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LARGE COMPLEX STRUCTURE LIMITS OF K3
SURFACES

MARK GROSS & P. M. H. WILSON

Abstract

Motivated by the picture of mirror symmetry suggested by Strominger, Yau
and Zaslow, we make a conjecture concerning the Gromov-Hausdorff limits
of Calabi-Yau n-folds (with Ricci-flat Kahler metric) as one approaches a
large complex structure limit point in moduli; a similar conjecture was made
independently by Kontsevich, Soibelman and Todorov. Roughly stated, the
conjecture says that, if the metrics are normalized to have constant diam-
eter, then this limit is the base of the conjectural special lagrangian torus
fibrations associated with the large complex structure limit, namely an n-
sphere, and that the metric on this S™ is induced from a standard (singular)
Riemannian metric on the base, the singularities of the metric corresponding
to the limit discriminant locus of the fibrations. This conjecture is trivially
true for elliptic curves; in this paper we prove it in the case of K3 surfaces.
Using the standard description of mirror symmetry for K3 surfaces and the
hyperkéahler rotation trick, we reduce the problem to that of studying Kéhler
degenerations of elliptic K3 surfaces, with the Kéahler class approaching the
wall of the K&hler cone corresponding to the fibration and the volume nor-
malized to be one. Here we are able to write down a remarkably accurate
approximation to the Ricci-flat metric: if the elliptic fibres are of area ¢ > 0,
then the error is O(e~C/€) for some constant C' > 0. This metric is obtained
by gluing together a semi-flat metric on the smooth part of the fibration
with suitable Ooguri-Vafa metrics near the singular fibres. For small ¢, this
is a sufficiently good approximation that the above conjecture is then an
easy consequence.

0. Introduction

The notion of large complex structure limit plays a special role in
the theory of mirror symmetry. If X is a Calabi—Yau manifold, a large
complex structure limit point is a point in a compactified moduli space
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of complex structures My on X which, in some sense, represents the
“worst possible degeneration” of the complex structure. This notion
was given a precise Hodge-theoretic meaning in [27]. The basic example
to keep in mind of this sort of degeneration is the degeneration of a
hypersurface of degree n + 1 in P™ to a union of the n + 1 coordinate
hyperplanes. Mirror symmetry posits the existence of a mirror to X
associated to each large complex structure limit point of X. To first
approximation, this means that if p € M is a large complex structure
limit point in a compactification of the complex moduli space of X, then
there exists a mirror X and an isomorphism between a neighbourhood
of p in My and the complexified Kéhler moduli space of X which
preserves certain additional information, such as the Yukawa couplings
(which will not concern us in this paper). This isomorphism is known
as the mirror map.

Now the Strominger-Yau-Zaslow conjecture [32] suggests that mirror
symmetry can be explained by the existence of a special Lagrangian
fibration on X when the complex structure on X is near a large complex
structure limit point. The mirror X is then expected to be constructed
as the dual of this special Lagrangian fibration. The notion of special
Lagrangian is a metric one: it depends on both the complex structure
(determined by a holomorphic n-form  on X, where n = dimg X),
and a Ricci-flat Kahler metric, determined by its Kéhler form w. Thus
we expect the existence of special Lagrangian fibrations will depend a
great deal on the metric properties of Calabi—Yau manifolds near large
complex structure limit points.

The simplest example of such a situation occurs for elliptic curves.
Consider the family of elliptic curves E, = C/(1,ia), with a — oc.
We also choose a Ricci-flat, i.e., flat, metric g, which we will take to
be the standard Euclidean metric. As o« — oo, the complex structure
approaches the large complex structure limit point in the moduli space
of elliptic curves; the period i« is approaching the cusp point of the
compactification of H/SLo(Z).

Now given the metric g, as a — oo it is clear that these elliptic
curves converge to an infinitely long cylinder. However, if we rescale
the metric, with g, = g/, then Vol(E,) = 1 in this metric. With this
metric, we can instead view E, as C/(1/y/a,iy/a) with the standard
Euclidean metric, and then E, converges to a line as e — oo.

Finally, we may renormalize the metric again so that the diameter
of E, remains bounded, with the metric g, = g/ a?. Then E, can be
identified with C/(1/a, i) with the Euclidean metric, and E, converges



LARGE COMPLEX STRUCTURE LIMITS 477

to a circle.

Of course, in this situation the special Lagrangian T'-fibration on
E, is E, — S! obtained by projection onto the imaginary axis. So with
the second and third choices of normalization, the special Lagrangian
fibres collapse.

This is a rather trivial example, but forms a good basis for specu-
lating about what might happen in higher dimensions. Intuitively, if we
normalize the metric so as to keep the volume of the manifold bounded,
we expect to see the fibres of the hypothetical special Lagrangian fibra-
tion contracting down to points; if furthermore we normalize so as to
have bounded diameter, we expect the Calabi—Yau manifold to “con-
verge” (in a sense we will make more explicit in §6) to a sphere of
dimension n.

To test this picture, and to improve our understanding of Ricci-flat
metrics, we have chosen to study the metric on K3 surfaces approach-
ing large complex structure limit points. This is made easier by the
fact that special Lagrangian fibrations are known to exist on K3 sur-
faces by a standard trick of performing a hyperkéhler rotation of the
complex structure, so that one reduces the problem of finding a spe-
cial Lagrangian fibration to that of finding an elliptic fibration. Using
this, we show in §1 that after performing this hyperkéhler rotation, ap-
proaching a large complex structure limit is more or less the same as
fixing the complex structure on a K3 elliptic fibration f : X — P!, and
letting the Kéhler form w on X vary in such a way that the area of the
fibres approaches zero. Thus we ask the question: what does a Ricci-flat
metric on an elliptic K3 surface look like when the area of the fibres is
very small?

This is an interesting question even if one is not interested in mirror
symmetry. In [1], M. Anderson studied degenerations of Ricci-flat met-
rics on K3 surfaces. If the volume of the surface is fixed and the diameter
remains bounded, then the metrics converge to an orbifold metric (cor-
responding to degeneration to a K3 with rational double points). This
picture of the moduli space of K3 surfaces with orbifold metric was orig-
inally studied in [21]. If the diameter is unbounded, Anderson proved
collapsing must occur, but gave no more detailed information. The case
under consideration in this paper can be considered to be the most ex-
treme degeneration of metric. In particular, the orbifold case and the
elliptic fibration case are the only Kéhler degenerations, in which the
complex structure of the K3 surface is held fixed. We will in fact con-
sider a slightly more general situation, where the complex structure still
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varies to some extent. This is described more clearly in §1.

We assume the generic case, so that f has 24 singular fibres, each
of Kodaira type I; (a pinched torus). If Xy denotes the complement
of these 24 singular fibres, then it is possible to write down a family of
explicit Ricci-flat metrics which we refer to as semi-flat: these metrics
are in fact flat when restricted to the fibres. The semi-flat metric was
first introduced in [12]. There, it was used to get a first approximation
to a complete Ricci-flat metric on the complement of a fibre of a rational
elliptic surface. In [12], an arbitrary metric was then glued in to take
care of the singular fibres so that techniques of [33], [34] could be applied
to obtain a complete Ricci-flat metric on this manifold. While we follow
this idea in spirit, we have here a new ingredient we can take advantage
of. There is an explicit Ricci-flat metric defined in a neighbourhood of
each singular fibre, first written down by Ooguri and Vafa in [29]. It is
not semi-flat, but it in fact decays to a semi-flat metric exponentially.
We can glue 24 copies of the Ooguri-Vafa metric in to the semi-flat
metric, and thereby obtain a metric which is remarkably close to being
Ricci-flat: in fact, the Ricci curvature is bounded in absolute value by
O(e=/¢), where € denotes the area of a fibre. Thus as € — 0, the Ricci
curvature of this glued metric approaches zero very rapidly.

We then follow standard techniques to show that the genuine Ricci-
flat metric representing the same Kéhler class is very close to the glued
metric, hence showing the explicit metric we constructed is a very good
approximation to the genuine metric. We follow the proof of Kobayashi
n [20], based on the original methods of Yau [35] — cf. also [7], [33],
[34]. In [20] Kobayashi proves that near a Kummer surface, the Ricci-flat
metric on a K3 surface is close to the flat orbifold metric on the Kummer
surface. While the techniques are the same, it is perhaps surprising that
they apply in our circumstances. Indeed, if the volume of the K3 surface
is held fixed, then as ¢ — 0, the diameter of our metric approaches oc.
Thus the relevant Sobolev constant approaches zero, and so it will be
important to control this precisely. It turns out that everything works
because the starting glued metric is already extremely close to being
Ricci-flat.

More explicitly, for Kéhler classes [we] on X, where € denotes the vol-
ume of a fibre of f, we construct a representative Kéhler metric w,. with
very small Ricci curvature. Yau’s proof [35] of the Calabi conjecture
yields a solution ue to the equations

(we + 100uc)? = efew?
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/ uw? =0
X

with F, = log (QAQ/ 2). The metric w, + i00u, is the desired Ricci-flat

w?

metric. We obtain a global C%-estimate (Lemma 5.3), namely that for
some positive constant C,

C e < we +i00u, < Cw.

Moreover, the main theorem of the paper (Theorem 5.6) states that for
any simply connected open set U C B whose closure is disjoint from
the discriminant locus of f, and for any k > 2, 0 < a < 1, there exist
positive constants C7, Co, €y such that, for all € < €,

luell e < Crem /e,

where the C* norm is on the set f~(U). Thus, away from the singular
fibres, we is a very good approximation to the actual Ricci-flat metric.
See Theorem 5.6 for a more precise statement, which requires some care
in the choice of the Kéahler class [w].

The information obtained gives a clear picture of the metric be-
haviour as € — 0. Using the above results, we prove the fibres are
collapsing to points, and that away from the singular fibres, the metric
approaches the semi-flat metric. In fact we will compute the Gromov—
Hausdorff limit of a sequence of K3 surfaces with ¢ — 0 and the metrics
renormalized so that the diameter remains bounded. This limit is in-
deed an S?, but the metric on the S? is singular at precisely 24 points
corresponding to the singular fibres. See §6 for more precise statements.
There, we state a conjecture, also made independently by Kontsevich,
Soibelman, and Todorov, about the Gromov—Hausdorff limit of Calabi—
Yau manifolds approaching large complex structure limit points. The
above results prove this conjecture in the two dimensional case.

The structure of the paper is as follows. In §1 we briefly review
mirror symmetry for K3 surfaces, so as to reduce the problem to one
of understanding elliptic fibrations. In §§2 and 3, we introduce various
ways of thinking about Ricci-flat metrics on elliptic fibrations, and then
discuss required properties of the semi-flat and Ooguri—Vafa metrics.
In §4, we build the glued metric. In §5, we run through the standard
program to obtain estimates for Ricci-flat metrics, proving the main
result of the paper, Theorem 5.6. Finally, in §6, we relate these results to
Gromov—Hausdorff convergence, and speculate as to what kind of results
in this direction might be expected and useful in higher dimensions.
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1. Identification of large complex structure limits

There are a number of variants of mirror symmetry for K3 surfaces:
see especially [10] for mirror symmetry between algebraic families of K3
surfaces and [4] for a more general version. We will use an intermediate
version here, following [14], §7, which highlights the role of the special
Lagrangian fibration. See also [17], §1. We review this point of view
here. This will serve as motivation for Question 1.2 below, which will be
addressed in the remainder of the paper. However, the setup of mirror
symmetry will not be used again in this paper.

Let L be the K3 lattice, L = H?(X,Z) for X a K3 surface. Fix a
sublattice of L isomorphic to the hyperbolic plane H generated by E and
0o, with E? = 0, J% = —2,and E.cp = 1. We will view mirror symmetry
as an involution acting on the moduli space of triples (X, B + iw, )
where X is a marked K3 surface, € is the class of a holomorphic 2-form
on X, w € E+ ® R a Kihler class on X, and the B-field B lies in
E+/E ® R. In addition Q is normalised so that ImQ € E+ ® R and
w? = (ReQ)? = (Im N)2. Mirror symmetry interchanges (X, B + iw, Q)
with (X, B + i@, ), where X denotes a marked K3 surface with the
following data:

Q= (E.ReQ) Y op+B+iw) modE
B=(E.ReQ) 'ReQ —0yp modFE
= (E.ReQ) 'ImQ modE.

The actual classes of  and @ are determined completely by the relations
(Re)? = (ImN)? = &? and ©.(Re Q) = @.(Im Q) = (ReQ).(Im Q) = 0.

We can now identify the large complex structure limit of X. This
limit is mirror to the large Kéhler limit of X. In the latter limit, we
keep the complex structure on X fixed but allow the Kahler form to go
to infinity. More precisely, if {B; + itjw} is a sequence of complexified
Kéhler forms on X with ¢; > 0, t;, — oo, then we say {B; + itjw} are
approaching the large Kéahler limit in the complexified Kéahler moduli
space of X.
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We will now take, for our purposes,

Definition 1.1. For each [, let X; be the K3 surface given by the
data (X;,B; + i@y, ;) mirror to (X, B; + itjw, ;). The sequence of
surfaces { X} is said to approach a large complex structure limit point.

We will take this as the starting point of our analysis, and will not
prove here that this is equivalent to other reasonable definitions of large
complex structure limits found in the literature (but see discussions in
10]).

The reader will note that we are cheating to some extent here, by
only approaching the large Kahler limit along a ray. The more general
approach might be to allow a more general sequence of Kéhler forms.
However, this is more difficult to deal with because the elliptic fibration
which arises below will be varying. We will ignore this difficulty in this
paper, as it obscures our main objectives.

Note that

O = (HE.ReQ) Y (og + By +itiw) mod E

and
O = (E.ReQ) "' ImQ modE.

More precisely, if a representative B; for B;mod E is chosen in E- @ R
with the property that B; - 09 = 0, then the requirement that Ql2 =0
yields

v » B
Ql:(tlE.ReQ) Uo—i—(Bl—i-’Ltlw)—i- #—i—l—’ttlw.(Uo—l—Bl) E .

Furthermore the requirement that . =0 yields
& = (E.Re Q) H(ImQ — (Im Q.(0p + B)))E).

The Kéhler class w; is represented by a Ricci-flat metric §;, and we
would like to understand the behaviour of this metric as t; — oco. It is
convenient to perform a hyperkahler rotation, i.e., g; is also a Kéhler
metric on the K3 surface Xl’ K with

QZ,K =TIm QY + iy
w,k = Re Ql.
This equality holds on the level of forms. Explicitly, in cohomology,
Ux=(FE.ReQ) (w+ilmQ — ((w+iImQ).(op + By))E)
@ = (tE.ReQ) (0p+B;) modE.
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We will assume that, for all I, F represents the class of a fibre of an
elliptic fibration f; : Xl, x — P1. This elliptic fibration coincides with
a special Lagrangian T2-fibration on X;. For general choice of data,
such elliptic fibrations with fibre class F automatically exist, since then
Pich’ k = ZE and E? = 0. For any choice of data, there always exists
an elliptic fibration on XL K, but the class of the fibre might only be the
image of E under reflections by —2 curves in PicX; k. (See [17], §1 for
further details.)

Note that the area of the fibre of f; under the metric §; is
(t;E.ReQ)~!, which goes to zero as t; — oo.

Now Ql’ x depends on [, but these classes only differ by the pull-back
of a class from P!. This in fact tells us the elliptic K3 surfaces le K are
closely related. Indeed, if f : X — P! is an elliptic K3 surface, with
holomorphic 2-form €, then whenever « is a 2-form on P!, Q' = Q+ f*«a
satisfies Q' A Q' = 0 as forms, and thus € induces another complex
structure on X such that f remains a holomorphic elliptic fibration in
this new complex structure. All the surfaces Xl, i are clearly related in
this way. In particular, all these elliptic surfaces have the same jacobian
Jr, which is the unique elliptic K3 surface with a holomorphic section
with complex structure induced by Ql, K + fj a for some a.

This now leads us to the following question:

Question 1.2. Let j : J — P! be an elliptic K3 surface with
a section, and let f; : X; — P! be a sequence of elliptic K3 surfaces
with jacobian j : J — P!. Let w; be a Ricci-flat Kihler metric on X;
with Vol(X;) independent of I. Let ¢ = Areay,(f; ' (y)) for any point
y € P!, and suppose ¢ — 0 as [ — oco. Describe the behaviour of the
metric w; as | — oo.

