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LARGE COMPLEX STRUCTURE LIMITS OF K3
SURFACES

MARK GROSS & P. M. H. WILSON

Abstract
Motivated by the picture of mirror symmetry suggested by Strominger, Yau
and Zaslow, we make a conjecture concerning the Gromov-Hausdorff limits
of Calabi-Yau n-folds (with Ricci-flat Kähler metric) as one approaches a
large complex structure limit point in moduli; a similar conjecture was made
independently by Kontsevich, Soibelman and Todorov. Roughly stated, the
conjecture says that, if the metrics are normalized to have constant diam-
eter, then this limit is the base of the conjectural special lagrangian torus
fibrations associated with the large complex structure limit, namely an n-
sphere, and that the metric on this Sn is induced from a standard (singular)
Riemannian metric on the base, the singularities of the metric corresponding
to the limit discriminant locus of the fibrations. This conjecture is trivially
true for elliptic curves; in this paper we prove it in the case of K3 surfaces.
Using the standard description of mirror symmetry for K3 surfaces and the
hyperkähler rotation trick, we reduce the problem to that of studying Kähler
degenerations of elliptic K3 surfaces, with the Kähler class approaching the
wall of the Kähler cone corresponding to the fibration and the volume nor-
malized to be one. Here we are able to write down a remarkably accurate
approximation to the Ricci-flat metric: if the elliptic fibres are of area ε > 0,
then the error is O(e−C/ε) for some constant C > 0. This metric is obtained
by gluing together a semi-flat metric on the smooth part of the fibration
with suitable Ooguri-Vafa metrics near the singular fibres. For small ε, this
is a sufficiently good approximation that the above conjecture is then an
easy consequence.

0. Introduction

The notion of large complex structure limit plays a special role in
the theory of mirror symmetry. If X is a Calabi–Yau manifold, a large
complex structure limit point is a point in a compactified moduli space
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of complex structures MX on X which, in some sense, represents the
“worst possible degeneration” of the complex structure. This notion
was given a precise Hodge-theoretic meaning in [27]. The basic example
to keep in mind of this sort of degeneration is the degeneration of a
hypersurface of degree n + 1 in Pn to a union of the n + 1 coordinate
hyperplanes. Mirror symmetry posits the existence of a mirror to X
associated to each large complex structure limit point of X. To first
approximation, this means that if p ∈ MX is a large complex structure
limit point in a compactification of the complex moduli space of X, then
there exists a mirror X̌ and an isomorphism between a neighbourhood
of p in MX and the complexified Kähler moduli space of X̌ which
preserves certain additional information, such as the Yukawa couplings
(which will not concern us in this paper). This isomorphism is known
as the mirror map.

Now the Strominger-Yau-Zaslow conjecture [32] suggests that mirror
symmetry can be explained by the existence of a special Lagrangian
fibration on X when the complex structure on X is near a large complex
structure limit point. The mirror X̌ is then expected to be constructed
as the dual of this special Lagrangian fibration. The notion of special
Lagrangian is a metric one: it depends on both the complex structure
(determined by a holomorphic n-form Ω on X, where n = dimCX),
and a Ricci-flat Kähler metric, determined by its Kähler form ω. Thus
we expect the existence of special Lagrangian fibrations will depend a
great deal on the metric properties of Calabi–Yau manifolds near large
complex structure limit points.

The simplest example of such a situation occurs for elliptic curves.
Consider the family of elliptic curves Eα = C/〈1, iα〉, with α → ∞.
We also choose a Ricci-flat, i.e., flat, metric g, which we will take to
be the standard Euclidean metric. As α → ∞, the complex structure
approaches the large complex structure limit point in the moduli space
of elliptic curves; the period iα is approaching the cusp point of the
compactification of H/SL2(Z).

Now given the metric g, as α → ∞ it is clear that these elliptic
curves converge to an infinitely long cylinder. However, if we rescale
the metric, with gα = g/α, then V ol(Eα) = 1 in this metric. With this
metric, we can instead view Eα as C/〈1/

√
α, i

√
α〉 with the standard

Euclidean metric, and then Eα converges to a line as α→ ∞.
Finally, we may renormalize the metric again so that the diameter

of Eα remains bounded, with the metric gα = g/α2. Then Eα can be
identified with C/〈1/α, i〉 with the Euclidean metric, and Eα converges
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to a circle.
Of course, in this situation the special Lagrangian T 1-fibration on

Eα is Eα → S1 obtained by projection onto the imaginary axis. So with
the second and third choices of normalization, the special Lagrangian
fibres collapse.

This is a rather trivial example, but forms a good basis for specu-
lating about what might happen in higher dimensions. Intuitively, if we
normalize the metric so as to keep the volume of the manifold bounded,
we expect to see the fibres of the hypothetical special Lagrangian fibra-
tion contracting down to points; if furthermore we normalize so as to
have bounded diameter, we expect the Calabi–Yau manifold to “con-
verge” (in a sense we will make more explicit in §6) to a sphere of
dimension n.

To test this picture, and to improve our understanding of Ricci-flat
metrics, we have chosen to study the metric on K3 surfaces approach-
ing large complex structure limit points. This is made easier by the
fact that special Lagrangian fibrations are known to exist on K3 sur-
faces by a standard trick of performing a hyperkähler rotation of the
complex structure, so that one reduces the problem of finding a spe-
cial Lagrangian fibration to that of finding an elliptic fibration. Using
this, we show in §1 that after performing this hyperkähler rotation, ap-
proaching a large complex structure limit is more or less the same as
fixing the complex structure on a K3 elliptic fibration f : X → P1, and
letting the Kähler form ω on X vary in such a way that the area of the
fibres approaches zero. Thus we ask the question: what does a Ricci-flat
metric on an elliptic K3 surface look like when the area of the fibres is
very small?

This is an interesting question even if one is not interested in mirror
symmetry. In [1], M. Anderson studied degenerations of Ricci-flat met-
rics on K3 surfaces. If the volume of the surface is fixed and the diameter
remains bounded, then the metrics converge to an orbifold metric (cor-
responding to degeneration to a K3 with rational double points). This
picture of the moduli space of K3 surfaces with orbifold metric was orig-
inally studied in [21]. If the diameter is unbounded, Anderson proved
collapsing must occur, but gave no more detailed information. The case
under consideration in this paper can be considered to be the most ex-
treme degeneration of metric. In particular, the orbifold case and the
elliptic fibration case are the only Kähler degenerations, in which the
complex structure of the K3 surface is held fixed. We will in fact con-
sider a slightly more general situation, where the complex structure still
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varies to some extent. This is described more clearly in §1.
We assume the generic case, so that f has 24 singular fibres, each

of Kodaira type I1 (a pinched torus). If X0 denotes the complement
of these 24 singular fibres, then it is possible to write down a family of
explicit Ricci-flat metrics which we refer to as semi-flat: these metrics
are in fact flat when restricted to the fibres. The semi-flat metric was
first introduced in [12]. There, it was used to get a first approximation
to a complete Ricci-flat metric on the complement of a fibre of a rational
elliptic surface. In [12], an arbitrary metric was then glued in to take
care of the singular fibres so that techniques of [33], [34] could be applied
to obtain a complete Ricci-flat metric on this manifold. While we follow
this idea in spirit, we have here a new ingredient we can take advantage
of. There is an explicit Ricci-flat metric defined in a neighbourhood of
each singular fibre, first written down by Ooguri and Vafa in [29]. It is
not semi-flat, but it in fact decays to a semi-flat metric exponentially.
We can glue 24 copies of the Ooguri–Vafa metric in to the semi-flat
metric, and thereby obtain a metric which is remarkably close to being
Ricci-flat: in fact, the Ricci curvature is bounded in absolute value by
O(e−C/ε), where ε denotes the area of a fibre. Thus as ε→ 0, the Ricci
curvature of this glued metric approaches zero very rapidly.

We then follow standard techniques to show that the genuine Ricci-
flat metric representing the same Kähler class is very close to the glued
metric, hence showing the explicit metric we constructed is a very good
approximation to the genuine metric. We follow the proof of Kobayashi
in [20], based on the original methods of Yau [35] — cf. also [7], [33],
[34]. In [20] Kobayashi proves that near a Kummer surface, the Ricci-flat
metric on a K3 surface is close to the flat orbifold metric on the Kummer
surface. While the techniques are the same, it is perhaps surprising that
they apply in our circumstances. Indeed, if the volume of the K3 surface
is held fixed, then as ε → 0, the diameter of our metric approaches ∞.
Thus the relevant Sobolev constant approaches zero, and so it will be
important to control this precisely. It turns out that everything works
because the starting glued metric is already extremely close to being
Ricci-flat.

