

∂β
y′Ak(y, y, �, η̂)|y=y′ (y′ − y)β

and using, as before, integration by parts. q.e.d.
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5. The formal deformation and traces on B
∗
X ∪φ B

∗
Y and

regularized traces on ΨDO’s

Recall first that C∞(M) is exactly the set of functions (f, g) ∈
C∞(B∗

X) × C∞(B∗
Y ) such that f − g ◦ φ′ vanish of infinite order

to the boundary of B
∗
X.

We are going to use the �-products denoted �X , �Y on B
∗
X and B

∗
Y

defined in Propositions 2 and 4. We set A
�(B∗

X) = C∞(B∗
X)⊗CC[[�]]

and A
�(B∗

Y ) = C∞(B∗
Y ) ⊗C C[[�]].

Let A
�(M) be the vector space given by

{(a, b) ∈ A
�(B∗

X) × A
�(B∗

Y ) | Φ̃(a) = b}

where a (resp. b) denotes an element of B
�(B∗

X) (resp. B
�(B∗

Y )) in-
duced by a (resp. b). Theorem 2 shows that A

�(M) is an algebra with
respect to the diagonal product: (�X , �Y ). In particular, pairs of the
form (σ(Φ∗Φ), σ(ΦΦ∗)) belong to A

�(M).
In the statement of the next proposition we will use the notations

of Theorem 2.

Proposition 5.

1) Let χ ∈ C∞(T ∗X, [0, 1]) be such that χ(x, ξ) = 0 for ||ξ|| ≤ 1/2
and χ(x, ξ) = 1 for ||ξ|| ≥ 1. For any f ∈ C∞(B∗

X) we have

Φ̃(χf) − (χf) ◦ φ−1 ∈ �B
�(B∗

Y ).

2) For each b ∈ C∞(B∗
Y ) one defines b− ∈ C∞(B∗

Y ) by setting
b−(η) = b(−η) for any η ∈ B

∗
Y . Then the formula

∀(a, b) ∈ A
�(M), U(a, b)

=

a +
∑
k≥1

�
k Dk(a), b−

 ∈ C∞(M) ⊗C C[[�]]

defines a C[[�]]-linear isomorphism U from A
�(M) to C∞(M)⊗C

C[[�]].

3) The product U(∗X , ∗Y ) defines an E-deformation of M (or a star
product) associated to the symplectic Lie algebroid (E , [, ], ω) (see
[10] Section 3.3).
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Proof. Part 1) is a consequence of the theorem of Egoroff (see [7]).
Part 2) is an easy consequence of Theorem 2. Part 3) is an easy conse-
quence of 2) and of Theorem 2 (2). q.e.d.

Definition 3.

• A
�(M) denotes the formal deformation of M associated to the

symplectic Lie algebroid (E , [, ], ω) constructed in Proposition 5.

• The linear functional

τcan : A
�(M) → C[�−1, �]]

is given by

∀(a, b) ∈ A
�(M),(14)

τcan(a, b) =
{

asymptotic expansion at � = 0 of
� �→ τ(Op(a�), Op(b�))

}
where τ is the trace defined in Proposition 3. It follows immedi-
ately from the definition that τcan is a trace.

Computation of τ .
Since the space of traces on A

�(M) may be very big we introduce
the following algebra:

D
�(M) = A

�(M)

 χ ||ξ||, (χ ||ξ|| +
∑
k≥1

�
kDk(χ ||ξ||)) ◦ φ−1

 .

Another way of describing D
�(M) is given by glueing from

φ̃ : A
�(B∗

X)[χ||ξ||] → A
�(B∗

Y )[χ||ξ||]

where χ is as in Proposition 5. It is easily seen that τcan defines, by the
same formula as (14), a trace on D

�(M).
Next proposition describes the space of traces on D

�(M).

Proposition 6 The space of traces with values in C[�−1, �]] on the
algebra D

�(M) is two dimensional over C[�−1, �]]. A basis is given by
(τcan, τ1) where for any (a, b) ∈ D

�(M) τ1(a, b) = ResW (a). Here ResW

denotes Wodzicki’s noncommutative residue.
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Proof. For Z = X or Y we set

C∞
0 (B∗

Z) ⊗C C[[�]] = A
�
0(T

∗Z)

where C∞
0 (B∗

Z) denotes the set of smooth functions which vanish of
infinite order at B

∗
Z \T ∗Z. Then we have the following exact sequence

of C[[�]]-algebras:

0 → A
�
0(T

∗X) ⊕ A
�
0(T

∗Y ) → D
�(M) → T (M) → 0.