We will solve this question in this paper in the case that the map
j has 24 Kodaira type I; fibres. This is true for the generic K3 elliptic
fibration.

We end this section with a few additional important comments about
this setup.

First, it is often convenient to identify the underlying differentiable
manifold of an elliptic K3 surface f : X — B with that of its jacobian.
This can be done in a reasonably canonical fashion by choosing a C*°
section og : B — X of f. If Qx is a holomorphic 2-form on X, then
Qy = Qx — ffoi{lx defines a new complex structure on X, in which
00(B) is a holomorphic section. This new complex structure yields the
jacobian.
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Another important point is that once a C'°° zero-section og for f :
X — B is chosen, we obtain a group structure on the non-singular part
of each fibre of f. Let X C X be obtained by taking the union of
the identity components of each fibre. Then given a holomorphic 2-
form 2 on X, we can construct a map from the holomorphic cotangent
bundle 77 to X, taking the zero section of 77 to oo(B), and with the
property that the pull-back of 2 to 75 is a form .4, + o, where « is a
2-form pulled back from the base and {24, is the canonical holomorphic
symplectic 2-form on 75. (See [14], §52 and 7 for further details of this
map.) The canonical holomorphic symplectic 2-form can be defined in
local coordinates. If y is a local holomorphic coordinate on the base B,
we can take x to be the corresponding canonical coordinate on the fibres
of T3, so that the coordinate (zg,yo) represents the 1-form xody at the
point in B with coordinate yg. The pair z,y are called holomorphic
canonical coordinates. Then the canonical 2-form on 77 is dx A dy in
these coordinates.

The map 75 — X 0 also gives an exact sequence

OHle*ZHTslﬁXOHO.

R f.Z gives a degenerating family of lattices in the fibres of the complex
line bundle 7. Thus working on the cotangent bundle of B gives useful
coordinates for X away from the singular fibres, and these coordinates
will be used repeatedly in later sections.

2. Equations for Ricci-flatness

In this section we will discuss equations for Ricci-flatness in different
coordinate systems. We are interested in the behaviour of the metric
on an elliptic K3 fibration, and this metric behaves in radically different
ways away from the singular fibres as opposed to a neighbourhood of
the singular fibres. In these two different cases, it will be useful to have
two different coordinate systems to study the metrics.

For studying the metric away from the singular fibres, we adopt the
set-up from the previous section, with 7 : 75 — B where B is an open
subset of C. We are actually working on X = 7;/A, where A is a
holomorphically varying family of lattices in 7. We will assume in this
section that the zero section is holomorphic, so that the holomorphic
2-form on X is induced by 2 = dx A dy on 75, where y = y1 + iy2 and
x = x1 + 122 are holomorphic canonical coordinates on 7. The Kéhler
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form in these coordinates takes the form

w :%W(dfc AdZ +bde Adg+bdy Adi + (W2 + |b2) dy A dg)
_

T2

Here W and b are defined by the above expression, and the coefficient
of dy A dyj is chosen to ensure the normalisation w? = (ImQ)2. The

function W is real-valued and the function b is complex-valued. The
Kahler condition is now dw = 0. This equation can be written as

(W (dz + bdy) A (dz + bdy) + W1 dy A dy).

B, W = 0,(Wb)
0y (Wb) = 8(W(W ™2 + [o]?)).

Note that expanding the second equation out gives
Wb+ bO,W = —W 20, W + (0:W)[b|* + W (b 80 + b 9,b).

Using the first equation to replace 9,W and simplifying gives the above
two equations being equivalent to

(2.1) (9y — b0y)b = —W 39, W

(2.2) (Oy — b0y )W = WO,b.
Define the vector fields

oy = W19,
O = 9y — b0,

and denote by 0, and 0y the complex conjugate vector fields. The
subscripts v and h denote the vertical and horizontal vector fields re-
spectively. Let 9, and ¥}, denote the dual frame of one-forms, i.e.,

vy = W(dz + bdy)
In = dy.

Then )
w = %W_l(ﬁv N ’L§V + 9, A ﬁh)

In addition, Equations (2.1) and (2.2) take the simpler form

(2.1) opb = oW1
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(2.2) — W = 0,b.

Remark 2.1. While we don’t use this here, one can calculate that
the holomorphic curvature © = (0;;)1<; j<2 of this metric is given by

O11 = —Ogp = W AOW L + WOIW ! + W?20b A Ob
O = —O1p = —WL(W?0b).

Example 2.2. The standard semi-flat metric. We call a
metric semi-flat if it restricts to a flat metric on each elliptic fibre. As
above, let B C C an open subset, y the coordinate on C. Let 71(y), 72(y)
be two holomorphic functions on B such that 71 (y)dy, 72(y)dy generate
a lattice A(y) C 7, for each y € B, giving us the holomorphically
varying family of lattices A C 75 = B x C. Typically, we may allow
71 and 7o to be multi-valued. Assuming without loss of generality that
Im(7y72) > 0, then a Ricci-flat metric on X = (B x C)/A is given by
the data

€
Ww=_°
Im(7_'17'2)

W
b= ——[Im(72Z)0y + Im(712)0yT2].
€
It is easy to check that these satisfy the equations (2.1) and (2.2). This
metric, a priori defined on 77, descends to a metric on X, and the area
of a fibre of f : X — B is e. We call this metric on X the standard
semi-flat metric, with Kéhler form wgp.

The reader may check explicitly that this metric is independent of
the particular choice of generators for A, so that multi-valuedness of 7|
and 7 do not cause a problem. Furthermore, the metric is independent
of the choice of the coordinate y (keeping in mind that a change of the
coordinate y necessitates a change of the canonical coordinate z, and
hence the functions 71, 73). This may also be seen as follows: The inclu-
sion R f,Z = A C 7} allows one to identify (R!f.R)®C°(B) with the
underlying C*° vector bundle 75, along with the Gauss-Manin connec-
tion Vg on 74, the flat connection whose flat sections are sections of
R!'f.R. The standard semi-flat metric is the unique semi-flat Ricci-flat
Kahler metric satisfying the conditions:

(1) The area of each fibre is ¢;



486 MARK GROSS & P. M. H. WILSON
(2) wip = (ReQ)? = (ImQ)%;

(3) The orthogonal complement of each vertical tangent space is the
horizontal tangent space of Vs at that point.

This metric was described in [12], and in the more general context
of special Lagrangian fibrations in [19], as well as [14], Example 6.4.

The reader should be aware however that if T, : X — X denotes
translation by a holomorphic section o, then T wgr may give rise to a
different semi-flat metric, satisfying conditions (1) and (2) but not (3).
However, if o is not only holomorphic but a flat section with respect
to the Gauss-Manin connection (so that o(y) = ai171(y) + azm(y) for
constants ai, az) then T, is an isometry and T iwsp = wsp, Ta = .

It will also be useful to have the Kéahler potential for the metric. This
is a function ¢ such that w = 509¢. Let ¢1 and ¢2 be anti-derivatives
of 71 and 7y respectively. Then we can take

€ xeT 7 i 7 I
p=-— (=L 2P ) b (P12 — dr6ha).
I 1 T1 26

m(7_'17'2)

This is well-defined on subsets 7;7 C 77 for U simply connected, but
not on 7;/A.

Construction 2.3. The Gibbons—Hawking Ansatz. We now
describe the system of coordinates which is most suited to studying
the hyperkédhler metric in a neighbourhood of a singular fibre of the
elliptic fibration. This system of coordinates goes under the name of the
Gibbons-Hawking Ansatz, and the description in terms of a connection
form on an S'-bundle explained below is essentially the same as that
given in [2], which in turn is based on earlier work of Gibbons and
Hawking, Hitchin, and others.

Let U C R? be an open set with the Euclidean metric, with coordi-
nates u1, us, ug. Let m : X — U be a principal S* bundle, with S! action
S x X — X written as (e, z) — e - z. Let 6 be a connection 1-form
on X, i.e., au(1) = iR-valued 1-form invariant under the S'-action and
such that #(0/0t) = i. The curvature of the connection 6 is df = 7«
for a 2-form « on U, and ia/27 represents the first Chern class of the
bundle (see [8], Appendix). Suppose V is a positive real function on U
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satisfying *dV = «/2mi. Let

w1 =duy A 0/2mi + Vdug A dug
wo = dug A 0/2mi + Vdus A duy
wg = dug A 0/2mi + Vduy A dus.

Then w? = w3 = w? is nowhere zero, and w; A w; = 0, for i # j.
Furthermore, *dV = a/27i implies dw; = 0 for all i, since for instance

dwi = —dul/\d9/27ri+dV/\du2/\dU3 = —dug A*dV +dV Adus Adus = 0.

Therefore wq,ws,ws define a hyperkahler metric on X. Note V is har-
monic, since da = 0 implies that xd « dV = 0.

Let 6y denote the real 1-form 6/2mi, and observe that
—w1 — Wy = ((90 — inU3) VAN (dU1 + idu2).

By taking this to be the (holomorphic) 2-form € on X, this determines
an integrable almost complex structure on X, where du; + ¢dus and
0o — ©Vdus span the holomorphic cotangent space inside the complex-
ified cotangent space. It follows that the (integrable) almost complex
structure J on the cotangent space is given by

J(duy) = —dug, J(duz) = =V 6.

Thus, if we consider the Kéhler form w = w3 as an alternating tensor,
and use the relation that if ¢ is the Riemannian metric, then ¢((, &) =
w(¢, JE), we obtain an expression for the metric

ds? = Vdu-du+ V103

Usually, we shall in fact start from a positive harmonic function V' on
U such that — % dV represents the Chern class of the bundle. Then
we can always find a connection 1-form 6 with df/2mwi = *dV, such a 6
being uniquely determined up to pull-backs of closed 1-forms from U,
and hence we obtain hyperkédhler metrics as above.

Remark 2.4. We will need to calculate some information about
the curvature of this metric. We can work locally, and therefore take
the orthonormal moving coframe given by V/2duy, VY2duy, V/2dus
and V~1/26,. We can moreover write the connection form locally as

dt

™

to + Aiduy + Aadug + Azdus,

487



488 MARK GROSS & P. M. H. WILSON

where VV = V x A. To calculate the curvature, we may then apply
Cartan’s method. We obtain

|R||?> = 12V 8| VV|* + V2A(IVV?) — 6V 3(VV) - (V(IVV ).

Using the fact that V' is harmonic, we then recover the compact formula
given in Equation (32) of [28] that

1. _
IR? = Jviaawh),

Example 2.5. If we consider the natural map C? \ (0,0) —
P!(C) = 52, and restrict to S® C C?, we easily check that the image of
(21,20) € S% is

(2 Re(zlig), 21111(2’122), |Zl‘2 — ‘22|2).

This is the standard Poincaré map. The formula also defines a map
X = C?\(0,0) — R3\ (0,0,0); we compose this map with complex
conjugation on 2y to obtain a map p : X = C?\ (0,0) — R?\ (0,0,0),
given by

p(z1, 20) = (2Re(2122), 2Im(2122), |21|* — |22]?).

This map exhibits X as an S'-bundle over R? \ (0,0,0), with Chern
class £1. The action of S on X is given by e - (21, 22) = (21, e % 2).
Note also that if we compose p with projection onto the first two factors,
we obtain the map sending (21, z2) to 22122, holomorphic with respect
to the standard complex structures.

We now choose a positive harmonic function V on R?\ (0,0, 0) such

that
—/ *dV:/ ia/2m = +1,
S2 S2

i.e., the Chern number is correct. The particular examples of such V'
we consider are

1 1
— _—=e+ ,
47 |ul 47r\/m

where e > 0. The integral

V=e+

/ 1
*d
S2 47r\/u%+u%+u§
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is easily seen to be £1 (depending on the orientation of the sphere).
Now we take as connection form

0 = ilm(z1dz; — EQdZQ)/(’ZﬂQ + |2’2‘2).

Then

0 /2i = —(urdug A dus + uadus A duj + usduy A dusg) wdV
4 (uf + u3 + u3)3/?

as required. We therefore obtain hyperkéahler metrics on X, which, for
all e > 0, extend to metrics on C2. In fact, such metrics are ALF
(asymptotically locally flat), approaching a flat metric when |u| — oo,
whilst being periodic in ¢. When e = 1, the metric obtained is the
Taub-NUT metric, and when e = 0, it is just a flat metric on C2. To
prove the assertions for e = 0, straightforward calculations show that,
with z; = x; + iy;,

wp = (dxg ANdy, —dxi A dyg)

wo = —(dz1 A dze — dy; A dys)

BEIGEI

w3 = 7I_(d:L’l Ady; + dxo A dyg).

So w1, ws, ws extend to C2, and yield a flat metric, as claimed.

Construction 2.6. Gibbons—Hawking versus holomorphic
coordinates. In the Gibbons-Hawking Ansatz, we consider the case
when U = B x R, with B a contractible open subset of R> — in
particular, the S'-bundle X over U is topologically trivial. Set y; = uy,
Y2 = ug, SO then y = y; + 1y2 is a complex coordinate on B. We will
see below how the hyperkahler structure on X gives rise to a complex
structure on X under which the function ¥ is holomorphic, i.e., the map
X — B is holomorphic. Moreover, if we pass to the universal cover X
on X, we can construct a holomorphic coordinate z (depending on a
choice of holomorphic section of X over B) such that the holomorphic
2-form is just dz A dy. This in turn enables us to identify X with 15
over B, with x,y then being holomorphic canonical coordinates on 73,
where the identification depends on our choice of holomorphic section.
The S'-action on X yields an R-action on 7%, which we shall see is just
translation on z; = Rex, and so X is isomorphic to 73 /Z. The Kéhler
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form provided by the Gibbons—Hawking Ansatz yields a Kéhler form w
on T, corresponding of course to a Ricci-flat metric, and for which the
functions W and b are independent of x;. The Kéhler form therefore
descends to 77 /Z, and is invariant under the obvious S!-action.

Conversely, we shall see that any Ricci flat, S'-invariant Kéhler
structure on 75/Z of the above type (i.e., we have x,y holomorphic
canonical coordinates on 75 over B, for which W and b are independent
of x1) does in fact arise from the Gibbons-Hawking Ansatz in the way
that has just been described. Moreover, Gibbons—Hawking coordinates
u1, u2,us and the connection form # on X may be recovered from the
holomorphic canonical coordinates =,y on 75. Here we have u; = yi,
uo = yo2, and ug determined up to a constant.

We now give the details for the construction. We have U = B x R,
with B a contractible open subset of R?, and we set y = yi + iy2, a
complex coordinate on B. Then dy; +idys = dy, and from the Gibbons—
Hawking Ansatz equations we observe that dy A d(6y — iVduz) = 0.
By the theorem on integrability of almost complex structures, 2 =
(o — iV dug) Ady is a holomorphic 2-form for an integrable almost com-
plex structure J on X, and locally there exists a holomorphic coordinate
z such that dz = (6p — iV dus) mod dy. Moreover it is then clear that
z is determined up to a holomorphic function of y, and that locally the
holomorphic coordinates recover the (integrable) complex structure. We
now pass to the universal cover X of X, topologically B x R2, together
with its integrable complex structure J obtained from J (from now on,
we shall work on X, but omit tildes from forms and functions pulled
back from X). We note that the complex structure is invariant under
the R-action on X induced from the given S'-action on X. The (global)
form 6y — iV dus restricts down to a holomorphic 1-form on each fibre,
locally just dz. Therefore, by integrating 6y — iV dus along paths in the
fibre from some fixed point, we obtain a holomorphic coordinate on the
fibre, which locally (up to a constant depending on the choice of base
point) will coincide with z.

In order to get a global holomorphic coordinate z on X, we choose
a holomorphic section of X over B (such sections always exist), which
will then be regarded as giving the required base point in each fibre
for the path integration. In this way, we obtain a global holomorphic
function z on X such that z,y are holomorphic coordinates everywhere,
and where x is uniquely determined up to a holomorphic function of y
(corresponding to the choice of holomorphic section). By construction,
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the global holomorphic coordinates x, y on X realize the almost complex
structure, with y a holomorphic coordinate on the base and x a holomor-
phic coordinate on the fibres. Moreover 2 = —w; — iws = dz A dy, and
so we can identify X — B with 7/ — B (with holomorphic canonical
coordinates, as described in §1), where the chosen holomorphic section
of X over B is identified the zero section of the holomorphic cotangent
bundle. Choosing a section of X over U = B x R enables us to con-
sider the coordinate t on S' as a coordinate on the fibres; the above
derivation of the holomorphic coordinate x then shows that its real part
T = ﬁ + 9(y1,y2,us), for some function g, and that the action of R
on X is the obvious one given by translation on z;. Explicitly X is
obtained as a quotient of X under the action of Z given by z1 — z1 + 1.