More explicitly, for Kähler classes [ωε] on X, where ε denotes the vol-
ume of a fibre of f , we construct a representative Kähler metric ωε with
very small Ricci curvature. Yau’s proof [35] of the Calabi conjecture
yields a solution uε to the equations

(ωε + i∂∂̄uε)2 = eFεω2
ε
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∫
X
uεω

2
ε = 0

with Fε = log
(

Ω∧Ω̄/2
ω2

ε

)
. The metric ωε + i∂∂̄uε is the desired Ricci-flat

metric. We obtain a global C2-estimate (Lemma 5.3), namely that for
some positive constant C,

C−1ωε ≤ ωε + i∂∂̄uε ≤ Cωε.

Moreover, the main theorem of the paper (Theorem 5.6) states that for
any simply connected open set U ⊂ B whose closure is disjoint from
the discriminant locus of f , and for any k ≥ 2, 0 < α < 1, there exist
positive constants C1, C2, ε0 such that, for all ε < ε0,

‖uε‖Ck,α ≤ C1e
−C2/ε,

where the Ck,α norm is on the set f−1(U). Thus, away from the singular
fibres, ωε is a very good approximation to the actual Ricci-flat metric.
See Theorem 5.6 for a more precise statement, which requires some care
in the choice of the Kähler class [ωε].

The information obtained gives a clear picture of the metric be-
haviour as ε → 0. Using the above results, we prove the fibres are
collapsing to points, and that away from the singular fibres, the metric
approaches the semi-flat metric. In fact we will compute the Gromov–
Hausdorff limit of a sequence of K3 surfaces with ε→ 0 and the metrics
renormalized so that the diameter remains bounded. This limit is in-
deed an S2, but the metric on the S2 is singular at precisely 24 points
corresponding to the singular fibres. See §6 for more precise statements.
There, we state a conjecture, also made independently by Kontsevich,
Soibelman, and Todorov, about the Gromov–Hausdorff limit of Calabi–
Yau manifolds approaching large complex structure limit points. The
above results prove this conjecture in the two dimensional case.

The structure of the paper is as follows. In §1 we briefly review
mirror symmetry for K3 surfaces, so as to reduce the problem to one
of understanding elliptic fibrations. In §§2 and 3, we introduce various
ways of thinking about Ricci-flat metrics on elliptic fibrations, and then
discuss required properties of the semi-flat and Ooguri–Vafa metrics.
In §4, we build the glued metric. In §5, we run through the standard
program to obtain estimates for Ricci-flat metrics, proving the main
result of the paper, Theorem 5.6. Finally, in §6, we relate these results to
Gromov–Hausdorff convergence, and speculate as to what kind of results
in this direction might be expected and useful in higher dimensions.
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1. Identification of large complex structure limits

There are a number of variants of mirror symmetry for K3 surfaces:
see especially [10] for mirror symmetry between algebraic families of K3
surfaces and [4] for a more general version. We will use an intermediate
version here, following [14], §7, which highlights the role of the special
Lagrangian fibration. See also [17], §1. We review this point of view
here. This will serve as motivation for Question 1.2 below, which will be
addressed in the remainder of the paper. However, the setup of mirror
symmetry will not be used again in this paper.

Let L be the K3 lattice, L = H2(X,Z) for X a K3 surface. Fix a
sublattice of L isomorphic to the hyperbolic planeH generated by E and
σ0, with E2 = 0, σ2

0 = −2, and E.σ0 = 1. We will view mirror symmetry
as an involution acting on the moduli space of triples (X,B + iω,Ω)
where X is a marked K3 surface, Ω is the class of a holomorphic 2-form
on X, ω ∈ E⊥ ⊗ R a Kähler class on X, and the B-field B lies in
E⊥/E ⊗ R. In addition Ω is normalised so that Im Ω ∈ E⊥ ⊗ R and
ω2 = (Re Ω)2 = (Im Ω)2. Mirror symmetry interchanges (X,B + iω,Ω)
with (X̌, B̌ + iω̌, Ω̌), where X̌ denotes a marked K3 surface with the
following data:

Ω̌ ≡ (E.Re Ω)−1(σ0 + B + iω) modE

B̌ ≡ (E.Re Ω)−1 Re Ω − σ0 modE

ω̌ ≡ (E.Re Ω)−1 Im Ω modE.

The actual classes of Ω̌ and ω̌ are determined completely by the relations
(Re Ω̌)2 = (Im Ω̌)2 = ω̌2 and ω̌.(Re Ω̌) = ω̌.(Im Ω̌) = (Re Ω̌).(Im Ω̌) = 0.

We can now identify the large complex structure limit of X̌. This
limit is mirror to the large Kähler limit of X. In the latter limit, we
keep the complex structure on X fixed but allow the Kähler form to go
to infinity. More precisely, if {Bl + itlω} is a sequence of complexified
Kähler forms on X with tl > 0, tl → ∞, then we say {Bl + itlω} are
approaching the large Kähler limit in the complexified Kähler moduli
space of X.
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We will now take, for our purposes,

Definition 1.1. For each l, let X̌l be the K3 surface given by the
data (X̌l, B̌l + iω̌l, Ω̌l) mirror to (X,Bl + itlω, tlΩ). The sequence of
surfaces {X̌l} is said to approach a large complex structure limit point.

We will take this as the starting point of our analysis, and will not
prove here that this is equivalent to other reasonable definitions of large
complex structure limits found in the literature (but see discussions in
[10]).

The reader will note that we are cheating to some extent here, by
only approaching the large Kähler limit along a ray. The more general
approach might be to allow a more general sequence of Kähler forms.
However, this is more difficult to deal with because the elliptic fibration
which arises below will be varying. We will ignore this difficulty in this
paper, as it obscures our main objectives.

Note that

Ω̌l = (tlE.Re Ω)−1(σ0 + Bl + itlω) modE

and
ω̌l = (E.Re Ω)−1 Im Ω modE.

More precisely, if a representative Bl for Bl modE is chosen in E⊥ ⊗R
with the property that Bl · σ0 = 0, then the requirement that Ω̌2

l = 0
yields

Ω̌l = (tlE.Re Ω)−1

(
σ0+(Bl+itlω)+

(
t2l ω

2 − B2
l

2
+1−itlω.(σ0+Bl)

)
E

)
.

Furthermore the requirement that ω̌l.Ω̌l = 0 yields

ω̌l = (E.Re Ω)−1(Im Ω − (Im Ω.(σ0 + Bl))E).

The Kähler class ω̌l is represented by a Ricci-flat metric ǧl, and we
would like to understand the behaviour of this metric as tl → ∞. It is
convenient to perform a hyperkähler rotation, i.e., ǧl is also a Kähler
metric on the K3 surface X̌l,K with

Ω̌l,K = Im Ω̌l + iω̌l

ω̌l,K = Re Ω̌l.

This equality holds on the level of forms. Explicitly, in cohomology,

Ω̌l,K = (E.Re Ω)−1(ω + i Im Ω − ((ω + i Im Ω).(σ0 + Bl))E)

ω̌l,K = (tlE.Re Ω)−1(σ0 + Bl) modE.
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We will assume that, for all l, E represents the class of a fibre of an
elliptic fibration fl : X̌l,K → P1. This elliptic fibration coincides with
a special Lagrangian T 2-fibration on X̌l. For general choice of data,
such elliptic fibrations with fibre class E automatically exist, since then
PicX̌l,K = ZE and E2 = 0. For any choice of data, there always exists
an elliptic fibration on X̌l,K , but the class of the fibre might only be the
image of E under reflections by −2 curves in PicX̌l,K . (See [17], §1 for
further details.)

Note that the area of the fibre of fl under the metric ǧl is
(tlE.Re Ω)−1, which goes to zero as tl → ∞.

Now Ω̌l,K depends on l, but these classes only differ by the pull-back
of a class from P1. This in fact tells us the elliptic K3 surfaces X̌l,K are
closely related. Indeed, if f : X → P1 is an elliptic K3 surface, with
holomorphic 2-form Ω, then whenever α is a 2-form on P1, Ω′ = Ω+f∗α
satisfies Ω′ ∧ Ω′ = 0 as forms, and thus Ω′ induces another complex
structure on X such that f remains a holomorphic elliptic fibration in
this new complex structure. All the surfaces X̌l,K are clearly related in
this way. In particular, all these elliptic surfaces have the same jacobian
J̌K , which is the unique elliptic K3 surface with a holomorphic section
with complex structure induced by Ω̌l,K + f∗l α for some α.

