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COLLAPSING THREE-MANIFOLDS
UNDER A LOWER CURVATURE BOUND

TAKASHI SHIOYA & TAKAO YAMAGUCHI

Abstract
The purpose of this paper is to completely characterize the topology of three-
dimensional Riemannian manifolds with a uniform lower bound of sectional
curvature which converges to a metric space of lower dimension.

0. Introduction

We study the topology of three-dimensional Riemannian manifolds
with a uniform lower bound of sectional curvature converging to a metric
space of lower dimension.

Given a positive integer n andD > 0, let us consider the set M(n,D)
of isometry classes of n-dimensional closed Riemannian manifolds M
with sectional curvature K ≥ −1 and diameter diam(M) ≤ D. By
the Gromov Precompactness Theorem [16], the closure of M(n,D) is
compact with respect to the Gromov-Hausdorff distance. Thus any
sequence Mi, i = 1, 2, . . . , in M(n,D) has a convergent subsequence
whose limit is a compact Alexandrov space X of dimension ≤ n and
curvature ≥ −1. We now assume that Mi itself converges to X, i is
sufficiently large, and consider the following:

Problem 0.1. Describe the topological structure of Mi by using
the geometry and topology of X.
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Some answers are known in the extremal cases: If dimX = 0, the
fundamental group of Mi is almost nilpotent (Fukaya and Yamaguchi
[13]) and if dimX = n, Mi is homeomorphic to X (Perelman [26, 27],
cf. Grove, Petersen and Wu [19]). In particular, for the above problem
it suffices to consider only the case of dimX ≤ n − 1, the so called
collapsing case.

If X has no singular points, then X is a C0-Riemannian manifold
(Otsu and Shioya [25]), and the Fibration Theorem (Yamaguchi [37])
implies that Mi is a fibre bundle over X with almost nonnegatively
curved fibre. Actually the Fibration Theorem still holds if X has only
‘weak’ singularities ([38]) in some sense. According to Perelman ([28]),
it is also known that if X has no ‘bad’ singularities (precisely called ex-
tremal subsets), there is an isomorphism πk(Mi, Fi) � πk(X) for homo-
topy groups, where Fi is a ‘general fibre’ and i is large enough compared
with k.

When dimX ≤ n−1 and X may have ‘bad’ singularities, no solution
to Problem 0.1 is known as of now. In this paper we completely solve
it in the case when n = 3 and dimX = 1 or 2. Note that if n = 3 and
dimX = 0 (i.e., X is a single point), it has already been obtained in
[13] that some finite cover of Mi is homeomorphic to either a homotopy
sphere, S1 × S2, T 3, or a nilmanifold.

From now on, we assume that each element Mi ∈ M(3, D) in the
sequence is orientable and i is sufficiently large. We first state our main
results in the case of dimX = 2. Recall that X is a topological manifold
possibly with boundary in this case.

Theorem 0.2. If dimX = 2 and X has no boundary, then Mi is
homeomorphic to a Seifert fibred space over X, for which the orbit type
(µ, ν) of the singular fibre over a point p ∈ X satisfies µ ≤ 2π/L(Σp).

Here, L(Σp) is the length of the space of directions, Σp, at p. Observe
that every fibre in Mi shrinks to a point.

Theorem 0.3. If dimX = 2 and X has nonempty boundary, then
there is a Seifert fibred space Seifi(X) over X such that:

(1) Mi is homeomorphic to the union Seifi(X)∪(∂X×D2) glued along
their boundaries, where the fibres of Seifi(X) over boundary points
x ∈ ∂X are identified with {x} × ∂D2.

(2) the orbit type (µ, ν) of the singular fibre of Seifi(X) over a point
x ∈ intX satisfies µ ≤ 2π/L(Σx).
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It should be noted that the Euler characteristic of X and the number
of singular fibres of Mi in Theorems 0.2 and 0.3 are estimated by a con-
stant depending only on the upper diameter bound D (see Remark 4.6).
Observe that ∂X ×D2 ⊂Mi collapses to ∂X.

We have the following corollary of Theorem 0.3.

Corollary 0.4. Let Mi, X, and Seifi(X) be as in Theorem 0.3,
and let g and k denote the genus of X and the number of components
of ∂X respectively. Then we have the following factorization:

Mi � S3#S2 × S1# · · ·#S2 × S1︸ ︷︷ ︸
f(g,k)

#L(µ1, ν1)# · · ·#L(µ�, ν�),

where

f(g, k) =

{
2g + k − 1 if X is orientable,
g + k − 1 if X is non-orientable,

and (µj , νj), 1 ≤ j ≤ �, denote all the orbit types of singular fibres of
Seifi(X), and L(µj , νj) the lens space of type (µj , νj).

Notice here that f(g, k) and � are both bounded by some constant
depending only on D. It also follows from Theorem 0.3 and Corol-
lary 0.4 that the set of homeomorphism types of {Mi} collapsing to a
two-dimensional Alexandrov space with boundary is finite.

Let us next consider the case when dimX = 1, i.e., X is isometric
to either a circle or a closed interval. When X is isometric to a circle,
we readily observe from the Fibration Theorem [37] that Mi is a fibre
bundle over S1 whose fibre is either S2 or T 2. The rest is to investigate
the case when X is isometric to a closed interval. We denote by Mö ×̃S1

a twisted S1-bundle over a Möbius band (see Section 5 for the definition
of twisted bundles).

Theorem 0.5. Assume that X is isometric to a closed interval.
Then Mi is homeomorphic to a gluing of B and C along their bound-
aries, where B and C are respectively either D3, P 3 − intD3, S1 ×D2

or Mö ×̃S1.

Note that there are six combinations for the choice of B and C
with a number of gluing B ∪ C. If we express Mi in Theorem 0.5
as Mi = B ∪ A ∪ C, where A = ∂B × [0, �], so that as i → ∞, A,
B and C collapse to [0, �], {0} and {�} respectively, we call (B,C)
the collapsing data of the collapsing Mi → [0, �]. For more concrete
topological information of Mi, see Table 1 in Section 8.
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Every prism manifolds can be written as a gluing S1×D2∪Mö ×̃S1,
and there is an infinite sequence of pairwise non-homeomorphic prism
manifolds with constant curvature K = 1 which collapses to a closed
interval with the collapsing data (S1×D2,Mö ×̃S1) (Example 7.1). It is
unclear if a fixed prism manifold admits a sequence of metrics collapsing
to a closed interval under K ≥ −1.

Theorem 0.6. Let (M,X) be one of the following:

(1) X is a compact surface without boundary, and M a Seifert fibred
space over X.

(2) X is a compact surface with boundary, and M the union of a
Seifert fibred space over X and ∂X×D2 glued as in Theorem 0.3.

(3) X is a closed interval, and M any gluing of B and C, where (B,C)
is any of the six possible choices as in Theorem 0.5. Suppose that
M is not a prism manifold in this case.

Then there exist a sequence of Riemannian metrics gi on M and a
smooth orbifold metric g on X such that (M, gi) collapses to (X, g)
under K ≥ −1.

Combining Theorems 0.2, 0.3 and 0.5 improves the result of [13] in
the case dimX = 0 previously stated in the following way.

Corollary 0.7. Suppose that X is a point. Then a finite cover of
Mi is homeomorphic to S1×S2, T 3, a nilmanifold or a simply connected
Alexandrov space with nonnegative curvature.

Conjecture 0.8. Any three-dimensional compact, simply con-
nected, nonnegatively curved Alexandrov space without boundary which
is a topological manifold is homeomorphic to a sphere.

If Conjecture 0.8 is solved, everything will be clear about Prob-
lem 0.1 for n = 3. The above conjecture is certainly true in the Rie-
mannian case ([20]).

It is known by Thurston (cf. [35]) that there are eight geometric
structures of three-manifolds modelled on S3, R3, H3, S2 ×R1, H2 ×R,
S̃L2(R), Nil and Sol.

Corollary 0.9. For any D > 0, there exists a constant ε = ε(D) >
0 such that if a closed, prime three-manifold with infinite fundamental
group admits a Riemannian metric contained in M(3, D) with volume
< ε, then it admits a geometric structure modelled on one of the seven
geometries except H3.
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Observe that a hyperbolic manifold M does not collapse under K ≥
−1 because of the non-vanishing property ‖M‖ 
= 0 for simplicial volume
(Gromov [17], Thurston [34]).

Combining our results above, we obtain the following corollary on
the existence of geometric structures for the elements of M(3, D).

Corollary 0.10. All elements but finitely many homeomorphism
classes in M(3, D) admit geometric structures.

In the proofs of our results, we essentially use a critical point-
rescaling argument to understand the topology of a small neighbor-
hood of Mi converging to a small neighborhood of a singular point of
X. When dimX = 2, as the limit space of the rescaled Mi, we have
a three-dimensional complete open nonnegatively curved Alexandrov
space Y which is a topological manifold. Here an Alexandrov space is
called open if it is noncompact and without boundary. It is significant
to determine the topology of such a space Y by using its soul S.

Theorem 0.11. Let Y be a three-dimensional complete open
Alexandrov space of nonnegative curvature. Suppose that Y is a topo-
logical manifold. Then Y is homeomorphic to the normal bundle N(S)
of the soul S of Y .

This extends the Cheeger-Gromoll Soul Theorem [9] in dimension
three. Actually we classify all the three-dimensional complete open
Alexandrov spaces with nonnegative curvature which are not necessarily
topological manifolds (Theorem 9.6). This seems to be of independent
interest.

The organization of this paper is as follows: In Section 1, we sketch
the essential idea of the proofs of Theorems 0.2, 0.3 and 0.5.

In Section 2, we present some basic notions and results on Alexan-
drov spaces needed in the subsequent sections.

The main body of this paper consists of two parts. In Part 1, we
discuss the collapsing of three-dimensional Riemannian manifolds by
assuming the Generalized Soul Theorem, which is proved in Part 2.

In Section 3, we prove a key lemma, which is the important first
step to understand the topology of a small neighborhood of a point of
Mi converging to a singular point of X.

The proofs of Theorems 0.2, 0.3 and 0.5 are given in Sections 4,
5 and 6 respectively. We also prove Corollaries 0.7, 0.9 and 0.10 in
Section 6.
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In Section 7, we construct collapsing metrics with a lower curvature
bound on three-manifolds to prove Theorem 0.6.

In Section 8, we discuss the bounded curvature collapsing of three-
manifolds with some construction of collapsing metrics, and compare
our main results with them.

In Part 2, we classify all the three-dimensional complete open
Alexandrov spaces Y with nonnegaive curvature (the Generalized Soul
Theorem). First in Section 9, we state the main results in Part 2 with
some examples, and prove the rigidity part of the Generalized Soul
Theorem.

We essentially use the topological Morse theory for distance func-
tions in the proof of non-rigidity part. We divide the proof into the two
cases, depending on the dimension of the minimum set C of a Buse-
mann function on Y . After some preliminary arguments in Sections 10
and 11, we prove the non-rigidity part of the Generalized Soul Theorem
in the case of dimC = 2 in Section 12. The case of dimC = 1 is proved
in Section 13.

In Appendix, we discuss the total curvature, the Gauss-Bonnet The-
orem and the Cohn-Vossen Theorem for Alexandrov surfaces, and give
a classification of nonnegaitvely curved Alexandrov surfaces. Those are
needed in the proof of Theorem 0.5.

Acknowledgment. We would like to thank L. C. Siebenmann, T.
Soma and Y. Yokota for discussions concerning this work. The second
author was supported by Institut des Hautes Études Scientifiques. He
is most grateful for its hospitality and financial support.

1. Idea of proofs

Let a sequence of three-dimensional closed orientable Riemannian
manifolds Mi with K ≥ −1 and diam(Mi) ≤ D collapse to a compact
Alexandrov space X with dimX = 1 or 2. Assume for simplicity that i
is always large enough.

Let us first consider the most basic case when dimX = 2 and X
has no boundary. For a sufficiently small fixed ε > 0, take the singular
points xj of X with L(Σxj ) ≤ 2π− ε. There are only finitely many such
points xj , say 1 ≤ j ≤ k. For a sufficiently small r > 0, we consider
X ′ = X − (B(x1, r) ∪ · · · ∪ B(xk, r)), where B(x, r) denotes the closed
r-ball around x. Applying the Fibration Theorem (Theorem 2.2) to X ′,
we have a domain M ′

i ⊂ Mi converging to X ′ which is a circle bundle



collapsing three-manifolds 7

over X ′. We here need some new idea to determine the topology of the
components Bij of Mi −M ′

i converging to B(xj , r).
For simplicity we fix a j and set Bi = Bij ⊂ Mi, x = xj and

B = B(x, r) ⊂ X. To investigate the topology ofBi, we want to measure
the diameter, say δi, of the ‘fibres’ of the convergence Bi → B and
consider the convergence of the rescaled pointed manifolds ( 1

δi
Mi, pi) as

i→ ∞, where pi is the center ofBi. If this convergence does not collapse,
then 1

δi
Bi should be homeomorphic to its limit which is a nonnegatively

curved complete open Alexandrov space, which could be characterized
by generalizing the Soul Theorem.

However, the main problem here is the difficulty to measure the
diameter δi of the ‘fibres’. To find δi, we shift the point pi slightly to
a ‘peak’ p̂i of Bi, precisely a point where the average of the distance to
all points on ∂Bi takes a local maximum. By shifting pi, the ball Bi
isotopically moves, so that the topology does not change. Because of
the boundary condition ∂Bi � T 2, there are critical points in Bi of the
distance function from p̂i. We define δi to be the furthest distance from
p̂i to the critical points in Bi. It then follows that δi → 0.

By passing to a subsequence, the sequence of the rescaled pointed
manifolds ( 1

δi
Mi, p̂i) converges to a pointed noncompact nonnegatively

curved Alexandrov space (Y, y0). As a crucial lemma (Key Lemma 3.6),
we prove that dimY = dimX+1 = 3. Since the convergence ( 1

δi
Mi, p̂i) →

(Y, y0) does not collapse, a discussion using Perelman’s Stability Theo-
rem (Theorem 2.4) shows that intBi � Y .

The next step is to establish the Generalized Soul Theorem for three-
dimensional Alexandrov spaces to determine the topology of Y . For
general Alexandrov space, the Soul Theorem as in the Riemannian case
does not hold. This happens essentially because of the appearance of
topological singular points. We prove the Soul Theorem as in the Rie-
mannian case for three-dimensional complete open nonnegaitvely curved
Alexandrov space which is a topological manifold, by generalizing the
notion of gradient flows of distance functions with the use of the topo-
logical Morse theory.

Applying the Soul Theorem to Y together with the boundary con-
dition ∂Bi � T 2, we conclude that the soul of Y is isometric to a circle,
and hence Bi � S1 × D2. Finally, we put a structure of fibred solid
torus on Bi which is compatible to the circle bundle structure on M ′

i .
Thus we obtain the Seifert bundle structure on Mi over X, and conclude
Theorem 0.2.

We summarize the above discussion as follows:
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(1) For the almost regular part of X, we use Fibration Theorem 2.2
to obtain the circle bundle structure on M ′

i ⊂Mi.

(2) For singular points of X, we use the flow chart:

the rescaling argument (Key Lemma 3.6)
↓

Stability Theorem 2.4
↓

the Generalized Soul Theorem

to obtain the topology of a small neighborhood Bi ⊂ Mi near a
singular point of X.

(3) We put a fibred solid torus structure on Bi and finally check the
compatibility.

Next we consider the case when dimX = 2 and X has non-empty
boundary. For a sufficiently small fixed ε > 0, take the boundary points
xj ∈ ∂X with L(Σxj ) ≤ π − ε. There are only finitely many such
points xj , say 1 ≤ j ≤ �. For a sufficiently small r > 0 and δ � r,
we decompose X into three kinds of parts: B(xj , r), 1 ≤ j ≤ �, H =
B(∂X, δ)−int(B(x1, r)∪· · ·∪B(x�, r)), andX ′, the complement of intH
and intB(xj , r). Corresponding to these parts, we decompose Mi into
three kinds of parts Bij , Hi, and M ′

i which are respectively Gromov-
Hausdorff close to B(xj , r), H, and X ′. Applying Theorem 0.2 to X ′,
we obtain a Seifert bundle structure on M ′

i over X ′. The generalized
Margulis lemma ([13]) implies that Hi is homeomorphic to D2 × (∂X ∩
H). Finally by using the critical point-rescaling argument (2) above
with the boundary condition ∂Bij � S2, we conclude that Bij � D3.
Combining those topological information, we obtain Theorem 0.3.

When X is isometric to a closed interval I, we decompose Mi into
three parts Ai, Bi, and Ci, where Bi and Ci are two metric balls close to
the two endpoints of I respectively. The Fibration Theorem implies that
Ai � Fi × I, where Fi is either S2 or T 2. To investigate the topologies
of Bi and Ci, we use the same discussion as (2) above. However, we
only have 3 ≥ dimY ≥ dimX + 1 = 2 in this case. If dimY = 2,
we apply the critical point-rescaling argument (2) to the convergence
1
δi
B(pi, Rδi) → B(y0, R) with large R > 0 instead of Bi → B. This

determines the topology of Bi and Ci and proves Theorem 0.5.
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2. Preliminaries

In this section, we present some results on Alexandrov spaces and the
Gromov-Hausdorff convergence related with Alexandrov spaces, which
will be needed in the subsequent sections. We refer to [4] for the basic
materials and the details of the results on Alexandrov spaces mentioned
below.