Since dx = 0y — iV dus mod dy, there exists a complex-valued func-
tion b on X such that dz + bdy = 0y — iV dus. Also

(dz + bdy) A (dx + bdy) = 2iV 0y A dug.

We now set W = V~! and calculate the Kéhler form ws in terms of the
holomorphic coordinates:

wy = dug Ao+ Vduy Adus = %(W(dz+bdy)/\(d1: + bdy)+ Wty Ady),

which we observe has the same form as our original general formula for w
in holomorphic canonical coordinates. Since we started with a Ricci-flat
metric, the previous equations for Ricci-flatness (2.1) and (2.2) which
we derived are then automatically satisfied.

The next point is to observe that W and b are independent of x1,
the real part of x. To see this, recall now that

¥y = W (dz + bdy) = (V" '0y — idus)

and ¥y, = dy is a globally defined coframe for the holomorphic cotangent
bundle of X. In particular, since the imaginary part of ¥ is —dug, we
will have that the imaginary part of dv is zero. We first calculate

(2.3) 09y = W LOW A, + WObA D, = (W Lo W — Wa,b) 9y Ay,

From this it is seen that Equation (2.2") is just the statement that
0vy = 0. We next calculate

Ay = WLOW A9y + Wb A Yy,
(2.4) = WLOW 9y Ay + W LW Iy A0y
+ ngb 1§v A, + Wghb ﬁh A Uy.

491
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If then Equation (2.1") also holds, it is easily checked that the imaginary
part of 90y is zero if and only if 9, W = —0, W and 0,b = —0yb, that is
W and b are independent of z1, the real part of x. Thus b is invariant
under the R-action, that is b is the pull-back of a function from U.

Conversely, if we start from a Ricci-flat, S'-invariant Kihler metric
on 75/Z of the above type (i.e., we have x,y holomorphic canonical
coordinates on 75 over B, for which W and b are independent of x1), we
can pass to the universal cover X = 77 over B. The above construction
then reverses. We set ¢ to be the imaginary part of ¢, = W (dx + bdy).
Clearly ¢ is invariant under the given R-action on X. Reversing the
derivation of the previous paragraph ensures that d¢ = 0 on X, and
so there is a global function ug with ¢ = —dug, where us is invariant
under the action of R, and is determined up to a constant. We set
V =W 0y = (dz+bdy) — iV ¢ and § = 27if; thus both V and 6 are
also invariant under the action of R. It is straightforward now to verify
that we get back the above form of the Gibbons—Hawking Ansatz, with
u; = vy and ug = yo, and where U = B x R is the quotient of X by
the R-action. The periodicity of this R-action then yields an S'-bundle
X over U (to which V' and 6 descend, and on which the corresponding
Sl-action leaves V and @ invariant).

Finally, we calculate (for use in §4) the differential p., where
p: X — U = B x R is the natural projection. Using the expression
duz = W (dx — dz) + W (bdy — bdy), we obtain

pd = 0,
- <0z _;W8U3
2 P«0y = Oy + gb@ug
P+0y = Oy — g@@us.

Thus p.0y = Oy, p+0y = %8u3.
Also, as W and b can be thought of as functions on B x R, being
independent of 1, the formula (2.2") translates into

(2.6) —9,V = %aw,b.
Thus b can be calculated as

(2.7) b(y,uz) = o(y) + /Qiadeu;»,
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where o(y) is some constant of integration.

Sl-invariant Ricci flat metrics on elliptic fibrations

We shall be most interested in the transformation described above
when V' and 6 are themselves periodic in v = u3. The hyperkahler met-
ric descends to one on the corresponding S'-fibration over Y = B x S!
if and only if the three 2-forms wi,ws, w3 are invariant under changing
u by a period, which in turn is saying that the periodicity in w is inde-
pendent of . We shall now change notation and denote this S' x S!
fibration over B by X (the universal cover X being the same as be-
fore). Since the restriction of the Kéhler form ws to a fibre X, is just
du N 0y = du A dt/27, the volume of any fibre is just the periodicity in
u. Changing coordinates to the holomorphic coordinates of Construc-
tion 2.6, we obtain a holomorphic map f : X — B to a contractible
open subset B of C, whose fibres are elliptic curves. Having chosen a
holomorphic section, we obtain holomorphic canonical coordinates x,y
on the corresponding line bundle X over B, where the holomorphic 2-
form Q = dz A dy, and where the Kahler form w (as defined by the
usual formula) determines a hyperkdhler metric on X. Moreover, both
W and b are independent of x7.

The periods of the above elliptic fibration have a basis {1, 7(y)}, for
some holomorphic function 7 of y. If we wish to have an explicit formula
for 7(y), we take a basis of homology {7v1,72}, where 71 is an S! in a
fibre X, of X — B given by the orbit of the S'-action, and v, is an S*
in X,, mapping isomorphically to {y} x S! C Y. Restricted to the fibre
Xy, we have dx = 6y — iV dug; one of the periods is then

/ dx = 00 = 1,
71 7

as already observed, whilst the other period

T(y):/ dw:/ 90—2'/ Vdus.
Y2 V2 Y2

By choosing the appropriate orientation for v5, we may also assume that
Im7(y) > 0.

If we have such a holomorphic elliptic fibration f : X — B and Ricci-
flat metric (independent of x1), we shall refer to it as an S'-invariant
Ricci-flat metric (on X) in canonical form.
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Conversely, if we are given such an S'-invariant Ricci-flat metric on
X, we saw above how this does indeed arise from the Gibbons—-Hawking
Ansatz. Moreover, in this case, we also have that V and 6 are periodic
in w, with the period in u being constant, namely the volume of the
elliptic fibres of f: X — B.

Remark 2.7. A particular case of an S'-invariant Ricci-flat metric
in canonical form is a semi-flat metric: Given, locally, two periods 7
and 7o, these should be interpreted as 1-forms on B, i.e., are T dy, Tody.
We can then locally replace y with a holomorphic function g on an open
set U such that dg = 71 dy, and thus can assume 71 = 1. Then in these
coordinates, the semi-flat metric coincides with the Gibbons-Hawking
metric obtained by taking V' = Imme/e on U x R/eZ. We can then
use the formula of Remark 2.4 to compute || R||? for a semi-flat metric
(which will coincide with the value calculated via Remark 2.1). Thus

1 2
IRI? = Zv'aav = %(Imfg)*lAA(ImTQ)*l.

In particular, | R[|?> — 0 as € — 0.

Returning now to the set-up in Question 1.2; away from the singu-
lar fibres, we expect that, as the volume € of the fibres tends to zero,
the metric (suitably normalized) will approach a semi-flat one. This
expectation is motivated by the following result, which proves a slightly
weaker version of the expected convergence for the S'-invariant Ricci-
flat case, purely by local considerations, as a consequence of Harnack’s
inequality for harmonic functions. Whilst we don’t expect a purely lo-
cal proof of convergence in general (i.e., not assuming the S'-invariance
of the metrics), the main result of this paper (Theorem 5.6) will prove
a very strong form of the expected convergence to a semi-flat metric
(locally over the base) by means of global methods.

Proposition 2.8. Let m# : X — B be an elliptic fibration with
periods {1,7(y)}, over the open disc B of radius R in C, with Im 1(y) >
0, and let By C B denote a smaller disc of radius Ry < R. Suppose we
have a sequence on X of S'-invariant Ricci-flat metrics g; in canonical
form (and with constant volume form), for which the volume €; := €(g;)
of the fibres tends to zero as i — oo. Then on 1 (By) we have W; :=
W(gi) — 0 uniformly asi — oo. On a fized fibre, with periods {1,7}, we
have the stronger statement that 6;1W¢ Im7 — 1 uniformly as ¢ — oo.
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Proof. Our assumption that the volume form is constant ensures
that we can fix the holomorphic canonical coordinates x, y and the holo-
morphic 2-form 2 = dx A dy independent of i. We now transform the
coordinates to Gibbons-Hawking coordinates; the first claim is equiv-
alent to W; — 0 uniformly on By x R. If the volume of the fibres is
€;, then the periodicity in u is €. Fix R; with Ry < R; < R; then
for ¢, << 1, the ball Bl in U = B x R with centre the origin and
radius R; will contain the set By x [0, €], so it will suffice to show that
W; — 0 uniformly on B’l as ¢ — oo. Fix ¢ for the moment so that ¢;
is sufficiently small as above, and drop the subscript for convenience.
Let B denote the ball of radius R, with centre the origin. Recall now
that W = V~!. Given that V is harmonic on B, this is precisely the
situation in which we can apply the strong form of Harnack’s inequality,
as stated in Problem 2.6 on page 29 of [11], namely that for any point
Pe Bl,

(1—-R;/R) < V(P) < (1+ Ry1/R)
(1 +R1/R)2 - VO) T (1- Rl/R)Q.
Thus, for P € 7~ (By), the ratio W (P)/W(0) is bounded above and

below by appropriate positive constants. For each y € By, we can
calculate the volume of the fibre X, as

Im 7(y)
€= Wdxi A dxo = / Wdxs.
X, 0

For Ry fixed and for y € By, we also have that Im7(y) is bounded
above and below by appropriate positive constants. On any fibre X,
with y € By, we can find a point at which W takes the average value on
the fibre, namely €/Im 7(y). Putting all these facts together yields the
claim that W; — 0 uniformly on Bl as 1 — 00.

For the stronger statement on a fixed fibre, we can assume that the
fibre is Xo, and that W takes the average value ¢/Im 7 at the centre 0
of the ball B. If we take a concentric ball B(r) of small radius r, it will
still contain all of {0} x [0, €], provided € < r. Harnack’s inequality then
yields

(1-7/R) < W (0) < (1+7/R)
(1+r/R)? ~ W(P)~ (1—r/R)?
for all P € Xy. By taking r arbitrarily small, these upper and lower

bounds are arbitrarily close to 1, and hence €; YW, Im 7 — 1 uniformly
on Xy. q.e.d.
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3. The Ooguri—Vafa metric

The aim of this section is to describe a certain hyperkahler metric
on a neighbourhood of each singular fibre in our elliptically fibred K3
surface, and to derive various estimates associated with this metric. If
the fibres are assumed to have volume ¢, then away from the singular
fibre, this metric decays very rapidly, for small €, to a semi-flat metric.
We shall assume throughout that we only have singular fibres of Kodaira
type I, and so locally around the singular fibre, one of the periods is
invariant under monodromy (and in fact, by an appropriate choice of
holomorphic coordinate y on the base, may be taken to be constant,
value 1), whilst the other period will be multivalued and tend to infinity.
The metric we define will be an S'-invariant metric (as described in the
previous section) on the smooth part of the fibration, and will be most
conveniently described in the Gibbons—Hawking coordinates.

The metric we describe was first written down (in a slightly different
form) by Ooguri and Vafa [29], and so will be referred to as the Ooguri—
Vafa metric. In §4, we shall start with an Ooguri—Vafa metric in a
neighbourhood of each singular fibre; by appropriately twisting these
metrics, we’ll show that they may be glued with a semi—flat metric
away from the singular fibres, hence obtaining a global metric, which is
Ricci-flat away from the gluing regions, and which represents the correct
Kahler class. For small €, it is these metrics which approximate very
accurately the global Ricci flat metric with the given Kéhler class.

Before launching into the technical details, we shall briefly describe
the basic idea behind the construction of the Ooguri—Vafa metric, which,
given the description of the Gibbons-Hawking Ansatz in §2, should
strike the reader as very natural. The harmonic function V' we use
will be periodic in u of period e (the volume of the fibres), but have
Taub—NUT type singularities on the fibre y = 0 at the points u € €¢Z.

We take U = D x R\ {0} x €Z, or more precisely its quotient by €Z,
where D C C is an open disc centred at the origin. We denote by y1, 2
the coordinates on D C C, and by w the coordinate on R. We want
to write down V' harmonic on U, periodic in u and with singularities of
the correct type at the points {0} x e¢Z. For instance, around zero, V'
should behave like a harmonic function plus a term ﬁ\xl’ from which it
will follow that the total space X of the S'-fibration over U extends (by
adding a single point) to a manifold X mapping onto U = D x R/€Z.
In addition, the hyperkihler metric extends to X. We are led therefore
to take V.= Vo + f(y1,y2), where f is a harmonic function in yq, 32 on
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D, and
1 & 1
=33 o).
4 S\ V(u+ne)? +ui +u3
where a,, = é (n > 0), thus ensuring appropriate convergence, and

ap is chosen appropriately to ensure that the periods do not change
as we change ¢ — that is, we are defining metrics on a fixed elliptic
fibration. This choice of ag also ensures, on a fixed annulus in D, that
eV ~ —i logr as € — 0, where 72 = 3? + y2. In general, the periods
around an [; fibre may be assumed to be 1 and 7(y) = % logy +ih(y),
where h is holomorphic in y = y; + iy2, and these may be achieved in
our construction by taking V' = Vi + f(y1, y2), where f denotes the real
part of h.

We now give the technical details.

Lemma 3.1. Let

1< 1
T = — —a
e (¢<u+ne>2+y%+y% '”)

n=—j

where

" :{1/n6 n #0
" 2(—y+log(2¢)) /e n=0

and 7y is Fuler’s constant. Then:

(a) The sequence {T;} converges uniformly on compact sets in D x
R — {0} x €Z to a harmonic function Vy. Here D C C is the unit
disc centred at the origin.

(b) Vo has an expansion, valid when |y| # 0,

1 = 1
. 2 - 2mimufe
Vo=~ —logly* + m;m 5o¢ Ko(2m|my|/e)
m#0

where y = y1 + iy2 and Ky is the modified Bessel function. (See
(3], p. 374.)

(¢) There exists a constant C such that for any 0 < ro < 1, there
exists an €y > 0 such that for all € < €, |y| > 7o,

1

\Z
0+47T€

C —aT €
log|y?| < —e2mul/e,



498 MARK GROSS & P. M. H. WILSON

(d) If r <1, and f is a harmonic function on the disc D, of radius r
such that f(y) — ﬁ log |y|2 > 0 for |y| < r, then there exists an g
such that for all € < €,

Vo+ f(y)/e>0
m D, x R.
Proof. (a) Let p be the smallest integer greater than ¢ 1y/1 + €2.
Then for 0 < u <e, y% —i—y% < 1, we have

1
V{u+ne? +yi +y3

> QAln|+p

for all n. Let

1 1
R; = — —a .
- Z <\/(u+n€)2+y%+y% |n+p>

n=-—j

Then for j > 2p,

1 p
Tj_Rj:E —ap—ao—QZan+2 Z Antp
n=1 n=j—p+1

Put C(e) = 1=(—ap —ap — 2 Zﬁ;ll ap). Note that Zflzjfpﬂ ap4p — 0
as j — 00, so if R; converges uniformly on compact sets to a harmonic
function R, then Tj converges to a harmonic function R 4+ C(e). Now
for 0 <u<e y?+ys <1, R; is a monotonically increasing sequence of
harmonic functions (since all terms are positive). Furthermore, it is easy
to check that, say, the sequence R; is bounded at v = €/2,y; = y2 = 0.
Thus by the Harnack convergence theorem, (Theorem 2.9, [11]), the R;
converge uniformly on compact subsets to a harmonic function R, and
Vo = R+ C(e). Since R is positive, we see Vy > C(e). For u = 0,¢,
we merely omit the term which blows up and then repeat the previous
argument.

(b) The part which requires care is the constant term of the Fourier
expansion, i.e., computing % foe Vodu. To do so, consider the following
variant on the T}:

1 < 1
S;j=— — by,
! 4772 <\/(u+ne)2+y%+y% >
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where
b — (log(n+1) —logn)/e n#0
"o n=0.