This now leads us to the following question:

Question 1.2. Let j : J → P1 be an elliptic K3 surface with
a section, and let fl : Xl → P1 be a sequence of elliptic K3 surfaces
with jacobian j : J → P1. Let ωl be a Ricci-flat Kähler metric on Xl

with V ol(Xl) independent of l. Let εl = Areaωl
(f−1

l (y)) for any point
y ∈ P1, and suppose εl → 0 as l → ∞. Describe the behaviour of the
metric ωl as l → ∞.

We will solve this question in this paper in the case that the map
j has 24 Kodaira type I1 fibres. This is true for the generic K3 elliptic
fibration.

We end this section with a few additional important comments about
this setup.

First, it is often convenient to identify the underlying differentiable
manifold of an elliptic K3 surface f : X → B with that of its jacobian.
This can be done in a reasonably canonical fashion by choosing a C∞

section σ0 : B → X of f . If ΩX is a holomorphic 2-form on X, then
ΩJ = ΩX − f∗σ∗0ΩX defines a new complex structure on X, in which
σ0(B) is a holomorphic section. This new complex structure yields the
jacobian.
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Another important point is that once a C∞ zero-section σ0 for f :
X → B is chosen, we obtain a group structure on the non-singular part
of each fibre of f . Let X0 ⊆ X be obtained by taking the union of
the identity components of each fibre. Then given a holomorphic 2-
form Ω on X, we can construct a map from the holomorphic cotangent
bundle T ∗

B to X0, taking the zero section of T ∗
B to σ0(B), and with the

property that the pull-back of Ω to T ∗
B is a form Ωcan +α, where α is a

2-form pulled back from the base and Ωcan is the canonical holomorphic
symplectic 2-form on T ∗

B . (See [14], §§2 and 7 for further details of this
map.) The canonical holomorphic symplectic 2-form can be defined in
local coordinates. If y is a local holomorphic coordinate on the base B,
we can take x to be the corresponding canonical coordinate on the fibres
of T ∗

B , so that the coordinate (x0, y0) represents the 1-form x0dy at the
point in B with coordinate y0. The pair x, y are called holomorphic
canonical coordinates. Then the canonical 2-form on T ∗

B is dx ∧ dy in
these coordinates.

The map T ∗
B → X0 also gives an exact sequence

0 → R1f∗Z → T ∗
P1 → X0 → 0.

R1f∗Z gives a degenerating family of lattices in the fibres of the complex
line bundle T ∗

B . Thus working on the cotangent bundle of B gives useful
coordinates for X away from the singular fibres, and these coordinates
will be used repeatedly in later sections.

2. Equations for Ricci-flatness

In this section we will discuss equations for Ricci-flatness in different
coordinate systems. We are interested in the behaviour of the metric
on an elliptic K3 fibration, and this metric behaves in radically different
ways away from the singular fibres as opposed to a neighbourhood of
the singular fibres. In these two different cases, it will be useful to have
two different coordinate systems to study the metrics.

For studying the metric away from the singular fibres, we adopt the
set-up from the previous section, with π : T ∗

B → B where B is an open
subset of C. We are actually working on X = T ∗

B/Λ, where Λ is a
holomorphically varying family of lattices in T ∗

B . We will assume in this
section that the zero section is holomorphic, so that the holomorphic
2-form on X is induced by Ω = dx ∧ dy on T ∗

B , where y = y1 + iy2 and
x = x1 + ix2 are holomorphic canonical coordinates on T ∗

B . The Kähler
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form in these coordinates takes the form

ω =
i

2
W (dx ∧ dx̄+ b̄ dx ∧ dȳ + b dy ∧ dx̄+ (W−2 + |b|2) dy ∧ dȳ)

=
i

2
(W (dx+ b dy) ∧ (dx+ b dy) +W−1 dy ∧ dȳ).

Here W and b are defined by the above expression, and the coefficient
of dy ∧ dȳ is chosen to ensure the normalisation ω2 = (Im Ω)2. The
function W is real-valued and the function b is complex-valued. The
Kähler condition is now dω = 0. This equation can be written as

∂yW = ∂x(Wb)

∂y(Wb̄) = ∂x(W (W−2 + |b|2)).

Note that expanding the second equation out gives

W∂y b̄+ b̄∂yW = −W−2∂xW + (∂xW )|b|2 +W (b ∂xb̄+ b̄ ∂xb).

Using the first equation to replace ∂yW and simplifying gives the above
two equations being equivalent to

(2.1) (∂y − b∂x)b̄ = −W−3∂xW

(2.2) (∂y − b∂x)W = W∂xb.

Define the vector fields

∂v = W−1∂x

∂h = ∂y − b∂x

and denote by ∂̄v and ∂̄h the complex conjugate vector fields. The
subscripts v and h denote the vertical and horizontal vector fields re-
spectively. Let ϑv and ϑh denote the dual frame of one-forms, i.e.,

ϑv = W (dx+ bdy)
ϑh = dy.

Then
ω =

i

2
W−1(ϑv ∧ ϑ̄v + ϑh ∧ ϑ̄h).

In addition, Equations (2.1) and (2.2) take the simpler form

(2.1′) ∂hb̄ = ∂vW
−1
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(2.2′) −∂hW
−1 = ∂vb.

Remark 2.1. While we don’t use this here, one can calculate that
the holomorphic curvature Θ = (Θij)1≤i,j≤2 of this metric is given by

Θ11 = −Θ22 = ∂W ∧ ∂̄W−1 +W∂∂̄W−1 +W 2∂b̄ ∧ ∂̄b
Θ21 = −Θ̄12 = −W−1∂(W 2∂̄b).

Example 2.2. The standard semi-flat metric. We call a
metric semi-flat if it restricts to a flat metric on each elliptic fibre. As
above, let B ⊆ C an open subset, y the coordinate on C. Let τ1(y), τ2(y)
be two holomorphic functions on B such that τ1(y)dy, τ2(y)dy generate
a lattice Λ(y) ⊆ T ∗

B,y for each y ∈ B, giving us the holomorphically
varying family of lattices Λ ⊆ T ∗

B = B × C. Typically, we may allow
τ1 and τ2 to be multi-valued. Assuming without loss of generality that
Im(τ̄1τ2) > 0, then a Ricci-flat metric on X = (B × C)/Λ is given by
the data

W =
ε

Im(τ̄1τ2)

b = −W
ε

[Im(τ2x̄)∂yτ1 + Im(τ̄1x)∂yτ2].

It is easy to check that these satisfy the equations (2.1) and (2.2). This
metric, a priori defined on T ∗

B , descends to a metric on X, and the area
of a fibre of f : X → B is ε. We call this metric on X the standard
semi-flat metric, with Kähler form ωSF .

The reader may check explicitly that this metric is independent of
the particular choice of generators for Λ, so that multi-valuedness of τ1
and τ2 do not cause a problem. Furthermore, the metric is independent
of the choice of the coordinate y (keeping in mind that a change of the
coordinate y necessitates a change of the canonical coordinate x, and
hence the functions τ1, τ2). This may also be seen as follows: The inclu-
sion R1f∗Z ∼= Λ ⊆ T ∗

B allows one to identify (R1f∗R)⊗C∞(B) with the
underlying C∞ vector bundle T ∗

B , along with the Gauss-Manin connec-
tion ∇GM on T ∗

B , the flat connection whose flat sections are sections of
R1f∗R. The standard semi-flat metric is the unique semi-flat Ricci-flat
Kähler metric satisfying the conditions:

(1) The area of each fibre is ε;
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(2) ω2
SF = (Re Ω)2 = (Im Ω)2;

(3) The orthogonal complement of each vertical tangent space is the
horizontal tangent space of ∇GM at that point.

This metric was described in [12], and in the more general context
of special Lagrangian fibrations in [19], as well as [14], Example 6.4.

The reader should be aware however that if Tσ : X → X denotes
translation by a holomorphic section σ, then T ∗

σωSF may give rise to a
different semi-flat metric, satisfying conditions (1) and (2) but not (3).
However, if σ is not only holomorphic but a flat section with respect
to the Gauss-Manin connection (so that σ(y) = a1τ1(y) + a2τ2(y) for
constants a1, a2) then Tσ is an isometry and T ∗

σωSF = ωSF , T ∗
σΩ = Ω.

It will also be useful to have the Kähler potential for the metric. This
is a function ϕ such that ω = i

2∂∂̄ϕ. Let φ1 and φ2 be anti-derivatives
of τ1 and τ2 respectively. Then we can take

ϕ =
ε

Im(τ̄1τ2)

(
− x̄

2

2
τ1
τ̄1

+ |x|2 − x2

2
τ̄1
τ1

)
+

i

2ε
(φ1φ̄2 − φ̄1φ2).

This is well-defined on subsets T ∗
U ⊆ T ∗

B for U simply connected, but
not on T ∗

B/Λ.