Here T (M) denotes the induced formal E-deformation of the algebra of
transversal Laurent series with coefficients given by smooth functions
on the sphere at infinity. A more direct construction of this deformation
may be described as follows. Let P i denote the space of pseudodifferen-
tial operators on, say X, of order ≤ i modulo the smoothing operators.
The space SP of doubly infinite sequences

{Pi}i∈Z, Pi ∈ P i, and there exists i0 such that Pi ∈ P i0 for i large

is a flat module over C[[�]], where the multiplication by � acts as the
right translation. We endow SP with the product

{Pi}i∈Z{Qi}i∈Z =

 ∑
i+j=n

PiQj


n∈Z

.

Note that, given the particular sequences {Pi}i and {Qi}i, there exists
N such that all the pseudodifferential operators involved have order
bounded by N, hence the doubly infinite sums

∑
i+j=n PiQj make sense.

In fact, given n, the top order of operators appearing as products PiQn−i

are at most 2N, and given any integer k ≤ 2N , there are at most finitely
many terms in the sum of the order k.

The space SP is immediately seen to be isomorphic to T (M). Any
trace τ on T (M) is given by a sequence of C-linear, C[[�]]-valued func-
tionals τn on Pn such that

τ({Pi}) =
∑

τi(Pi).

The �-linearity of τ implies that τi+1 = �τi and the trace condition on
τ implies that each τi is a trace on the algebra of pseudodifferential
operators modulo the smoothing operators. Recall that, on this latter
algebra, the Wodzicki residue res is the unique trace up to multiplicative
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constant. Thus τ is, up to multiplicative constant, uniquely determined
by τ−n = res, and hence the space of traces on T (M) is one-dimensional.

We recall that A
�
0(T

∗X) is H-unital (in the sense of Wodzicki, see
[17]), so we have the following long exact sequence in cyclic cohomology:

0 → HC0(T (M)) → HC0(D�(M)) → HC0( A
�
0(T

∗X) ⊕ A
�
0(T

∗Y ) ) →

HC1(T (M)) → · · · .

From Section 2.1 we recall that the space of C[[�]]-linear traces (with
values in C[�−1, �]]) on A

�
0(T

∗X) is one dimensional and generated by
TrX

can. By above, HC0(T (M)) is one-dimensional. The connecting map

δ : HC0( A
�
0(T

∗X) ⊕ A
�
0(T

∗Y ) ) → HC1(T (M))

is given by taking a trace on A
�
0(T

∗X) ⊕ A
�
0(T

∗Y ), extending it to a
linear functional on D

�(M) and taking its Hochschild boundary. In
particular, it is not zero because V. Nistor has shown in [13] that the
nonvanishing of this Hochschild boundary is equivalent to the existence
of a pseudodifferential operator with nonzero index!. This implies that
HC0(D�(M)) is either one or two dimensional. Since, with the nota-
tions of the Proposition, τcan, τ1 are two linearly independent elements
of the vector space of traces on D

�(M), the rest of the statement of
Proposition 6 follows. q.e.d.

6. The algebraic index theorem for the Lie algebroid E

The following algebraic index theorem is proved in [10] (see Theorem
6.1) and is an extension to the symplectic Lie algebroid (E , [, ], ω) of the
Riemann Roch theorem (on symplectic manifolds) for periodic cochains
of [1], [9]. We recall that the set of E-differential forms EΩ∗ is endowed
with a de Rham differential Ed (see Definition 2.2 in [10]) so that there
is an associated de Rham cohomology EH∗(M).