Then .
1 (2. 2~ 1
Tj—Sj—47T(610g(ﬂ+1)_a0—62n>-

n=1

Now we calculate

47r/5’du-2/< NOETTE +|y|2—b|n|>du

n=-j

= Z —log(|n| + 1) + log |n|)

n=—j

n#0

EJ: (n+1) 1

S A

n=—jYne U2 -+ !y|2
(j+1)e

:/ S S N
¢ Vui+y2 u

+ /° R T
e\ TP u—e)
€ 1
+/o u2+!y|2du
(j+1)e
=log (u‘l (u +Vu? + |y|2))
g (1ol (s v T IP) )|

—je

€
+ log (u +u? + \y!Q)
0

Evaluating this and letting ;7 — oo, one obtains

1
- hrn S du = —(log 2 + 2loge — log
4me

]—>OO 0
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from which we conclude that

1 [ 1
(/%m:—l%w?
0

€ 4me
To compute the other terms in the Fourier expansion, we just need
to calculate

1 0o e2m’mu/e

1/6 %eQWimu/edu _
€ Jo ame J_oo \JuZ + |y|?

1 [*cos(2mmu/e)

= — ———"du
2me 0 w/u2+’y|2

1 [ cos(2m|myl|v/e)

= — dv
2me Jo v?2+1
1
= %K0(27r|m?/’/5)~

The last equality follows from [3], page 376, formula 9.6.21.

(c) By [3], 9.8.6, there exists a constant C such that \/ze* Ky(z) <
Cy for z > 2. (In fact C; < 2). In particular, Ko(x) < Cie™ for x > 2.
Thus

o o0

L, imu/ Gy —2m|
Y g (2 < ZLY emzrimle
2. 27T€e o(2m|my|/€)| < — m:1e
m#0

Cl 6—27r|y|/e

e 1 — e2rlyl/e

for 27|y|/e > 2. From this follows (c).

(d) By the maximum principal, the minimum value M of f occurs
on the boundary of D,. On the other hand, for fixed wu, it is clear Vj is
monotonically decreasing in |y|. Thus the minimum value of Vj + f/e
must occur on (0D,) x R. But taking ro < r, by (c¢) there exists an ¢
such that for all € < €,

1 1
Vo + —logly|*| < ——logr® + M/e
4me 4dre

whenever |y| = r. Thus Vy + f/e is positive on D, x R for € < €p,
hence Vjy + f/e is positive on D, x R.  q.e.d.

With this rather technical lemma out of the way, we may now pro-
ceed to the construction of our metric, using the Gibbons-Hawking
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Ansatz formalism, as developed in §2. Suppose D, C C is the disc of
radius 7 < 1, centre the origin, and f : X — D, an elliptic fibration,
with singular fibre over the origin of type I;. Let Y = D, x R/eZ and
Y = (D, x R— {0} x €Z)/eZ. 1t is straightforward to check that there
is an induced map 7@ : X — Y of C* manifolds, which restricts to
an S'-bundle 7 : X — Y with Chern class &1, the sign dependent on
the choice of orientation for the fibre. For further justification of these
statements, the reader is referred to [15], Example 2.6 (1). The plan
now is to define a hyperkéhler metric on X via the Gibbons—Hawking
Ansatz applied to 7 : X — Y, and then check that it extends to a
hyperkiihler metric on X.

Proposition 3.2. With the notation as above, let

h(y) = f(y1,y2) +ig(y1, ye)

be a holomorphic function on D,., so that

1
——1 2 >0
1108 lyl* + f(y1,y2)

on D,. Let Vy be the harmonic function on'Y defined in Lemma 3.1, and
V =W+ f(y1,y2) /€, with € chosen small enough so that V>0 on Y.
Then there ezists a connection 1-form 6 on X such that df/2mi = xdV,
and this defines a hyperkdahler metric on X with

—ReQ =dy1 N0/27i + Vdys A du
—ImQ =dys N 0/2mi + Vdu A dy;
w=duNb8/2ri+ Vdy A dys.

These forms extend to X, giving a hyperkdihler metric on X, and a

holomorphic elliptic fibration X — D, with periods 1 and %logy +

ih(y) + C, for some real constant C. By appropriate choice of 0, this
constant C may be taken to be zero.

Proof.  Since V is harmonic, recall that *dV is closed. Taking a
sphere S? of radius < € centred at 0 € D, x R, we have

1
/ *dV = *xd
52 52 4r/u? + yi + ys

since all other terms in *dV are defined at 0, and hence are exact on
an e-ball around 0, and therefore do not contribute to the integral. In
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Example 2.5, it was however observed that this latter integral is +1
(depending on the orientation of the sphere). Thus, since a connection
form 6 can be found such that idf/2 is any desired representative of c;,
we can find a connection form 6 such that df/2mi = *dV. Applying now
the Gibbons—Hawking Ansatz construction described in §2, we obtain a
hyperkahler metric on X, with the forms Re {2, Im 2 and w as described
in the Proposition.

To see that these forms extend to X, focus on an €/2-ball B around
0 in Y. Then #7!1(B) — B can be identified with the map given in
Example 2.5, restricted to the inverse image of the ¢/2-ball in C2. Let
0’ be the connection form given in that example. Now d(6) — d(¢’) is
the pull-back of an exact form on B, since all other terms of V besides
the n = 0 term are defined on B. Thus on 7~ !(B — {0}) we can write
0 = 0’ +7*3 for a form 3 defined on all of B. Now consider for example
on #~Y(B — {0})

w=duA0/2mi+ Vdy N dys

= du A (0 +7*B)/2mi + (1/47n/u2 Fyi R + V’) dy1 A dys

where V' is a function defined everywhere on B. Thus we obtain

0/
dun 2+ <1/4wm> Ay A dys +du A =+ V'dyy A dy.
21 2T

The sum of the first two terms was seen to extend to all of 77!(B) in
Example 2.5, and the last two terms are defined everywhere on B, so
w extends to X. Note that w? # 0 at the singular point of the singular
fibre, because both du A 8 and V'dy; A dys vanish at that point.
Finally, we compute the periods. Referring back to our discussion
of S'-invariant Ricci-flat metrics in §2, one of the periods is constant,
value 1. The other period 7(y) is locally holomorphic in y, and given by

/d:ﬂz/@o—i/ Vdu,
V2 Y2 Y2

where 7, is an S! in the fibre X, mapping isomorphically to {y} x S* C
Y. Calculating the imaginary part of this,

1
dry = — du = +(—1 2_
LQ T2 WV u <47T og |y| f(yl,y2))’

using the Fourier expansion for Vj proved in Lemma 3.1 (b). We choose
the orientation of <5 to obtain the choice of sign to be minus. Then
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f,m dz; is necessarily locally a harmonic conjugate of —ﬁlog ly2 +
f(y1,y2), and so the period of 75 is

1
—1 h C
57 108y +ih(y) +
for some real constant C. Now 6y may be modified by adding a term
adu (a € R) without changing the fact that dfy = *dV. If 6y is changed

in this way, we have
/ dm1:/ 0o + adu
Y2 Y2

= ae + 0.
Y2
We can therefore choose a suitably to obtain C' = 0, and hence the
periods as claimed. q.e.d.

Remark 3.3. (1) There is still some remaining flexibility over
choosing 6, as we can change 6 by the pull-back of a closed form from
Y. This however need not worry us, since in order to perform the gluing
in §4, we will in any case need to twist the Ooguri—Vafa metrics, the
twist given as translation by an appropriate local section.

(2) Recall that in the holomorphic canonical coordinates x,y, the
holomorphic 2-form 2 on X is just dx Ady, and so the complex structure
on X will be the one desired. This 2-form extends uniquely to give the
correct complex structure on X.

Remark 3.4. A useful transformation. As ¢ — 0, the be-
haviour near the singular fibre of the Ooguri—Vafa metric is understood
best by making a change of variables. The periods may be assumed to
be 1, ﬁ log y+ih(y), as in Proposition 3.2, and we take V' = Vo+ f(y)/e.
We make the change of variables s = u/e,v; = y1/€,v2 = y2/e. Thus
the disc of radius € in the complex y-plane corresponds to the unit disc
in the complex v-plane. If we now consider V; as a function of these

new variables, we observe that

- 1
Vo=, ( —Cn|>7

=\ V(s +n)2 +0? + 02
where ¢, = 1 (n > 0), and

co = 2(—vy + log(2¢)) = 2(—vy + log 2) + 2loge.
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So, if Vj is the standard function Vj in variables s, v1,vs for € = 1, we
deduce that

~ 1
eV =Vy— —loge+ f.
27

Thus, if we start with an Ooguri—Vafa metric with fibres of volume € over
the disc of radius €, make the change of variables described above, and
then rescale the metric by e~!, we obtain the Ooguri-Vafa metric over
the unit disc, with fibres of volume one, corresponding to the harmonic
function Vo + f — % log e. Thus the periods of the corresponding elliptic
fibration are seen to be 1, 7=~ log v+ 5% log e+ih(y). This transformation
lies behind the various estimates for diameters and curvature we derive
below. We note here that in fact the formula given in [29] was for €V,
rather than V{, except that the constant ag was not specified. The exact
value for ag greatly influences the behaviour of the metric as € — 0, so
this is quite important.

To understand the metric for |y| > €, we can use the Fourier expan-
sion for V) from Lemma 3.1 (b), and use the same change of variables
as above. Thus

1 2 2 1 — 1 2mims
Vo = —Elog(vl +v3) — o loge + mZoo 7€ Ko(2m|muv))

m#0

where v = v + vs.

Estimates for diameter and curvature

We now consider a fixed elliptic fibration f : X’ — D’ over a disc
D’ of radius @’ < 1, with singular fibre of Type I; over the origin,
and which we assume extends to an elliptic fibration over some larger
disc. We assume that the periods are of the form 1, 7(y), where 7(y) =
ﬁ logy +ih(y) as in Proposition 3.2. We then wish to study sequences
of Ooguri—Vafa metrics yielding the correct holomorphic 2-form €2, but
with the volume € of the fibres tending to zero — such metrics exist
on X' for small enough € by Proposition 3.2. We first ask about the

diameters of the fibres.

Proposition 3.5. There exists a positive constant Cy (independent
of €) such that, for metrics as above with fibre volume €, the diameters
of the fibres over D' are bounded above by C1(e log 6_1)1/2. Moreover,
there exists a second constant Co such that the diameter d(e) of the
singular fibre is at least Cy(e loge 1)1/2,



LARGE COMPLEX STRUCTURE LIMITS

Remark 3.6. In particular, it follows that d(e) — 0 as € — 0.
If however we rescale the metric by e ! as in Remark 3.4 to obtain
fibres of volume one, then the diameter of the singular fibre is of order
(log 6_1)1/ 2 and therefore becomes arbitrarily large as ¢ — 0. This
then contrasts with the situation for a non-singular fibre, where for
sufficiently small €, the Ooguri—Vafa metric near this non-singular fibre
is close to being semi-flat. Thus the diameter of the fibre in the rescaled
metric remains bounded.

Proof. To calculate the diameter of a fibre, we recall from §2 the
formula for ds? in the Gibbons-Hawking Ansatz, namely

ds? = Vdu-du+ V103

From this, it is clear that the diameter of a fibre is at least fOE/Q Vi 24y =
% fo€ V1/2du. Recall however that for all y # 0, there exists a point on
the fibre over y at which V' = Im7(y)/e, where now Im 7(y) is bounded
below by a positive constant for y € D’. For some constant C therefore,
we have on each fibre 0 # y € I, a point at which V=12 < Cel/2; by
continuity, this is also true for the singular fibre. Thus each fibre over D’
contains an S! in the S'-bundle (where u is constant) of length at most
Ce!/2, and hence the diameter of the fibre is at most % fOE V12du4Ce/?.
Since V = Vo + f(y1,y2)/€, and | f| is bounded on D’ by some constant
A >0, we have

/ V2 — AV S/ Vl/zdug/ VY240 4+ AV2E 02,
0 0 0

Since f0€ Vol/ du clearly takes its maximum when y = 0, we are reduced

to estimating f0€ Vol/ du on the singular fibre only, and showing that it
is of order (e loge1)1/2.

We now let V; denote the restriction of Vj to the singular fibre, that
is we take y = 0. Making the substitution s = u/e as above, we observe

that, for 0 < s < 1,

AmeV, i L L +§: ! ! +1+2 2log 2
meVp = - — - — - - €.
0 s+n n —s4+n n s i &

n=1 n=1

We now quote formula 6.3.16 from [3], for the fact that, for 0 < s < 1,

= 1 1)
- — )= =v(+s),
n§:1<3+n n
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where 1 denotes the psi function. Thus, for 0 < s < 1,
_ 1
dreVp = —¢p(1 +s) — (1 — s) + — — 2log 2e.
s

Using formula 6.3.15 from [3], we know that

— (A +s)+ (1 —5) =2(1—-5>)7"! +2’y—2+§: 2(¢(2n+1) —1)s>,

n=1

where ¢ denotes the usual zeta function. Hence, for 0 < s < 1,
%, o1, 1
AreVy =2(1 — %) + — —2loge + G + 2¢(s),
S

with G = —2log2 + 2v — 2, and where

o0

9(s) = S (C2n +1) - 1)s>

n=1

has radius of covergence at least 2 (by inspection of the coefficients),
and so defines a continuous (non-negative) function on [0, 1]. Now ob-

serve that [; ‘701/2du = €l/2 fol (eVo)Y/2ds. The lower bound now follows
immediately by ignoring the first two terms in the expression for 4meVy.
The upper bound follows by using the elementary fact that for a, 3 non-
negative real numbers, (()H—ﬂ)l/2 < /24312 along with the fact that
the integrals fol s71/2ds and fol(l — 52)71/2ds are finite.  q.e.d.

Corollary 3.7. With notation as in Proposition 3.5, we suppose
D c D' is a disc centred on the origin of radius a < o' < 1, and let
Diam(e) denote the diameter of the total space of the elliptic fibration
over D, under an Ooguri—Vafa metric on X' with fibre volume €. There
exists a constant Cs (independent of both € and a) such that, if € < a,
then

Diam(e) < Cza'/?e71/2,

Proof. Consider the slice u = €¢/2 of Y, and a radial curve v from
y = 0 to y = ae’? within this slice. There is a horizontal lift 4 of ¥ to
X; recalling that

ds®> = Vdu-da+ V7163,
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we deduce that the length of ¥ is just
/V(y’ ¢/2)'?|dy| = / V(re e/2)2dr.
7 0

Since by Proposition 3.5, the diameters of the fibres are bounded

above by

Cie'?(loge /2 < Cral'/?e71/2,
if we can show that the latter integral is bounded above by Cal/2e=1/2,
for some constant C independent of both € and a, then the desired
bound for Diam(e) will follow (to go between any two fibres, we can
always take the route via the central fibre).

We estimate the above integral in two parts, from 0 to €, and from
€ to a. We can estimate the first of these integrals most easily by
performing the useful transformation described in Remark 3.4. Recall
that

~ 1
eV:VO+f—%loge.

Now Vy(|v],1/2) is bounded above for 0 < |v| < 1 by V;(0,1/2), and so
eV (re, e/2) < A’ — 5-loge for 0 < r < ¢, where A’ is some positive
constant. Thus

/ V(re®?, e/2)Y2dr SE_I/Z/ (A/—iloge)l/er
0 0

27
< 0/61/2(10g 6_1)1/2,

for some positive constant C’ independent of e (and of course a).
We therefore now need to demonstrate that

/ V(re®, e/2)2dr

has a bound of the desired type. To do this, we use the expression for
Vo given in Lemma 3.1(b). From the proof of Lemma 3.1(c), we deduce
that, for |y| > €/, we have

o 2mlyl/e

-
2meVy < —log |y| + 2C 1 — e—2mlyl/e’

In particular, since the second term is decreasing in the range, we have,
for |y| > €, that

—27

27'('6‘/0 < —log |y‘ + QCilij,
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and hence that

2meV < —log |y| + C,

for some constant C independent of ¢ and a. Using the assumption
that a < a’ < 1, we have

/ V(T€i€,€/2)1/2d7" < (27‘(’6)_1/2/ (CY) — logr)l/Zdr
< 61/2C§/ (logril)lmdr

a
< 61/202,3/ 24y
€
< 2042012,
for an appropriate constant C%, depending on a’ but independent of e
and a. The result then follows immediately.  q.e.d.