Construction 2.3. The Gibbons–Hawking Ansatz. We now
describe the system of coordinates which is most suited to studying
the hyperkähler metric in a neighbourhood of a singular fibre of the
elliptic fibration. This system of coordinates goes under the name of the
Gibbons–Hawking Ansatz, and the description in terms of a connection
form on an S1-bundle explained below is essentially the same as that
given in [2], which in turn is based on earlier work of Gibbons and
Hawking, Hitchin, and others.

Let U ⊆ R3 be an open set with the Euclidean metric, with coordi-
nates u1, u2, u3. Let π : X → U be a principal S1 bundle, with S1 action
S1 ×X → X written as (eit, x) �→ eit · x. Let θ be a connection 1-form
on X, i.e., a u(1) = iR-valued 1-form invariant under the S1-action and
such that θ(∂/∂t) = i. The curvature of the connection θ is dθ = π∗α
for a 2-form α on U , and iα/2π represents the first Chern class of the
bundle (see [8], Appendix). Suppose V is a positive real function on U



large complex structure limits 487

satisfying ∗dV = α/2πi. Let

ω1 = du1 ∧ θ/2πi+ V du2 ∧ du3

ω2 = du2 ∧ θ/2πi+ V du3 ∧ du1

ω3 = du3 ∧ θ/2πi+ V du1 ∧ du2.

Then ω2
1 = ω2

2 = ω2
3 is nowhere zero, and ωi ∧ ωj = 0, for i �= j.

Furthermore, ∗dV = α/2πi implies dωi = 0 for all i, since for instance

dω1 = −du1∧dθ/2πi+dV ∧du2∧du3 = −du1∧∗dV +dV ∧du2∧du3 = 0.

Therefore ω1, ω2, ω3 define a hyperkähler metric on X. Note V is har-
monic, since dα = 0 implies that ∗d ∗ dV = 0.

Let θ0 denote the real 1-form θ/2πi, and observe that

−ω1 − iω2 = (θ0 − iV du3) ∧ (du1 + idu2).

By taking this to be the (holomorphic) 2-form Ω on X, this determines
an integrable almost complex structure on X, where du1 + idu2 and
θ0 − iV du3 span the holomorphic cotangent space inside the complex-
ified cotangent space. It follows that the (integrable) almost complex
structure J on the cotangent space is given by

J(du1) = −du2, J(du3) = −V −1θ0.

Thus, if we consider the Kähler form ω = ω3 as an alternating tensor,
and use the relation that if g is the Riemannian metric, then g(ζ, ξ) =
ω(ζ, Jξ), we obtain an expression for the metric

ds2 = V du · du + V −1θ2
0.

Usually, we shall in fact start from a positive harmonic function V on
U such that − ∗ dV represents the Chern class of the bundle. Then
we can always find a connection 1-form θ with dθ/2πi = ∗dV , such a θ
being uniquely determined up to pull-backs of closed 1-forms from U ,
and hence we obtain hyperkähler metrics as above.

Remark 2.4. We will need to calculate some information about
the curvature of this metric. We can work locally, and therefore take
the orthonormal moving coframe given by V 1/2du1, V

1/2du2, V
1/2du3

and V −1/2θ0. We can moreover write the connection form locally as

θ0 =
dt

2π
+A1du1 +A2du2 +A3du3,
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where ∇V = ∇ × A. To calculate the curvature, we may then apply
Cartan’s method. We obtain

‖R‖2 = 12V −6|∇V |4 + V −4∆(|∇V |2) − 6V −5(∇V ) · (∇(|∇V |2)).

Using the fact that V is harmonic, we then recover the compact formula
given in Equation (32) of [28] that

‖R‖2 =
1
2
V −1∆∆(V −1).

Example 2.5. If we consider the natural map C2 \ (0, 0) →
P1(C) = S2, and restrict to S3 ⊂ C2, we easily check that the image of
(z1, z2) ∈ S3 is

(2 Re(z1z̄2), 2 Im(z1z̄2), |z1|2 − |z2|2).

This is the standard Poincaré map. The formula also defines a map
X = C2 \ (0, 0) → R3 \ (0, 0, 0); we compose this map with complex
conjugation on z2 to obtain a map p : X = C2 \ (0, 0) → R3 \ (0, 0, 0),
given by

p(z1, z2) = (2 Re(z1z2), 2 Im(z1z2), |z1|2 − |z2|2).

This map exhibits X as an S1-bundle over R3 \ (0, 0, 0), with Chern
class ±1. The action of S1 on X is given by eit · (z1, z2) = (eitz1, e−itz2).
Note also that if we compose p with projection onto the first two factors,
we obtain the map sending (z1, z2) to 2z1z2, holomorphic with respect
to the standard complex structures.

We now choose a positive harmonic function V on R3 \ (0, 0, 0) such
that

−
∫

S2

∗dV =
∫

S2

iα/2π = ±1,

i.e., the Chern number is correct. The particular examples of such V
we consider are

V = e+
1

4π|u| = e+
1

4π
√
u2

1 + u2
2 + u2

3

,

where e ≥ 0. The integral

∫
S2

∗d
(

1
4π
√
u2

1 + u2
2 + u2

3

)
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is easily seen to be ±1 (depending on the orientation of the sphere).
Now we take as connection form

θ = iIm(z̄1dz1 − z̄2dz2)/(|z1|2 + |z2|2).

Then

dθ/2πi =
−(u1du2 ∧ du3 + u2du3 ∧ du1 + u3du1 ∧ du2)

4π(u2
1 + u2

2 + u2
3)3/2

= ∗dV

as required. We therefore obtain hyperkähler metrics on X, which, for
all e ≥ 0, extend to metrics on C2. In fact, such metrics are ALF
(asymptotically locally flat), approaching a flat metric when |u| → ∞,
whilst being periodic in t. When e = 1, the metric obtained is the
Taub-NUT metric, and when e = 0, it is just a flat metric on C2. To
prove the assertions for e = 0, straightforward calculations show that,
with zj = xj + iyj ,

ω1 =
1
π

(dx2 ∧ dy1 − dx1 ∧ dy2)

ω2 =
1
π

(dx1 ∧ dx2 − dy1 ∧ dy2)

ω3 =
1
π

(dx1 ∧ dy1 + dx2 ∧ dy2).

So ω1, ω2, ω3 extend to C2, and yield a flat metric, as claimed.

Construction 2.6. Gibbons–Hawking versus holomorphic
coordinates. In the Gibbons–Hawking Ansatz, we consider the case
when U = B × R, with B a contractible open subset of R2 — in
particular, the S1-bundle X over U is topologically trivial. Set y1 = u1,
y2 = u2, so then y = y1 + iy2 is a complex coordinate on B. We will
see below how the hyperkähler structure on X gives rise to a complex
structure on X under which the function y is holomorphic, i.e., the map
X → B is holomorphic. Moreover, if we pass to the universal cover X̃
on X, we can construct a holomorphic coordinate x (depending on a
choice of holomorphic section of X̃ over B) such that the holomorphic
2-form is just dx ∧ dy. This in turn enables us to identify X̃ with T ∗

B

over B, with x, y then being holomorphic canonical coordinates on T ∗
B ,

where the identification depends on our choice of holomorphic section.
The S1-action on X yields an R-action on T ∗

B , which we shall see is just
translation on x1 = Rex, and so X is isomorphic to T ∗

B/Z. The Kähler
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form provided by the Gibbons–Hawking Ansatz yields a Kähler form ω
on T ∗

B , corresponding of course to a Ricci-flat metric, and for which the
functions W and b are independent of x1. The Kähler form therefore
descends to T ∗

B/Z, and is invariant under the obvious S1-action.

Conversely, we shall see that any Ricci flat, S1-invariant Kähler
structure on T ∗

B/Z of the above type (i.e., we have x, y holomorphic
canonical coordinates on T ∗

B over B, for which W and b are independent
of x1) does in fact arise from the Gibbons–Hawking Ansatz in the way
that has just been described. Moreover, Gibbons–Hawking coordinates
u1, u2, u3 and the connection form θ on X may be recovered from the
holomorphic canonical coordinates x, y on T ∗

B . Here we have u1 = y1,
u2 = y2, and u3 determined up to a constant.