First we give some basic definitions and notations. Let X be a
geodesic space in the sense that every two points can be joined by a
minimal geodesic. We assume that all geodesic have unit speed unless
otherwise stated. For a fixed real number κ and a geodesic triangle
∆xyz in X with vertices x, y and z, we denote by ∆̃xyz a comparison
triangle in the simply connected complete surface Mκ with constant
curvature κ. This means that each side length of ∆̃xyz is equal to the
corresponding one of ∆xyz. Here we suppose that the perimeter of ∆xyz
is less than 2π/

√
κ if κ > 0. We say that an open set U in X satisfies

the Alexandrov convexity if for any geodesic triangle in U with vertices
x, y and z and for any point w on the geodesic segment yz joining y
to z, we have d(x,w) ≥ d(x̃, w̃), where ∆x̃ỹz̃ = ∆̃xyz, w̃ is the point
on ỹz̃ corresponding to w. The space X is called an Alexandrov space
with curvature ≥ κ if each point of X has a neighborhood satisfying
the Alexandrov convexity. Actually it is known that the whole space X
satisfies the Alexandrov convexity. From now on we assume that X is
of finite dimension.

The angle between the geodesics xy and yz in X is denoted by
∠xyz, and the corresponding angle of ∆̃xyz by ∠̃xyz. It holds that
∠xyz ≥ ∠̃xyz. We denote by Σp = Σp(X) the space of directions at
p ∈ X, and by Kp = Kp(X) the tangent cone at p with vertex op, the
Euclidean cone K(Σp) over Σp. It is known that Σp is an Alexandrov
space with curvature ≥ 1.

For a compact set A ⊂ X and p ∈ X − A, we denote by A′ = A′
p

the closed set of Σp consisting of all the directions of minimal geodesics
from p to A. Let us now consider the distance function dx(·) = d(x, ·)
from x. A point p is called a critical point of dx if ∠̃xpy ≤ π/2, or
equivalently ∠(x′p, y′p) ≤ π/2, for every y ∈ X − {p}. Otherwise p is a
regular point of dx.

A (not necessarily continuous) map ϕ : Y → Z between metric
spaces is called an ε-approximation if:

(1) |d(x, y) − d(ϕ(x), ϕ(y))| < ε for all x, y ∈ Y .

(2) ϕ(Y ) is ε-dense in Z.
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The Gromov-Hausdorff distance dGH(Y,Z) between Y and Z is de-
fined to be the infimum of such ε that there exist ε-approximations
Y → Z and Z → Y . We say that pointed spaces (Xi, xi) converge to
(X,x) with respect to the pointed Gromov-Hausdorff topology if the
metric balls B(xi, Ri;Xi) converge to B(x,R;X) with respect to the
Gromov-Hausdorff distance for any R > 0 and some monotone nonin-
creasing sequence Ri → R. We recall that Kp is isometric to the pointed
Gromov-Hausdorff limit of (1

εX, p) as ε→ 0.
Let X have dimension n, and δ > 0. A system of n pairs of points,

(ai, bi)ni=1 is called an (n, δ)-strainer at p ∈ X if it satisfies

∠̃aipbi > π − δ, ∠̃aipaj > π/2 − δ,

∠̃bipbj > π/2 − δ, ∠̃aipbj > π/2 − δ,

for every i 
= j. The number min {d(ai, p), d(bi, p) | 1 ≤ i ≤ n} is called
the length of the strainer.

Let Xδ denote the set of (n, δ)-strained points of X. This has the
structure of a Lipschitz n-manifold. Note that every point in Xδ has a
small neighborhood almost isometric to an open subset of Rn for small
δ.

The boundary ∂X of X is inductively defined as the set of points p
such that Σp has non-empty boundary.

In dimension two, we have the following result ([4], [1]).

Theorem 2.1. Any two-dimensional Alexandrov space X with
curvature bounded below is a topological manifold possibly with boundary.
Furthermore for every positive number δ, the set of interior points (resp.
boundary points) of X at which the length of the space of directions is
smaller than 2π − δ (resp. π − δ) is discrete.

Next we recall the Fibration Theorem from [37], [38]. Let X be an
Alexandrov space. The δ-strain radius at a point p ∈ Xδ is defined
as the supremum of those r > 0 that there exists an (n, δ)-strainer at
p of length r. The δ-strain radius of a closed domain Y ⊂ Xδ is, by
definition,

δ-str.rad(Y ) = infp∈Y δ-strain radius at p.

The δ-strain radius plays a role similar to the injectivity radius of a
Riemannian manifold. We denote by τ(ε1, . . . , εk) a function depending
on a priori constants and εi satisfying limεi→0 τ(ε1, . . . , εk) = 0.
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Theorem 2.2 (Fibration Theorem [38]). Given n and µ > 0 there
exist positive numbers δ = δn and ε = εn(µ) satisfying the following :
Let Y ⊂ Xδ ⊂ X be as above such that δ-str.rad(Y ) > µ. Let M be
a complete Riemannian manifold with K ≥ −1 and suppose that the
Gromov-Hausdorff distance dGH(M,X) < ε. Then there exists a closed
domain N ⊂M and a locally trivial fibre bundle f : N → Y such that:

(1) It is a τ(δ, ε)-Lipschitz submersion.

(2) It is a τ(ε)-approximation.

For the definition of τ -Lipschitz submersion, see [38].

Remark 2.3. It is essentially proved in [37] that the first Betti
number of the fibre of f : N → Y is less than or equal to its dimension,
and in [13] that the fundamental group of the fibre is almost nilpotent.

When X is compact, two dimensional and without boundary, one
can take as Y the complement of a small neighborhood of the finite set
X − Xδ. This explains a reason that our methods work in dimension
three.

In [38], the general convergence when M is also an Alexandrov space
was discussed. Although the theorem above is not stated explicitly
in [38], it follows directly from the proof there. However for reader’s
convenience, we give a sketch of the proof of the above theorem. For
the details, see [38].

Let fX : X → L2(X) be the embedding of X into the Hilbert space
L2(X) defined by using the distance functions from the points of X.
Since a small neighborhood of each point of fX(Xδ) can be approx-
imated by an n-plane in L2(X), fX(Xδ) has a normal bundle ν in
a generalized sense. Namely, ν is a map of fX(Xδ) into the Grass-
mann manifold consisting of all subspaces of L2(X) of codimension
n. This map ν, called a normal bundle of fX(Xδ), is Lipschitz and
fX(Xδ) has a tubular neighborhood U with respect to ν. The C1-map
fM : M → L2(X) is constructed in a similar way (Remark 4.20 in
[38]). Note that fM (N) ⊂ U for a closed domain N of M with small
dGH(N,Y ). Thus the map f = f−1

X ◦ π ◦ fM : N → Y is well de-
fined, where π : U → fX(Xδ) is the projection along ν. For p ∈ N , let
T = Tp be an n-plane in L2(X) approximating a small neighborhood
of π(fM (p)) in fX(Xδ). It follows from the proof of Lemma 4.6 in [38]
that for every unit vector ξ̄ ∈ T there exists ξ ∈ Tp(M) such that

|dfM (ξ) − ξ̄|
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is small when the given constant δ and ε are small. This implies that
πT ◦ fM gives a locally trivial fibre bundle on a neighborhood of p over
a neighborhood of πT ◦ fM (p) in T , where πT denotes the nearest point
projection to T . Since π : Tp → fX(Xδ) is homeomorphic on a small
neighborhood of π ◦ fM (p) ([38, Lemma 3.7]), it follows that π ◦ fM and
hence f provides a fibre bundle structure on N over Y .

A point p of an Alexandrov space X is called an essential singular
point if rad(Σp) ≤ π/2, where

rad(Σp) = min
ξ∈Σp

max
η∈Σp

∠(ξ, η)

is the radius of Σp. Notice that if a point p ∈ X is not an essential
singular point, then Σp is homeomorphic to a sphere ([18]) and a small
metric ball around p is homeomorphic to Rn ([26, 27]), where n is the
dimension of X. We also say that p is a topological singular point if Σp

is not homeomorphic to a sphere.
When no collapsing occurs, we have the following stability result.

Theorem 2.4 (Stability Theorem [26]). Let a sequence of compact
n-dimensional Alexandrov spaces Xi with curvature ≥ −1 converge to a
compact Alexandrov space X of dimension n. Then Xi is homeomorphic
to X for sufficiently large i.

Part 1. Analyzing collapsed three-manifolds

3. Key lemma

Let a sequence of pointed complete n-dimensional Riemannian mani-
folds (Mi, pi) with K ≥ −1 converge to a pointed k-dimensional Alexan-
drov space (X, p), where k ≤ n. In this section, we investigate the
topology of the metric ball B(pi, r) for i large enough compared to a
fixed small r > 0 under some assumption for p.

Let A be a metric space and ε > 0 a number. A discrete subset N
of A is called an ε-discrete net of A if d(x, y) ≥ ε for any x 
= y ∈ N .
Set

βA(ε) = max{#N | N is an ε-discrete net of A}.

An ε-discrete net N of A is said to be maximal if #N = βA(ε). If
A is a relatively compact open subset of an n-dimensional Alexandrov
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space, there are two constants c1 and c2 depending on A such that
0 < c1 ≤ εnβA(ε) ≤ c2 <∞ for any ε > 0 (see [4]).

Let φi : X → Mi be a µi-approximation, where µi → 0 as i → ∞.
For any ε > 0, we take a maximal ε-discrete net {ξj}j=1,...,βΣp (ε) of Σp.
For a small enough r > 0 compared to p and ε, there are xj ∈ ∂B(p, r),
j = 1, . . . , βΣp(ε), such that the direction ηj at p of a minimal segment
from p to xj satisfies ∠(ξj , ηj) < ε2. Set xji = φi(xj) and

fi =
1

βΣp(ε)

∑
j

d(xji , ·) : Mi → R.

By letting δx be Dirac’s δ-measure, there exists a sequence ε� → 0
such that the measure 1

βΣp (ε�)

∑
j δξj for ε = ε� converges to some Borel

measure mp on Σp as � → 0 in the weak∗ topology. Remark that
the measure mp is (possibly) not unique because of the variety of the
choices of ξj and ε�. However, we observe that mp coincides with the
normalized Hausdorff measure over Σp if k ≤ 2. Let ψr : Kp → 1

rB(p, r)
be an νr-approximation, limr→0 νr = 0, and let

f̄ =
∫
ξ∈Σp

d(ι(ξ), ·) dmp : Kp → R,

where ι : Σp → Kp is the natural embedding.

Lemma 3.1. We have

lim
�→∞

lim
r→0

lim
i→∞

fi ◦ φi ◦ ψr = f̄ ,

where the convergence is uniform on any compact set.

Proof. Since, as i → ∞, d(xji , φi(·)) converges to d(xj , ·), the func-
tion fi ◦ φi : X → R converges to 1

βΣp (ε)

∑
j d(x

j , ·) uniformly on any

compact set. Therefore, since (1
rX, p) → (Kp, op) as r → 0, we have

lim
r→0

lim
i→∞

fi ◦ φi ◦ ψr = lim
r→0

1
βΣp(ε)

∑
j

d(xj , ψr(·))

=
1

βΣp(ε)

∑
j

d(ι(ξj), ·).

This completes the proof. q.e.d.
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Lemma 3.2. If k = 1 or 2, and if diam(Σp) < π, the function f̄
takes a strictly local maximum at the vertex op of Kp.

Proof. If k = 1, the lemma is trivial. Assume k = 2. The direc-
tionally derivative of the function f̄ with the direction v ∈ Σop(Kp)
is

v(f̄) = −sin diam(Σp)
diam(Σp)

< 0,

which proves the lemma. q.e.d.

From now on we assume the following:

Assumption 3.3. The function f̄ takes a strictly local maximum
at the vertex op of Kp.

Assume that ε > 0 is small enough compared to the point p ∈ X
and that 0 < r � ε. The precise conditions for ε will be exposed in the
proof of Lemma 3.5 below. The assumption together with Lemma 3.1
directly implies the following:

Lemma 3.4. For every large i there is a point p̂i ∈ Mi where fi
takes a local maximum such that d(pi, p̂i) → 0 as i→ ∞.

We define the metric annulus

A(x; r1, r2) = B(x, r2) − intB(x, r1)

for r1 < r2 and a point x in a metric space. Letting r be small and
i large, we may assume that p̂i as in Lemma 3.4 exists and satisfies
d(pi, p̂i) � r, and that the annulus A(pi; r/1000, 2r) contains no critical
points of d(pi, ·) (resp. d(p̂i, ·)). Denote by qi one of the critical points
of d(p̂i, ·) in B(pi, r) which are furthest from p̂i if it exists, and set

δi = d(p̂i, qi).

Notice that B(pi, r) � Dn if such qi does not exist. Clearly, limi→∞ δi =
0. Therefore, if i is large enough compared to a given λ > 1, the
balls B(pi, r), B(p̂i, r), and B(p̂i, λδi) are all homeomorphic each other.
By replacing with a subsequence of (Mi, pi), it may be assumed that
the rescaled pointed manifold ( 1

δi
Mi, p̂i) converges to a noncompact

pointed Alexandrov space (Y, y0) of nonnegative curvature. The fol-
lowing lemma is important.

Lemma 3.5. We have dimY ≥ k + 1.
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Proof. Taking a subsequence if necessarily, we assume that qi ∈ 1
δi
Mi

tends to some point z ∈ Y under the convergence ( 1
δi
Mi, p̂i) → (Y, y0).

Since qi is a critical point of d(p̂i, ·), the point z is a critical point of
d(y0, ·). For any fixed number a > 1, set Rji = d(p̂i, x

j
i ) − aδi and

Bj
i = B(xji , R

j
i ). Taking a subsequence, we assume that for each j, Bj

i

converges to some closed subset Bj of Y as i → ∞. Since the function
(d(xji , ·)−Rji )/δi = d(Bj

i , ·)/δi on Mi−Bj
i tends to the function d(Bj , ·)

on Y −Bj and since p̂i takes a local maximum of fi, the point y0 takes
a local maximum of the function

f =
1

βΣp(ε)

∑
j

d(Bj , ·).

For each j, let y0b
j , bj ∈ ∂Bj , be a minimal segment from y0 to Bj

which is a limit of p̂ix
j
i − intBj

i . The direction vj of y0b
j at Σy0 satisfies

∠(vj , vj
′
) ≥ ∠̃bjy0b

j′ ≥ lim
i→∞

∠̃xji p̂ix
j′
i ≥ ε/2 for all j 
= j′.

Since z is a critical point of d(y0, ·), we have ∠̃y0zb
j ≤ π/2 and hence

∠zy0b
j ≥ ∠̃zy0b

j ≥ π/2 − arcsin(1/a). Therefore, fixing a direction u
to z at Σy0 we have

∠(u, vj) ≥ π/2 − arcsin(1/a) for all j.

Since f takes a local maximum at y0, it follows that

0 ≥ u(f) = − 1
βΣp(ε)

∑
j

cos ∠(u, vj),

which implies that the number of j’s with vj ∈ Aa is not less than
βΣp(ε)/2, where we set

Aa = A(u;π/2 − arcsin(1/a), π/2 + arcsin(1/a)).

Therefore, βAa(ε/2) ≥ βΣp(ε)/2. Taking a→ ∞ yields

β∂B(u,π/2)(ε/2) ≥ βΣp(ε)/2.

Consider the map which assigns to each x ∈ ∂B(u, π/2) the direction at
u of a minimal geodesic joining u and x. It follows from the Alexandrov
convexity that this map is expanding, i.e., distance nondecreasing. Since
the curvature of Σu(Σy0) is ≥ 1, there is an expanding map from Σu(Σy0)
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to the (� − 2)-dimensional unit sphere S�−2(1), � := dimY . Combin-
ing these two expanding maps, we have βΣp(ε)/2 ≤ β∂B(u,π/2)(ε/2) ≤
βS�−2(1)(ε/2). Since the order of βΣp(ε) (resp. βSk−2(1)(ε)) as ε → 0 is
exactly ε1−k (resp. ε2−k), there is an εp > 0 depending only on p such
that βΣp(εp)/2 > βSk−2(1)(εp/2). We may take ε = εp. Thus we obtain
βSk−2(1)(ε/2) < βS�−2(1)(ε/2), which implies k < �. q.e.d.

We put the above results together into the following:

Lemma 3.6 (Key Lemma). Assume that the dimensions satisfy
n = dimMi = 3, k = dimX = 1 or 2, and that diam(Σp) < π for a
point p ∈ X. Then, there exists a small number rp > 0 such that if
B(pi, r) for a number 0 < r ≤ rp is not homeomorphic to D3, there are
sequences p̂i ∈ B(pi, r) and δi → 0 satisfying the following (1)–(3).

(1) d(pi, p̂i) → 0 as i → ∞; in particular, p̂i converges to p in the
convergence (Mi, pi) → (X, p).

(2) For the limit (Y, y0) of any convergent subsequence of ( 1
δi
Mi, p̂i)

we have

k + 1 ≤ dimY ≤ 3.

(3) If Si ⊂ Mi, S ⊂ Y are compact subsets such that Si converges
to S under the convergence ( 1

δi
Mi, p̂i) → (Y, y0), then for every

sufficiently large R > 0 we have B(pi, r) � B(Si, Rδi) for all i
large enough compared to R.

Proof. (1) and (2) are the direct consequences of the discussion
above.

We will prove (3). Since Y is noncompact and of nonnegative cur-
vature, ( 1

RY, y0) converges to the limit cone of Y as R → ∞. There-
fore, for a µ > 1 and a sufficiently large R > 0, the rescaled annulus

1
Rδi

A(p̂i;µ−1Rδi, µRδi) in Mi is dGH -close to the annulus A(o∞;µ−1, µ)
in the limit cone for i large, where o∞ is the vertex of the limit cone.
This together with a standard argument of critical point theory proves
B(p̂i, Rδi) � B(Si, Rδi). This completes the proof. q.e.d.