Proposition 3.8. With notation as in Proposition 3.5, let R(e)
denote the curvature tensor of the total space X' of the elliptic fibration
over D', under an Ooguri—Vafa metric on X' with fibre volume €. Then
there exists positive constants Cy, CYy (independent of €) such that, for
all sufficiently small €,

Cle tog(e ™) ™2 < ||R(e)||co < Cae tlog(e™),

where || . ||co denotes the usual C°-norm on X'.

Proof. Recall first from Remark 2.4 that
|R|]> = 12V S|VV* + VTAA(IVV ) — 6V 2(VV) - (V(IVV]?)).

We now perform our change of coordinates s = u/e, v = y/e. We
recall that V' =V + f(y1, y2)/€ for some bounded harmonic function f
defined over D', and that

~ 1
eV =W+ f— —loge.
27
Also observe that Vi g, 4o = € Vs, 0,; from now on V will denote

V1,00, and A will denote Ag 4, 4, Weset Vi =€V = Vo + f— % loge,
considered as a function of s, vy, ve. Thus

e R|? = 12V VW + VT A(IVWA) = 6V (V) - (V(IV V).
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We first prove the upper bound for ||R(€)||co, namely that
IR(e)]| < Cae™ log(e™")

at all points of X’. The easy part of this is to deal with the points
in the range 1/2 < |v| < a/e (where a now denotes the radius of D’),
corresponding to |y| > €/2 in the disc D’. Here we use the Fourier
expansion for V7, namely

1 1 '« 1 2mims
Vi = f%log lv| + f — %loge + Z 7:¢ Ko(2m|mul).
oy

Recalling that Ky(x) and its derivatives decay at least as fast as e™*

for large x, it is clear that |[VVi|*, A(|]VV1]?) and (VW) - (V(|VV4]?))
are bounded (independent of €) for 1/2 < |v| < a/e. Moreover, for €
sufficiently small,

m=0o0

1 1 2mimu/e
V=g loglyl + W)+ Y e Ko2rlmyl/e)

m#0

is bounded below, over D', by some positive constant (independent of
€). Thus, V; is bounded below on 1/2 < |v| < a/e, and hence €||R|| is
bounded above on the given range by some constant, again independent
of e.

The trickier argument is of course for the range 0 < |v| < 1/2,
corresponding to 0 < |y| < €/2. We assume that e is small enough that
3e/4 < a. We make our usual change of variables, so that

~ 1
Vi=eV=V+f+-—log(e )
27

defines an Ooguri—Vafa metric over the disc |v| < 3/4, fibres of volume
one, and periods {1, (2mi) ! log v+(27i) ! log e+ih}. Now choose A > 0
such that f + A > 0 whenever |v| < 3/4, and set Vo = Vo + f + A4; Vs
then determines an Ooguri-Vafa metric over the disc |v| < 3/4, fibres of
volume one, and periods {1, (27i) ! logv +ih +iA}. We may obviously
assume that A < (27) " !log(e™!). Let Ry, respectively Ra, denote the
curvature tensors of the metrics determined by Vi, respectively V5. Our
aim now is to show that ||R1||?> < C log(e~1)? over the disc |v| < 1/2; if
this is true, it follows from the above that |R|| < Cye 1log(e™!) at all
points over D', for some positive constant Cy.
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Since the metric determined by V5 is independent of €, it is clear
that || Rz|| is bounded over |v| < 1/2, with the bound independent of e.
Hence

(3.1) 12V °| VW[t + V5 TA(IV1R[?) — 6V, °(V1R) - (V(IVVa[)

is bounded independent of € over the range in question, |v| < 1/2, which
from now on will be taken as understood. We wish to show that

|R1]? = 12V 6|Vl + VT AA([VIRP)
= 6V (VVa) - (V(|VVa])
< C(log(e™1))2.
Since Vi = Vo + (27r) " tlog(e™!) — A > V4, it will be enough to prove
the same bound for
(3.2) 12V 2V, VW[t + Vo fA([V1AP)
= 6V (VVa) - (V([VVa ).

By subtracting our previously bounded expression (3.1), we need then

only show boundedness for
33) 12V 2V, O(v5 = V)|V Vel
' — 6V V5 (Ve = Vi) (VV2) - (V(IV VR ).

Expanding this latter expression out, we get

6 ((2m) "' log(e™ ') — A) Vi (‘/25(VV2) S(V(IVVR).
(3.4)
— 2V, (1 + Kf)\vvgrl).

We now claim that
Vit (Ve P(VVa) - (V(IVVR[?)) — 4V 6|V TA[Y)|

and
ViRV, O Ve[t

are bounded independent of e. If this is true, then the latter bound will
imply that

Vit (1= )V Y V1e[t < C'(log(e™!) — 27 A)
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for some positive C’, and then the former bound implies that the ex-
pression we are interested in has a bound of the form

By (log(e™') — 21 A)? + By(log(e™!) — 21 A),

for suitable positive constants Bi, Ba. This then gives the required
result.

To show boundedness for the two remaining quantities, it is sufficient
to bound the functions

Vy S 4V, VW[t — (V1) - (V([V1[%)]

and
Vy 8|V 1a/t

Both these functions are defined away from {0} x Z and are periodic in
s; moreover, they plainly do not depend on e. If we show that they are
in fact both continuous at the origin (v = 0,s = 0), the existence of the
required bounds will follow automatically.

We now write 47Vo = p~! + w, where p = (s> + v} + v3)"/? and w
is a harmonic function on a neighbourhood of the origin. Then we see
that (47)VVa|* = p=8 + O(p~5). Since (47V3) ™8 = p¥(1 + wp) =8, we
deduce that V, 8|VVa|* is regular at the origin, taking the value (47)*
there. Moreover, it is easily checked that

(4m)* (V1) - (V(IVVa[*)) = 4p™" + O(p™?),
and so in particular
4V TIVV[ = 1 8 (VVa) - (V(IVV2]?))

is also regular at the origin, and vanishes there.

We now turn to the lower bound for ||R(€)||co. We work on the
transformed elliptic fibration over the disc |v| < 1/2, and let M denote
the C%-norm of the function given by (3.1).

From the above calculations, at all points P with sufficiently small
value of p, we have

Vo 8(VVa) - (V(IVVR]?) — 4V, T|IVVat < M, V3 7 |VVa[" > 2MM.

We now fix such a point P; note that the coordinates s, v, v9 are then
taken to be fixed, and so this does not correspond to taking a fixed point
(independent of €) on our original family X’.

511
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Observe now that
(2m)tlog(e ™) — A
Vs ’

so for P fixed, Vi (P)/Va(P) > 2 for € sufficiently small. From this it
follows that, when evaluated at P,

Vi/Va=1+

- _ 1%
Ve S(VV2) - (V(IVVaP)) = 2V 71+ IV Vaft| > M,

for e sufficiently small. Hence, for € sufficiently small, the modulus of
(3.4) evaluated at P is at least 3M say, and thus the same is true of (3.3).
From this, and our original choice for M, it follows that the modulus of
(3.2) evaluated at P is at least 2M. Therefore, for e sufficiently small,

IR (P)][* > B(log(e™)) ™"
for some constant B independent of €. Thus
IR(e)l|co > BY?e ! (log(e ™)) 72,

as required. q.e.d.

4. Almost Ricci-flat metrics on elliptic K3 surfaces

Our goal in this section is to construct Kéhler metrics on elliptic K3
surfaces which are very close to being Ricci-flat by gluing the Ooguri—
Vafa metric in neighbourhoods of singular fibres to the semi-flat metric
away from the singular fibres.

We begin by producing one such metric on a Jacobian elliptic fibra-
tion. Fix a K3 surface X with a fixed holomorphic 2-form 2 and an
elliptic fibration f : X — B = P!, which we will take to have a holo-
morphic section og. Furthermore, assume all singular fibres of f are of
Kodaira type I7; there will then be 24 such fibres. Let pq,... ,poq € B
be those points for which X, = f~(p;) is singular, A = {p1,... ,pas},
By =B - A, Xo = f"Y(By), and X# = X — Sing(f~'(A)). There is
an exact sequence, already mentioned in §1,

0— R f,.Z—T;-2 X # 0,

with the property that ¢ maps the zero section of 753 to o and ¢*(2is the
canonical holomorphic 2-form on 75, which is dz Ady if y is a coordinate
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on B and x a canonical fibre coordinate. (See [14], Proposition 7.2).
Here & = 0 defines the zero section.

Given this data, by Example 2.2, for each €, there exists a well-
defined Ricci-flat metric on Xy, the standard semi-flat metric wgp, with
the area of each fibre being €. The reader should keep in mind the
dependence of wgp on e.

Now let y be a holomorphic coordinate on B defined in a neigh-
bourhood U of p € A, U contractible with U N A = {p}, and y = 0
at the point p. Let z be the corresponding canonical fibre coordinate.
Let U* = U — {p}, Xy+ = f~1(U*). We can then choose over U* holo-
morphic periods 71 (y), 72(y), representing possibly multi-valued holo-
morphic sections of 7;7. generating the period lattice. Because the
11
g 1) We can
take one of these, say 71, to be single-valued, though m will be multi-
valued around the I; fibre. We will always choose 71 and 75 so that
Im(772) > 0. Set

Wo(y) = 1/Im(7172)
Im(Tg.T)ayTl + Im(ﬁx)ayfg

monodromy about an I; fibre in a suitable basis is

bo(l',y) - -

Im(f’lTQ)
and
Oy = Wy 10,
Onh = 0y — bpOy
Uy = Woy(dx + body)

U = dy

as in §2. The latter two 1-forms are well-defined on X{;, so form a basis
for (1,0) forms. We denote by 0, et cetera the complex conjugates of
the above as usual.

Lemma 4.1. Let w be a real closed (1,1) form on Xy, with
w= %(aﬁvm§v+ﬂq9h/\q§v+B¢9Vm§h+7ﬂhm§h).

There exists a function ¢ on Xy« such that w = i00¢ if and only if w
represents the zero cohomology class on Xy« and

B dri Ndxes =0
Xp
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for all b € U*. Furthermore, for 0 <1y <y, let Uy, r, ={y € U|r <
ly| < ro}. Ifri < vl <rhy < ry and Uy, C U*, then there exists
a constant C depending only on r1,72,7),7% and the periods of f over
Uy, r, such that ¢ can be chosen with

lelleriza < Cllaliora + 1Bllcra + 1Vllcna)-
Here, we compute the C* norm of a function on f~1(U,, ro) by thinking
of them as functions on T[}:l vy which we embed in C? by the coordinates

x and y. We can then use the standard C*® norms on a bounded open
set of ’T[}*Tl v which contains a fundamental domain of each fibre. The

norm || - [ denotes the similar norm of a function over Uy . .

Remark 4.2. We note that the definition of the C*® norm
given above depends on the choice of holomorphic coordinate y and
the bounded open set, but any two such norms will be equivalent.

Proof. Before beginning the proof, we observe from (2.4) and (2.3)
that

00y =((8yWo)dy + (0uWo)In) A Wy 10y
(4.1) + Wo((0vbo)dyv + (Onbo)9n) A
00, =0.

Furthermore, locally for the base, a function on X}; can be expanded
in a Fourier series on the fibres, yielding

f(l', y) — Z an m(y)e?ﬂi(nlm(mi)—i—mlm(ﬁx))/Im(q‘—lTQ).
n,meZ
A direct calculation shows that
onf = Z 8, (an m>€27ri(nlm(7'zf)+mlm(7’-1x))/Im(i—l—rz)'
n,meZ

If a ¢ exists, then of course w represents the zero cohomology class
on Xy+. Also, B o o
i00¢ = i0((0v) Vv + (Onp) V).
From (4.1) it then follows that if w = 190y, then

5 = 2(6h5v90 + (év@)W()_lahWO)a

and then by looking at the constant term ag o of the Fourier expansion
of (3, it is clear that be Bdxy A dze = 0.
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Conversely, first suppose w is cohomologically trivial. Then there
exists a one-form § of type (1,0) such that 5d(§ — §) = w (since w is
real). Necessarily ¢ = O¢ = 0. Thus & represents a class in H%( Xy )_

If this class is zero, then there exists a function ¢ such that dp = &,
and then 0¢p = &, so

w = 5(00¢ — 00p) = 500+ ¢) = 00 Re o,

as desired. Thus we need to understand when £ represents the zero
class.

Now HY'(Xy+) = HY( Xy, Ox, ), which by the Leray spectral se-
quence for f is isomorphic to H(U*, R' f,Ox,..), as H(U*, f.Ox,.) =
H{(U*,Opy+) = 0 for i > 1. Thus ¢ represents zero in H%!'(Xy) if
and only if €| x, represents the zero class in H%!(X,) for all b € U*. If
we write & = giy + hoy, this is equivalent to the constant term in the
Fourier expansion of g on the fibre being zero. Denote this constant
term by go(y).

What kind of function is go? Well, by (4.1),

0= 0¢ = (Ong — Ovh)Iy AV,

By looking at the constant term of the Fourier expansion of this coef-
ficient, we see Jygo = 0, so go is a holomorphic function on U*. This
function gives the section of R f,O X, defined by €.

Now let us compute the coefficient 8 of ¥, A ¥y in w in terms of g
and h. From w = £(9¢ — 0¢) and (4.1), it follows that

B = hg + Ovh + gWy o Wo + gWodybo.

If By is the constant term in the Fourier expansion of 3, then we get,
using (2.2') for the second line,

Bo = 9ygo + GoW O Wo + goWoOybo
= 0yJo + GoOrbo + goOzbo

(4.2) _9 do + go(%gayﬁ — 7_'18y72) — go(’rgayﬁ — Tlay’rg)
)

T1To — T17T2
= 3yg0 + bo(go, y)-
If we now assume in addition that f X, Bdxy A dxo = 0 for all b € U™,
then Gy =0, so
9ygo + bo(go,y) = 0.
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Now write go(y) = a1(y)m1(y) + a2(y)m2(y), where a1, as are real func-
tions of y. Then by(go,y) = —a10yT1 — a20,T2, SO

0= 8y§o + b()(g(), y) = (8ya1)71 + (8ya2)72.

But
0= ﬁggg = (agal)ﬁ -+ (837@2)72.

Thus combining these two equations gives

Oy a1)1 + (O, a2)T2 =

(0y,a1)71 + (Oy,a2)T2 = 0,

and by linear independence of 71 and 7o we see a1 and a9 are constant.
Since gg is well-defined and we are assuming 77 is the monodromy in-
variant period, we have gy = a7y, a a constant. Now a calculation shows
that

%d(’ﬁ@v — 7_'119V) =0,

so we can subtract am ¥y from & without affecting %d(g —¢) =w. Thus
we can assume go = 0, and then ¢ represents the zero class in H! (X)),
allowing us to complete the proof of the existence of ¢.

Now we need to control the norm of . First note that

1
Wea = 20,0:¢ = 580,

where A, = 92, + 02, denotes the standard Laplacian on fibres. Writ-
ing ¢ = g + v, where g is the pull-back of a function on U* and
be pudzidre = 0 for all b € U*, we have Wia = Ay, /2. It then fol-
lows that |¢,| is bounded on each fibre (being a torus) with the bound
proportional to a bound for |a| on that fibre, with the constant of pro-
portionality depending on the periods at that point. (To see this, one
can just work with Fourier series). Thus

l@ollco < Crllal|co

on Uy, r,, where C7 depends on the periods over Uy, .
Next restrict ¢ and w to the zero section of f : Xy — U. On this



LARGE COMPLEX STRUCTURE LIMITS 517

zero-section,

w= %7 dy N dy
=00y
= 10,05 dy N dy
i _
= ZAygo dy A dy.
so Ay = 27 on the zero section, where A is the the standard Laplacian
851 + 852 on U*.
Now let ¢ be a harmonic function on Uy, , such that 9| Ty =

¢l . (Here we are identifying U, ,, with its image under the zero
1,72
section.) This function exists and is unique. Then

27|l co
Ay <90—¢+ ” 4HC (yi +y§)> =27+ |127|lco > 0.

Thus by the maximum principal, ¢ — 1 + [|27]|co(y3 + y3)/4 achieves
its maximum when either |y| = r1 or |y| = r2, and since ¢ — 1) = 0 on
the boundary of U, ,,, we have

o =¥ < 129]lco r3/4.