We now give the details for the construction. We have U = B × R,
with B a contractible open subset of R2, and we set y = y1 + iy2, a
complex coordinate on B. Then dy1+idy2 = dy, and from the Gibbons–
Hawking Ansatz equations we observe that dy ∧ d(θ0 − iV du3) = 0.
By the theorem on integrability of almost complex structures, Ω =
(θ0− iV du3)∧dy is a holomorphic 2-form for an integrable almost com-
plex structure J on X, and locally there exists a holomorphic coordinate
z such that dz = (θ0 − iV du3) mod dy. Moreover it is then clear that
z is determined up to a holomorphic function of y, and that locally the
holomorphic coordinates recover the (integrable) complex structure. We
now pass to the universal cover X̃ of X, topologically B×R2, together
with its integrable complex structure J̃ obtained from J (from now on,
we shall work on X̃, but omit tildes from forms and functions pulled
back from X). We note that the complex structure is invariant under
the R-action on X̃ induced from the given S1-action on X. The (global)
form θ0 − iV du3 restricts down to a holomorphic 1-form on each fibre,
locally just dz. Therefore, by integrating θ0 − iV du3 along paths in the
fibre from some fixed point, we obtain a holomorphic coordinate on the
fibre, which locally (up to a constant depending on the choice of base
point) will coincide with z.

In order to get a global holomorphic coordinate x on X̃, we choose
a holomorphic section of X̃ over B (such sections always exist), which
will then be regarded as giving the required base point in each fibre
for the path integration. In this way, we obtain a global holomorphic
function x on X̃ such that x, y are holomorphic coordinates everywhere,
and where x is uniquely determined up to a holomorphic function of y
(corresponding to the choice of holomorphic section). By construction,
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the global holomorphic coordinates x, y on X̃ realize the almost complex
structure, with y a holomorphic coordinate on the base and x a holomor-
phic coordinate on the fibres. Moreover Ω = −ω1 − iω2 = dx ∧ dy, and
so we can identify X̃ → B with T ∗

B → B (with holomorphic canonical
coordinates, as described in §1), where the chosen holomorphic section
of X̃ over B is identified the zero section of the holomorphic cotangent
bundle. Choosing a section of X̃ over U = B × R enables us to con-
sider the coordinate t on S1 as a coordinate on the fibres; the above
derivation of the holomorphic coordinate x then shows that its real part
x1 = t

2π + g(y1, y2, u3), for some function g, and that the action of R
on X̃ is the obvious one given by translation on x1. Explicitly X is
obtained as a quotient of X̃ under the action of Z given by x1 �→ x1 +1.

Since dx = θ0 − iV du3 mod dy, there exists a complex-valued func-
tion b on X̃ such that dx+ bdy = θ0 − iV du3. Also

(dx+ bdy) ∧ (dx+ bdy) = 2iV θ0 ∧ du3.

We now set W = V −1 and calculate the Kähler form ω3 in terms of the
holomorphic coordinates:

ω3 = du3∧θ0+V du1∧du2 =
i

2
(W (dx+bdy)∧(dx+ bdy)+W−1dy∧dȳ),

which we observe has the same form as our original general formula for ω
in holomorphic canonical coordinates. Since we started with a Ricci-flat
metric, the previous equations for Ricci-flatness (2.1) and (2.2) which
we derived are then automatically satisfied.

The next point is to observe that W and b are independent of x1,
the real part of x. To see this, recall now that

ϑv = W (dx+ bdy) = (V −1θ0 − idu3)

and ϑh = dy is a globally defined coframe for the holomorphic cotangent
bundle of X̃. In particular, since the imaginary part of ϑv is −du3, we
will have that the imaginary part of dϑv is zero. We first calculate

(2.3) ∂ϑv = W−1∂W ∧ ϑv +W∂b∧ ϑh = (W−1∂hW −W∂vb) ϑh ∧ ϑv.

From this it is seen that Equation (2.2′) is just the statement that
∂ϑv = 0. We next calculate

∂̄ϑv = W−1∂̄W ∧ ϑv +W∂̄b ∧ ϑh

= W−1∂̄vW ϑ̄v ∧ ϑv +W−1∂̄hW ϑ̄h ∧ ϑv

+W∂̄vb ϑ̄v ∧ ϑh +W∂̄hb ϑ̄h ∧ ϑh.

(2.4)
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If then Equation (2.1′) also holds, it is easily checked that the imaginary
part of ∂̄ϑv is zero if and only if ∂vW = −∂̄vW and ∂vb = −∂̄vb, that is
W and b are independent of x1, the real part of x. Thus b is invariant
under the R-action, that is b is the pull-back of a function from U .

Conversely, if we start from a Ricci-flat, S1-invariant Kähler metric
on T ∗

B/Z of the above type (i.e., we have x, y holomorphic canonical
coordinates on T ∗

B over B, for which W and b are independent of x1), we
can pass to the universal cover X̃ = T ∗

B over B. The above construction
then reverses. We set φ to be the imaginary part of ϑv = W (dx+ bdy).
Clearly φ is invariant under the given R-action on X̃. Reversing the
derivation of the previous paragraph ensures that dφ = 0 on X̃, and
so there is a global function u3 with φ = −du3, where u3 is invariant
under the action of R, and is determined up to a constant. We set
V = W−1, θ0 = (dx+ bdy)− iV φ and θ = 2πiθ0; thus both V and θ are
also invariant under the action of R. It is straightforward now to verify
that we get back the above form of the Gibbons–Hawking Ansatz, with
u1 = y1 and u2 = y2, and where U = B × R is the quotient of X̃ by
the R-action. The periodicity of this R-action then yields an S1-bundle
X over U (to which V and θ descend, and on which the corresponding
S1-action leaves V and θ invariant).

Finally, we calculate (for use in §4) the differential p∗, where
p : X̃ → U = B × R is the natural projection. Using the expression
du3 = i

2W (dx− dx̄) + i
2W (bdy − b̄dȳ), we obtain

p∗∂x =
iW

2
∂u3

p∗∂x̄ =
−iW

2
∂u3

p∗∂y = ∂y +
iW

2
b∂u3

p∗∂ȳ = ∂ȳ −
iW

2
b̄∂u3 .

(2.5)

Thus p∗∂h = ∂y, p∗∂v = i
2∂u3 .

Also, as W and b can be thought of as functions on B × R, being
independent of x1, the formula (2.2′) translates into

(2.6) −∂yV =
i

2
∂u3b.

Thus b can be calculated as

(2.7) b(y, u3) = σ(y) +
∫

2i∂yV du3
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where σ(y) is some constant of integration.

S1-invariant Ricci flat metrics on elliptic fibrations

We shall be most interested in the transformation described above
when V and θ are themselves periodic in u = u3. The hyperkähler met-
ric descends to one on the corresponding S1-fibration over Y = B × S1

if and only if the three 2-forms ω1, ω2, ω3 are invariant under changing
u by a period, which in turn is saying that the periodicity in u is inde-
pendent of y. We shall now change notation and denote this S1 × S1

fibration over B by X (the universal cover X̃ being the same as be-
fore). Since the restriction of the Kähler form ω3 to a fibre Xy is just
du ∧ θ0 = du ∧ dt/2π, the volume of any fibre is just the periodicity in
u. Changing coordinates to the holomorphic coordinates of Construc-
tion 2.6, we obtain a holomorphic map f : X → B to a contractible
open subset B of C, whose fibres are elliptic curves. Having chosen a
holomorphic section, we obtain holomorphic canonical coordinates x, y
on the corresponding line bundle X̃ over B, where the holomorphic 2-
form Ω = dx ∧ dy, and where the Kähler form ω (as defined by the
usual formula) determines a hyperkähler metric on X. Moreover, both
W and b are independent of x1.

The periods of the above elliptic fibration have a basis {1, τ(y)}, for
some holomorphic function τ of y. If we wish to have an explicit formula
for τ(y), we take a basis of homology {γ1, γ2}, where γ1 is an S1 in a
fibre Xy of X → B given by the orbit of the S1-action, and γ2 is an S1

in Xy mapping isomorphically to {y} × S1 ⊂ Y . Restricted to the fibre
Xy, we have dx = θ0 − iV du3; one of the periods is then∫

γ1

dx =
∫

γ1

θ0 = 1,

as already observed, whilst the other period

τ(y) =
∫

γ2

dx =
∫

γ2

θ0 − i

∫
γ2

V du3.

By choosing the appropriate orientation for γ2, we may also assume that
Im τ(y) > 0.

If we have such a holomorphic elliptic fibration f : X → B and Ricci-
flat metric (independent of x1), we shall refer to it as an S1-invariant
Ricci-flat metric (on X) in canonical form.
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Conversely, if we are given such an S1-invariant Ricci-flat metric on
X, we saw above how this does indeed arise from the Gibbons–Hawking
Ansatz. Moreover, in this case, we also have that V and θ are periodic
in u, with the period in u being constant, namely the volume of the
elliptic fibres of f : X → B.