Next we shortly discuss the ideal boundary of Y , where Y is as in Key
Lemma 3.6. The ideal boundary Y (∞) of Y and the Tits metric ∠∞ on
Y (∞) were defined in [2] (cf. [22], [32]). Let K be the asymptotic cone
of Y defined as the pointed Gromov-Hausdorff limit of (εY, y0) as ε→ 0
for a point y0 ∈ Y . Then K is the Euclidean cone over (Y (∞),∠∞).
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Lemma 3.7. There is an expanding map Σp → Y (∞).

Proof. For a fixed ε > 0 and for each x ∈ ∂B(p, ε), take a minimal
geodesic γi from p̂i to xi, where xi is a point in ∂B(pi, ε) converging to
x. Passing to a subsequence, we may assume that 1

δi
γi converges to a

geodesic ray γx from y0 under the convergence ( 1
δi
B(p̂i, r), p̂i) → (Y, y0).

Thus we have a map ϕε : ∂B(p, ε) → Y (∞) defined by ϕε(x) := γx(∞).
Since the lower bound of the sectional curvature of 1

δi
Mi goes to zero,

we get

∠∞(γx(∞), γy(∞)) = lim
t→∞ 2 sin−1

(
d(γx(t), γy(t))

2t

)
≥ 2 sin−1

(
d(x, y)

2ε

)
> 0.

Letting ε→ 0, we obtain an expanding map ϕ : Σp → Y (∞). q.e.d.

4. Seifert bundle structure

Let a sequence of pointed complete orientable three-manifolds
(Mi, pi) with K ≥ −1 converge to a pointed complete Alexandrov space
(X, p) of dimension two with respect to the pointed Gromov-Hausdorff
convergence. In this section, we study the topology of a neighborhood
of pi in the case when p is an interior singular point of X and define a
compatible Seifert bundle structure on the neighborhood.

Let p ∈ intX be an interior singular point of X, and r = rp a
fixed small positive number given in Key Lemma 3.6. We may assume
that B(p, 10r) − {p} ⊂ Xδ, where δ = δ2 is a constant given in Fibra-
tion Theorem 2.2. Applying Fibration Theorem 2.2 to the convergence
B(pi, r) → B(p, r), we see that

∂B(pi, r) � S1 × S1.(4.1)

Lemma 4.1. B(pi, r) is homeomorphic to S1 ×D2 for large i.

Proof. We prove the lemma by contradiction. Suppose that it does
not hold. Passing to a subsequence, we may assume that all B(pi, r)
are not homeomorphic to S1 × D2. Note that the assumption in Key
Lemma 3.6 is satisfied because of (4.1). Let p̂i ∈ Mi and δi → 0
be as in Key Lemma 3.6. Then the limit (Y, y0) of a subsequence of
( 1
δi
B(p̂i, r), p̂i) has dimension three. The space Y contains an essential

information on the topology of B(pi, r). We note that by Theorem 9.6
the topology of Y is determined by its soul S.
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Assertion 4.2. S is a circle.

Suppose this assertion for a moment. Then we can obtain the topo-
logical type of B(pi, r) as follows. By Theorem 9.6, Y is isometric to the
form Y = (R×N2)/Z, where N2 is a nonnegatively curved Alexandrov
surface homeomorphic to R2. Let a compact set Si ⊂ Mi converges to
S ⊂ Y under the convergence ( 1

δi
B(p̂i, r), p̂i) → (Y, y0). For a large R,

we then have

B(pi, r) � B(Si, R; 1
δi
Mi) � B(S,R;Y ) � S1 ×D2,(4.2)

where the second � follows from Stability Theorem 2.4 and the third �
follows from Corollary 9.7. q.e.d.

Proof of Assertion 4.2. This is done by an argument similar to the
above. If dimS = 0, then B(pi, r) � B(y0, Rδi) � D3. However this
is impossible because of (4.1). Next suppose that dimS = 2. Then by
Theorem 9.6, Y would be isometric to the normal bundle N(S) of S. It
turns out that the ideal boundary Y (∞) of Y consists of at most two
points. However this is impossible because of Lemma 3.7. Therefore we
have dimS = 1 and hence S is a circle. q.e.d.

Our next purpose is to study the limit of the universal covering
spaces πi : B̃(pi, r) → B(pi, r) to define the Seifert bundle structure on
B(pi, r). This will immediately provide the proof of Theorem 0.2. To
do this, we need a rescaling argument.

Let p̃i ∈ B̃(pi, r) be a point over pi, and Γi � Z the deck trans-
formation group. Since our argument is by contradiction, we can take
a subsequence if necessary. For εi = dGH(B(pi, r), B(p, r)), take a se-
quence ri → 0 such that εi/ri → 0. Passing to a subsequence, we may
assume that ( 1

ri
B̃(pi, r), p̃i,Γi) converges to a triple (Z, z,G) with re-

spect to the pointed equivariant Gromov-Hausdorff convergence ([13]),
where Z is a simply connected, complete Alexandrov space with non-
negative curvature.

Proposition 4.3. Under the situation above, we have:

(1) There exists a locally trivial fibration

fi : A(pi; ri/2, r) → A(p; ri/2, r)

satisfying the conclusion of Fibration Theorem 2.2.

(2) ( 1
ri
B(pi, r), pi) converges to (Kp, op).
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(3) Z is isometric to a product Z0 ×R and G is isomorphic to Zµ×R

for some integer µ ≤ [2π/L(Σp)], where Z/G ≡ Z0/Zµ ≡ Kp

(isometric).

(4) The space Z0 is isometric to a flat cone, say Z0 = K(S1
� ) with

cone angle � ≤ 2π. Thus the generator γ of Zµ is given by

γ(re�θi) = re�(θ+ν/µ)i,

where (µ, ν) = 1 and we make an obvious identification

K(S1
� ) = {re�θi | 0 ≤ θ ≤ 1, r ≥ 0}.

(5) ( 1
ri
B̃(pi, ri), p̃i) converges to (B(z0, 1) × R, z) under the conver-

gence ( 1
ri
B̃(pi, r), p̃i) → (Z, z), where B̃(pi, ri) = π−1

i (B(pi, ri))
and z0 is the vertex of the cone Z0.

Proof. Since

dGH

(
1
ri
A(pi; ri/2, r), 1

ri
A(p; ri/2, r)

)
≤ εi/ri,

and the δ2-strain radius of 1
ri
A(p; ri/2, r) is greater than a constant

independent of i, (1) follows from Fibration Theorem 2.2. (2) is clear
from the choice of ri.

Using the limit G-action, one can construct a line in Z. It follows
from the splitting theorem that Z is isometric to a product Z0 × R.
Since G is a Lie group ([14]), by using Lemma 3.10 of [13] it is possible
to take a subgroup Γ′

i of Γi such that:

(1) ( 1
ri
B̃(pi, r), p̃i,Γ′

i) converges to (Z, z,G0), where G0 is the identity
component of G.

(2) Γi/Γ′
i � G/G0 for large i.

Since Z/G ≡ Kp is of dimension two, dimZ − dimG = 2. If G0 were
trivial, G � Z and dimZ = 2. It turns out that Z is isometric to one of
R2, [ 0, � ]×R and [ 0,∞ )×R. It is now an easy exercise to show that none
of those cases implies that Z/G is a flat cone Kp, a contradiction. Thus
dimG0 = 1 and dimZ = 3. It follows from Stability Theorem 2.4 that
Z0 is a complete open Alexandrov surface homeomorphic to R2. If G0 �
S1, then G � Z × S1 and Z/G cannot be a flat cone, a contradiction.
Hence G0 � R. It is now easy to show that G � Zµ × R and Z/G ≡
Z0/Zµ ≡ Kp. Thus Z0 is a flat cone with cone angle µ×L(Σp), and all
the conclusions of the proposition follow. q.e.d.
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Lemma 4.4. There exists a topological Seifert bundle structure on
B(pi, r) of orbit type (µ, ν) over B(p, r) which is compatible to the circle
bundle structure on A(pi; ri/2, r) defined by fi.

Proof. For any x ∈ ∂B(pi, r/2) consider the fibre f−1
i (x).

Sublemma 4.5. f−1
i (x) represents a generator of Γ′

i, where Γ′
i is

as in the proof of Proposition 4.3.

Proof. We put U = B(x, �r/10). Any non-trivial geodesic loop
at xi ∈ f−1

i (x) of length ≤ �r/100 is contained in f−1
i (U). Since

f−1
i (U) � U × S1, it follows that Γ′

i is contained in the image Hi of
the inclusion homomorphism π1(f−1

i (U)) → Γi. Conversely Proposi-
tion 4.3(3) implies that Hi ⊂ Γ′

i. Therefore Hi = Γ′
i. q.e.d.

Consider B′
i = B̃(pi, ri)/Γ′

i � D2 × S1. Let γi be a generator of Γi,
and γ′i the generator of Γi/Γ′

i � Zµ represented by γi. Let Ci be a path
on ∂B′

i joining a point x ∈ ∂B′
i to γ′ix in a suitable direction. Then

Proposition 4.3(4) implies that the union of (γ′i)
k(Ci), k = 0, . . . , µ− 1,

is a loop rotating ν-times in the meridian direction. Hence the Zµ-action
on B′

i defines a Seifert bundle structure on B(pi, ri) which is isomorphic
to the Seifert bundle structure defined by the standard Zµ-action on
D2 × S1:

τµν(reiθ, eiφ) = (rei (θ+
2ν
µ
π)
, e
i (φ+ 2π

µ
)).

Thus we can put the topological Seifert bundle structure on B(pi, ri) of
orbit type (µ, ν) which is compatible to the circle bundle structure fi
on A(pi; ri/2, r). This completes the proof of Lemma 4.4. q.e.d.

Proof of Theorem 0.2. Take finitely many points {p1, . . . , pm} such
that X−{p1, . . . , pm} ⊂ Xδ. Let r be so small that the balls B(pj , 10r),
1 ≤ j ≤ m, are disjoint. Applying Lemma 4.4 to each B(pj , r), we
complete the proof of Theorem 0.2. q.e.d.

Remark 4.6. Let X be as in Theorems 0.2 or 0.3. Applying the
Gauss-Bonnet Theorem (Proposition 14.1) and the volume comparison
to X yields that the Euler characteristic of X satisfies

2 ≥ χ(X) ≥ −v2
−1(D)/2π,

where v2−1(D) denotes the volume of a D-ball in the hyperbolic plane.
Moreover, as a consequence of Theorem 0.2 and 0.3, the number of
singular fibres of Mi (resp. of Seifi(X) in Theorem 0.3) is at most 4 +
v2−1(D)/π (see Corollary 14.3).
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5. Topology near boundary

In this section, we consider the case when the limit space X is a
two-dimensional Alexandrov space with boundary. The argument in
the previous section shows that the part M ′

i of Mi converging to a part
X0 of X away from the boundary ∂X is a Seifert fibred space over X0.
Hence the essential point of the proof is to describe the topology of
Mi −M ′

i . Actually we prove that it is homeomorphic to ∂X ×D2.
For reader’s convenience, we give the definition of twisted bundles

over surfaces. For the details, see [21]. Let S1 = {z ∈ C | |z| = 1}
and I = [0, 1]. A twisted S1-bundle Mö ×̃S1 over a Möbius band Mö is
defined as the quotient space (S1 × I ×S1)/τ , where τ is the involution
of S1 × I × S1 defined by τ(eiθ, t, eiη) = (ei(θ+π), 1 − t, e−iη). Let N be
a non-orientable surface and N̂ the orientable double cover of N with
the nontrivial deck transformation σ on N̂ . Then a twisted I-bundle
N×̃I over N is defined as the quotient space (N̂ × I)/τ , where τ is
the involution of N̂ × I defined by τ(x, t) = (σ(x), 1 − t). Note that
∂Mö ×̃S1 � T 2, ∂N×̃I � N̂ and Mö ×̃S1 � K2×̃I, where K2 denotes
a Klein bottle.

Proof of Theorem 0.3. For a small ε > 0 we take {x1, . . . , xN}
contained in a fixed connected component C of ∂X such that:

(1) xj is adjacent to xj−1.

(2) L(Σx) > π − ε for any x ∈ C − {x1, . . . , xN}.

(3) There exist positive numbers r and δ � r such that:

(a) ∠̃xjyz > π − ε for every y ∈ B(xj , r) and for some z ∈ X.

(b) ∠̃xjxxj+1 > π−ε for every point x ∈ B(x̂jxj+1, δ)−B(xj , r)−
B(xj+1, r), where x̂jxj+1 is the arc joining xj and xj+1 in C.

(c) If diam(Σxj ) = π, then ∠̃xj−1xxj+1 > π − ε for every point
x ∈ B( ̂xj−1xj+1, δ) −B(xj−1, r) −B(xj+1, r).

Now suppose dGH(Mi, X) < εi and εi � δ. For a fixed j we take
pi, p

′
i ∈ Mi such that pi and p′i converge to xj and xj+1 respectively

under the convergence Mi → X. Let Bi and B′
i be C∞-approximations

of B(pi, r) and B(p′i, r) respectively. Let C ′
i be a compact domain which

converges to B(x̂jxj+1, δ), Ci the closure of C ′
i−Bi−B′

i, and Ni the clo-
sure of ∂Ci−Bi−B′

i. Applying Fibration Theorem 2.2 to a neighborhood
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of ∂B(x̂jxj+1, δ), we can take such C ′
i that for every x ∈ (Bi ∪B′

i)∩Ni

|∠(ξ1(x), ξ2(x)) − π/2 | < τ(r) + τ(r|δ) + τ(r, δ|ε),

where ξ1 and ξ2 denote the unit normal vector fields to ∂(Bi∪B′
i) and Ni

respectively, and τ(r1, . . . , rk|ε) a function depending on ri, ε satisfying
limε→0 τ(r, . . . , rk|ε) = 0 for fixed ri. Thus both ∂Bi and ∂B′

i meet Ni

transversally, and Bi∩Ni � S1, B′
i∩Ni � S1. It follows from Fibration

Theorem 2.2 that
Ni � S1 × I.

We next show that Ci � D3. Let γi be a geodesic in Bi ∪ Ci ∪ B′
i

converging to a geodesic joining xj and xj+1. Now we consider the
functions

fi = d(γi, ·), gi = d(pi, ·) − d(p′i, ·).
Note that fi is regular on f−1

i ([ δ/100, δ ]) and the gradient of fi is
almost perpendicular to Ni. Note also that gi is regular on Ci. Set
Fi = f−1

i ([ 0, δ/2 ]) ∩ g−1(0) and denote by Hi the set consisting of all
flow curves of the gradient of gi contained in Ci through Fi. Clearly,

Hi � Fi × I.

Note that the gradient of fi is almost perpendicular to that of gi on
f−1
i ([ δ/100,∞)) ∩ Ci. It follows that ∂Fi � S1. By the generalized

Margulis lemma ([13]), π1(Fi) � π1(Hi) is almost nilpotent, and there-
fore by the orientability, Fi � D2.

It is easy to construct a smooth vector field Vi on a neighborhood
of Ci −Hi such that:

(1) Vi = grad fi outside a small neighborhood of ∂Bi ∪ ∂B′
i.

(2) Vi is tangent to ∂Bi ∪ ∂B′
i.

(3) fi is strictly decreasing along the flow curves of Vi.

Thus we have
Ci � Hi � D3.

Next we show that Bi � D3. Suppose that diam(Σxj ) = π. Let Ĉ ′
i

be a compact domain which converges to B( ̂xj−1xj+1, δ), and Ĉi the
closure of Ĉ ′

i − Bi − B′
i. Applying the previous argument, we obtain

that Ĉi � D3. It is now easy to see that Bi � Ĉi ∩ Bi � Ĉi � D3. If
diam(Σxj ) < π, take a point p′′i ∈Mi converging to xj−1. For the points
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pi and p′′i we construct a compact domain C ′
i in the same way as the

construction of Ci. From Fibration Theorem 2.2, ∂Bi−Ci−C ′
i � S1×I,

which implies that

∂Bi � S2.(5.1)

Then we show

Assertion 5.1. Bi � D3.

Proof. This is done by an argument similar to the proof of Lemma 4.1
as follows. Suppose that it does not hold. Passing to a subsequence, we
may assume that all Bi are not homeomorphic to D3. We may assume
that the assumption in Key Lemma 3.6 is satisfied. Let p̂i ∈ Bi and
δi → 0 be as in Key Lemma 3.6. Then the limit (Y, y0) of a subsequence
of ( 1

δi
Bi, p̂i) has dimension three. We show that the soul S of Y is a

point. If dimS = 1, then S is a circle andBi � B(S,R) � S1×D2. How-
ever this is impossible because of (5.1). Next suppose that dimS = 2.
Then Y would be isometric to the normal bundleN(S) of S. It turns out
that the ideal boundary Y (∞) of Y consists of at most two points. How-
ever this is impossible because we have an expanding map Σxj → Y (∞)
as before. Thus S is a point and we see that Bi � B(S,R) � D3.
q.e.d.

Now we change the notation. Let pij ∈Mi be a point converging to
xj . Let Bi

j and Cij denote Bi and Ci respectively. Then the previous
argument shows that

Ai =
N⋃
j=1

(Bi
j ∪ Cij) � ∂X ×D2.

By Theorem 0.2, Mi − Ai is homeomorphic to a Seifert fibred space,
say Seifi(X) over X − A � X, where A = ∪Ni=1B(xj , r) ∪ B(x̂j−1xj , δ).
Thus

Mi � Seifi(X) ∪ ∂X ×D2,

where the identification is made by {the fibre over x ∈ ∂X} = {x} ×
∂D2. This completes the proof of Theorem 0.3. q.e.d.