Theorem 3. The following diagram is commutative:

CCper
∗ (A�(M)) σ ��

µ� �����������������
CCper

∗ (C∞(M))

µ∪Â(M)∪eθ

��
( EΩ2n−∗(M)[�−1, �]], d )

where σ is the specialization map at � = 0, µ is the transposed of the
map constructed by A. Connes (see Lemma 45 of [3]) in order to identify
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the continuous Hochschild cohomology groups of C∞(M) with the space
of de Rham currents, µ� is the trace density map defined in Section 6 of
[10] and θ = 1√−1�

ω +
∑

k≥0 �
kθk ∈ EH2(M, C[[�]]) is the characteristic

class of the deformation of the symplectic Lie algebroid (E , [, ], ω) ([10]).

Remark 4.

1) The first index theorem of algebraic index type has been proved
by Fedosov (see [5] page 189) for a symplectic manifold N (and Lie
algebroid TN), it computes the index as an element of C[�−1, �]].
Theorem 3 is a far reaching generalization of Fedosov’s theorem
since it involves higher cyclic cocycles. In fact, the next proposi-
tion and theorem implicitly show how Theorem 3 implies Fedosov’s
index theorem.

2) In the case of a regular affine algebra A, the analogue of the above
map µ had been constructed by Hochschild-Kostant-Rosenberg
(see [6]) in order to identify the Hochschild homology groups of A
with spaces of differential forms.

The natural injection A
�(M) → D

�(M) induces a natural map

CCper
∗ (A�(M)) → CCper

∗ (D�(M)).

Since the traces τcan and τ1 of Proposition 6, and the trace density map
µ� extend to CCper

∗ (D�(M)), they can be identified using the following
result.

Proposition 7.

1) The C-vector space EH2n(M, C) is two-dimensional. The vector
space of C-linear forms on EΩ2n(M) which vanish on the range of
the E-exterior derivative Ed admits a unique linear basis (reg

∫
,
∫
1),

characterized by the following properties:

For any (α, β) ∈ EΩ2n(M) such that α (resp. β) is zero in a neigh-
borhood of the boundary of B

∗
X (resp. B

∗
Y )

reg

∫
(α, β) =

∫
T ∗X

α −
∫

T ∗Y
β,

∫
1
(α, β) = 0.

Moreover
∫
1 ◦µ� = ResW .

2) There exists a constant C such that

τcan = reg

∫
◦ µ� + C

∫
1
◦µ�.
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Moreover
∫
1 ◦µ�(1, 1) = 0 and for any (a, b) ∈ D

�(M) such that a

is zero in a neighborhood of the boundary of B
∗
X,
∫
1 ◦µ�(a, b) = 0.

Proof.
1) A standard Mayer-Vietoris sequence argument shows that

EH2n(M, C) is indeed two dimensional. The fact that (reg
∫

,
∫
1) defines

a basis is left to the reader.
2) This is an easy consequence from part 1) and of the properties

(see [9], [10] ) of the trace density map µ�. To begin with, reg
∫
◦ µ�

and τcan coincide on A
�
0(T

∗X), while resW vanishes there. In particular
reg
∫
◦ µ� is not proportional to resW and, since the space of traces on

D
�(M) is two dimensional,

τcan = reg

∫
◦ µ� + C

∫
1
◦µ�

holds. Since resW (f) depends only on the jet of f at the cosphere
at infinity, and here it is given by the Wodzicki residue of the corre-
sponding pseudodifferential operator, the rest of the statement follows
immediately. q.e.d.

7. Local formula for the index of a Fourier integral operator

Theorem 4.

• Let Φ be a Fourier integral operator and A
�(M) the formal defor-

mation of M associated to it as in Definition 3. Then

ind Φ =
∫

M
eθ0Â(M),

where θ0 denotes the characteristic class of the deformation of the
Lie Algebroid (E , [ , ], ω) given by A

�(M).

• Let ∇X be a connection ∇X on the tangent bundle T (B∗
X) and

Â(T ∗X) an associated representative form of the Â-class of ∇X .
The symplectomorphism φ induces a connection φ∗(∇X) on the
tangent space of B

∗
Y \ B∗(Y ). Let ∇Y denote its extension to a

connection of T (B∗
Y ) and Â(T ∗Y ) an associated representative

differential form of the Â-class of ∇Y . Then

ind Φ =
∫

B∗(X)
eθ0Â(T ∗X) −

∫
B∗(Y )

eθ0Â(T ∗Y ).
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Proof. Proposition 3 shows that

ind Φ = τ(Id, Id) = τcan(1, 1).