Similarly, ¥ — ¢ < ||27||co 73 /4, so

le = ¢llco < Il 13-

This estimate holds on Uy, r,, but from ||¢,||co < Cille|co, it is clear
that the oscillation of ¢ along the fibres is bounded by C||¢||co, and
thus on f~1(Upy 1y),

le = llco < Colllallco + [[¥llco)

for some constant Cy depending on the periods, 1, and ro. Noting
that 90v = 0, we can replace ¢ by ¢ — 1. Then the C*+22 estimates
follow from the standard interior Schauder estimates for the Laplacian
(see [11], problem 6.1.) This is because the ordinary Laplacian (in the
coordinates 1, x2,y1,y2) of ¢ can be expressed in terms of a, 3 and ~.

q.e.d.

Lemma 4.3. Let w be a Kahler form on Xy, wsp the semi-flat
Kdhler form on Xy, such that

/ w:/ WSF = €.
X, X,
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Then [wsp —w] = 0 in H*(Xy=,R), and furthermore, there exists a
holomorphic section o of f : Xy — U and a function ¢ on Xy~ such
that

wsr — Tiw = 100,

where T, is translation by the section o.

Proof. To show the first part, we first observe that Ho(Xy~,Z) is
generated by the homology classes of two submanifolds: Xj for some
b e U*, and T, where T is a torus fibred in circles over a simple closed
loop v : [0,1] — U* generating 71 (U™*), with the class of the fibre being
the monodromy invariant cycle. To show [wgr — w] = 0, we just need
be wgr — w = 0, which is obvious, and fT wgr —w = 0. Now fTw =0
since w is defined on Xy, where T is homologous to zero. On the other
hand, if we describe T explicitly, parametrised by coordinates s, ¢ with
p:[0,1]2 — Xy« given by

n(s,t) = (z(s,t), y(s, 1)) = (st (7(2)), (1)),
then a calculation shows that p*wgr = 0, and hence fT wgr = 0. Thus

[wsp —w] = 0.
As in Lemma 4.1, write, for each section o of f: Xy« — U*,

LUSF—T;LU = %(aoﬁv/\gv“‘/@gﬁh/\gv—f-"').

Let og be the zero section, so that T, is the identity. We showed in
(4.2) that the function [y, the constant term in the Fourier expansion
of Bs,, was of the form

ﬁO = 8yk; + bO(ka y)

where k(y) is a holomorphic function on U*.
Now write

i _ _
w= §(WW5219VA19V+5M9}1A19V+-~)
where necessarily the constant term of W is

(ImﬂTg)_l Wdzi N\ dzy = (ImﬁTQ)_l EWWO*ZﬁV AUy
Xb Xb 2

= ¢/Im(T172).



LARGE COMPLEX STRUCTURE LIMITS 519

We calculate T;w. First note that

T5(9v) = Wo(d(z + o(y)) + bo(z + o(y), y) dy)
= Wo(dz + bo dy) + Wo(Oyo(y) + bo(o(y),y)) dy
=Yy + Wo(0yo + bo(a(y),y)) V.

Thus the coefficient of ¥, A ¥y in T (w) is

1 %%
s (o Tt @+ mlo)))
On the other hand, wsp = %Wo_l(e Iy Ay + €19, A '9h). Thus Gy, =
—B,, and

(00 + bo(o (). ).

5026000110_70

So

(ImflTQ)il By dx1 N dxo
Xp

= (Im7_'17'2)_1< ﬁffo oT, dry A dxo
Xb

W 0y + bolo () y) [ W dar A dxg)

Xp
= Bo — €(9yo +bo(a(y),v))-

If we take o(y) = k(y)/e, this will yield zero. So for this choice of o,
wsp — TFw = 100y for some function ¢ on Xp«.

Note that a holomorphic section of f over U* always extends to a
holomorphic section of f on U. q.e.d.

Theorem 4.4. Let f : X — P! be an elliptically fibred K3 surface
with a holomorphic section and 24 singular fibres over A = {p1,... ,pas}
as above. Then there exists open sets Uf - Uzi CPLi=1,...,24, each
diffeomorphic to a disc, U} N A = {p;}, positive constants D1,... ,Dg
and €y such that, for all € < €y, there exists a Kdhler metric w. on X
with the following properties:

1) [ o= [ meoy = [ amoy?
(2) /X =
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(3) We|p-1p1\y, Ug) = WSF-

(4) wE’f—l(U{') = T wov, where wovy is an Qoguri—Vafa metric and
T, denotes translation by some holomorphic section o;.

(5) If F. = log (”2?/2), then

|Ec]|co < Dye P2/

and
|AF.||co < Dpe~P2/e

where A denotes the Laplacian with respect to the metric we.
(6) info{ Ric(v,v)| |[v|w, = 1} > —Dge™P4/e,
(7) With the Riemannian metric induced by we, Diam(X) < Dse= /2,
(8) If R denotes the Riemann curvature tensor, then

IR||co < Dge tloge™?,

|IR||co — o0 as e — 0,

and on any non-singular fibre, there exists a constant C depending
on the fibre such that
|R|| < Ce.

Proof. Let p € A; we fix our attention near this point. Choosing a
holomorphic coordinate y in a neighbourhood of p, we can express the
holomorphic periods of f as 71(y), 72(y), where 7 is taken to be single
valued. In 7}, this coincides with the holomorphic differential 71 (y)dy.
Locally, there exists a function g(y) with dg = 71(y)dy; since 71(p) # 0,
we can use g as a local holomorphic coordinate in a neighbourhood of
p. Replacing y by ¢, we can then assume that 71(y) = 1 and also that
y = 0 at p. By results of §3, we can then construct for all € less than
some €, a metric woy on f~H(U), for some U = {y| |y| < r}, for some r
which only depends on the period 72 and €, but not €. Fix r; <rp <r,
and let U; = {y| |y| < ri}. If p=p;, we set U] = U,.

Remaining focused near p, let ¥ : (0, (r2 + §)2) — [0,1] be a fixed
C*> cut-off function, with 1 (r?) = 1 for r < 71, ¥(r?) = 0 for r > ro.
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Now apply Lemma 4.3 with w = wpy. Then there exists a holomorphic
section o of f over U, such that

wsr — Tjwoy = 100y
for some function ¢ on Xp«. We can then glue T ;woy and wsr by
Wnew =— WSF — 285(¢(’y‘2)90)

For |y| > 72, wnew coincides with wgp; for |y| < 71, wpew coincides with
T*woy. This can be done at each singular fibre, obtaining a global
closed real (1,1) form wpey-.

We still need to check wyey is positive. One calculates that on X+,

new =(1 = V(I )wsr + vl Trwov —i(v () dy A dg
+ 0/ (lyP)y D A di+ 0" 1y yle dy A dy).

The sum of the first two terms is positive, so we need to make sure the
last three terms are small. Thus we need to control the size of . To do
so, we need to show wsr — Trwoy is small. Now

WSF = %Wo_l(e Yy /\@V + et In /\gh).

On the other hand, we can assume ¢ is the zero section by having
chosen the right holomorphic section in Construction 2.6 to perform
the transformation between coordinates, and write, with W = V1,

(W (dx + bdy) A (dx + bdy) + W' dy A dy)

N | .

wov =

(W(dz + by dy) A (dz + bo dy) + W (b — bo) dy A (dz + bo dy)

+ N | .

W (b — bo)(dx + body) Ady + (Wb —bo|> + W) dy A dg)

I 7 74 _
(WW(;2 Oy Ay + 7o (b= bo) P A Dy
0

w
Wo

N =

7= (b = Bo) (9 A D) + (Wb — bl + W)ty A Dy ).

Thus we are applying Lemma 4.1 with a = 6W0_1 - WWO_2, 6 =
Wmo(bo —b), and v = e "Wyt = W — Wb — by|2. Now we work in
Gibbons—Hawking coordinates using the fact that o, 8 and ~ are invari-
ant under the action 21 — z1 + t. So if we bound the C* norm of a, 0
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and v as functions on Uy, », X R/€Z, with coordinates y and u, we can
apply (2.5) to bound the C* norms of a, 3, with respect to the coor-
dinates  and y. The interpolation inequalities then give C**" bounds
for any k' < k.
First look at . Now
V= Vo+ ——loglyl? + ¢ Tm(r)
4me
= ¢ 'Im(r2) + g(u, y)

='Wy +g(uy),

where g(u,y) is, by Lemma 3.1 (c), a harmonic function on Uy, ,, xR /€Z
with [|g||co being O(e~¢/€). Tt then follows from [11], Theorem 2.10,
that for each k, ||g||cx is also O(e=¢/€). Thus

a=eWy 't —WW;?
€ €
T Wo  Wo+ egWg
_ g
- Wo(Wo + egW@)

Now using the fact that the denominator is bounded above and below,
and observing that any derivative of o will have, in the numerator, only
terms which include factors of g or its derivatives, we see that for each
k, |la)lor is O(e=C/9).

Next look at 3. By construction,

0= [ BdriANdra= | pOoAVdu= / Wy (b — bo)du.
X, Xy 0

Thus b — by, which is a function on Uy, ,, x S*(€) (even though b and by
are not) has no constant term in its Fourier expansion. Both b and b,
however, are quasi-periodic in wu, i.e., consist of a linear plus periodic
term. Let b and by denote the periodic part (not including the constant
term) of b and by respectively. Then b — by = b — by, and we can
bound the C* norm of b and by separately. For example, by (2.6),
dub = 2i0,9(u,y), which is O(e~¢/€), and then the Poincaré inequality
implies ||b]|co is O(e=C/€). Similar arguments apply to ||bo||co, using
the explicit form for by, and from this one obtains O(e~¢/¢) bounds on
|B|lcx for each k. Similar arguments apply for v = —g(u, y) — W |b—bo|>.

Thus the last three terms of wpeyw are O(e~¢/€), and since the sum
of the first two terms have eigenvalues O(e~1) and O(e), it is clear that
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for sufficiently small €, wpey is positive definite. On the other hand,
it is not clear that [ x w2, = S +(Re ©)2. However, by construction
wlow = (ReQ)? outside of f~1(U,, r,), and w?,,, and (Re2)? differ only
by O(e=¢/¢) on f~H(Up, 1), 50 [x Wiew — [x(Re)? = O(e=¢/¢). Now
noting that

([wnew] + aE)? = [wnew]? + 2ae,

we can find a two-form a on B supported on U, ., with C¥ norm
O(e=9/¢) such that [ (wnew+f*@)? = [y (Re Q)% Set we = wyew+ f*a.
Because « is still small, w, is still positive and defines the desired Kéhler
metric. Properties (1)—(4) are then satisfied by construction. Note that
F. = log(Q A Q/2w?) is zero outside of f~1(U,, r,), and w, is within
O(e=¢/¢) of wsr on f~Y Uy, rp). Thus |F|co is O(e~¢/€). The same
is true of ||F¢|c2, and since the coefficients of the metric are at worst
O(e) or O(e™ ) in f=Y(Up, ry), [|AF | o is also O(e=¢/€). Furthermore,
the Ricci form is i00F,, which is O(e~¢/€). This gives (5) and (6).

To bound the diameter of X with the metric we, first restrict the
metric to the zero section o9 of f. Identifying oy with the base B,
we note that on B\ |JUZ, the Kihler form of this restricted metric
is 2(eWo)((eWo)™2 + |bo|?)dy A dy. But by = 0 on oy, so this is just
%e‘leldy A dy. Let D be the diameter of B\ |JUS under the metric
iWy 'dy A dy; this is independent of e. Thus Diam(B\|JUj) = De /2
under the metric induced by we. On the other hand, the diameter of
each fibre over B\ |JU: is bounded by some constant times €!/2, so
Diam(f~Y(B\|JU%)) < D'e /2 for sufficiently small e. Then applying
Corollary 3.7 to each f~!(U3), (keeping in mind that the changes to the
metric in the gluing area are negligible for small €), we see in fact that

Diam(X) < D'e V2 4 D" /2,

which we can always bound by Dse~!/2 for some constant Ds. Hence (7).
Finally, (8) follows immediately from Proposition 3.8, Remark 2.7,
and the fact that any non-singular fibre has a neighbourhood in which

w, is arbitrarily close to the semi-flat metric for e sufficiently small.
q.e.d.

Theorem 4.5. Let j : J — P! be an elliptically fibred K3 surface
with section and 24 singular fibres over A = {p1,... ,p2s} as above.
Then there exists open sets Ui C Us C Pl i =1,...,24, each diffeo-
morphic to a disc, U; NA = {p;}, positive constants D1, Dy, D3, Dy, D5
and €y such that, for all € < €, for any elliptic fibration f : X — P!
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with Jacobian j : J — P with holomorphic 2-form Q with [Re]? =
[ReQ)%, and for any Kdihler class [w] on X with [w].Xy = € and
[we]? = [ReQ)? = [Im Q)?, there exists a Kihler metric we representing
[we] on X with the following properties:

(1) welf_l(Pl\Ui i) 5@ semi-flat metric (not necessarily the standard
one).

(2) welfl(Uf) =T wov, where woy is an Ooguri-Vafa metric and Ty,
denotes translation by a (not necessarily holomorphic) section.

(3) If F. = log <QAQ/2), then

wg
|Fellco < Dye=P2/¢
and
|AF oo < DreP,
where A denotes the Laplacian with respect to we.

(4)

infu{Ric(v,v)]| |v|s, =1} > —Dge P/,
(5) With the Riemannian metric induced by w,, Diam(X) < Dze~1/2.
(6) If R denotes the Riemann curvature tensor, then
|R|lco < Dge tloge™t,

IR||co — oo as e — 0,

and on any non-singular fibre, there exists a constant C depending
on the fibre such that

IR]| < Ce.

Proof. First note that as in §1, we think of X as a K3 surface
obtained from J simply by altering the holomorphic 2-form ; on J to
Qj + j*a, for some 2-form o on P'. Thus it is natural to identify the
underlying manifolds X and J, and we are only changing the complex
structure. So we can think of [w.] € H?(J,R), and in particular, in the
notation of §1, we can write

[we] = €(0p + B)mod E
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for some B € E+/E ® R. Furthermore, given the values of the classes
[we] and [©2] modulo E, and given that [we],[ReQ], [Im Q] form a hy-
perkéhler triple, the classes [w] and [Q] are completely determined.
Thus the choice of B uniquely determines the Kéahler class and complex
structure.

We modify the role of B slightly. Let w? be the Kihler form on .J
provided by Theorem 4.4. Then in fact we can write

[we] — [WY] = e Bmod E

for some B € E+/FE ® R. The class B still determines all data. So fix
this class in E+/E ® R. This latter vector space is naturally identified
with H'(P!, R'j,R). Consider the exact sequence

0 — R'Yj.R — C®(T3) — F — 0.

Here C*°(7};) denotes the sheaf of C'*° sections of 7}, and the first map
is induced by tensoring the inclusion R'j,Z — T, £ with R. This gives
a surjection H°(P1, F) — HY(P!, R'j.R). Now a section of F is given
by an open covering {U;} of P! and sections o; € I'(U;, C*(7})) with
o; —o; € I'(U;, R'j,R). This open covering {U;} can always be chosen
with the following properties:

(1) Each U; contains at most one point of A, and if p; € U;, then
Ul CU;.

(2) Each U; is convex with respect to some metric on P!, so that all
multiple intersections of the U;’s are contractible.

(3) If U; N A = ¢, then U; NJ; UJ = ¢.

In fact, fixing one such open covering, all sections of F can be rep-
resented over this open covering.

Now represent B by (U;, 0;), and let Ty, : f~1(U;) — f~(U;) denote
translation by the section o;. Now consider the forms T} w? and T Q.
On f~1(U;NU;), 2 is the standard semi-flat metric, by condition (3) on
the open covering above, and since o; —0; is a flat section with respect to
the Gauss-Manin connection, Ty, 5, is an isometry, i.e., T;j,mwg = w?,
Tr .. Q5= Qs (see Example 2.2). Thus

0j—0;

x 0 _ rvokoox 0 __mx 0
Towe =1,15, 5we =15,w

i g;—0. o;7€)

525
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and similarly T, = T:J,Q J- Thus these forms glue, to give global
forms we, 2 on the manifold J. The 2-form  satisfies Q A 2 = 0, and
thus induces a new complex structure on J. An easy local calculation
shows that Q = Qj + j*a’, for some 2-form o/ on P!. Furthermore, it
is clear that

fwaeze, [;wenQ=0,and [;w?=[,ReQ)? = [,(ImQ)2.