For the proof of Corollary 0.4, it suffices to prove the following

Proposition 5.2. Let M be a closed orientable three-manifold and
X a compact surface with boundary such that

M � Seif(X) ∪ ∂X ×D2,
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for a Seifert fibred space Seif(X) over X, where the fibre over x ∈ ∂X is
identified with {x}×∂D2. Let g and k denote the genus and the number
of components of ∂X. Then we have

M � S3#S2 × S1# · · ·#S2 × S1︸ ︷︷ ︸
f(g,k)

#L(µ1, ν1)# · · ·#L(µ�, ν�),

where f(g, k) and (µj , νj) are as in Corollary 0.4.

We need a lemma.

Lemma 5.3. Let M be an orientable three-manifold containing a
surface S homeomorphic to S2 such that M − S is connected. Then:

(1) M has a decomposition, M � S2 × S1#N .

(2) Let P be the result of cutting of M along S. Then N = Cap(P ),
where Cap(P ) denotes the closed three-manifold obtained from P
by attaching D3 along their boundary spheres.

Proof. The first part follows from for instance Lemma 3.8 in [21].
The second part is an easy exercise. q.e.d.

Proof of Proposition 5.2. The proof is done by induction on m =
g + k + �. First we suppose that X is orientable. If m = 1, then k = 1
and g = � = 0, and we have that M � D2 × S1 ∪ S1 × D2, where
(x, y) ∈ ∂D2 × S1 is identified with (x, y) ∈ S1 × ∂D2. Hence M � S3.

Next we consider the case m = 2.

Case I. g = k = 1, � = 0.

Let T 2 = S1 × S1, B = {(eiθ, eiϕ) | −ε < θ, ϕ < ε}. We identify
X � T 2 −B. Consider the two curves, γ1(θ) = (eiθ, 1), γ2(ϕ) = (1, eiϕ),
ε ≤ θ, ϕ ≤ 2π − ε. Let S be the part of M “over γ1”;

S � γ1 × S1 ∪ ∂γ1 ×D2 � S2.

Note that M − S is connected. Then we have the decomposition M =
S2 × S1#M ′, where M ′ = Cap(Pi), and Pi is the result of cutting M
along S. Let S′ be the part of M over γ2, which is homeomorphic to
S2 as before. We may assume that S′ ⊂ M ′. Note that M ′ − S′ is
connected. Then we have a decomposition M ′ = S2 × S1#M ′′, where
M ′′ = Cap(Qi), and Qi is the result of cutting M ′ along S′. Now one
can verify that M ′′ = Cap(Qi) � S3. Thus M � S2 × S1#S2 × S1.
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Case II. g = 0, k = � = 1.

Let (µ1, ν1) be the orbit type of the unique singular orbit in Seif(X).
Then from the definition of lens spaces, we have M � L(µ1, ν1).

Now consider the general case. Let γ be a path joining two points of
∂X which divides X into two compact domains X1, X2 in such a way
that each Xj contains at least one of handles, boundary components
and singular loci of X. The part of M over γ is homeomorphic to S2.
If we denote by M ′ and M ′′ the part of M over X1 and X2 respectively,
then we have M = M ′#M ′′. By applying the induction to M ′ and M ′′

we obtain the required form for M .
We next consider the case when X is non-orientable. Suppose first

g = k = 1, � = 0. ThenM = Mö ×̃S1∪S1×D2, where (x, y) ∈ ∂Mö ×̃S1

is identified with (x, y) ∈ S1 × ∂D2. Let γ be a path in Mö cutting Mö
open to a disk. Let S be the part of M over γ, which is homeomorphic
to S2. Note that M − S is connected. Then by a similar argument, we
can conclude that M � S2 × S1. The rest of the inductive argument
follows in the same way. q.e.d.

Corollary 5.4. Let Mi and X be as in Theorem 0.3. Then the set
of homeomorphism classes of Mi is finite.

Proof. This follows from Theorem 0.3 and Proposition 5.2. q.e.d.

6. Collapsing to a closed interval

For a Riemannian manifold M with boundary, we denote by dbl(M)
the double of M , i.e., the gluing of two copies of M along their bound-
aries by the original identification.

Proof of Theorem 0.5. Let Mi be a sequence of closed orientable
three-manifolds with K ≥ −1 collapsing to a closed interval [ 0, � ]. By
Fibration Theorem 2.2, we have

Mi = Bi ∪Ai ∪ Ci,
where Ai � Fi × [ 0, 1 ], Bi and Ci are metric balls Gromov-Hausdorff
close to the endpoints of [ 0, � ] and Fi is homeomorphic to S2 or T 2. If Bi
is not homeomorphic toD3, then by Key Lemma 3.6, we have a sequence
p̂i converging to the end point 0 of [ 0, � ], and δi → 0 such that for a
subsequence, ( 1

δi
Bi, p̂i) converges to a pointed noncompact Alexandrov

space (Z, z0) with nonnegative curvature, where dimZ ≥ 2. In what
follows, assuming that Bi is not homeomorphic to D3, we analyze the
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topology of Bi from the information on the fibre data Fi, the dimension
and the boundary data of Z.

Case I. Fi � S2.

We have to show that Bi is homeomorphic to D3 or P 3 − intD3.
Assume that Bi is not homeomorphic to D3. If dimZ = 3, Z has no
boundary. Let S be a soul of Z. If dimS = 1, then Bi � S1 × D2,
a contradiction to ∂Bi � S2. If dimS = 2, we see that S � P 2 and
Z is isometric to a flat line bundle P 2×̃R. Therefore Bi � P 2×̃I �
P 3 − intD3.

Next we consider the case dimZ = 2.
We claim

Assertion 6.1. Z is isometric to the double dbl([ 0,∞ )× [ 0,∞ ))∩
{(x, y) | y ≤ h}.

Proof. First we show that Z has non-empty boundary. If Z has
empty boundary, then take a large metric ball D around z0. It turns
out from Fibration Theorem 2.2 that ∂Bi is homeomorphic to S1 × S1,
a contradiction. Since ∂Bi is connected, Z has one end. It follows from
Corollary 14.4 that Z is homeomorphic to [ 0,∞ )×R. Note that Bi is a
Seifert fibred space over D. If Bi has no singular fibre, then Theorem 0.3
implies that Bi � D3, a contradiction. Thus Bi has a singular fibre,
say one over z ∈ Z. Theorem 0.3 shows that z is an essential singular
point. Hence Corollary 14.4 yields the conclusion. q.e.d.

We put

D = dbl([ 0,∞ ) × [ 0,∞ )) ∩ {(x, y) | x ≤ 1, y ≤ h} ⊂ Z,

D1 = dbl([ 0,∞ ) × [ 0,∞ )) ∩ {(x, y) | x ≤ 1, y ≤ h1}

for some h1 < h. Then we obtain a Seifert fibration fi : B′
i → D for a

closed domain B′
i � Bi. Let Ni = Cap(B′

i) = B′
i ∪S2 D3. Note that the

closure of Ni− f−1
i (D1) is homeomorphic to S1 ×D2. It is then easy to

see that
Ni � S1 ×D2 ∪ S1 ×D2 � L(2, 1) � P 3.

Thus Bi � P 3 − intD3 as required.

Case II. Fi � T 2.

We have to show that Bi is homeomorphic to S1 ×D2 or Mö ×̃S1.
Let us first assume dimZ = 3. If the soul S of Z has dimension zero, the
Soul Theorem would imply that Bi � D3, a contradiction. If dimS = 1,
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we have Bi � S1 ×D2. If dimS = 2, then Z must be isometric to a flat
twisted line-bundle K2×̃R since ∂Bi � T 2. Therefore Bi � K2×̃I �
Mö ×̃S1.

Next suppose that dimZ = 2. We first consider the case when Z
has empty boundary. If the soul of Z is not a point, in view of the con-
nectedness of ∂Bi, Z must be isometric to a Möbius strip, and therefore
Bi � Mö ×̃S1. If the soul of Z is a point, then Z is homeomorphic to
a plane. Note that Bi is a Seifert fibred space over a large metric ball
D ⊂ Z. The Cohn-Vossen formula then implies that the number r of
singular orbits in Bi is at most two. If r = 1, then Bi � S1 × D2. If
r = 2, then a straightforward argument shows that Bi is homeomorphic
to K2×̃I � Mö ×̃S1.

Suppose next that Z has non-empty boundary. If ∂Z is compact,
then Corollary 14.4 implies that Z is isometric to S1× [ 0,∞ ). It follows
from Theorem 0.3 that Bi � S1 ×D2. If ∂Z is noncompact, it follows
from a way similar to the previous argument that Z � [ 0,∞ ) × R and
that the number r of singular orbits in Bi is at most one. If r = 1,
then Bi � P 3 − D3. If r = 0, then Bi � D3. In any case, we have a
contradiction to ∂Bi � T 2. This completes the proof of Theorem 0.5.

q.e.d.

Proof of Corollary 0.7. Rescale the metric of Mi so that the di-
ameter of the new metric is equal to one. Passing to a subsequence, we
may assume that Mi with the new metric converges to a nonnegatively
curved Alexandrov space Y with positive dimension. If dimY ≤ 2 or
π1(Mi) is infinite, then Theorems 0.2, 0.3 and 0.5 together with the
result of [13] mentioned in Introduction imply that a finite cover of
Mi is homeomorphic to either S3, S1 × S2, T 3 or a nilmanifold. If
dimY = 3, then Stability Theorem 2.4 yields that Mi is homeomorphic
to Y . q.e.d.

Proof of Corollary 0.9. This is done by contradiction. Suppose that
the corollary does not hold. Then we have a sequence Mi ∈ M(3, D)
of closed, prime three-dimensional Riemannian manifolds with infinite
fundamental groups such that the volume of Mi goes to zero as i→ ∞
and that Mi does not admit a geometric structure. We may assume that
eachMi is orientable. Passing to a subsequence, we may assume thatMi

collapses to a compact Alexandrov space X. If X is a point, it follows
from [13] together with the infiniteness assumption on the fundamental
groups that Mi admits a geometric structure modelled on either S1×R,
R3 or Nil, a contradiction. If dimX = 1 or 2, then Theorems 0.2,
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0.3 and 0.5 together imply that Mi is homeomorphic to a Seifert fibred
space or a infrasolvmanifold, and hence admits a geometric structure
(see [29]). q.e.d.

In view of the above proof, the infiniteness assumption on the fun-
damental groups in Corollary 0.9 can be replaced by a lower diameter
bound. Namely we have the following corollary by the same argument.

Corollary 6.2. For any positive numbers δ ≤ D, there exists a
constant ε = ε(δ,D) > 0 such that if a closed, prime three-manifold
admits a Riemannian metric contained in M(3, D) with diameter ≥ δ
and volume < ε, then it admits a geometric structure modelled on one
of the seven geometries except H3.

Proof of Corollary 0.10. This is done by contradiction. Sup-
pose that the corollary does not hold. Then we have a sequence Mi ∈
M(3, D) of pairwise non-homeomorphic closed three-dimensional Rie-
mannian manifolds admitting no geometric structures. We may assume
that each Mi is orientable. Passing to a subsequence, we may assume
that Mi converges to a compact Alexandrov space X. By Stability
Theorem 2.4 we only have to consider the collapsing case dimX ≤ 2.
If dimX = 0, we can rescale the metric of Mi so that the new metric
has diameter = 1. Thus we may consider that dimX = 1 or 2. Theo-
rems 0.2, 0.3 and 0.5 then imply that Mi is homeomorphic to a Seifert
fibred space or a infrasolvmanifold, and hence admits a geometric struc-
ture. q.e.d.

7. Construction of collapsing metrics

In this section, we prove Theorem 0.6 by constructing collapsing
metrics together with some examples. First we show that an infinite
sequence of pairwise non-homeomorphic prism manifolds collapses to a
closed interval under K = 1.

Example 7.1. LetM be a prism manifold S3/Γ, where Γ ⊂ SO(4)
is one of the following two types (see [36]):

Type 1) Γ is generated by

γ1 =
(
R(1/m) 0

0 R(r/m)

)
, γ2 =

(
0 I

R(2�/n) 0

)
,
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where n is even, (n(r− 1),m) = 1, r 
≡ r2 ≡ 1 mod m, (�, n/2) = 1 and

R(θ) =
(

cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)
.

Type 2) Γ is generated by

σ1 =
(
R(u+v

uv ) 0
0 R(v−uuv )

)
, σ2 =

(
0 I
−I 0

)
,

where v is even, (u, v) = 1.

For Type 1), take distinct prime numbers p and q and consider the
group Γpq of Type 1) defined by m = p, r = p − 1, n = 2q and � = 1.
The group generated by γ1 and the group generated by γ2

2 converge to
distinct circle groups. This implies that the subgroup Λpq generated by
γ1 and γ2

2 has index two in Γpq and converges to T 2. Since the limit
of the Z2-action on S3(1)/Λpq induced by γ2 changes the orientation of
[ 0, π/2 ], we conclude that S3(1)/Γpq converge to [ 0, π/4 ] under K ≡ 1.

For Type 2), consider a sequence Γp of groups of Type 2) defined
by u = p, an odd prime number and v = p+ 1. Then similarly one can
verify that as p→ ∞, S3(1)/Γp converges to [ 0, π/4 ] under K ≡ 1.

The case dimX = 2 is covered by the following two examples. We
denote byDn(ε) and Sn−1(ε) = ∂Dn(ε) the n-disk and the (n−1)-sphere
of radius ε.

Proof of Theorem 0.6. (I) Let Mn be a Seifert fibred space over
an (n− 1)-dimensional smooth compact orbifold X without boundary.
Then it admits a local S1-action, which defines a pure-polarized F-
structure on Mn. Therefore Mn admits a sequence of metrics which
collapses to X with bounded curvature |K| ≤ Λ for some constant
Λ > 0. See [10] for details.

(II) Let N3 be a Seifert fibred space over two-dimensional smooth
compact orbifold X with boundary. We suppose that X has a product
metric ∂X × [ 0, δ ) near the boundary ∂X. As in (I), one can construct
a Riemannian metric hε on N such that:

(a) (N,hε) collapses to X with |K| ≤ Λ.

(b) Near the boundary (N,hε) is the product of a collar neighborhood
of ∂X and S1(ε).
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Let D2
ε denote a disk with a metric such that:

(c) The diameter of D2
ε is less than 10ε.

(d) The curvature of D2
ε is nonnegative and its metric is a product

metric S1(ε) × [ 0, δ ) near the boundary.

If (M, gε) denotes the union (N,hε)∪(∂X×D2
ε ) glued along their bound-

aries, then it converges to X under a lower curvature bound K ≥ −Λ.
Note that limε→0 supKgε = +∞.

(III) Let M , X = [ 0, � ], F = S2 or = T 2, A,B,C be as in Theorem 0.6.
Namely, F = ∂B = ∂C, A = F × [ 0, � ] and M � B ∪ϕ C, where
ϕ : ∂B → ∂C is the gluing map.

Let T 2
ε be the flat torus of square of length ε. Let Fε denote S2(ε)

or T 2
ε , and Aε = Fε × [ 0, � ].

Case (1) F = S2.

Then M is homeomorphic to S3, P 3 or P 3#P 3. Let D3(ε) be a
three-disk with a metric satisfying conditions similar to (c), (d) in (II).
Let Bε and Cε be either D3(ε) or a projective space P 3 − intD3 with a
disk removed equipped with a metric satisfying conditions similar to (c),
(d) in (II). In either case, (M, gε) = Bε∪Aε∪Cε is a smooth Riemannian
manifold and converges to [ 0, � ] under K ≥ 0.

Case (2) F = T 2.

First consider the following

Case (2-i) (B,C) = (S1 ×D2, S1 ×D2).

Then M is homeomorphic to either S3, S2 × S1 or a lens space. If
M � S2×S1, then the union (M, gε) = S1(ε)×D2(ε)∪Aε∪S1(ε)×D2(ε)
is a smooth Riemannian manifold with nonnegative curvature which
converges to [ 0, � ] as ε→ 0.

Lemma 7.2. Let Tm act effectively on a compact smooth man-
ifold Mn, and g a Tm-invariant metric on Mn. Then there exists a
sequence of Tm-invariant metrics gi on Mn such that (Mn, gi) collapses
to (Mn/Tm, ḡ) under a lower curvature bound K ≥ −Λ, where ḡ is the
quotient metric.

Proof. Let gi be the metrics constructed in Example 1.2(c) in [37] so
that (Mn, gi) collapses to (Mn/Tm, ḡ) under a lower curvature bound
K ≥ −Λ. Then the commutativity of Tm implies the Tm-invariance of
gi. q.e.d.



collapsing three-manifolds 31

Let S3/Γ be any lens space and T 2 ⊂ SO(4) the maximal torus.
By Lemma 7.2, we have a sequence gi of T 2-invariant metrics on S3

collapsing to S3(1)/T 2 = [ 0, π/2 ] underK ≥ −Λ. Note that gi descends
to a metric ḡi on S3/Γ. Thus, (S3/Γ, ḡi) collapses to [ 0, π/2 ] under
K ≥ −Λ.

Case (2-ii) (B,C) = (S1 ×D2,Mö ×̃S1).

In this case we show that M is homeomorphic to either S1 × S2,
P 3#P 3 or a prism manifold.

Case (2-ii-a) ϕ(∂D2-factor) = S1-factor.

In this case we come to the situation of Propositon 5.2. Namely it
is the case when the base surface X is a Möbius band with no singular
points (g = k = 1, � = 0). It follows that M � S1 × S2. Let Bε =
S1(ε) × D2(ε) and Cε = (Mö ×̃S1, hε) such that ∂Cε is isometric to
T 2
ε , diam(Cε) < 10ε and Khε = 0. Consider now the union (M, gε) =
Bε ∪Aε ∪Cε. Since ϕ : T 2

ε → T 2
ε is an isometry in this case, (M, gε) is a

smooth Riemannian manifold and converges to the closed interval [ 0, � ]
under K ≥ 0.