Proposition 7 (2) shows that

τcan(1, 1) = reg

∫
◦ µ�(1, 1).

The result follows then from Theorem 3 by letting � → 0+, provided
that the involved characteristic classes of vector bundles on M are in
fact standard de Rham cohomology classes. We will prove this below
and see that the regularized integral coincides with the orientation class
of M . q.e.d.

The previous formula shows that if φ extends as a symplectomor-
phism T ∗X → T ∗Y up to the zero section then ind Φ = 0.

For a deformation associated with a Fourier integral operator (as in
Proposition 5) the characteristic class θ of Theorem 3 is in fact of the
form

θ =
1√
−1�

ω + θ0

where θ0 ∈ H2(M, C) is a closed differential form (not only an E-differ-
ential form). In order to do this and to identify the relevant charac-
teristic class we will give below a slightly nonstandard description of a
formal deformation.

7.1 General construction of the characteristic class of a
formal deformation

Let us start with some notation.
Let A

� denote the Weyl algebra of the symplectic vector space R
2n

with the standard symplectic structure, i.e., the algebra generated by
the vectors x̂l, ξ̂l (1 ≤ l ≤ n) satisfying the relations [ξ̂k, x̂l] =

√
−1�δk,l.

The algebra A
� is completed in the topology associated to the ideal

generated by {x̂l, ξ̂l, �; 1 ≤ l ≤ n} and has the grading induced by

deg x̂l = deg ξ̂l = 1, deg � = 2.

The corresponding Lie algebra 1
�
A

� will be denoted by g̃. We set

g = Der (A�) = g̃/center
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and
G = Aut(A�) = exp(g≥0).

We set

G̃ =
{

g ∈ 1
�

A
� | g ∈ sp(2n, R) mod g≥1

}
and will endow it with the group structure coming from the exponential
map. Note that G̃ is an extension of G associated to the (Lie algebra)
central extension g̃ of g.

We endow the bundle R
2n × A

� with the obvious fiber-wise action
of G̃ and with the g̃-valued (Fedosov) connection

∇̃0 =
n∑

l=1

(
dξl

(
∂ξl

− 1√
−1�

x̂l

)
+ dxl

(
∂xl

+
1√
−1�

ξ̂l

))

where (dx1, . . . , dxn; dξ1, . . . , dξn) denote the local (usual) dual basis of
T ∗

R
n. Let us recall (see Section 2.2) that a local chart of B

∗
R

n near
B

∗
R

n \ T ∗
R

n is given by:(
x1, . . . , xn; t =

1
||ξ|| , θ = (θ1, . . . θn−1)

)
t ≥ 0, θ ∈ Sn−1.(15)

By using the local coordinates (15) one checks easily that ∇̃0 extends
as an ERn

-connection, still denoted ∇̃0, of B
∗
R

n × A
�.

The description given below of a formal deformation of a symplectic
Lie algebroid structure on M is just the representation of the Fedosov
construction in terms of the bundle of jets on M with the fiber-wise
product structure induced by the *-product (which is isomorphic to
Weyl bundle) .

Local description of the characteristic class θ of a formal de-
formation.

The deformation is described by a local (Darboux) cover {Ui}i∈I of
(M, ω), a collection of functions {gi,j : Ui ∩Uj → G̃} and a collection of
g̃-valued E-connections ∇̃i on Ui×A

� which, when expressed in terms of
local Darboux coordinates (x1, . . . , xn, ξ1, . . . , ξn) (resp (15)) if Ui does
not meet (resp. meets) the boundary at infinity, are equal to ∇̃0 modulo
g̃≥1 and so that the three following conditions hold:
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1) The cocycle condition holds:

gi,jgj,i = 1 and gi,jgj,k = gi,k on Ui ∩ Uj ∩ Uk.

In particular {gi,j : Ui ∩ Uj → G̃} define a smooth bundle W
of algebras over M with fiber isomorphic to A

� and the structure
group G̃.

2) The local connections ∇̃i define a g̃-valued connection ∇̃ on the
bundle W, i.e.,

gi,j∇̃j = ∇̃igi,j .