Thus the cohomology classes [w¢], [Re 2] and [Im Q] form a hyperkéhler
triple. If we show that

[we] — [wWl] = e Bmod E,

then we have constructed a Kéahler form in the desired class (deducing
moreover that the new complex structure is just that obtained from X).
To see the required identity, observe that we have an exact sequence

H7} 1 p) (X, R) =S HA (X, R)— H? (X, R)—H} -1 (0 (X, R).

Now Hﬁfl(A)(Xa R) = H°(f~'(A),R) = R?*, and the image of ¢ is just
the one-dimensional subspace of H?(X, R) spanned by [E], the class of
a fibre. Thus it is enough to show that

[welxo] = [wl]x0] = eB € H*(X,R)/E C H*(Xo,R).

Now on X, w? is cohomologous to wgr by construction, and we is

cohomologous to a Kéhler form wy obtained in the same way as w, via
translation and gluing, but starting from wgr rather than w?. Thus it
is enough to show that on X
wsr] = [wsr] = €B.
Over an open set U;, write
i . B _
wsp = 5W; Yedy ANy + €1 9y Ady).

Now

Ty (0y) = Oy + Wo(0yoi + bo(0i(y), y)) O + Wo(950) U,
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so over U;
Wsp —wsp =T, wsF — WsF
:%i ((ain +bo(05(y),y)) In Ay + Oyo; Iy ADy
+8,5; 9y Ay
+ (8361 + bol(o3(y), 1)) Dy A 1%) mod Oy A Iy
:%id(aiﬁv —5;9y)  moddy A vy

as can be easily seen using (4.1) and a calculation similar to that of
(4.2).

How does the two-form w’S p — wsr determine an element of
H'(By, R' fo.R)? Given the open covering {U;} of By, if Wop — wgF is
an exact form on each ffl(UZ-), we can write wng —wgr = day; for some
1-form o; on f~1(U;). Then on f~Y(U;NU;), i —j is closed, and hence
determines an element of H!(f~1(U;NU;),R) = T(U;NUj, R! fo.R) for
our choice of open covering. Now we have found such «; modulo ¥, Ay,
80 Wy — wgr is represented by a Cech cocycle for R fo. R given by

UiN Uy, 5 (01 = 030 = (@1~ 73)0,)).

By integrating this one-form over the periods, one sees this is precisely
the section of I'(U; N Uj, R! fo.R) given by €(o; — 0;). Thus wip —wsr
represents the class eB.

Finally, properties (1)—(4) and (6) follow immediately from Theo-
rem 4.4, (3)-(6) and (8). On the other hand, the diameter of f~(U;)
with respect to we is the same as the diameter of f~1(U;) with respect
to the metric w?. Since there are a fixed number of U;’s, the estimate
on the diameter continues to hold from Theorem 4.4, (7). q.e.d.

Remark 4.6. In the construction of the proof of Theorem 4.5,
we may sometimes want to be able to control the sections o; we use
to represent the class B. This can be done as follows. The class of B
depends on the choice of the zero section gg. Changing the class of the
zero section changes B by an element of £+ /E. Thus B really should be
thought of as living in E+/E®R/Z. (See [13] or [14], §7.) Thus in some
cases we might want to choose a compact set F in E+ /E®R containing
a fundamental domain for E+/E. We can then choose for each B € F
a representative (0;) of B with various norms, as required, bounded



528 MARK GROSS & P. M. H. WILSON

by constants independent of B € F'. We will say we are choosing the
B-field B in a fundamental domain for the B-field.

5. Ricci-flat metrics

We will continue with the setting of Theorem 4.5. In other words,
we have a fixed Jacobian elliptic fibration j : J — P! Our goal is
to show that there exists an ey such that for any f : X — P! with
Jacobian j : J — P! and any € < €y, and any metric w. given by
Theorem 4.5, there exists a function u. such that w, + i00u, is a Ricci-
flat metric, and furthermore that wu, is very small in the C* sense. Of
course, that such a u. exists is Yau’s proof of the Calabi conjecture.
Here we apply standard techniques, following [20], to obtain control of
ue. As mentioned in the introduction, the only subtle difference is that
as € — 0, Diam(X) — oo, and this requires us to be a bit more careful
in estimating constants. However, we follow [20] closely.

More precisely, we wish to solve the equations

(we + 100u)? = elw?

5.1
5-1) /uewz—().
X

Here F, = log(Qﬁsz/Q). By [35], we know such a u, exists.
We begin with some standard lemmas. For convenience, we will
assume Vol(X) = 1. This can be achieved since we are holding the

volume of X constant anyway, so we just scale the original €2 so that
[;(Re)? = 1.

Lemma 5.1. Let X, we be as in Theorem 4.5. Assume Vol(X) =
1. Then there exists a function I(€) depending only on € and J with
I(e) > Ce, C depending only on J, such that:

(1) For any function f on X such that [y fw? =0,

df (13 = ()] £II3-

(2) For any function f on X,

ldf 13 = () (I f11Z = I1£113)-
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Proof.  These are the standard Sobolev inequalities, but we just
need to be careful about the constants. We have, by [23], Lemmas 1
and 2, for a function f such that fX fw? =0,

ldf15 > Cal £}

while for an arbitrary function, we have

Idf1I3 > D(4)Ca (Il £l — I 113)-

Here, we are using Li’s notation for the constants Cy, C1, Cy, D(n) and
the fact that the volume is 1 and the dimension is 4. Again by [23],

D(4) is an absolute constant, Cy = D(4)Cé/2, and 2C7; > Cy > (4,
where (] is the constant in the isoperimetric inequality

C1(min{V (M), V (M3)})? < V(N)?

where V' denotes volume, and N is any codimension one submanifold of
X dividing it into M; and My. In [9], Croke calls this constant ®(M).
Theorem 13 from [9] says that

Diam(X) =5
C,>Cy (/0 ((V1/K) sinh(\/?r))gdr> ,

where Cy again is an absolute constant, and Ric(X) > —3K, where
3K < Dze P4/¢ by Theorem 4.5, (4). Now the integral is bounded
above by

Diam(X)(y/1/K sinh(V K Diam(X)))>3.

Now by Theorem 4.5, (5), VK Diam(X) — 0 as € — 0, so for sufficiently
small e, using the first term of the Taylor series expansion of sinh, this
is bounded by

C5Dz'am(X)4 < 066_2

so C1 > C7€'9, hence Cy > Cge'® and we can take
I(¢€) = min(D(4),1)Cy > Cye®. q.e.d.
Lemma 5.2. (The C? estimate.) Let u, be the solution to Equations

(5.1). There exists a constant C depending only on J, such that for all
€ < €, (€9, D2 as in Theorem 4.5)

ue|loo < CePe™P2/e,
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Proof. The starting point is the inequality (23) of [20]:

/ dluc %2 < Ap / ol
X X

All integrals are with measure w?2. See also the expanded derivation of
this inequality in [24]. One can check the constant A is independent of
p and e.

We apply this first with p = 2. The left-hand side is ||du||3 >
A1€°||uc||3 by Lemma 5.1, (1), so by applying Hélder’s inequality to the
right-hand side, we get

1/2 3/4 1/4
< / |ue|4) < Ayt ( / |F€\4/3) ( / |ue|4>
X X X
or

) 3/4
ella < Aze™® /FE43>
52 o < 40 [ 1

< Cle_5e_D2/€.

Now for arbitrary p, using Lemma 5.1, (2)

2 Y2 /2112
||u5||§p=( /. \uf) 22

< Age 0| dlucl”? (3 + || Tuel”’? |3
< Aspe™ (/ | el !uEV’l) o+ [ e P25,
X

Applying Holder’s inequality to the first term, we have, with ¢ = p,
¢=1/1-1/p)=p/(p—1),
/X el [uelP™ < 1Fellp I TetelP~ Iy o)
= || Fellp lluel b,
SO

luells, < Aspe™ [ Fellp lluellB™ + [luclb

(5.3) _ -
= (Aspe °||Fellp + [luellp) [luellp™.
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Now we claim that if we set p, = 2”1, there exists constants C,,
such that
([wellp, < Cneﬁr)eiDﬂ6

for all e < €. This holds for n = 1 by (5.2). Suppose it holds for a
given n. Then by (5.3),
[uelBr ., < (Aspne *Dre P/ 4 CpePemP2/€) (CpePe P2/ e)pnt

Pn+1
_ (AsD12" ! 4 1) (Cpe=Pe P2/ if €, > 1;
T | (A5 D127 1) (e B D2/ eypn if C, <1.

Thus we can take

(AsD2"1 + 1) " Ve, it C, > 1;
Chi1 < il o—(n+1) .
(A5D;2 + 1) if ¢, <1.

It then follows as in [20], page 299, that C,, < Ag for some constant Ag
independent of n and €. Thus we conclude that

luelloo < AGG_%_DZ/E

for all e < ¢g. q.e.d.

Lemma 5.3. (The C? estimate.) Let ue be the solution to Equations
(5.1). There are constants C and ey depending only on J (possibly
smaller than the €y of Theorem 4.5) such that for all € < €,

Clwe <@ < Cu,

where @ = we + 100U..

Proof.  Let Re = sup,; |R;;;;], where R;;; is the holomorphic bi-
sectional curvature of the metric w,, and the supremum is over all points
of X and unitary bases at each point. Since the holomorphic bisectional
curvature determines the curvature, ([6], pg. 76) and sup ||R|| — oo as
e — 0 by Theorem 4.5 (6), we must have R, > 1 for small e. So if
ce = 2R, then ¢, + inf Rﬁj; > R¢ > 1. Here the infinum is as before
over all unitary frames and points on X. Then [35], (2.22), reads

efUe Al (e (2 + Aue)) > (AF, — 4125 Ri5(x))
—2¢.(2 + Auy)

+ (Ce + ig‘f; R,ﬁ]‘;(x)) €_F€ (2 + A’U,E)2
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where the infina are now only at the given point (but still over all unitary
bases). Here A’ is the Laplacian with respect to the metric we + i00u,
and A is the Laplacian with respect to w,. Let

k(x) lnfan]( )/RE?

so that |k(z)| < 1.

Now suppose e~ %" (24 Au,) assumes its maximum at € X. Then
by the maximum principal, the Laplacian must be non-positive there,
so at the point x

N (67 (2 4 D))

(AF, + 4k(z)Re) — 2¢e(2 4+ Aue) + (cc — k(z)Re)e (2 + Aue)?
=(AF,. + 4k(x)R.) — 4R (2 + Au,) + ( — k(z))Ree Fe(2 + Au,)?

(ov20-525) - (:25)

eFe(AF +4R, k:( ))}
(2 — k(z))Re

0>e
>

—e T (2 — k(x))R.

and since |k(z)| < 1, we get

2ete Y2

2—k(z)| —

< 2T )2 P (AF, + 4R.k(2))
)

’(2 + Aue) - > k(x 2~ h@)R.

If we are outside of the region where the gluing is taking place, then

Fe. =0, so we get
2\ k@) |7
2 — k(x) 2 — k(x)

2
2 — k(x)

‘(2+Au€) -

or

In the gluing region, by Theorem 4.5 (6), there is a constant Cy

|k(z)] < Cre/Re.
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Also in the gluing region, we can use the bounds of Theorem 4.5,
(3) on F, and AF,, to get, for a constant Cy bounding e’*,

F. F. \2 _F 1/2
24 Au, < 2e N 2e e (AF 4+ 4Rck(2)))
2 —k(x) 2 — k(x) (2 — k(x))Re
1/2
< 2Cy n 20y 2 CQ(D1€7D2/6 + 4016) /
- 2—016/R5 2—016/R6 2—C’16/R6

Now as € — 0, ¢/Rc — 0 by Theorem 4.5, (6). So what we get is
(2 + AUE)($) <C3

for sufficiently small €, and C'5 independent of e.
Now

e W (2 4+ Aug)(y) < e ") (2 + Aug)(w)
for all points ¥, so
2+ A, < eceltcW)—ue@) oy
< 6ce(supzte—infue)c3

—5,—Dg /€
< eREC4€ e~ D2/ Cs.

By Theorem 4.5, (6),
Ree BeD2/e 0,

so we get
2+ Au, < Csx

for sufficiently small e.

Now working in a choice of coordinates z1,zo at a point so that
0., , 0, are unitary at the point with respect to w. and which also diag-
onalizes & = w, + 100u,, then

(‘De)ij = 5ij(1 + (ue)i7),
and each 1 + u;; is positive, so 1 + (ue);; < Cs, s0 @ < Cswe. Also,
o2 = TJ0 + () w2 = e

Since 1 + (ue);; is bounded above by Cs, it must be bounded below by
something close to C5’ ! so changing Cj slightly if necessary, we get

C’glwe < @ < Chwe. q.e.d.

533
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We note here that for some purposes, Lemma 5.3 is already sufficient.
For example, if we wish to know that the fibres collapse to points as
e — 0, Lemma 5.3 along with Proposition 3.5 tells us the diameter of
each fibre under the Ricci-flat metric goes to zero as ¢ — 0. However,
if we wish to get a clearer picture of the asymptotic behaviour of the
metric, we need stronger results.

Lemma 5.4. (The C*® estimate.) Let u, be the solution to Equa-
tions (5.1). If U C B is a simply connected open set with U C By =
B\ A, then there exists constants « and €y and a polynomial P, depend-
ing on J and U, such that

luellcza < P(e™)

in f~1(U) for all € < ¢y and B in a fundamental domain for the B-
field (see Remark 4.6). Here the C*® norm is on f~Y(U) as defined in
Lemma 4.1, and so «, €y and P also depend on the choice of holomor-
phic coordinate y and fized bounded domain T', as specified in the proof
below.

Proof. We need to apply the basic result of [11], Theorem 17.14.
However, we must be careful about the constants. Let m : 75 — B be
the projection, and let 7" C 7~ 1(U) C T} be a fixed bounded domain
which contains a fundamental domain of each fibre of f over U. We
will be computing norms in the domain 77. To do so, we choose a
holomorphic coordinate y in the base, yielding holomorphic canonical
coordinates z,y on 7;;. Now take a bigger open set T'(¢) containing 7".
This open set will also be bounded, but will depend on e. We choose
it as follows. First let V' C By be an open set with U C V, V C By,
and the holomorphic coordinate y extending to V. Let T C 7~ 1(V) be
a domain containing 7" and containing a fundamental domain of each
fibre over V. Let

T(e) = {(x,y) € Ty | there exists (Z,y) € T with |z — | < e 1/2}.

The point of this choice is as follows. Consider the change of variable
y = e Y2y, o' = €/2z. Then using z’, v to identify 7;; with a subset of
C?, we get Dist(ﬁm, T") > 1, for sufficiently small €, in the euclidean
distance in C2.

Pulling back w, to T'(¢), we can write

We = 185(901 + 902)
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where i00¢p; is a semi-flat metric and 1995 is the correction to this
metric resulting from the gluing process. By applying Lemma 4.1, we
can choose e sufficiently small so that the C*% norm of @5 on 1" is as
small as we like (and the C? norm of ¢ on T'(€)). On the other hand,
1 can be taken to be a translation of the Kéahler potential given for
the standard semi-flat metric in Example 2.2. Since we have chosen B
in a fundamental domain, we can then bound the C*® norm of ¢; on
T’ independently of B as a polynomial in e~!. The same is true of the
C? norm of @1 on T'(e).
Now the equation that u. satisfies is

(100 ) = Q A Q)2

where ¥ = @1 + @2 + ue. Thus a C?® bound on 1. polynomial in e

yields a C*® bound on u. polynomial in e~!. Now changing coordinates
between z,y and z/,y' also only affects the C*“ norm of a function by a
factor polynomial in € !, so we can work with respect to the coordinates
2’,y'. Now in these coordinates,

i09(p1) = %(Wg(dx’ + ebdy') A (da’ + ebdy’) + Wy dy/ A dif).

By looking at the explicit form of b for the semi-flat metric, we see €b
in fact goes to zero as ¢ — 0 on T'(¢). Thus the eigenvalues of i00p; on
T(e), i.e., the eigenvalues of the matrix

W bWy
<ebWO Wy + e2b]2> ’
can be bounded below and above by some constants A and A indepen-
dently of €. Since 9 is small, the same is true of we on T'(¢). Finally, by
Lemma 5.3, the eigenvalues of {901, are bounded below and above by
C~—'X and CA, independently of e. Furthermore, Lemmas 5.2 and 5.3
imply the C? norm of 1. on T(¢) is bounded by a polynomial in e !.
We can now apply [11], Theorem 17.14 to the domains 7" C T'(e), to
obtain the desired result. q.e.d.