Case (2-ii-b) The case other than Case (2-ii-a).

In this case M is a Seifert fibred space over P 2, where the number
r of singular fibres satisfies r ≤ 1. If r = 0, namely, ϕ(S1-factor) =
S1-factor, ϕ(∂D2-factor) = ∂Mö-factor, then M � P 2×̃S1 = P 3#P 3.
Consider the union Mε = Bε ∪Aε ∪Cε, where Bε and Cε are as in Case
(2-ii-a). Note that ϕ : T 2

ε → T 2
ε is an isometry in this case. Hence Mε

is a smooth Riemannian manifold and converges to the closed interval
[ 0, � ] under K ≥ 0.

If r = 1, it follows (see [24]) that M is a prism manifold.

Case (3) (B,C) = (Mö ×̃S1,Mö ×̃S1).

In this case, M is doubly covered by a T 2-bundle over S1. In particu-
lar M admits a geometric structure modelled on R3, Nil or Sol (see [29]).
We show that every such M � B ∪ϕ C actually admits a sequence of
metrics collapsing to a closed interval with bounded curvature |K| ≤ Λ.

First consider the monodoromy matrix J ∈ SL(2,Z) induced by the
homomorphism ϕ∗ on the first homology group of the torus. If J can
be represented by (

1 n
0 1

)
,
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then M is finitely covered by T 3 (n = 0) or a nilmanifold (n 
= 0).
Suppose now that n 
= 0. Then M is a circle bundle over the Klein
bottle

K2 = Mö∪S1 Mö .

It follows from a straightforward argument that a suitable double cover
M̂ admits a sequence of metrics gi such that:

(a) limi→∞ |Kgi | = 0.

(b) (M̂, gi) collapses to S1.

(c) gi is invariant under the non-trivial deck transformation of M̂ →
M .

Thus gi descends to a metric on M collapsing to a closed interval.
For a specific example, see Example 7.3.
Finally consider the other case that J is of hyperbolic type:

J ∼
(
et 0
0 e−t

)
where t 
= 0. In this case, M is doubly covered by a solvmanifold M̂ ,
which is a T 2-bundle over a circle. It is standard to construct a sequence
of metrics on M̂ such that:

(a) |Kgi | ≤ Λ.

(b) (M̂, gi) converges to S1.

(c) gi is invariant under the non-trivial deck transformation of M̂ →
M .

Thus gi descends to a metric on M converging to a closed interval. This
completes the proof of Theorem 0.6. q.e.d.

Example 7.3. Let us consider the Heisenberg group N consisting
of all 3 × 3 real upper triangular matrices of the form1 x z

0 1 y
0 0 1

 ,
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with the left invariant metric

gε = dx2 + ε2dy2 + ε4(dz − xdy)2.

Let Λ be the integer lattice of N and γ the isometry of (N, gε) defined
as

γ(x, y, z) = (−x, y + 1,−z).
Then the group Γ generated by Λ and γ is discrete and contains Λ as
a normal subgroup of index two. It is easily verified that as ε → 0,
(N/Γ, gε) collapses to a closed interval under limε→0 |Kgε | = 0.

Corollary 7.4. Let Mi be a convergent sequence in M(3, D) of
closed orientable three-dimensional Riemannian manifolds with finite
fundamental groups. Suppose that the limit X of Mi has boundary as
an Alexandrov space. Then Mi is homeomorphic to either S3, a lens
space or a prism manifold.

Proof. This follows from the discussion above and Corollary 0.4.
q.e.d.

8. Comparison with bounded curvature collapsing

In the bounded curvature case, the collapsing phenomena are well
understood (see [12], [11], [8], etc.). Since we know no reference for the
following result however, we give a proof.

Proposition 8.1. Let Mi, i = 1, 2, . . . , be a sequence of closed
n-dimensional Riemannian manifolds with |K| ≤ 1, diam(Mi) ≤ D
converging to a space X of dimension (n− 1). Then:

(1) Mi is a Seifert fibred space over X for large i.

(2) If each Mi is orientable, then the Alexandrov space X has no
boundary.

Proposition 8.1 (2) explains a difference between the bounded cur-
vature collapsing and the lower curvature collapsing.

Proof. We follow an argument in [12]. Let B(r) denote the metric
ball B(0, r; Rn). In particular, we use the notation B = B(1) and
B′ = B(2). For p ∈ X and pi ∈ Mi with pi → p, let gi denote the
pullback metric on B′ of the metric of Mi via the exponential map
fi = exppi

: B′ → Mi. Let Γi denote the pseudogroup of isometric
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imbeddings γ : (B, gi) → (B′, gi) such that fi ◦ γ = fi. Then (B, gi)/Γi
is isometric to B(pi, 1;Mi). Passing to a subsequence, we may assume
that ((B, gi),Γi) converges to ((B, g∞), G), where g∞ is a C1,α-metric,
G is a pseudogroup of isometric imbeddings γ : (B, g∞) → (B′, g∞) and
(B, g∞)/G is isometric to B(p, 1;X). Note that G is locally isomorphic
to a Lie group ([12]). We consider the isotropy group Ip = {g ∈ G | gp̄ =
p̄}, where p̄ denote the origin of B. Since dimG = 1, Ip should be finite.
Otherwise Ip would contain G0, the identity component of G, and the
orbitGp̄ would be a finite set, a contradiction. Then it is straightforward
([12]) to show that there exists a δ > 0 such that B(p, δ;X) is isometric
to (B(δ), g∞)/IpG0. Let V be the (n − 1)-plane in Tp̄B perpendicular
to G0p̄. Then Ip acts on V as linear isotoropy representation. If U is
a small ball in V around the origin, then U/Ip is almost isometric to
(B(δ), g∞)/IpG0 ≡ B(p, δ;X). If each Mi is orientable, Γi preserves the
orientation, and so doesG. This implies that Ip preserves the orientation
of U and hence X has empty boundary.

By [12], we have a map f : Mi → X such that f−1(p) � S1/Ip � S1.
Thus Mi is foliated by circles and Ip is a cyclic group, say Zm. Note
that Ip is lower semicontinuous with respect to p, namely Iq ⊂ Ip for
any q sufficiently close to p. This implies that there exists a small
neighborhood D of p in X such that an m-fold cyclic covering of f−1(D)
is isomorphic to the product D × S1 as S1-foliated manifolds. q.e.d.

Remark 8.2. By using the argument above, we can also prove
Theorem 0.5 in the case when |K| ≤ 1 and the limit is a closed interval.
We leave it as reader’s exercise.

By the construction of metrics in Section 7 and the following exam-
ples, we obtain that for any given fibre and collapsing data a collapsing
satisfying the data actually occurs in the bounded curvature. To see this,
it suffices to consider the situation that a sequence of closed orientable
three-manifolds Mi collapses to a closed interval with |K| ≤ 1. In this
case, we have the fibre and collapsing data: F = T 2, (B,C) is one of
(S1 ×D2, S1 ×D2), (S1 ×D2,Mö ×̃S1) and (Mö ×̃S1,Mö ×̃S1).

Lemma 8.3. Let (T 2, g0) be the flat torus of rectangle with side
lengths a and b, and let (T 2, g1) be the flat torus of parallelogram with
the same sidelengths a, b and angle θ. Then there exists a metric g on
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T 2 × [ 0, 1 ] such that |Kg| ≤ τ(cos θ) and

g|T 2×t =

{
g0 near t = 0,
g1 near t = 1.

Proof. Putting ε = cos θ, choose a monotone non-decreasing function
ψ : [ 0, 1 ] → R with

ψ(t) =

{
0 near t = 0,
ε near t = 1,

and sup{ |ψ′(t)|, |ψ′′(t) } < τ(ε). Let T 2 = R2/Γ, where Γ = aZ × bZ.
Using the canonical coordinates (x, y, t) ∈ T 2 × [ 0, 1 ], we define the
metric g by

g = dt2 + dx2 + ψ(t)dxdy + dy2.

Then a standard calculation shows that |Kg| ≤ τ(ε). q.e.d.

Example 8.4. First consider the collapsing of S2×S1 with possible
data on (B,C). Let Γi, i ≥ 1, be the subgroup of Isom(S2(1) × R)
generated by

γ(x, t) = (R(1/i)x, t+ 1/i2),

where

R(θ) =

cos 2πθ − sin 2πθ 0
sin 2πθ cos 2πθ 0

0 0 1

 .

Then (S2(1)×R)/Γi is homeomorphic to S2×S1 and converges to [ 0, π ]
under 0 ≤ K ≤ 1. In this case, (B,C) = (S1 ×D2, S1 ×D2).

In the above construction, we slightly change the metric of S2(1) so
that the new metric, say g, has the product metric S1(1)× (−ε, ε) near
the equator S1(1) ⊂ S2(1). Note that ((S2, g)×R)/Γi still converges to
a closed interval under 0 ≤ K ≤ 1. Next we consider Pi = ((S2

+, g) ×
R)/Γi, where S2

+ denotes the closed upper hemisphere. The boundary
of Pi is isometric to the flat torus of parallelogram with side lengths
ai =

√
4π2/i2 + 1/i4, bi = 1/i and angle θi, where limi→∞ θi = π/2.

Note that ai (resp. bi) corresponds to the ∂D2-factor (resp. the S1-
factor) of ∂Pi � ∂D2 × S1. Choose a flat metric hi on Mö ×̃S1 such
that:

(1) The boundary of (Mö ×̃S1, hi) is isometric to the flat torus of
rectangle with side lengths ai and bi.
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(2) The length of S1-factor is ai.

(3) The length of ∂Mö-factor is bi.

Let (T 2×[ 0, 1 ], gi) be the metric constructed in Lemma 8.3 for (ai, bi, θi).
Then the union (Mö ×̃S1, hi)∪(T 2× [ 0, 1 ], gi)∪Pi defined in an obvious
way is a smooth Riemannian manifolds homeomorphic to S2 × S1 (see
Proposition 5.2) and collapses to a closed interval under −τ(cos θi) ≤
K ≤ 1. In this case, (B,C) = (S1 ×D2,Mö ×̃S1).

Next take a flat metric ki on Mö ×̃S1 such that:

(1) The boundary of (Mö ×̃S1, ki) is isometric to the flat torus of
rectangle with side lengths ai and bi.

(2) The length of ∂Mö-factor is ai.

(3) The length of S1-factor is bi.

Then the union (Mö ×̃S1, ki)∪(T 2× [ 0, 1 ], gi)∪Pi defined in an obvious
way is a smooth Riemannian manifolds homeomorphic to P 3#P 3 and
collapses to a closed interval under −τ(cos θi) ≤ K ≤ 1. In this case,
(B,C) = (S1 ×D2,Mö ×̃S1).

By our argument, we can summarize the results on both lower cur-
vature collapsingand bounded curvature collapsing of oriented three-
manifolds in Table 1.

Part 2. Classification of complete open Alexandrov
three-spaces of nonnegative curvature

The argument in Section 3 shows that the geometry of complete open
Alexandrov spaces of dimension three is important to obtain an essen-
tial topological information on a small neighborhood of the manifold
near the singular point of the limit space. In Part 2, we give a classifi-
cation of three-dimensional complete open Alexandrov spaces with non-
negative curvature extending the Cheeger-Gromoll classification ([9]) of
three-dimensional complete open Riemannian manifolds with nonnega-
tive curvature.
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X |K| ≤ 1 K ≥ −1 fibre data

∂X2 = ∅ Seifert bundle Seifert bundle F = S1

∂X2 
= ∅ S3#S2 × S1# · · ·
#L(µ1, ν1)# · · · F = S1

S1 S2 × S1 F = S2

Flat, Nil, Sol Flat, Nil, Sol F = T 2

[ 0, � ]

S3, P 3, P 3#P 3 F = S2

S3/Zp, S2 × S1 S3/Zp, S2 × S1 B,C = S1 ×D2,
F = T 2

S2 × S1, P 3#P 3,
prism manifolds

S2 × S1, P 3#P 3,
prism manifolds

B = S1 ×D2,
C = Mö ×̃S1,
F = T 2

Flat, Nil, Sol Flat, Nil, Sol B,C = Mö ×̃S1,
F = T 2

point Flat, Nil
S2 × S1, P 3#P 3,

Flat, Nil,
∼ S3/Γ

Table 1: Collapsing in dimension three

9. Examples, results and rigidity

First we recall the basic construction in [9] for complete open Rie-
mannian manifold of nonnegative curvature. This can be done with
the same procedure for Alexandrov spaces. Let X be an n-dimensional
complete noncompact Alexandrov space with nonnegative curvature.
For a geodesic ray γ : [ 0,∞ ) → X, consider the Busemann function
bγ : X → R defined by

bγ(x) = lim
t→∞ t− d(x, γ(t)).

It is straightforward to see

Lemma 9.1. bγ is convex.

Now we consider the Busemann function associated with a point
p ∈ X defined by b(x) = supγ bγ(x), where γ runs over all the geodesic
rays emanating from p. The function b is convex and the sublevel sets
b−1(−∞, a ] are compact.
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Let C ⊂ X be a closed totally convex subset, and ∂C denote the
boundary of C as an Alexandrov space. We consider the distance func-
tion ρC = dist(∂C, ·) on C.

Lemma 9.2 ([26]). ρC is concave on C.

Let µ be the minimum of b and put C0 = b−1(µ). Note that the to-
tally convex set b−1(µ) has empty interior. If C0 has boundary, consider
the distance function ρC0 on C0, and put C1 to be the maximum set.
By iteration, we have a sequence of finitely many non-empty compact
totally convex sets:

C0 ⊃ C1 ⊃ C2 · · · ⊃ Ck,

where n > dimC0, dimCi > dimCi+1 and Ck has no boundary. Then
a soul S of X is defined as S = Ck. It was proved in [26] that X is
homotopy equivalent to S.

By the following example, the Soul Theorem ([9]) does not hold for
three-dimensional Alexandrov spaces. See [26] for such an example in
5-dimension.

Example 9.3. Let ϕ1(x, y) = (−x,−y) and ϕ2(x, y) = (x,−y) be
the isometric involutions of R2 and consider the productX = [ 0, 1 ]×R2.
The pairs (ϕi, ϕj) acts on ∂X in such a way that ϕi acts on {0} × R2

and ϕj acts on {1} × R2. Now we consider the quotient spaces

X1 = X/(ϕ1, ϕ1), X2 = X/(ϕ1, ϕ2), X3 = X/(ϕ2, ϕ2).

It is easy to verify that each Xi, 1 ≤ i ≤ 3, is a complete open Alexan-
drov space with nonnegative curvature and without boundary. Note
that each Xi has one point soul S = {(1/2, 0, 0)}, and that the normal
bundle N(S) is homeomorphic to R3. Clearly we have

X1 � K1(P 2) ∪D2 K1(P 2), X2 � K(P 2), X3 � R3,

where K1(P 2) is the open unit cone over the projective plane P 2 and
D2 is a disk in ∂K1(P 2). Note also that X1 is isometric to R3/Γ, where
Γ is the discrete subgroup of isometries of R3 generated by γ(x, y, z) =
−(x, y, z) and σ(x, y, z) = (x+ 2, y, z).

We recall that in the case when X is a Riemannian manifold, X is
isometric to the normal bundle N(S) if the soul S is of codimension
one (see [9]). As the discussion below shows, this does not hold for
Alexandrov spaces even in the three-dimensional case.
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Let S be a compact nonnegatively curved Alexandrov surface with-
out boundary, and p1, . . . , pk ∈ S essential singular points of S. Let us
consider a three-dimensional Alexandrov space of nonnegative curvature
(if it exits), denoted by L(S; p1, . . . , pk) or simply L(S; k), satisfying the
following :

(1) S is isometrically imbedded as a totally convex set of L(S; p1, . . . ,
pk).

(2) {p1, . . . , pk} are the set of topological singular points of L(S; p1,
. . . , pk), and hence the space of directions at pi is homeomorphic
to P 2.

(3) The space of directions at each x ∈ S − {p1, . . . , pk} is isometric
to the spherical suspension over Σx(S).

(4) The normal bundle N of S − {p1, . . . , pk} in L(S; p1, . . . , pk) has
a locally product metric.

(5) The normal exponential map exp : N → L(S; p1, . . . , pk) carries
each ray in the fibre from the zero section to a geodesic ray in
L(S; p1, . . . , pk).

(6) There is a unique geodesic ray γi from pi perpendicular to every
direction in Σpi(S), and L(S; p1, . . . , pk) − exp(N ) consists of γi,
1 ≤ i ≤ k.

We note that S is a soul of L(S; p1, . . . , pk).

Example 9.4. We take S1 � P 2, S2 � S2, S4 � S2 with nonneg-
ative curvature. We assume that each Si has i essential singular points.
Note that S4 is isometric to dbl([ 0, a ] × [ 0, b ]) (see Proposition 14.4).
Then one can define the spaces L(Si; i) in an obvious way.

Proposition 9.5. If k ≥ 1, L(S; p1, . . . , pk) is isometric to one of
L(S1; 1), L(S2; 2) or L(S4; 4) in Example 9.4.

Proof. Since pi is an essential singular point of S, it follows from
Corollary 14.3 that k ≤ 4. Note that the union of fibers in N over a
small circle around pi is isometric to a flat Möbius strip with respect to
the induced metric. It follows from a cutting and gluing argument that
if S � S2 (resp. S � P 2), then k = 2 or 4 (resp. k = 1). q.e.d.