3) The induced g-valued connection ∇ on the bundle W is flat, i.e.,
θ = ∇̃2 is a globally defined differential form on M with values in
the center of g̃, necessarily of the form

1√
−1�

ω + θ0 where θ0 ∈ Ω2(M, C[[�]]).

The algebra of ∇-flat sections of W is a formal deformation of
(M, ω) whose characteristic class is θ.

7.2 Local canonical liftings

We endow R
2n with its canonical symplectic structure ω =

∑n
l=1 dξl ∧

dxl. Given any smooth, C[[�]]-valued function H on R
2n, we define the

following sections of the bundle R
2n × A

� (over R
2n):

(1) H0 = H(x, ξ)|�=0, H1 =
∑n

l=1(x̂l∂xl
H0 + ξ̂l∂ξl

H0).

(2) H̃ =
∑ x̂αξ̂β

α!β! ∂α
x ∂β

ξ H.

Using those, we can associate to H the g̃-lift of the Lie derivative L{H, }
given by

DH = L{H, } +
1
�

(
H̃ − H0 − H1 +

1
2

�

n∑
l=1

∂2
xl,ξl

H0

)
.

We can think of it as an element of the Lie algebra of the semidirect
product of C∞(R2n, G̃) by the pseudogroup of local diffeomorphisms of
R

2n. The DH ’s form a Lie algebra, in fact

[DH ,DK ] = D 1
�
(H∗K−K∗H),(16)
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and they satisfy

[DH , ∇̃0] = −1
2
d

(
n∑

l=1

∂2
xl,ξl

H0

)
.(17)

We will also have an occasion to use

D0
H = L{H, } +

1
�
( H̃ − H0 − H1 ),(18)

which satisfies

[∇̃0,D0
H ] = 0.(19)

The identities (16), (17) and (19) follow from the definition of the quan-
tities involved (and a completely straighforward computation).

7.3 The cotangent bundle case

The deformation of T ∗X associated to the sheaf of differential operators
on X can be now described as follows.

Locally on a coordinate domain U ⊂ X we use coordinates on U to
give an explicit symplectomorphism

T ∗U → R
2n

and use Weyl deformation of R
2n to construct the deformation of T ∗U .

This amounts to the choice of a (g̃-valued) connection given in our
local coordinates (x1, . . . , xn) on U and the induced local coordinates
(xi, ξi)i=1,...n on T ∗U � U × R

n by

∇̃0 = d +
1
�

n∑
l=1

(dxlξ̂l − dξlx̂l).

The infinitesimal change of coordinates on U is given by a vector field
of the form

∑n
l=1 Xl∂xl

and the associated infinitesimal symplectomor-
phism of T ∗U is given by the Hamiltonian vector field {

∑n
l=1 Xlξl, ·}.

It is immediate to see that the map∑
l

Xl∂xl
�→ D∑

l Xlξl

is the Lie algebra homomorphism.
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The associated local diffeomorphisms (coordinate changes)
exp

∑
l Xl∂xl

lift to a local isomorphisms of the bundle T ∗U ×A
� given

by expD∑
l Xlξl

.
Given a local coordinate cover {Ui}i∈I of X it is now immediate

to construct the associated G̃-valued cocycle {gij} glueing the bundles
together. Note that, since D’s do not commute with the connection ∇̃0,
the corresponding collection of connections

∇̃i = ∇̃0 in i’th coordinate system on T ∗Ui

do not glue together. But it is not difficult to check that (see for instance
[5] page 260)

gij∇̃igji = ∇̃j +
1
2
d log det Dgij ,

where Dgij is the induced action of gij on the tangent bundle.
The cocycle

1
2
d log det Dgij(20)

is in Č1(T ∗X, Ω1(T ∗X)) and represents the pull back to T ∗X of one
half of the first Chern class of the complexified tangent bundle of X
over X. Since this class vanishes (with coefficients in R), we can find a
collection αi of closed one-forms on T ∗X satisfying

1
2
d log det Dgij = αi − αj .