Remark 2.7. A particular case of an S1-invariant Ricci-flat metric
in canonical form is a semi-flat metric: Given, locally, two periods τ1
and τ2, these should be interpreted as 1-forms on B, i.e., are τ1dy, τ2dy.
We can then locally replace y with a holomorphic function g on an open
set U such that dg = τ1dy, and thus can assume τ1 = 1. Then in these
coordinates, the semi-flat metric coincides with the Gibbons–Hawking
metric obtained by taking V = Im τ2/ε on U × R/εZ. We can then
use the formula of Remark 2.4 to compute ‖R‖2 for a semi-flat metric
(which will coincide with the value calculated via Remark 2.1). Thus

‖R‖2 =
1
2
V −1∆∆V −1 =

ε2

2
(Im τ2)−1∆∆(Im τ2)−1.

In particular, ‖R‖2 → 0 as ε→ 0.

Returning now to the set-up in Question 1.2; away from the singu-
lar fibres, we expect that, as the volume ε of the fibres tends to zero,
the metric (suitably normalized) will approach a semi-flat one. This
expectation is motivated by the following result, which proves a slightly
weaker version of the expected convergence for the S1-invariant Ricci-
flat case, purely by local considerations, as a consequence of Harnack’s
inequality for harmonic functions. Whilst we don’t expect a purely lo-
cal proof of convergence in general (i.e., not assuming the S1-invariance
of the metrics), the main result of this paper (Theorem 5.6) will prove
a very strong form of the expected convergence to a semi-flat metric
(locally over the base) by means of global methods.

Proposition 2.8. Let π : X → B be an elliptic fibration with
periods {1, τ(y)}, over the open disc B of radius R in C, with Im τ(y) >
0, and let B0 ⊂ B denote a smaller disc of radius R0 < R. Suppose we
have a sequence on X of S1-invariant Ricci-flat metrics gi in canonical
form (and with constant volume form), for which the volume εi := ε(gi)
of the fibres tends to zero as i → ∞. Then on π−1(B0) we have Wi :=
W (gi) → 0 uniformly as i→ ∞. On a fixed fibre, with periods {1, τ}, we
have the stronger statement that ε−1

i Wi Im τ → 1 uniformly as i→ ∞.
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Proof. Our assumption that the volume form is constant ensures
that we can fix the holomorphic canonical coordinates x, y and the holo-
morphic 2-form Ω = dx ∧ dy independent of i. We now transform the
coordinates to Gibbons–Hawking coordinates; the first claim is equiv-
alent to Wi → 0 uniformly on B0 × R. If the volume of the fibres is
εi, then the periodicity in u is εi. Fix R1 with R0 < R1 < R; then
for εi << 1, the ball B̃1 in U = B × R with centre the origin and
radius R1 will contain the set B0 × [0, εi], so it will suffice to show that
Wi → 0 uniformly on B̃1 as i → ∞. Fix i for the moment so that εi
is sufficiently small as above, and drop the subscript for convenience.
Let B̃ denote the ball of radius R, with centre the origin. Recall now
that W = V −1. Given that V is harmonic on B̃, this is precisely the
situation in which we can apply the strong form of Harnack’s inequality,
as stated in Problem 2.6 on page 29 of [11], namely that for any point
P ∈ B̃1,

(1 −R1/R)
(1 +R1/R)2

≤ V (P )
V (0)

≤ (1 +R1/R)
(1 −R1/R)2

.

Thus, for P ∈ π−1(B0), the ratio W (P )/W (0) is bounded above and
below by appropriate positive constants. For each y ∈ B0, we can
calculate the volume of the fibre Xy as

ε =
∫

Xy

Wdx1 ∧ dx2 =
∫ Im τ(y)

0
Wdx2.

For R0 fixed and for y ∈ B0, we also have that Im τ(y) is bounded
above and below by appropriate positive constants. On any fibre Xy

with y ∈ B0, we can find a point at which W takes the average value on
the fibre, namely ε/Im τ(y). Putting all these facts together yields the
claim that Wi → 0 uniformly on B̃1 as i→ ∞.

For the stronger statement on a fixed fibre, we can assume that the
fibre is X0, and that W takes the average value ε/Im τ at the centre 0
of the ball B̃. If we take a concentric ball B̃(r) of small radius r, it will
still contain all of {0}× [0, ε], provided ε < r. Harnack’s inequality then
yields

(1 − r/R)
(1 + r/R)2

≤ W (0)
W (P )

≤ (1 + r/R)
(1 − r/R)2

for all P ∈ X0. By taking r arbitrarily small, these upper and lower
bounds are arbitrarily close to 1, and hence ε−1

i Wi Im τ → 1 uniformly
on X0. q.e.d.
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3. The Ooguri–Vafa metric

The aim of this section is to describe a certain hyperkähler metric
on a neighbourhood of each singular fibre in our elliptically fibred K3
surface, and to derive various estimates associated with this metric. If
the fibres are assumed to have volume ε, then away from the singular
fibre, this metric decays very rapidly, for small ε, to a semi-flat metric.
We shall assume throughout that we only have singular fibres of Kodaira
type I1, and so locally around the singular fibre, one of the periods is
invariant under monodromy (and in fact, by an appropriate choice of
holomorphic coordinate y on the base, may be taken to be constant,
value 1), whilst the other period will be multivalued and tend to infinity.
The metric we define will be an S1-invariant metric (as described in the
previous section) on the smooth part of the fibration, and will be most
conveniently described in the Gibbons–Hawking coordinates.

The metric we describe was first written down (in a slightly different
form) by Ooguri and Vafa [29], and so will be referred to as the Ooguri–
Vafa metric. In §4, we shall start with an Ooguri–Vafa metric in a
neighbourhood of each singular fibre; by appropriately twisting these
metrics, we’ll show that they may be glued with a semi–flat metric
away from the singular fibres, hence obtaining a global metric, which is
Ricci-flat away from the gluing regions, and which represents the correct
Kähler class. For small ε, it is these metrics which approximate very
accurately the global Ricci flat metric with the given Kähler class.

Before launching into the technical details, we shall briefly describe
the basic idea behind the construction of the Ooguri–Vafa metric, which,
given the description of the Gibbons–Hawking Ansatz in §2, should
strike the reader as very natural. The harmonic function V we use
will be periodic in u of period ε (the volume of the fibres), but have
Taub–NUT type singularities on the fibre y = 0 at the points u ∈ εZ.

We take U = D×R\{0}× εZ, or more precisely its quotient by εZ,
where D ⊂ C is an open disc centred at the origin. We denote by y1, y2

the coordinates on D ⊂ C, and by u the coordinate on R. We want
to write down V harmonic on U , periodic in u and with singularities of
the correct type at the points {0} × εZ. For instance, around zero, V
should behave like a harmonic function plus a term 1

4π|x| , from which it
will follow that the total space X of the S1-fibration over U extends (by
adding a single point) to a manifold X̄ mapping onto Ū = D × R/εZ.
In addition, the hyperkähler metric extends to X̄. We are led therefore
to take V = V0 + f(y1, y2), where f is a harmonic function in y1, y2 on
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D, and

V0 =
1
4π

∞∑
−∞

(
1√

(u+ nε)2 + y2
1 + y2

2

− a|n|

)
,

where an = 1
nε (n > 0), thus ensuring appropriate convergence, and

a0 is chosen appropriately to ensure that the periods do not change
as we change ε — that is, we are defining metrics on a fixed elliptic
fibration. This choice of a0 also ensures, on a fixed annulus in D, that
εV0 ∼ − 1

2π log r as ε → 0, where r2 = y2
1 + y2

2. In general, the periods
around an I1 fibre may be assumed to be 1 and τ(y) = 1

2πi log y+ ih(y),
where h is holomorphic in y = y1 + iy2, and these may be achieved in
our construction by taking V = V0 + f(y1, y2), where f denotes the real
part of h.

We now give the technical details.

Lemma 3.1. Let

Tj =
1
4π

j∑
n=−j

(
1√

(u+ nε)2 + y2
1 + y2

2

− a|n|

)

where

an =

{
1/nε n �= 0
2(−γ + log(2ε))/ε n = 0

and γ is Euler’s constant. Then:

(a) The sequence {Tj} converges uniformly on compact sets in D ×
R− {0} × εZ to a harmonic function V0. Here D ⊆ C is the unit
disc centred at the origin.

(b) V0 has an expansion, valid when |y| �= 0,

V0 = − 1
4πε

log |y|2 +
m=∞∑
m=−∞

m�=0

1
2πε

e2πimu/εK0(2π|my|/ε)

where y = y1 + iy2 and K0 is the modified Bessel function. (See
[3], p. 374.)