The main purpose of Part 2 is to prove the following
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Theorem 9.6 (Generalized Soul Theorem). Let X be a three-
dimensional complete noncompact Alexandrov space with nonnegative
curvature and without boundary, and S a soul of X. Then:

(1) If dimS = 0, then X is homeomorphic to R3, or the cone K(P 2)
over the projective plane P 2, or X1 = R3/Γ in Example 9.3.

(2) If dimS = 1, then X is isometric to a quotient (R×N)/Λ, where
N is an Alexandrov space with nonnegative curvature homeomor-
phic to R2 and Λ is an infinite cyclic group. The Λ-action is di-
agonal; Λ acts on R by translation and on N by isometries fixing
a point of N . In particular, X is homeomorphic to an N -bundle
over a circle.

(3) If dimS = 2, then X is isometric to either the normal bundle
N(S) of S in X or one of types L(Si, i), i = 1, 2, 4, in Proposi-
tion 9.5.

The metric of N(S) in Theorem 9.6 is defined in an obvious way.
The proof of Theorem 9.6 (1) is given in Sections 10-13.
The following corollary is the direct consequence of Theorem 9.6

together with the Morse theory given in Section 10.

Corollary 9.7. Under the assumption of Theorem 9.6, suppose
further that X is a topological manifold. Then:

(1) X is homeomorphic to the normal bundle N(S).

(2) The topology of the closed ball B = B(S, r) around S is determined
as follows:

(a) If dimS = 0, then B is homeomorphic to D3.

(b) If dimS = 1, then B is homeomorphic to S1 ×D2 or a solid
Klein bottle.

(c) If dimS = 2, then B is homeomorphic to the normal I-bundle
N1(S) of S in X.

Theorem 9.6 (2) and a part of (3) are the special cases of the follow-
ing:

Theorem 9.8. Let X be an n-dimensional complete noncompact
Alexandrov space with nonnegative curvature and empty boundary, and
S a soul of X.
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(1) If dimS = 1, then X is isometric to a quotient (R×N)/Λ, where
N is an Alexandrov space with nonnegative curvature whose soul
is a point and Λ � Z. The Λ-action is diagonal; Λ acts on R by
translation and on N by isometries fixing a point of N . Thus X
is homeomorphic to an N -bundle over a circle.

(2) If dimS = n − 1 and X is a topological manifold, then Σp is
the spherical suspension over Σp(S) for every p ∈ S and X is
isometric to the normal bundle N(S) of S in X.

Proof of Theorem 9.8 (1). Suppose that dimS = 1 and let Λ be the
deck transformation group of the universal covering π : X̃ → X. Then S
is isometric to a circle and Λ � Z. It is easy to see that π−1(S) is totally
convex set isometric to R. The splitting theorem then implies that X̃ is
isometric to a product R×P . Let p1 : Λ → Isom(R), p2 : Λ → Isom(P )
be the projections. Then p1(Λ) acts on R by translation. If π−1(S)
corresponds to R× {p}, then the point p is a fixed point of p2(Γ). This
completes the proof of Theorem 9.8(1). q.e.d.

In the Riemannian case, the Berger Comparison Theorem (cf. [7])
was used for the proof of Theorem 9.8(2). It is unknown if the Berger
Comparison Theorem holds for Alexandrov spaces. Hence we need an-
other argument for the proof.

For the proof of Theorem 9.8(2), we consider the situation that C0

is of dimension n− 1. In what follows, we put C = C0 for simplicity.
We say that a direction ξ ∈ Σp = Σp(X) at p ∈ C is normal to C if

∠(ξ, v) = π/2 for all v ∈ Σp(C).

Lemma 9.9. Suppose that C = C0 has dimension n− 1.

(1) Every point of C has at most two normal directions to C.

(2) For a point p ∈ intC and a normal direction ξ ∈ Σp(X), there
exists a locally isometric covering map

Σξ(Σp(X)) → Σp(C),

of order r ≤ 2, where:

(a) r = 1 if and only if p has two normal directions to C and
Σp(X) is isometirc to the spherical suspension over Σp(C).
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(b) r = 2 if and only if p has exactly one normal direction to
C. In this case, p is an essential singular point of X and
Σp(X) − Σp(C) is connected.

Proof. For p ∈ C, let ξ ∈ Σp(X) be normal to C. The Alexandrov
convexity implies that for every v1, v2 ∈ Σp(C), ξ, v1 and v2 are the
vertices of a geodesic triangle isometric to a comparison triangle in the
unit sphere. Let v ∈ Σp(C) be a regular point of Σp(C). It follows
that ξ′v ∈ Σv(Σp(X)) is perpendicular to Σv(Σp(C)). Thus if there were
three normal directions to C at p, we would have three directions in
Σv(Σp(X)) perpendicular to Σv(Σp(C)), a contradiction.

By the argument above, we have a locally isometric covering map
π : Σξ(Σp(X)) → Σp(C) of order r ≤ 2. The rest of the proof is now
clear. q.e.d.

Setting Xt = b−1(−∞, µ + t ], we have the filtration {Xt}t≥0 by
compact totally convex sets such that:

(1) Xs = {x ∈ Xt | d(x, ∂Xt) ≥ t− s} for s ≤ t.

(2) X0 = C0.

A point p ∈ C is called a one-normal point (resp. a two-normal point)
if Σp contains exactly one (resp. two) normal direction to C. Recall that
if p ∈ C is a one-normal point, then it is an essential singular point of
X.

Proposition 9.10. Under the assumption of Theorem 9.8, suppose
further that dimC = n− 1. Let p, q, r, s ∈ X be such that:

(1) p, r ∈ ∂Xt, and q, s ∈ C.

(2) d(p, q) = d(r, s) = t.

(3) A minimal geodesic pr does not meet C.

Then p, q, r, s are the vertices of a totally geodesic flat rectangle.

Proof. First we show that for every p ∈ ∂Xt and q ∈ C with
d(p, q) = t, Σp(X) is the spherical suspension over ∂Σp(Xt). From the
basic construction, there is a geodesic ray γ starting from q, through p
and perpendicular to C. Let p1 be the intersection point of γ with ∂Xt′

for a t′ > t. Since p is the foot of both q and p1 to ∂Xt, we see that
∠(q′p, ∂Σp(Xt)) ≥ π/2, ∠((p1)′p, ∂Σp(Xt)) ≥ π/2. Since ∠(q′p, (p1)′p) =
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π, it follows from the splitting theorem applied to Kp that Σp is the
spherical suspension over ∂Σp(Xt).

For given p, q, r, s, let γ : [ 0, a ] → X be a minimal geodesic joining
p to s. We consider the concave function f(u) = d(γ(u), ∂Xt). Put α =
∠(γ̇(0), ∂Σp(Xt)), where γ̇(0) denotes the direction at γ(0) represented
by γ.

Assertion 9.11. f ′(0) = sinα.

Proof. For arbitrary ε > 0, take a geodesic σ(u) emanating from p
such that

∠(σ̇(0), ∂Σp) < ε, |∠(γ̇(0), σ̇(0)) − α| < ε.

Consider now the function g(u) = d(γ(u), σ(u cosα)). We note that

g′(0) = sin∠(γ̇(0), σ̇(0)).

It suffices to show that |f ′(0) − g′(0)| < 2ε. Clearly, f(u) ≤ g(u) + εu
and hence f ′(0) ≤ g′(0) + ε. Suppose that f(un) ≤ un(g′(0) − 2ε) for
some sequence un → 0. Let pn be a point of ∂Xt which is closest from
γ(un). Then we would have ∠̃γ(un)ppn ≤ ∠(γ̇(0), σ̇(0)) − 2ε, and that
∠γ(un)ppn ≤ ∠(γ̇(0), σ̇(0)) − ε for large n. Taking a subsequence if
necessary, we may assume that the direction vn = (pn)′p converges to a
direction v ∈ Σp. It turns out from the lower semi-continuity of angle
that ∠(γ̇(0), v) ≤ ∠(γ̇(0), σ̇(0)) − ε, and hence ∠(γ̇(0), σ̇(0)) ≥ α+ ε, a
contradiction. q.e.d.

We put b = d(q, s) and consider the triangle �p′q′s′ on R2 such
that d(p′, q′) = t, d(q′, s′) = b and ∠p′q′s′ = π/2. Set a′ = d(p′, s′),
α′ = ∠p′s′q′, θ′ = ∠q′p′s′, and θ = ∠qps = π/2 − α. Since ∠pqs = π/2,
we have a′ ≥ a = d(p, s). It follows from the concavity of f that

f ′(0) ≥ t

a
≥ t

a′
.

Thus from the previous assertion, we obtain that

α ≥ α′ and θ ≤ θ′.(9.1)

Consider now a comparison triangle �̃pqs in R2 and put θ̃ = ∠̃qps,
α̃ = ∠̃psq. Since we may assume for our purpose that t > b, it follows
from an obvious consideration with a′ ≥ a > t that α′ ≤ α̃ ≤ π/2,
θ′ ≤ θ̃ and hence

θ′ = θ = θ̃, α′ = α̃ = α, a = a′ and ∠̃pqs = π/2.(9.2)
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It follows from the rigidity argument(cf.[30]) that �pqs spans a totally
geodesic flat triangle isometric to �̃pqs. Furthermore, f ′(0) = t/a. It
follows from the concavity of f that f(u) = tu/a for all u. Let xu and yu
be the points on ∂Xt and qs respectively such that f(u) = d(γ(u), xu)
and d(q, yu) = ub/a. Then it follows together with the comparison
argument that d(xu, yu) ≤ d(xu, γ(u)) + d(γ(u), yu) ≤ t. Thus γ lies on
the minimal connections from the points of qs to ∂Xt.

By repeating the argument above for xu, yu, r, s in place of p, q, r, s,
we conclude that the set of minimal connections xuyu, 0 ≤ u ≤ a,
provides a totally geodesic flat rectangle. q.e.d.

Proof of Theorem 9.8 (2). Since Σp � Sn−1 for every p ∈ S, it
follows from Lemma 9.9 that p is a two-normal point, and hence the
conclusion follows from Lemma 9.9(2) and Proposition 9.10. q.e.d.

Proof of Theorem 9.6 (3). If S contains no one-normal point, then
X is isometric to N(S) by Proposition 9.10. Now let p1, . . . , pk be
the one-normal points of S. Proposition 9.10 implies that X can be
written as X = L(S; p1, . . . , pk). Then the conclusion follows from
Proposition 9.5. q.e.d.

10. Preliminaries on Morse theory

In the rest of Part 2, we shall prove Theorem 9.6(1).
We need the Morse theory for distance functions on Alexandrov

spaces.
A map π : E → B is a topological submersion if for each p ∈ E

there are a neighborhood U of p in the fibre π−1(π(p)), a neighborhood
N of π(p) in B and a topological imbedding ϕ : U × N → E onto a
neighborhood of p such that π ◦ ϕ is the projection U ×N → N . The
map ϕ is a product chart about U for π, and the image ϕ(U ×N) is a
product neighborhood around p.

A finite dimensional topological space Y is said to be a WCS-space
if it satisfies the following (1) and (2):

(1) Y is a stratified space, i.e., it has a stratification

Y ⊃ · · · ⊃ Y (n) ⊃ · · · ⊃ Y −1 = φ,

such that Y (n)−Y (n−1) is a topological n-manifold without bound-
ary.
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(2) For each x ∈ Y (n) − Y (n−1) there is a cone C with vertex v and a
homeomorphism ρ : Rn × C → Y onto an open neighborhood of
x in Y such that ρ−1(Y (n)) = Rn × {v}.

Theorem 10.1 ([33]). Let π : E → B be a topological submersion,
and F = π−1(x0) the fibre over a point x0. We assume that F is a
WCS-space.

(1) For given compact sets A1, A2 of F and for open neighborhoods
Ui of Ai in F , let ϕi : Ui × Ni → E be product charts about Ui
for π. Then there exists a product chart ϕ : U ×N → E about an
open set U ⊃ A1 ∪A2 in F such that

ϕ =

{
ϕ1 near A1 × {x0},
ϕ2 near (A2 − U1) × {x0}.

(2) If π is proper in addition, then F ↪→ E
π→ B is a locally trivial

fibre bundle.

Let f = (f1, . . . , fm) : U → Rm be a map on an open set U of X
defined by fi(x) = d(Ai, x) for compact subsets Ai ⊂ X. The map f is
said to be (c, ε)-regular at p ∈ U if there is a point w ∈ X such that:

(1) ∠((Ai)′p, (Aj)′p) > π/2 − ε.

(2) ∠(w′
p, (Ai)

′
p) > π/2 + c.

Theorem 10.2 ([26]). Let X be an Alexandrov space with cur-
vature bounded below, U ⊂ X an open subset, and f : U → Rm (c, ε)-
regular at each point of U . If ε is small compared with c, then we have:

(1) f is a topological submersion.

(2) If f is proper in addition, then the fibres of f are WCS-spaces.
Hence f is a locally trivial fibre bundle over its image.

We simply say that f is regular on U if it satisfies the assumption
in Theorem 10.2.

In what follows, we use the notation in Section 9. In particular, X
denotes a complete open Alexandrov space with nonnegative curvature
without boundary.

We first observe the following simple:
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Lemma 10.3. For any compact set K in C0, let f = d(K, ·).
Then f is regular on X − C0.

Proof. For any t > b(x) there is a point y ∈ ∂Xt such that d(x, y) =
t − b(x). Then it follows from the total convexity that ∠yxK > π/2.
q.e.d.

Lemma 10.4. If dimC0 = 0, then X is homeomorphic to the
tangent cone Kp, where {p} = C0.

Proof. This follows from Lemma 10.3 and Theorems 10.2 and 2.4.
q.e.d.

The purpose of the rest of this section is to obtain the topological
type of Xt for any small t > 0 in the case when dimX = 3 and the soul
S is a point. From now on we assume that X is of dimension three and
the dimension of C0 is one or two. We put C = C0 for simplicity.

In the Riemannian case, the distance function from the soul S has
no critical points outside S, which implies that any complete open Rie-
mannian manifold with nonnegative curvature is diffeomorphic to the
normal bundle over its soul ([9]). For Alexandrov spaces however, we
have the following counterexamples:

Example 10.5. Let X = dbl([ 0, a ] × [ 0,∞ )). Then the distance
function from the soul point has two critical points (0, 0) and (a, 0).

Example 10.6. We construct a complete open Alexandrov space
X with nonnegative curvature consisting of some building blocks each
of which is a convex polyhedron in the (x, y, z)-space. Let C be a convex
polygon on the (x, y)-plane. We denote by {ei}, 1 ≤ i ≤ k, the edges of
∂C. The largest building block is C× [ 0,∞ ). Let �i be the ray starting
from (pi, 1) and parallel to the positive direction of z-axis, where pi is
a point on R2 − intC sufficiently close to the midpoint of ei. Let Bi be
the convex hull of the union �i ∪ ei × [ 0,∞ ), and B′

i the identification
space Bi ∪Ei Bi, where Ei = ∂Bi − int ei × (0,∞). Note that B′

i has
nonnegative curvature and its boundary consists of two copies, say Fi,
F ′
i , of ei× [ 0,∞ ). Let K denote the quotient space of the disjoint union

of C × [ 0,∞ ) and B′
i, 1 ≤ i ≤ k, where ei × [ 0,∞ ) is identified with

Fi. Finally we take the double X = dbl(K). Since K has nonnegative
curvature, so does X (see [26]). Note that C0 = C and the soul of X is
an interior point of C.

To treat such cases as in the previous example, it is convenient to
consider the following notion of pseudo-gradient flows.
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For an open set U ⊂ X, a continuous local R-action ψ on U is called
a local flow on U , and denoted by ψ(x, s) for (x, s) ∈ U × R as long as
it can be defined. For a continuous function f on X, a local flow ψ on
U is a gradient for f on an open subset V ⊂ U if f(ψ(x, s)) is strictly
decreasing in s as long as ψ(x, s) ∈ V . A local gradient flow ψ on U for
f is a pseudo-gradient if it is a gradient outside a compact subset of U .

Later we shall consider local pseudo-gradient flows for the following
functions on X:

f(x) = d(C, x), fε(x) = d(Cε, x),

where
Cε = {x ∈ C | d(∂C, x) ≥ ε}.

By Theorem 10.2, we have the following lemma in a similar way to
Lemma 10.3.

Lemma 10.7. For every positive numbers ε and δ, there exists a
local gradient flow ψ(x, s) for fε on a neighborhood of f−1

ε ([ ε + δ,∞ ))
which provides a homeomorphism f−1

ε ([ ε+ δ,∞ )) � f−1
ε (ε+ δ) × [ ε+

δ,∞ ).

The idea of the proof of Theorem 9.6 (1) is to push a small neigh-
borhood of ∂C into N ⊂ X by using a pseudo-gradient flow of fε for
small ε, where N is the normal bundle over intC with essential singu-
lar points removed and assumed to be imbedded in X as in Section 9.
Examples 10.5 and 10.6 suggest that the difficulty in the construction
of such a pseudo-gradient flow occurs near ∂C. In the next section, we
shall study the local topological structure near ∂C.

11. Local structure at ∂C

Let X be as in Theorem 9.6 and S the soul of X which is a point.
Since fε may have critical points on ∂C, we need to understand the
topology of a small neighborhood of a point of ∂C. In this section, we
assume that C has dimension two and non-empty boundary. First note
that C is homeomorphic to D2.

The following lemma is an easy consequence of Corollary 14.4.

Lemma 11.1. The number of one-normal points in intC is less
than or equal to two.