Setting
∇i = ∇̃i + αi,

we get a globally defined g̃-connection ∇ whose curvature, and hence
also the characteristic class of the associated deformation, is represented
in the complex Č∗(T ∗X, Ω1(T ∗X)) by the cocycle 1

2d log det Dgij .
It is immediate that the deformation constructed in this way coin-

cides with the one associated to the calculus of differential operators
on X, while its jet at ξ = ∞ gives the deformation associated to the
calculus of pseudodifferential operators on X.

If we recall that the real symplectic vector bundle E|T ∗X (see Defini-
tion 2) is the realification of a restriction of a complex vector bundle EC

to T ∗X, the characteristic class of this deformation can be described as
the jet of 1

2c1(EC|T ∗X) at ξ = ∞ and represented by the explicit cochain
given by the formula (20).
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7.4 The Lie algebroid case

Recall now that the Lie algebroid (on M) (E , [ , ], ω) is given by glueing
(at infinity) the two cotangent bundles (T ∗X, ωX) and (T ∗Y, ωY ) by the
symplectomorphism φ′. To construct the deformation in this case, we
will use the following data, whose existence follows immediately from
the compactness of the co-sphere bundles of X and Y :

(1) A local coordinate cover {Ui}i∈I of X and an open relatively com-
pact neighborhood UX of the zero section in T ∗X.

(2) A local coordinate cover {Vi}i∈I of Y and an open relatively com-
pact neighborhood UY of the zero section in T ∗Y .

(3) For each i ∈ I we can choose local coordinates on Ui and Vi,
so that both T ∗Ui and T ∗Vi become identified with open subsets
of (the same) copy of R

2n = T ∗
R

n with its standard symplectic
structure and φi = φ|T ∗Ui\UX

is the induced symplectomorphism
between two open subsets of R

2n.

(4) For each i ∈ I there exists a smooth real-valued function Hi on
R

2n × [0, 1], which is one-homogeneous in the cotangent variables
and such that φi can be obtained by integrating the (time depen-
dent) hamiltonian flow LHi .

The existence of such a function Hi follows from the fact that any
symplectomorphism between two open subsets of a connected symplectic
manifold is locally given as φ1 for a 1-parameter Hamiltonian flow φt, t ∈
[0, 1].

Using the above data, we can construct cocycles

T ∗Ui ∩ T ∗Uj � p → gij(p) ∈ C∞(T ∗Ui ∩ T ∗Uj , G̃)

and
T ∗Vi ∩ T ∗Vj � p → hij(p) ∈ C∞(T ∗Vi ∩ T ∗Vj , G̃)

intertwining the flat connections ∇̃0
i up to the term 1

2d log det Dgij

(1
2d log det Dhij respectively) as in the cotangent bundle case.

Let Ψi denote the lifting of φi given by:

expD0
Hi

: Γ(T ∗Ui \ UX , A�) → Γ(T ∗Vi \ UY , A�).

We can and will view Ψi as local isomorphisms of jets at infinity of the
G̃-bundles on compactified cotangent bundles of X and Y constructed
from the cocycles gi,j and hi,j .
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While both gi,j ’s and hi,j ’s do satisfy the cocycle conditions on
T ∗(X) (T ∗(Y ) respectively), however

λij = Ψ−1
j hjiΨigij �= 1

and hence we do not yet have the data necessary to construct the bundle
W over M .

The following facts are easy corollaries of the construction:

(1) λij = 1 mod G̃≥1.

(2) λij∇̃0
jλj,i = ∇̃0

i − 1
2d log det Dgij − 1

2d log det Dhij .

(3) λij form a two-cocycle with values in G̃.

To begin with, recall that both 1
2d log det Dgij and 1

2d log det Dhij

as cohomology classes on T ∗X \ X and T ∗Y \ Y represent (under our
symplectomorphism) the same cohomology class, to wit half of the first
Chern class of the tangent bundle with the complex structure induced
by the symplectic form. Since these vanish, we can find a zero-Čech
cochain τi with the coefficient in the sheaf of smooth nowhere vanishing
functions and such that τiλijτ

−1
j intertwines the (local) flat connections

∇̃0
i and ∇̃0

j .
In particular, τiλijτ

−1
j are given by exponentials of jets of ∇̃0

i -flat
sections of the bundle T ∗Ui × A

� and, using a partition of unity, they
can be written in the form τiλijτ

−1
j = λiλ

−1
j , where λi is a jet of a flat

section of the Weyl bundle supported on T ∗Ui \ UX . We now define
an operator Ψ, acting on the set of sections of the Weyl bundle W, by
setting for each i ∈ I:

Ψ|T ∗Ui\UX
= ΨiτiMλi

.