(c) There exists a constant C such that for any 0 < r0 < 1, there
exists an ε0 > 0 such that for all ε < ε0, |y| > r0,∣∣∣∣V0 +

1
4πε

log |y|2
∣∣∣∣ ≤ C

ε
e−2π|y|/ε.
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(d) If r ≤ 1, and f is a harmonic function on the disc Dr of radius r
such that f(y)− 1

4π log |y|2 > 0 for |y| ≤ r, then there exists an ε0
such that for all ε < ε0,

V0 + f(y)/ε > 0

in Dr × R.

Proof. (a) Let p be the smallest integer greater than ε−1
√

1 + ε2.
Then for 0 ≤ u ≤ ε, y2

1 + y2
2 ≤ 1, we have

1√
(u+ nε)2 + y2

1 + y2
2

> a|n|+p

for all n. Let

Rj =
1
4π

j∑
n=−j

(
1√

(u+ nε)2 + y2
1 + y2

2

− a|n|+p

)
.

Then for j > 2p,

Tj −Rj =
1
4π


−ap − a0 − 2

p−1∑
n=1

an + 2
j∑

n=j−p+1

an+p


 .

Put C(ε) = 1
4π (−ap − a0 − 2

∑p−1
n=1 an). Note that

∑j
n=j−p+1 an+p → 0

as j → ∞, so if Rj converges uniformly on compact sets to a harmonic
function R, then Tj converges to a harmonic function R + C(ε). Now
for 0 < u < ε, y2

1 + y2
2 < 1, Rj is a monotonically increasing sequence of

harmonic functions (since all terms are positive). Furthermore, it is easy
to check that, say, the sequence Rj is bounded at u = ε/2, y1 = y2 = 0.
Thus by the Harnack convergence theorem, (Theorem 2.9, [11]), the Rj

converge uniformly on compact subsets to a harmonic function R, and
V0 = R + C(ε). Since R is positive, we see V0 > C(ε). For u = 0, ε,
we merely omit the term which blows up and then repeat the previous
argument.

(b) The part which requires care is the constant term of the Fourier
expansion, i.e., computing 1

ε

∫ ε
0 V0du. To do so, consider the following

variant on the Tj :

Sj =
1
4π

j∑
n=−j

(
1√

(u+ nε)2 + y2
1 + y2

2

− b|n|

)
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where

bn =

{
(log(n+ 1) − log n)/ε n �= 0
0 n = 0.

Then

Tj − Sj =
1
4π

(
2
ε

log(j + 1) − a0 −
2
ε

j∑
n=1

1
n

)
.

As j → ∞, this converges to

1
4π

(−2γ
ε

− a0) = − 1
2πε

log(2ε).

Now we calculate

4π
∫ ε

0
Sjdu =

j∑
n=−j

∫ ε

0

(
1√

(u+ nε)2 + |y|2
− b|n|

)
du

=
j∑

n=−j
n�=0

(− log(|n| + 1) + log |n|)

+
j∑

n=−j

∫ (n+1)ε

nε

1√
u2 + |y|2

du

=
∫ (j+1)ε

ε

(
1√

u2 + |y|2
− 1
u

)
du

+
∫ 0

−jε

(
1√

u2 + |y|2
+

1
u− ε

)
du

+
∫ ε

0

1√
u2 + |y|2

du

= log
(
u−1

(
u+

√
u2 + |y|2

)) ∣∣∣∣
(j+1)ε

ε

+ log
(
|u− ε|

(
u+

√
u2 + |y|2

)) ∣∣∣∣
0

−jε

+ log
(
u+

√
u2 + |y|2

) ∣∣∣∣
ε

0

.

Evaluating this and letting j → ∞, one obtains

1
ε

lim
j→∞

∫ ε

0
Sjdu =

1
4πε

(log 2 + 2 log ε− log
|y|2
2

)



500 mark gross & p. m. h. wilson

from which we conclude that

1
ε

∫ ε

0
V0du = − 1

4πε
log |y|2.

To compute the other terms in the Fourier expansion, we just need
to calculate

1
ε

∫ ε

0
V0e

2πimu/εdu =
1

4πε

∫ ∞

−∞
e2πimu/ε√
u2 + |y|2

du

=
1

2πε

∫ ∞

0

cos(2πmu/ε)√
u2 + |y|2

du

=
1

2πε

∫ ∞

0

cos(2π|my|v/ε)√
v2 + 1

dv

=
1

2πε
K0(2π|my|/ε).

The last equality follows from [3], page 376, formula 9.6.21.
(c) By [3], 9.8.6, there exists a constant C1 such that

√
xexK0(x) ≤

C1 for x ≥ 2. (In fact C1 ≤ 2). In particular, K0(x) ≤ C1e
−x for x ≥ 2.

Thus ∣∣∣∣∣∣∣
∞∑

m=−∞
m�=0

1
2πε

e2πimu/εK0(2π|my|/ε)

∣∣∣∣∣∣∣ ≤
C1

πε

∞∑
m=1

e−2π|my|/ε

=
C1

πε

e−2π|y|/ε

1 − e−2π|y|/ε

for 2π|y|/ε ≥ 2. From this follows (c).
(d) By the maximum principal, the minimum value M of f occurs

on the boundary of Dr. On the other hand, for fixed u, it is clear V0 is
monotonically decreasing in |y|. Thus the minimum value of V0 + f/ε
must occur on (∂Dr) × R. But taking r0 < r, by (c) there exists an ε0
such that for all ε < ε0,∣∣∣∣V0 +

1
4πε

log |y|2
∣∣∣∣ < − 1

4πε
log r2 +M/ε

whenever |y| = r. Thus V0 + f/ε is positive on ∂Dr × R for ε < ε0,
hence V0 + f/ε is positive on Dr × R. q.e.d.

With this rather technical lemma out of the way, we may now pro-
ceed to the construction of our metric, using the Gibbons–Hawking
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Ansatz formalism, as developed in §2. Suppose Dr ⊂ C is the disc of
radius r < 1, centre the origin, and f : X̄ → Dr an elliptic fibration,
with singular fibre over the origin of type I1. Let Ȳ = Dr × R/εZ and
Y = (Dr ×R− {0} × εZ)/εZ. It is straightforward to check that there
is an induced map π̄ : X̄ → Ȳ of C∞ manifolds, which restricts to
an S1-bundle π : X → Y with Chern class ±1, the sign dependent on
the choice of orientation for the fibre. For further justification of these
statements, the reader is referred to [15], Example 2.6 (1). The plan
now is to define a hyperkähler metric on X via the Gibbons–Hawking
Ansatz applied to π : X → Y , and then check that it extends to a
hyperkähler metric on X̄.

Proposition 3.2. With the notation as above, let

h(y) = f(y1, y2) + ig(y1, y2)

be a holomorphic function on Dr, so that

− 1
4π

log |y|2 + f(y1, y2) > 0

on Dr. Let V0 be the harmonic function on Y defined in Lemma 3.1, and
V = V0 + f(y1, y2)/ε, with ε chosen small enough so that V > 0 on Y .
Then there exists a connection 1-form θ on X such that dθ/2πi = ∗dV ,
and this defines a hyperkähler metric on X with

−Re Ω = dy1 ∧ θ/2πi+ V dy2 ∧ du
− Im Ω = dy2 ∧ θ/2πi+ V du ∧ dy1

ω = du ∧ θ/2πi+ V dy1 ∧ dy2.

These forms extend to X̄, giving a hyperkähler metric on X̄, and a
holomorphic elliptic fibration X̄ → Dr with periods 1 and 1

2πi log y +
ih(y) + C, for some real constant C. By appropriate choice of θ, this
constant C may be taken to be zero.

Proof. Since V is harmonic, recall that ∗dV is closed. Taking a
sphere S2 of radius < ε centred at 0 ∈ Dr × R, we have

∫
S2

∗dV =
∫

S2

∗d
(

1
4π
√
u2 + y2

1 + y2
2

)

since all other terms in ∗dV are defined at 0, and hence are exact on
an ε-ball around 0, and therefore do not contribute to the integral. In
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Example 2.5, it was however observed that this latter integral is ±1
(depending on the orientation of the sphere). Thus, since a connection
form θ can be found such that idθ/2π is any desired representative of c1,
we can find a connection form θ such that dθ/2πi = ∗dV . Applying now
the Gibbons–Hawking Ansatz construction described in §2, we obtain a
hyperkähler metric on X, with the forms Re Ω, Im Ω and ω as described
in the Proposition.