Example 11.2. Let Ck be a nonnegatively curved Alexandrov sur-
face homeomorphic to D2 and having distinct essential singular points
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p1, . . . , pk in intCk (k ≤ 2). Then we construct a three-dimensional
complete noncompact Alexandrov space L′(Ck; p1, . . . , pk) in a similar
way to the construction of L(Sk; k) in Section 9. Note that the boundary
of L′(C1; p1) (resp. of L′(C2; p1, p2) ) is a non-trivial (resp. trivial) line
bundle over ∂C1 (resp. over ∂C2). In the fibre over every point p ∈ ∂Ck,
we naturally identify the two rays emanating from p, and obtain a
complete open nonnegatively curved Alexandrov space L(Ck; p1 . . . , pk)
without boundary such that C = Ck and that the topological singular
points are p1, . . . , pk.

Proposition 11.3. Every point p of X except the one-normal
points in intC is a manifold-point of X, in other words, Σp is homeo-
morphic to a sphere.

From Proposition 9.10 and the proof of Lemma 10.3, we know that
diam(Σp) > π/2 for every point p ∈ X − ∂C and hence Σp is home-
omorphic to a sphere ([26]). Note that from the basic construction,
diam(Σp) ≥ π/2 for every p ∈ C (if dimC ≥ 1). Thus for the proof of
Proposition 11.3, we only have to care a point p ∈ ∂C with diam(Σp) =
π/2.

Let Σ be a two-dimensional compact Alexandrov surface with cur-
vature ≥ 1 and without boundary. Suppose that diam(Σ) = π/2. For
a subset B ⊂ Σ such that B̂ = {x ∈ Σ | d(B, x) = π/2} is non-empty,
we consider A1 = B̂ and A2 = Â1. Then we have Â2 = A1 (see [15] for
details).

Proposition 11.4. Let Σ, A1 and A2 be as above. Then we have:

(1) If both A1 and A2 are contractible, then Σ is homeomorphic to a
sphere.

(2) If one of A1 and A2 is not contractibe, then Σ is isometric to the
projective plane,

(the spherical suspension over S1
� )/Z2,

where the length � of the circle S1
� is less than or equal to 2π and Σ

has constant curvature K = 1 outside the possible singular vertex.

Proof. First we note that from the Alexandrov convexity:

(a) Ai are convex sets.

(b) Any distinct three points x, y ∈ Ai and z ∈ Aj , i 
= j span a
geodesic triangle isometric to �̃xyz in S2(1).
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(c) For any x ∈ Σ − (A1 ∪ A2), minimal geodesic segments from x
to A1 and to A2 make an angle greater than π/2 + c for some
c = c(x) > 0.

We show that

Assertion 11.5. dimA1 + dimA2 ≤ 1.

Proof. Suppose that the assertion does not hold. Then dimA1 =
dimA2 = 1. Let xi be any interior point of Ai. Using (b) above,
we see that a neighborhood of a minimal geodesic segment x1x2 has
constant curvature = 1. Then applying a standard parallel translation
technique along x1x2 together with curvature K = 1, we would have a
contradiction to d(A1, A2) = π/2. q.e.d.

Making use of Theorem 10.2 together with (c) above, we obtain that
Σ − B(A1, ε) − B(A2, ε) is homeomorphic to ∂B(A1, ε) × [ 0, 1 ] for any
small ε > 0. This implies the conclusion (1). If A1 is a point and A2

is a circle, in view of the above (b), it is easy to see that B(A2, ε) is
homeomorphic to a Möbius band and that Σ is isometric to the required
one. q.e.d.

Lemma 11.6. If p ∈ ∂C is a two-normal point, then diam(Σp) >
π/2.

Proof. Let ξ0, ξ1 be the directions at p normal to C, v any point
of Σp(C), and ξt a minimal geodesic segment in Σp joining ξ0 and ξ1.
Suppose that diam(Σp) = π/2. Applying the Alexandrov convexity to
the triangle �vξ0ξ1, we have ∠(v, ξt) ≥ π/2 and hence ∠(v, ξt) = π/2
by the assumption. It turns out that ξt are normal at p, a contradiction
to Lemma 9.9. q.e.d.

Proof of Proposition 11.3. We only have to consider a point p ∈ ∂C
with a unique normal ξ to C. Let us consider subsets of Σ = Σp,
B = Σp(C), A1 = {ξ} = B̂ and A2 = Â1. By Proposition 11.4, it
suffices to show that A2 is a segment. Suppose that A2 is a circle. Then
Proposition 11.4 implies that the length � of A2 is less than or equal to
π. On the other hand, from construction, K(Σp(C)) is totally convex
in Kp and hence in K(A2). This is however impossible since � ≤ π.

q.e.d.
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12. Deformation of local flows

Let X and C be as in the previous section, and p ∈ ∂C. From
the filtration {Xt}t≥0, we obtain the filtration {Kt

p}t≥0 of Kp by to-
tally convex sets, where Kt

p is the limit of Xt/n under the convergence
(nX, p) → (Kp, op). We put C∞ = K0

p , and

C∞ε = {x ∈ C∞ | d(∂C∞, x) ≥ ε },

which is the limit of nCε/n under the convergence (nX, p) → (Kp, op).
Note that C∞ is isometric to the flat cone over the segment Σp(C) and
that Proposition 9.10 holds for Kt

p and C∞ in place of Xt and C.
We shall consider the function

f∞ε(x) = d(C∞ε, x), x ∈ Kp.

Lemma 12.1. Given p ∈ ∂C, there exist positive numbers εp and
δp such that for any ε and δ ≤ δp with ε/δ ≤ εp:

(1) fε is regular on U(p, ε, δ) − V (p, ε, δ).

(2) (fε, dp) is (c, τ(ε/δ))-regular on (U(p, ε, δ)−V (p, ε, δ))∩B(p, δ/10)c.

where c > 0 is a uniform constant and

U(p, ε, δ) = B(∂C, ε/10)∩B(p, δ), V (p, ε, δ) = B(∂C, ε/100)∩B(p, δ).

Proof. (1) is clear. We set

U∞ε = B(∂C∞, ε/10) ∩B(op, 1), V∞ε = B(∂C∞, ε/100) ∩B(op, 1).

By a simple convergence argument, for the proof of (2) it suffices to
prove that (f∞ε, dop) is (c, τ(ε))-regular on (U∞ε − V∞ε) ∩ B(op, 1/10)c

for a uniform constant c > 0 and a small ε > 0. For every

x ∈ (U∞ε − V∞ε) ∩B(op, 1/10)c,

let y ∈ ∂C∞, z ∈ ∂C∞ε and u ∈ C∞ be the nearest points of ∂C∞,
of ∂C∞ε and of C∞ respectively from x. First note that ∠̃opxz >
π/2 − τ(ε), ∠̃zxa > π/2 − τ(ε), where a is a point on the ray from
op through x with d(op, a) > d(op, x). We consider the following three
cases.

Case 1. d(y, u) ≥ ε/1000.
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Let b ∈ ∂C∞ and v ∈ C∞ be such that d(op, b) = d(op, y) + d(y, b)
and ybvu forms a square in C∞. Now observe that the normal bundle
N over intC∞ is naturally imbedded in Kp. Let y1, b1 and v1 be points
in N such that uybvxy1b1v1 forms a parallelepiped in N . Then we have

∠̃zxb1 > π/2 + c1, ∠̃opxb1 > π/2 + c1,

for some uniform constant c1 > 0. This implies that (fε, dop) is (c1, τ(ε))-
regular at x.

Case 2. d(y, u) ≤ ε/1000 and ∠̃xzy ≥ 1/100.

Let x1 be the point on xz ∩ N̄ such that ∠̃zux1 = π/2 (x1 = x if
y 
= u). Let x2 be the point on the ray from op through x1 such that
(x2)′u is a direction at u normal to C∞. We show that ∠x1ux2 < τ(ε).
Let q be the point on the ray from op through u with d(op, q) = 2d(op, u).
Obviously,

∠̃opxq > π − τ(ε), ∠̃opzq > π − τ(ε),

|∠̃opxz − π/2| < τ(ε), |∠̃opzx− π/2| < τ(ε).

It follows from Corollary 5.7 in [4] that

|∠̃opx1z − π/2| < τ(ε), |∠̃qx1z − π/2| < τ(ε),

which implies that ∠x1ux2 < τ(ε).
Take v ∈ N̄ such that d(u, v) = d(u, x1)+d(x1, v) and d(x, x1)/d(v, x)

is sufficiently small. Then ∠̃zxv > π/2+ c2. Let w be a point such that
w′
x is a midpoint between v′x and a′x. Then we have

∠̃zxw > π/2 + c′2, ∠̃opxw > π/2 + c′2,

for some uniform constant c′2 > 0. This implies that (fε, dop) is (c, τ(ε))-
regular at x.

Case 3. d(y, u) ≤ ε/1000 and ∠̃xzy ≤ 1/100.

Note that y = u in this case. Let δ1 be a small positive number.
Take a small ε > 0 so that for every x ∈ U∞ε ∩ A(op; 1/10, 1)and y ∈
∂C∞ ∩ A(op; 1/10, 1) with d(x, y) = d(x, ∂C∞), there exists a point
v such that ∠̃yxv > π − δ1. Then in the above situation we have
∠̃zxv > π/2 + c3. Taking w as in Case 2, we obtain the required
regularity of (fε, dop). q.e.d.
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Figure 1: Canonical neighborhoods pair

Definition 12.2. We say that (U, V ) is a canonical neighborhoods
pair of a point p ∈ ∂C for δ � ε > 0 (see Figure 1) if:

(1) U ⊃ V are neighborhoods of p with U ∩ ∂C = V ∩ ∂C = B(p, δ)∩
∂C.

(2) (fε, dp) is (c, τ(ε/δ))-regular on (U − V ) ∩B(p, δ/10)c.

(3) There is a pseudo-gradient flow ψ on U for fε.

(4) There is a homeomorphism h : U ∩∂C×(I×J−I ′×J ′) → U−V ,
where I = [ s0, s1 ], I ′ = [ s′0, s′1 ], s0 < s′0, s1 > s′1 and J ⊃⊃ J ′

are closed intervals, such that for each x ∈ U ∩ ∂C:

(a) h({x}×I×{t}) provides the flow curve of ψ for each t ∈ J−J ′,
that is,

ψ(h(x, s1, t), s) = h(x, s1 − s, t).

(b) h({x} × {s1} × J) ⊂ f−1
ε (21ε/20), h({x} × {s0} × J) ⊂

f−1
ε (19ε/20).

(c) h({x} × {s′1} × J ′) ⊂ f−1
ε (51ε/50), h({x} × {s′0} × J ′) ⊂

f−1
ε (49ε/50).

(d) Each ψ-flow curve in (U − V )∩B(p, δ/10)c is contained in a
dp-level set.
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(e)

∂U − h((intB(p, δ) ∩ ∂C) × ∂(I × J)) ⊂ ∂B(p, δ),
∂V − h((intB(p, δ) ∩ ∂C) × ∂(I ′ × J ′)) ⊂ ∂B(p, δ).

Lemma 12.3. Each point p ∈ ∂C has a canonical neighborhoods
pair for arbitrarily small δ � ε > 0.

For the proof, we need the following

Lemma 12.4. Let D2 be the standard unit disk in R2 with ∂D2 =
S1 the union I0 ∪ I1 of closed hemi-circles. Let ψ0 and ψ1 be local flows
on D2 such that:

(1) The flow curves start from I0 and reach I1.

(2) ψi leaves I0 ∩ I1 fixed.

Then there exists a continuous family of flows ψt on D2 satisfying the
conditions above and joining ψ0 and ψ1.

Proof. Let r be the reflection about the line through I0 ∩ I1. Let φ0

be the canonical straight flow on D2 starting from x ∈ I0 and reaching
r(x) ∈ I1. Now consider a flow ψ onD2 satisfying (1), (2). Making use of
the flow curves of φ0 and ψ, we can think of ψ as such a homeomorphism
f = fψ of D2 that the restriction to I0 is the identity. Now let ψ′ be the
straightening of ψ. Namely, it can be defined as the natural flow formed
by straight line segments from x ∈ I0 to ψ(x, s) ∈ I1. Put h = f−1

ψ′ ◦ fψ.
Since h is the identity on ∂D2, it is isotopic to the identity of D2 while
keeping ∂D2 fixed. Let ht, 0 ≤ t ≤ 1, be the isotopy. The isotopy
fψ′ ◦ ht induces a deformation ψt of flows from ψ to ψ′. For the given
flows ψ0 and ψ1, it is now obvious that ψ′

0 is deformable to ψ′
1. This

completes the proof. q.e.d.

Proof of Lemma 12.3. Let δp and εp be as in Lemma 12.1. Then
for ε < δ with δ ≤ δp and ε/δ ≤ εp, consecutive use of Theorem 10.1
together with Lemma 12.1 provides neighborhoods U ⊃ V of p and
a gradient flow ψ on U − V for fε satisfying the conditions (1), (2)
and (4) in Definition 12.2. For the proof, it suffices to extend ψ to a
pseudo-gradient flow on U for fε. By Proposition 11.3, we may assume
that U ⊃ V satisfy (e). Let E0 and E1 be the two component of
∂V − h((intB(p, δ) ∩ ∂C) × ∂(I ′ × J ′)) ⊂ ∂B(p, δ). Since ∂V � S2, it
follows from Proposition 11.3 and the generalized Schoenflies Theorem
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([3]) that V � I ′×J ′× [ 0, 1 ], where Ei corresponds to I ′×J ′×{i}. Let
φi be a flow on Ei starting from {s′1}×J ′×{i}, reaching {s′0}×J ′×{i}
and extending ψ, i = 0, 1. Then by Lemma 12.4, we have a flow φ on
V extending φi and ψ restricted to ∂V ∩ intB(p, δ). The flow defined
by the union of ψ and φ gives a required flow on U . q.e.d.

Proposition 12.5. There exist an ε0 > 0, a neighborhood U of
∂C and a pseudo-gradient flow ψ on U for fε0 together with a homeo-
morphism h : ∂C × I × J → U such that for each x ∈ ∂C:

(1) h({x} × I × ∂J) gives flow curves of ψ, that is,

ψ(h(x, s1, tj), s) = h(x, s1 − s, tj).

(2) h({x} × {s1} × J) ⊂ f−1
ε0 (21ε0/20).

(3) h({x} × {s0} × J) ⊂ f−1
ε0 (19ε0/20).

Here, I = [ s0, s1 ], J = [ t0, t1 ].

Proof. By a straightforward compactness argument using Lemma 12.1,
we have finitely many points p1, . . . , pN of ∂C such that for some
δi ≤ δpi :

(1) {B(pi, δi)} covers ∂C.

(2) {B(pi, δi/10)} is disjoint.

For each pi, take εi � δi with εi/δi ≤ εpi as in Lemma 12.1, and choose
a small ε0 with ε0/min{δi} ≤ min{εpi}. Let (Ui, Vi) be a canonical
neighborhoods pair of pi for ε0 � δi, and ψi the psuedo-gradient flow
on Ui − Vi for fε0 as in Definition 12.2. We denote by U ′ the union of
Ui. To prove the proposition, we have to deform those local flows ψi to
obtain a local flow on a neighborhood of ∂C. Suppose that pi is adjacent
to pj . We use the deformation theory to obtain a pseudo-gradient flow
ψij on a neighborhood of ∂C ∩ (Ui ∪ Uj) which differs from ψi and ψj
only on a neighborhood of a compact set of ∂C ∩ Ui ∩ Uj .

We put gi = d(pi, .) which is regular on Ui −B(pi, δi/10). Let T be
the component of ∂C ∩ Ui ∩ Uj − B(pi, δi/10) − B(pj , δj/10) on which
(fε0 , gi) is regular. Let hi : Ui ∩ ∂C × (I × J − I ′ × J ′) → Ui − Vi be as
in Definition 12.2 (4). We consider a pair (U, V ) with U ⊂ Ui, V ⊂ Vi
defined by

U − V = hi(T × (I × J − I ′ × J ′)).



collapsing three-manifolds 55

By Definition 12.2 (4)-(d), we have a homeomorphism ĥ : U−V → K×
(I×J−I ′×J ′) such that pr◦ĥ = (gi, fε0), where I = [ 19ε0/20, 21ε0/20 ],
I ′ = [ 49ε0/50, 51ε0/50 ], K = [ r,R ], and pr : K × I × J → K × I is the
projection. Here we make an identification for simplicity

U − V ≡ T × (I × J − I ′ × J ′) ≡ K × (I × J − I ′ × J ′).

Recall that the flow ψi restricted to U − V is gradient for fε0 and that
the flow curves lie on the gi-level sets. Take r < r1 < R1 < R. For
simplicity, we set

U(r1, R1) = U ∩ g−1
i ([ r1, R1 ]).

Assertion 12.6. We can take a pseudo-gradient flow ψij on U
which is gradient for fε0 outside V satisfying

ψij =

{
ψi on U(r, r1)
ψj on U(R1, R).

(12.1)

Proof. We have to join the flow ψi on U(r, r1) and the flow ψj on
U(R1, R). Let r1 < r2 < R1. By Theorem 10.1, we have a flow ψ′

j on
U(r1, R) such that

ψ′
j =

{
ψi on U(r1, r2) − V0

ψj on U(R1, R) ∪ (U(r1, R) ∩ V ),
(12.2)

where V ⊂ V0 ⊂ U . Let K1 be the union of ψ′
j-flow curves starting from

{R1} × {21ε0/20} × J to {fε0 = 19ε0/20}. Put

K2 = {r2} × I × J, K3 = [ r2, R1 ] × {21ε0/20} × J.