Here Mλi
stands for the operator of multiplication with the flat section

λi. It is easy to see that Ψ descends to an isomorphism of jets at the
sphere at infinity of the deformations of cotangent bundles constructed
above so that

∀a ∈ C∞(B∗
X), Ψ(a) = ( a +

∑
k≥1

�
kD̂k(a) ) ◦ φ−1

holds in B
�(B∗

Y ), where the D̂k are E-differential operators. Hence, as
in Proposition 5, Ψ induces a deformation of the Lie algebroid (E , [ , ], ω).
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7.5 The characteristic class of A
�(M)

The characteristic class of the deformation constructed above can now
be easily obtained as follows. The collection gij , hij , and the jet at
infinity of ΨiMλi

give a cocycle with values in G̃, and it commutes with
local flat connections up to the Cech cocycle given by the collection of
differential forms

1
2
d log det Dgij , d log τi,

1
2
d log det Dhij .(21)

As in the case of cotangent bundle, we can correct local connections by
a scalar term and the characteristic class θ0 of the deformation is given
by (21) as a cochain in Č1(M, Ω1(T ∗M)). Moreover, in the case that
both X and Y admit metalinear structures, the collection {τi}i∈I can be
thought of as glueing of the pulled back)of the half-top form bundles of
X and Y along the graph of the symplectomorphism into a line bundle
L over M and, in this case,

θ0 = c1(L).

7.6 The Fourier integral operator

To get the Fourier integral operator we will work locally. We will dis-
pense with the half-density bundles (trivial in any case) for the sake
of simplicity of notation. We will begin by constructing, for each i, an
operator on L2(Rn) as follows. Choosing local coordinates on Ui and
Vi, we can assume that Hi (introduced at the end of Section 7.4) is
a smooth function on T ∗

R
2n which is 1-homogeneous in the cotangent

direction. The differential equation

d

dt
Ti(t) = Op(

√
−1Hi) ◦ Ti(t), Ti(0) = 1

has a solution given by a smooth family of bounded operators. Using the
fact that {τi}i∈I is a Čech zero - cochain with coefficients in the sheaf
of everywhere nonzero functions and proceeding as in Section 7.3.2 of
[5] one checks that Ti(1) satisfies

Ad (Ti(1)Op(λi))Op(f�) ∼ Op(Ψ(f)�)

mod �
∞ as � → 0 whenever suppf ⊂ T ∗Ui \ X (recall that λi is in-

troduced in Section 7.4). In other words, the deformation constructed
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above is associated (in the sense of Proposition 5) to the almost uni-
tary Fourier integral operator Φ =

∑
i∈I Ti(1)Op(λi) whose canonical

relation is Cφ. Moreover, the index of this operator Φ0 is given by∫
M

Â(M)eθ0 .

Remark 5. The result above depends on the choice of the τi’s
which in turn determine the homotopy class of the symbol of the Fourier
integral operator. Note however that in the case of scalar coefficients
and the dimension of the underlying manifold greater then two this
class is unique, since any invertible function on the cosphere bundle is
homotopic to the constant one.

Moreover, since the characteristic classes involved are given by dif-
ferential forms associated to connections on a vector bundle over M and
Ω ⊂ EΩ, the E-classes involved in the index formulas are in fact identical
with corresponding standard characteristic classes.

Let us recall that the real vector bundle E � TM is given by re-
alification of a complex vector bundle EC on M (the almost complex
structure coming from the symplectic vector bundle structure on E).
Moreover, it is easy to see, that there exists a choice of the τi’s such
that the associated characteristic class of the deformation coincides with
1
2c1(EC). This gives the following result (compare with [4] and [15]):

Theorem 5. There exists an almost unitary Fourier integral op-
erator Φ0 (as in Section 3) whose canonical relation is Cφ and such
that:

ind Φ0 =
∫

M
Â(M)e

1
2
c1(EC).
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