We shall now follow the standard method of continuity from [35],
and, for ¢ € [0, 1], look at the solution u.; to the equation

(5.4) (we +i00uc)? = (14 t(efe —1))w?

(5.5) / Uey w2 = 0.
X

535
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We set we; = we + iaéugvt, the Kéahler form of a metric on the given
complex manifold X. For ¢t = 0, we just get back our original (glued)
metric, whilst ¢ = 1 is the case we have just looked at, yielding the Ricci
flat metric with Kihler form @,. Since log(1 + t(ef — 1)) has the same
properties as F, for ¢t € [0, 1], all the above estimates of Lemmas 5.2-5.4
work equally well for ue;. In particular,

Cilwe < Wet < CWE
for some constant C' independent of ¢ € [0, 1] and €, and
e lloza < P(e7H),

with the polynomial P independent of ¢ € [0, 1] and e.
Moreover, the Ricci form of the metric w,; is given by

i 3 _ Fe _
27T08(F6 log(1 +t(e 1)),

and so the Ricci curvature Ric,, , has a similar lower bound (indepen-
dent of t) as Ric,,,.

Lemma 5.5. Let Get(x,y) denote Green’s function for the Lapla-
cian Ay associated to the metric wey, normalised so that

[ Gesta) (o) =0,

X

Then, for e sufficiently small and any t € [0, 1],
G6,t(l‘)y) > _Aeina

for some constant A independent of € and t.

Proof. For ease of notation, we drop the suffices €,t. We follow the
proof of Lemma 3.3 from [24], which is due to Peter Li. The volume
of X is 1, and we set K(z,y,s) = H(z,y,s) — 1, where H is the heat
kernel on X. As in [24], we need to find a lower bound for the integral of
K(z,y,s) over 1 < s < 0o, of the same form as that claimed for G(z,y).
Lu observes that

K(z,y,8) > —K"*(z,2,5)K"*(y,y, ),
and that furthermore, for any = € X,

K(z,z,s) < K(z,z,1)e N5,
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for all s > 1, where A denotes the first (positive) eigenvalue of the
Laplacian. If now we can suitably bound A from below, and K (x,z,1)
from above, we’ll be able to integrate the resulting function which
bounds K'/2(z,x,s)K'/2(y,y, s) from above, obtaining a lower bound
for [ K(z,y,s)ds.

The bound from below for A comes from Theorem 4 on page 116 of
[31]. Since the metric is within a fixed constant factor of our original
metric, all the quantities in the given formula are known, and so using
Theorem 4.5, and we deduce that

A > A1 Diam(X)™2 > Age,

for appropriate absolute constants Ai, As. The proof of Lemma 5.1
may be applied to the metric w.; to obtain a similar bound on the
Sobolev constant, and then the bound from above for K(x,z,1) is im-
plied by Equation (3.12) of [36], where the argument given there has
been run for the function K(x,y,s) = H(x,y,s) — 1 (so in particular
Jx K (2, 2,s)w?(z) = 0). For an appropriate constant Az independent
of t, we have
K(z,z,1) < Aze 10,

Thus for all s > 1

K(z,x,5) < Age10g—A2e(s=1),
which then implies that

K(z,y,s) > —Age 0eA2els=1),

for some constant A4 independent of € and ¢. On integrating, we obtain
the claimed bound in the form stated (a rather more involved argument
in fact gives a bound K (z,z,1) < A4e~3, and hence G 4(z,y) > —A’e ™4,
but this extra accuracy is not required).  q.e.d.

We are now ready for our main theorem.

Theorem 5.6. For any simply connected open set U C By with
U C By, and any k > 2, 0 < a < 1, there exists constants C,C’, and
€g such that for all choices of B in a fundamental domain for the B-
field and any € < €y giving we as in Theorem 4.5, and ue satisfying the
equations

(we + 100u)? = elew?

/ uw? =0
X
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QAQ/2
we

with Fe = log(

), we have

]| groa < CeC"e.

Here, the nmorm is as in Lemma 4.1 on the region f~1(U), and the
constants C,C’ are independent of .

Proof.  This is now completely standard. Following [20] and [24],
we differentiate (5.4) with respect to ¢, getting
due ¢ efe —1

A, = .
Pdt T 14 t(efe —1)

The right hand side is very small, which along with the estimate of
Lemma 5.5, allows us to bound duc/dt. Indeed, by Green’s formula
and (5.5), we have

duey(z) ducy\ = 2
dt - /){ <A57t dt )Ge,t(gjay)we,t(y}'

Here ée,t is the Green’s function for the Laplacian for we ¢, normalized so
that infx Gey = 0. Lemma 5.5 tells us that [ Ge(z, y)w? (y) < Ae M
for some constant A independent of € and ¢, so bounds on F, imply

(5.6) | due s /dt||co < Cre™C?/¢

for some constants C7; and C5 independent of ¢ and ¢, for sufficiently
small e.

We can now apply the interior Schauder estimates (see [11] Theorem
6.2) to obtain

(5.7) | due ¢ /dt]| g2 < Cze™C1/e

for sufficiently small e. This holds for « as given by Lemma 5.4. We note
that a certain amount of care must be taken in applying these estimates:
first, we need to use the estimate of (5.6) and Lemma 5.4 on a larger
open set U’ with U C U’ C By. Second we note that by Lemma 5.4,
the C% estimates for the coefficients of the second order operator Ay
depend only polynomially on ¢!, and the same is true, much as in the
proof of Lemma 5.4, for the constants A and A needed in applying [11],
Theorem 6.2. The constant arising in the Schauder estimate can be
verified to depend only polynomially on A and A. Taking these things
into account, one obtains (5.7).



LARGE COMPLEX STRUCTURE LIMITS 539

Now integrating (5.7) with respect to t we obtain
el g2 < Ce™ /<.

Using Schauder estimates again repeatedly in the standard way (see
[35], Formula (4.5) and following text), one can then find for each k,
constants C' and C’ such that

l[tellcra < CeC'/e.

To get this inequality for any «, one uses the interpolation inequalities.
q.e.d.

Remark 5.7. The construction of the Ooguri—Vafa metric in §3
clearly works also for singular fibres of type I,,, simply by quotienting
at the appropriate stage by enZ instead of €Z, and the above proofs
go through unchanged in this case. Thus all the results of this section
remain valid for elliptic K3 surfaces with semi-stable fibres.

6. Gromov—Hausdorff convergence

We now return to the notion of convergence alluded to in the in-
troduction. We wish to show that with the proper normalization, the
results of §5 imply that in the large complex structure limit, K3 sur-
faces in fact converge to 2-spheres. To make this precise, we first recall
the notion of Gromov-Hausdorff distance. The definition given below
can be easily seen to be equivalent to a definition in terms of e-dense
subsets, c.f. [30] pg. 276.

Definition 6.1. Let (X,dx), (Y,dy) be two compact metric
spaces. Suppose there exists maps f : X — Y and g : ¥ — X (not
necessarily continuous) such that for all z1, 2z € X,

|dx (w1, 29) — dy (f(21), f(22))] <€

and for all z € X,
dx(z,g0 f(z)) <e,

and the two symmetric properties for Y hold. Then we say the Gromov—
Hausdorff distance between X and Y is at most e¢. The Gromov—
Hausdorff distance dgg(X,Y) is the infinum of all such e.

The Gromov—Hausdorff distance defines a topology on the set of
compact metric spaces, and hence a notion of convergence. It follows
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from results of Gromov (see e.g. [30], pg. 281, Cor. 1.11) that the
class of compact Ricci-flat manifolds with diameter < D is precompact.
Thus in particular, if we have a sequence of Calabi—Yau n-folds whose
complex structure converges to a large complex structure limit point
(or any other boundary point for that matter) and whose metrics have
diameter bounded above, then there is a convergent subsequence, and
then the basic question is: what is the limit? The conjecture which
motivated the work of this paper is the following;:

Conjecture 6.2. Let M be a compactified moduli space of complex
deformations of a simply-connected Calabi—Yau n-fold X with holonomy
group SU(n), and let p € M be a large complex structure limit point (see
[27] for the precise Hodge-theoretic definition of this notion). Let (X;, g;)
be a sequence of Calabi—Yau manifolds with Ricci-flat Kdahler metric
which are complex deformations of X, with the sequence [X;] € M
converging suitably to p, and Cy > Diam(X;) > Cy > 0 for all i.
Then a subsequence of (X;,gi) converges to a metric space (Xoo,doo),
where X is homeomorphic to S™. Furthermore, do is induced by a
Riemannian metric on X \ A, with A C X a set of codimension 2.

A similar conjecture was also made by Kontsevich, Soibelman and
Todorov (see [22], [25]).

Remark 6.3. Conjecture 6.2 is obvious in the elliptic curve case
(ignoring the fact that elliptic curves are not simply-connected), no mat-
ter how the sequence of points approaches the large complex structure
limit point. However, in the K3 case, more care must be taken. In this
paper, we have considered limits mirror to points approaching the large
Kéhler limit along a ray in the K&hler cone. However, if a sequence
of points approaching the large Kéhler limit approaches the boundary
of the projectivized Kéhler cone, we might expect further degeneracies
in the Gromov-Hausdorff limits. For example, a product of two elliptic
curves By x By = R*/Z*, with a metric

€2 00 0
0 € 00
0 0 ¢ 0
0 0 0 e

has a special Lagrangian fibration given by projection on the the first
and third factors, and has fibres of area e. When we normalise the
metrics to have diameter one, the sequence of Riemannian manifolds
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converges to an S' as € — 0. As pointed out to us by N.C. Leung,
this construction descends to the corresponding Kummer surfaces. The
limit of the Kummer surfaces is then a closed interval.

Thus we expect that the correct restriction on sequences of points
in the complex moduli space in Conjecture 6.2 should correspond in the
mirror to Kéhler classes staying within a proper subcone of the Kéhler
cone. We can now prove the conjecture for the limits of K3 surfaces
considered in this paper, where the Kéahler class tends to co along a ray,
which we have seen reduces to the following result.

Theorem 6.4. Let j : J — B be an elliptically fibred K3 surface
with a section and singular fibres all of type I, and let f; : X; — B
be a sequence of elliptically fibred K3 surfaces with jacobian j. Let w;
correspond to a Ricci-flat Kahler metric on X; with wiz independent of
1, and with ffi—l(b) w; =€ — 0 as i — oo. Then the sequence of Rie-
mannian manifolds (X;, e;w;) converges in the Gromov—Hausdorff sense
to B, the metric on B being induced from the (singular) Riemannian
metric given, in local coordinates, by Wy Ydy @ dg, with Wy as defined
i §4.

Proof. As usual, after choosing a topological zero-section of each
X;, we can identify X; with J as a manifold. We may then view the w; as
corresponding to a sequence of Riemannian metrics ¢g; on J, and prove
that the sequence J; = (J,¢€;g;) converges in the Gromov-Hausdorff
sense to B (with the given metric).

Using Remark 4.6, we can choose the class B; determining w; in a
fundamental domain for the B-field by making, for each i, a judicious
choice of zero-section oy.

Consider now B along with the metric W, Ydy @ dj. Near each
singular fibre one can find a coordinate y so that 74 = 1 and ™ =
% log y + h(y), for some holomorphic function h, and from this one can
see that each point of A C B is at finite distance under this metric, and
thus B becomes a compact metric space using geodesic distance.

Now we need to show that for each 6 > 0, dgy(J;, B) < ¢ for
sufficiently large i. We will apply Definition 6.1 to the maps f; = j :
J—Bandoy: B— J.

Choose, using Corollary 3.7 and Lemma 5.3, for each point p; € A,
a small disc D; around p; with the property that:

(1) Diam(Dj) < 6/100.
(2) Diam(f~1(D;)) < §/100 for sufficiently small ¢;.
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Let U = B\ UD,. Now let z1,z2 € J. Let v be a path joining x;
and zo such that, for a given i,

l€i£h‘ (7) < deigi («T17$2) + 5/100.

Here [ denotes length, and the subscript denotes the metric being used.
At the risk of increasing the length of v by 246,/100, we can assume that
~ enters and leaves each f_l(Dj) at most once, and write v = v + 2,
with v1 C f~1(U) and 2 C f~1(J Dj), with le,4,(72) < 246/100. Now
if f~1(U) carried a semi-flat metric, then f~(U) — U would in fact be
a Riemannian submersion, and distances decrease under submersions.
On the other hand, if ¢; is sufficiently small, it follows from Theorem 5.6
that the metric €;g; is close to a semi-flat metric in the CY sense. Thus
for sufficiently large ¢, depending on 4,

IB(f(m)) <lsr(m) <leg () + Clei),

where lgr denotes length with respect to the suitably normalized semi-
flat metric close to €;g;, and C(¢;) is a constant depending on ¢; (and §)
but independent of the path. Furthermore, C(¢;) — 0 as ¢; — 0. Thus,
possibly replacing f(72) with a shorter path, we see that

dp(f(z1), f(z2)) < IB(f(71)) +246/100
<leigi(m1) + Cle) + 246/100.

Thus for sufficiently small ¢;, we always have

dB(f($1>,f<$2)) < dEigi(xlaxZ) =+ 4.

Next, let y1,y2 € B, and let v be a path joining y; and yo with

I5(7) < ds(y1,y2) + 6/100.

As before, we can assume that v enters and leaves each D; once, and
write v = 71 + 2. Consider now the metric on oy(B); locally, this takes
the form e;(W =1 + W|b|?)dy @ dy for some W and b. Again, the metric
on f~Y(U) is close to a semi-flat metric, hence this metric is close, in
the OO sense, to (W, * +€2Wy|bsr|?)dy ® dj. Now the point of choosing
B; to be in a fundamental domain for the B-field is that |bgr|? can then
be uniformly bounded, independent of ¢. Thus for small ¢;, this metric
is close to the given metric on B. Thus there exists a constant C(e;)
with C(¢;) — 0 as ¢; — 0 such that

le,g;(00(m)) < lg(m) + C(e).
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Therefore dc, g, (00(y1),00(y2)) < IB(y) + C(€i) + 246/100 so for suffi-
ciently small ¢;,

dﬁigi (UO(yl)v UO(yQ)) < dB(yla y2) + 4.

Thus for sufficiently small e,

’dB<y17y2) - dEiQi(UO(yl)aUO(:W))‘ <9

for all y1,y2 € B.
If z1,z9 € J, similar arguments show that

dqgi(xla$2) < dB(f(xl)? f(mZ)) + 0

by joining 1 and x5 by a path which first connects x1 to o¢(B) inside a
fibre or inside f~1(D;) for some j, then follows a geodesic inside oo(B)
to the fibre containing x2, and then connects up to xo inside this fibre.
The inequality follows for sufficiently small ¢; since the diameter with
respect to €;g; of any fibre f~!(y) for y € U, for small ¢;, is bounded by
Ce;, where C' depends only on the periods over U.

This shows

|de;g: (21, 22) — dB(f(21), f(22))] <0

for sufficiently small ¢;. Finally, similar methods show

|d6¢g¢($1’ 5132) - dﬁigi(ao(f($1))a O'O(f(l?)” <9
for all z1,z2 € X, and ¢; sufficiently small. q.e.d.

Remark 6.5. The metric on the base B is McLean’s metric (see
[26], [19], [14]) on the base of the special Lagrangian T?-fibration ob-
tained by hyperkahler rotation. In higher dimensions we also expect this
metric to appear in the limit, showing a residual effect of the conjectural
special Lagrangian fibration. This metric would then be singular along
some subset of the limit, corresponding to the limit of the discriminant
loci of the conjectural special Lagrangian fibrations. We hope this will
be codimension 2. See [16] for further speculation along these lines.

Conversely, we hope that one approach to understanding the exis-
tence of special Lagrangian fibrations would be to prove Conjecture 6.2,
which gives us insight into the behaviour of Ricci-flat metrics near large
complex structure limits. However, it is clear that any approach to
prove Conjecture 6.2 in higher dimensions must be substantially differ-
ent to the one given here for K3 surfaces, where we have made use of
the existence of special Lagrangian fibrations as well as the hyperkéhler
trick to reduce to a question of Kéhler degenerations.
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