Let K4 be the domain on {fε0 = 19ε0/20} bounded by the curves {r2}×
{19ε0/20}×J , [ r2, R1 ]×{19ε0/20}×∂J and F , where F = K1∩{fε0 =
19ε0/20}. Retaking ε0 smaller and r1, r2, r3 suitably if necessary, we
may assume that K4 � D2 and gi(K1) ⊂ (r2, R). Let D be the domain
bounded by K1, . . . ,K4, and [ r2, R1 ] × I × ∂J . Note that D � D3

and observe that we have the ψi-flow on K2 and the ψ′
j-flow on K1. By

Lemma 12.4, we can construct a new flow ψij on D such that

ψij =

{
ψi on K2

ψj on K1 ∪ V.
(12.3)
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Now the flows ψi, ψij , and ψ′
j provide a required flow on U . q.e.d.

Repeating the above procedure finitely many times, we obtain a
pseudo-gradient flow for fε0 on a neighborhood of ∂C as required. q.e.d.

Proof of Theorem 9.6 (1). Let k ≤ 2 be the number of one-normal
points in intC. It follows from the previous proposition that

X � f−1
ε0 ([ 0, 21ε0/20 ))

� f−1
ε0 ([ 0, 19ε0/20 ))

�


R3 if k = 0,
K(P 2) if k = 1,
X1 = R3/Γ if k = 2.

This completes the proof of Theorem 9.6 (1) in the case when dimC = 2.
q.e.d.

13. The case of dimC = 1

Let X be as in Theorem 9.6 with dimC = 1. As Example 9.3 shows,
X is not necessarily a topological manifold near ∂C. Hence we cannot
apply the deformation theory developed in the previous section to a
neighborhood of ∂C.

Proof of Theorem 9.6 in the case dimC = 1. Let q,q′ be the
boundary points of the geodesic segment C. Under the convergence
(nX, q) → (Kq, oq), let C converge to C∞, and consider the functions

f = d(C∞, ·), g = d(oq, ·),
fn = dn(C, ·), gn = dn(q, ·).

where dn is the n-times rescaling of the original metric of X. Notice
that f and g are regular on Kq − C∞ and Kq − {oq} respectively.

Lemma 13.1. There exist n0, ε0 > 0 such that for every n ≥ n0

and ε ≤ ε0, we have a homeomorphism

H : (f, g)−1([ 0, ε ] × [ 0, 1 ]) → (fn, gn)−1([ 0, ε ] × [ 0, 1 ])

with fn ◦H = f .
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Proof. Observe that there exist n0, ε0 > 0 and c0 � ε0 such that
for every ε ≤ ε0, n ≥ n0 and for every x ∈ (fn, gn)−1(( 0, ε ] × [ 1/2, 1 ])
there is a point w with dn(w,C) ≥ c0 satisfying

∠̃qxw > π/2 + c, ∠̃Cxw > π/2 + c, ∠̃qxC > π/2 − τ(ε),

for some uniform constant c > 0. For instance, the point w can be
taken as follows: Take y ∈ C and y1 with dn(x, y) = dn(x,C), ∠̃yxy1 >
π − τ(ε) and dn(y, y1) � ε. Take a point z such that ∠̃qxz > π − τn
and dn(x, z) = dn(x, y1), where lim τn = 0. Then the mid point w
of y1z satisfies the above conditions. In particular, (fn, gn) and (f, g)
are (c, τ(ε))-regular on (fn, gn)−1(( 0, ε ]× [ 1/2, 1 ]) and (f, g)−1(( 0, ε ]×
[ 1/2, 1 ]) respectively.

Applying Theorem B and its complement in [26], we then have a
homeomorphism

h11 : (f, g)−1([ ε/2, ε ] × [ 1/2, 1 ]) → (fn, gn)−1([ ε/2, ε ] × [ 1/2, 1 ])

such that (fn, gn)◦h11 = (f, g). The (c, τ(ε))-regularities of (fn, gn) and
(f, g) enables us to extend h11 to a homeomorphism

ĥ1 : (f, g)−1(( 0, ε ] × [ 1/2, 1 ]) → (fn, gn)−1(( 0, ε ] × [ 1/2, 1 ])

with (fn, gn) ◦ ĥ1 = (f, g). Now it is easy to extend h1 to a homeomor-
phism

h1 : (f, g)−1([ 0, ε ] × [ 1/2, 1 ]) → (fn, gn)−1([ 0, ε ] × [ 1/2, 1 ]),

with (fn, gn) ◦ h1 = (f, g). We put

Ki = (f, g)−1([ 0, ε/2i−1 ] × [ 1/2i, 1/2i−1 ]),

Kn
i = (fn, gn)−1([ 0, ε/2i−1 ] × [ 1/2i, 1/2i−1 ]).

Noting 2Ki and 2Kn
i are isometric to Ki−1 and K2n

i−1 respectively, we
can inductively construct homeomorphisms hi : Ki → Kn

i such that
(fn, gn) ◦ hi = (f, g) and hi = hi−1 on Ki ∩ Ki−1. Thus we ob-
tain a homeomorphism h : ∪∞

i=1Ki → ∪∞
i=1K

n
i with (fn, gn) ◦ h =

(f, g). Note that f and fn are regular on (f, g)−1(( 0, ε ] × [ 0, 1 ]) and
(fn, gn)−1(( 0, ε ] × [ 0, 1 ]) respectively. We put

Li = (f, g)−1([ ε/2i, ε/2i−1 ] × [ 0, 1/2i ]),

Lni = (fn, gn)−1([ ε/2i, ε/2i−1 ] × [ 0, 1/2i ]).
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By Theorem 10.1 and the complement of Theorem B in [26], there exists
n1 such that for each n ≥ n1, we have a homeomorphism k1 : L1 → Ln1
such that:

(1) fn ◦ k1 = f .

(2) k1 is compatible with h.

Now with the use of Theorem 10.1, we can inductively construct home-
omorphisms ki : Li → Lni such that:

(3) fn ◦ ki = f .

(4) ki is compatible with h, k1, . . . , ki−1.

Thus we have a homeomorphism k : ∪∞
i=1Li → ∪∞

i=1L
n
i with fn ◦ k = f ,

and h and k define a homeomorphism

H : (f, g)−1([ 0, ε ] × [ 0, 1 ]) → (fn, gn)−1([ 0, ε ] × [ 0, 1 ])

with fn ◦H = f . q.e.d.

Since obviously B(oq, 1) � (f, g)−1([ 0, ε ] × [ 0, 1 ]), it follows that
(fn, gn)−1([ 0, ε ] × [ 0, 1 ]) � Kq. Thus,

(f1, g1)−1([ 0, ε/n ] × [ 0, 1/n ]) � Kq,

for all sufficiently large n. Similarly we have

(f1, g
′
1)

−1([ 0, ε/n ] × [ 0, 1/n ]) � Kq′ ,

where g′1 = d(q′, ·).
For simplicity, we put ε1 = ε/n, δ1 = 1/n and R = d(q, q′)/2. Taking

a larger n if necessary, we may also assume that (f1, g1) (resp. (f1, g
′
1) ) is

(c, τ(ε))-regular on (f1, g1)−1({ε1}× [ δ1, R ]) (resp. on (f1, g
′
1)

−1({ε1}×
[ δ1, R ])). It follows that for any R1 ≤ R

(f1, g1)−1([ 0, ε1 ] × [ δ1, R1 ])

� (f1, g1)−1([ 0, ε1 ] × δ1) × [ δ1, R1 ]

� D2 × [ δ1, R1 ]

� D3.
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Similarly, we have

(f1, g
′
1)

−1([ 0, ε1 ] × [ δ1, R1 ]) � D3.

We put

E(ε1, δ1) = f−1
1 [ 0, ε1 ] − intB(q, δ1) − intB(q′, δ1).

Since B(q, δ1)∩E(ε1, δ1) � D2 and B(q′, δ1)∩E(ε1, δ1) � D2, it suffices
to show that E(ε1, δ1) � D3. Let z be the midpoint of C. We may
assume that

B(z, 10δ1) � D3.

Note that:

(1) Fq(ε1, δ1) := (f1, g1)−1([ 0, ε1 ] × [ δ1, R− δ1 ]) � D3.

(2) Fq′(ε1, δ1) := (f1, g
′
1)

−1([ 0, ε1 ] × [ δ1, R− δ1 ]) � D3.

(3) G(ε1, δ1) := E(ε1, δ1) − intFq(ε1, δ1) − intFq′(ε1, δ1) ⊂ B(z, 10δ1)
has boundary homeomorphic to D2 ∪ S1 × I ∪D2 � S2.

It follows from the generalized Schoenflies Theorem ([3]) thatG(ε1, δ1) �
D3. Therefore

E(ε1, δ1) � Fq(ε1, δ1) ∪D2 G(ε1, δ1) ∪D2 Fq′(ε1, δ1) � D3.

This completes the proof. q.e.d.

Remark 13.2. In the case when X is a Riemannian manifold, one
can use the flow curves of a gradient-like vector field of dq − dq′ to
conclude that E(ε1, δ1) � D3. In our case however, it is not certain if
one can apply the above argument to a function of type dq − dq′ on a
general Alexandrov space.

14. Appendix: Total curvature on Alexandrov surfaces

In this section, we explain the total curvature and the Gauss-Bonnet
Theorem on Alexandrov surfaces, originally studied by Alexandrov [1].
We also formulate the Cohn-Vossen Theorem and investigate Alexan-
drov surfaces admitting essential singular points, which are needed for
the proof of Theorem 0.5.
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Throughout this section, letX be an Alexandrov surface of curvature
≥ a ∈ R and H2 the Hausdorff measure over X. Recall that such an
X is a two-dimensional topological manifold possibly with boundary. A
polygonal region of X is by definition a subset of X whose (topological)
boundary is a union of finitely many broken geodesics. The rotation
κ(∂D) of the (topological) boundary ∂D of a polygonal region D ⊂ X is
defined by

κ(∂D) :=
∑
x∈∂D

(π − ∠xD),

where ∠xD denotes the inner angle of D at x ∈ ∂D, which is equal to
π if x is not a vertex of D, so that the sum here is indeed a finite sum.
Fixing one of the two sides of a broken geodesic σ = x0x1 . . . xk in X,
we define the rotation κ(σ) of σ with respect to the chosen side in the
same manner.

Let � denote the open disk domain bounded by a triangle � in X.
The total curvature (or excess) ω(�) of � in X is defined by

ω(�) := α+ β + γ − π,

where α, β, γ are the inner angles of � at its three vertices. Let D ⊂
intX be a relatively compact polygonal open region and find a trian-
gulation of D with triangles {�}. Then, the total curvature (or total
excess) ω(D) of D is defined by

ω(D) :=
∑
�
ω(�) +

∑
x∈V ∩intD

(2π − L(Σx)),

where V is the set of vertices of the triangulation of D. According to
[1] (see also [23]), the total curvature ω is independent of the triangula-
tion and extends to a signed Radon measure over X with the following
properties:

(1) For any D ⊂ intX as above, we have the Gauss-Bonnet formula:

ω(D) + κ(∂D) = 2πχ(D),

where χ(D) denotes the Euler characteristic of D.

(2) Any H2-measurable subset of X is ω-measurable and we have

ω ≥ aH2,

so that ω − aH2 is a (nonnegative) Radon measure.
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(3) The restriction of ω onto ∂X is

ω|∂X = 0.

(4) For any minimal segment xy in X,

ω|xy−{x,y} = 0.

(5) For any x ∈ intX,

ω({x}) = 2π − L(Σx).

We now introduce the rotation measure κ over ∂X. Let c be a subarc
of ∂X from p ∈ ∂X to q ∈ ∂X. Take a division {p = x0, x1, . . . , xm =
q} of the arc c, where x0, . . . , xm are points lying on c in this order.
We obtain a broken geodesic σ := x0x1 . . . xm, which approximates c.
Choose the side of σ for which we can measure the inner angle. It then
follows that

κ(σ) =
m−1∑
i=1

(π − ∠xi−1xixi+1).

Clearly, κ(σ) is nonnegative. If a point y ∈ c is taken to be between
xk−1 and xk for a k and if � is the open disk domain surrounded by
�xk−1yxk, then

κ(x0 . . . xk−1yxk . . . xm) = κ(σ) − ∠xk−1
� − ∠xk

� − ∠y� + π

= κ(σ) − ω(�).

Therefore, for any subdivision {p = y0, y1, . . . , yn = q} of {x0, . . . , xm}
and for τ := y0y1 . . . yn, we have

κ(τ) = κ(σ) − ω(Eσ,τ ),

where Eσ,τ denotes the union of open disk domains of X between σ and
τ . If the subdivision {y0, . . . , yn} is getting finer and finer, then τ tends
to c and hence Eσ,τ to the open domain, say Eσ, bounded by σ and c,
so that

lim
τ→c

κ(τ) = κ(σ) − ω(Eσ).
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We define κ(c) to be the above and call this the rotation of c. It follows
that κ(c) is nonnegative and independent of σ. A standard measure
construction argument yields that the rotation κ extends to the (non-
negative) Radon measure over ∂X.

For a polygonal region D ⊂ X, we set ∂̂D := ∂D∪ (∂X ∩D) (where
∂D is the topological boundary of D). The rotation κ is naturally
defined over ∂̂D as a signed Radon measure. We now extend the Gauss-
Bonnet formula to the case where D may touch ∂X.

Proposition 14.1 (The Gauss-Bonnet Theorem). For any rela-
tively compact polygonal open region D ⊂ X we have

ω(D) + κ(∂̂D) = 2πχ(D).

In particular, if X is compact,

ω(X) + κ(∂X) = 2πχ(X).

Proof. An easy calculation using κ(c) = κ(σ) − ω(Eσ). q.e.d.

Remark that for the Gauss-Bonnet formula ω(D)+κ(∂̂D) = 2πχ(D)
to hold, the region D has to be an open subset, because ω(∂D) > 0 may
happen.

The total curvature ω over X is a signed Radon measure which splits
into two nonnegative Radon measures ω+ and ω− over X such that
ω = ω+ − ω−. When a Borel subset D ⊂ X is not relatively compact,
it may happen that ω+(D) = ω−(D) = ∞, in which case ω(D) is not
defined. The rotation measure κ over the boundary ∂̂D of a polygonal
region D ⊂ X also splits into two nonnegative Radon measures κ±
such that κ = κ+ − κ−. When ∂̂D − ∂X is unbounded, κ(∂̂D) is not
necessarily defined as well. Notice that κ over ∂X is nonnegative and
κ(∂X) ∈ [ 0,∞ ] is always defined.

We say that a topological manifold is finitely connected if it can
be contracted to a compact submanifold (with boundary) by strong
deformation retraction.

Proposition 14.2 (The Cohn-Vossen Theorem). If ω(D) and
κ(∂̂D) are both defined for a finitely connected polygonal open region
D ⊂ X, then we have

2πχ(D) − πχ(∂̂D) − ω(D) − κ(∂̂D) ≥ 0.

In particular, if X is finitely connected and if ω(X) is defined, then

2πχ(X) − πχ(∂X) − ω(D) − κ(∂X) ≥ 0.
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Notice here that χ(∂̂D) is equal to the number of components of ∂̂D
homeomorphic to R.

Proof. The proof is by the same discussion as for Riemannian man-
ifolds (see [31]). q.e.d.

Corollary 14.3. If X is compact, the number of essential singular
points in X − ∂X is at most 4 − aH2(X)/π.

Proof. Denoting by E the set of essential singular points in X−∂X,
we have

π #E ≤ ω(E) = ω(X) − ω(X − E)

≤ 2πχ(X) − aH2(X) ≤ 4π − aH2(X).

q.e.d.

Corollary 14.4. Let X be a two-dimensional Alexandrov space of
nonnegative curvature. Then, the following hold.

(1) X is homeomorphic to either R2, [ 0,+∞ ) × R, S2, P 2, D2, or
isometric to [ 0, � ]×R, [ 0, � ]×S1(r), [ 0,+∞ )×S1(r), R×S1(r),
R×S1(r)/Z2, a flat torus, or a flat Klein bottle for some �, r > 0.

(2) intX contains at most four essential singular points, and denoting
by n the number of essential singular points in intX, we have the
following for some �, h > 0.

(a) If n ≥ 1, X is either homeomorphic to R2, S2, P 2, D2, or
isometric to dbl([ 0,∞ ) × [ 0,∞ )) ∩ { (x, y) | y ≤ h }.

(b) If n ≥ 2, X is either homeomorphic to S2, or isometric to
dbl([ 0,∞ ) × [ 0, h ]), dbl([ 0,∞ ) × [ 0, h ]) ∩ { (x, y) | x ≤ � },
or dbl([ 0, �] × [ 0, h ])/Z2.

(c) If n ≥ 3, X is homeomorphic to S2.

(d) If n = 4, X is isometric to dbl([ 0, � ] × [ 0, h ]).

Proof. Since ∂X can be approximated by broken geodesics as is
seen before, there is a triangulation of X with countably many geodesic
triangles {�} such that intX ⊂ ⋃

� �, where � is the open disk domain
bounded by �. Recall that

ω(X) =
∑
�
ω(�) +

∑
x∈V ∩intX

(2π − L(Σx)),
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where V is the set of vertices of the triangulation. The nonnegativity
of the curvature of X implies that L(Σx) ≤ 2π, ω(�) ≥ 0, and that
ω(�) = 0 if and only if � is isometric to a triangular disk domain of
R2. Therefore, we have ω(X) ≥ 0 and the equality holds if and only
if X is flat everywhere. If X is flat and κ(∂X) = 0, then it is easy to
observe that ∂X is totally geodesic. Thus, applying the Gauss-Bonnet
or Cohn-Vossen Theorem to X proves (1).

To prove (2), we suppose that intX contains n different essential
singular points x1, . . . , xn. Then, it follows that ω(X) ≥ nπ and that
the equality holds if and only ifX−{x1, . . . , xn} is flat and if L(Σxi) = π
for all i. This together with the Gauss-Bonnet or Cohn-Vossen Theorem
completes the proof. q.e.d.
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