To see that these forms extend to X̄, focus on an ε/2-ball B around
0 in Ȳ . Then π̄−1(B) → B can be identified with the map given in
Example 2.5, restricted to the inverse image of the ε/2-ball in C2. Let
θ′ be the connection form given in that example. Now d(θ) − d(θ′) is
the pull-back of an exact form on B, since all other terms of V besides
the n = 0 term are defined on B. Thus on π̄−1(B − {0}) we can write
θ = θ′ + π̄∗β for a form β defined on all of B. Now consider for example
on π̄−1(B − {0})

ω = du ∧ θ/2πi+ V dy1 ∧ dy2

= du ∧ (θ′ + π̄∗β)/2πi+
(
1/4π

√
u2 + y2

1 + y2
2 + V ′

)
dy1 ∧ dy2

where V ′ is a function defined everywhere on B. Thus we obtain

du ∧ θ′

2πi
+
(

1/4π
√
u2 + y2

1 + y2
2

)
dy1 ∧ dy2 + du ∧ β

2πi
+ V ′dy1 ∧ dy2.

The sum of the first two terms was seen to extend to all of π̄−1(B) in
Example 2.5, and the last two terms are defined everywhere on B, so
ω extends to X̄. Note that ω2 �= 0 at the singular point of the singular
fibre, because both du ∧ β and V ′dy1 ∧ dy2 vanish at that point.

Finally, we compute the periods. Referring back to our discussion
of S1-invariant Ricci-flat metrics in §2, one of the periods is constant,
value 1. The other period τ(y) is locally holomorphic in y, and given by∫

γ2

dx =
∫

γ2

θ0 − i

∫
γ2

V du,

where γ2 is an S1 in the fibre Xy mapping isomorphically to {y}×S1 ⊂
Y . Calculating the imaginary part of this,∫

γ2

dx2 = −
∫

γ2

V du = ±
( 1

4π
log |y|2 − f(y1, y2)

)
,

using the Fourier expansion for V0 proved in Lemma 3.1 (b). We choose
the orientation of γ2 to obtain the choice of sign to be minus. Then
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∫
γ2
dx1 is necessarily locally a harmonic conjugate of − 1

4π log |y|2 +
f(y1, y2), and so the period of γ2 is

1
2πi

log y + ih(y) + C

for some real constant C. Now θ0 may be modified by adding a term
adu (a ∈ R) without changing the fact that dθ0 = ∗dV . If θ0 is changed
in this way, we have ∫

γ2

dx1 =
∫

γ2

θ0 + adu

= aε+
∫

γ2

θ0.

We can therefore choose a suitably to obtain C = 0, and hence the
periods as claimed. q.e.d.

Remark 3.3. (1) There is still some remaining flexibility over
choosing θ, as we can change θ by the pull-back of a closed form from
Ȳ . This however need not worry us, since in order to perform the gluing
in §4, we will in any case need to twist the Ooguri–Vafa metrics, the
twist given as translation by an appropriate local section.

(2) Recall that in the holomorphic canonical coordinates x, y, the
holomorphic 2-form Ω on X is just dx∧dy, and so the complex structure
on X will be the one desired. This 2-form extends uniquely to give the
correct complex structure on X̄.

Remark 3.4. A useful transformation. As ε → 0, the be-
haviour near the singular fibre of the Ooguri–Vafa metric is understood
best by making a change of variables. The periods may be assumed to
be 1, 1

2πi log y+ih(y), as in Proposition 3.2, and we take V = V0+f(y)/ε.
We make the change of variables s = u/ε, v1 = y1/ε, v2 = y2/ε. Thus
the disc of radius ε in the complex y-plane corresponds to the unit disc
in the complex v-plane. If we now consider V0 as a function of these
new variables, we observe that

εV0 =
1
4π

∞∑
n=−∞

(
1√

(s+ n)2 + v2
1 + v2

2

− c|n|

)
,

where cn = 1
n (n > 0), and

c0 = 2(−γ + log(2ε)) = 2(−γ + log 2) + 2 log ε.
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So, if Ṽ0 is the standard function V0 in variables s, v1, v2 for ε = 1, we
deduce that

εV = Ṽ0 −
1
2π

log ε+ f.

Thus, if we start with an Ooguri–Vafa metric with fibres of volume ε over
the disc of radius ε, make the change of variables described above, and
then rescale the metric by ε−1, we obtain the Ooguri–Vafa metric over
the unit disc, with fibres of volume one, corresponding to the harmonic
function Ṽ0 +f− 1

2π log ε. Thus the periods of the corresponding elliptic
fibration are seen to be 1, 1

2πi log v+ 1
2πi log ε+ih(y). This transformation

lies behind the various estimates for diameters and curvature we derive
below. We note here that in fact the formula given in [29] was for εV0,
rather than V0, except that the constant a0 was not specified. The exact
value for a0 greatly influences the behaviour of the metric as ε → 0, so
this is quite important.

To understand the metric for |y| > ε, we can use the Fourier expan-
sion for V0 from Lemma 3.1 (b), and use the same change of variables
as above. Thus

εV0 = − 1
4π

log(v2
1 + v2

2) −
1
2π

log ε+
m=∞∑
m=−∞

m�=0

1
2π
e2πimsK0(2π|mv|)

where v = v1 + iv2.

Estimates for diameter and curvature

We now consider a fixed elliptic fibration f : X ′ → D′ over a disc
D′ of radius a′ < 1, with singular fibre of Type I1 over the origin,
and which we assume extends to an elliptic fibration over some larger
disc. We assume that the periods are of the form 1, τ(y), where τ(y) =
1

2πi log y+ ih(y) as in Proposition 3.2. We then wish to study sequences
of Ooguri–Vafa metrics yielding the correct holomorphic 2-form Ω, but
with the volume ε of the fibres tending to zero — such metrics exist
on X ′ for small enough ε by Proposition 3.2. We first ask about the
diameters of the fibres.

Proposition 3.5. There exists a positive constant C1 (independent
of ε) such that, for metrics as above with fibre volume ε, the diameters
of the fibres over D′ are bounded above by C1(ε log ε−1)1/2. Moreover,
there exists a second constant C2 such that the diameter d(ε) of the
singular fibre is at least C2(ε log ε−1)1/2.
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Remark 3.6. In particular, it follows that d(ε) → 0 as ε → 0.
If however we rescale the metric by ε−1 as in Remark 3.4 to obtain
fibres of volume one, then the diameter of the singular fibre is of order
(log ε−1)1/2, and therefore becomes arbitrarily large as ε → 0. This
then contrasts with the situation for a non-singular fibre, where for
sufficiently small ε, the Ooguri–Vafa metric near this non-singular fibre
is close to being semi-flat. Thus the diameter of the fibre in the rescaled
metric remains bounded.

Proof. To calculate the diameter of a fibre, we recall from §2 the
formula for ds2 in the Gibbons–Hawking Ansatz, namely

ds2 = V du · du + V −1θ2
0.

From this, it is clear that the diameter of a fibre is at least
∫ ε/2
0 V 1/2du =

1
2

∫ ε
0 V

1/2du. Recall however that for all y �= 0, there exists a point on
the fibre over y at which V = Im τ(y)/ε, where now Im τ(y) is bounded
below by a positive constant for y ∈ D′. For some constant C therefore,
we have on each fibre 0 �= y ∈ D′, a point at which V −1/2 ≤ Cε1/2; by
continuity, this is also true for the singular fibre. Thus each fibre overD′

contains an S1 in the S1-bundle (where u is constant) of length at most
Cε1/2, and hence the diameter of the fibre is at most 1

2

∫ ε
0 V

1/2du+Cε1/2.
Since V = V0 + f(y1, y2)/ε, and |f | is bounded on D′ by some constant
A > 0, we have∫ ε

0
V

1/2
0 du−A1/2ε1/2 ≤

∫ ε

0
V 1/2du ≤

∫ ε

0
V

1/2
0 du+A1/2ε1/2.

Since
∫ ε
0 V

1/2
0 du clearly takes its maximum when y = 0, we are reduced

to estimating
∫ ε
0 V

1/2
0 du on the singular fibre only, and showing that it

is of order (ε log ε−1)1/2.
We now let V̄0 denote the restriction of V0 to the singular fibre, that

is we take y = 0. Making the substitution s = u/ε as above, we observe
that, for 0 < s < 1,

4πεV̄0 =
∞∑

n=1

(
1

s+ n
− 1
n

)
+

∞∑
n=1

(
1

−s+ n
− 1
n

)
+

1
s

+ 2γ − 2 log 2ε.

We now quote formula 6.3.16 from [3], for the fact that, for 0 < s < 1,

−
∞∑

n=1

(
1

s+ n
− 1
n

)
− γ = ψ(1 + s),
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where ψ denotes the psi function. Thus, for 0 < s < 1,

4πεV̄0 = −ψ(1 + s) − ψ(1 − s) +
1
s
− 2 log 2ε.

Using formula 6.3.15 from [3], we know that

− (ψ(1 + s) + ψ(1 − s)) = 2(1−s2)−1 +2γ−2+
∞∑

n=1

2(ζ(2n+1)−1)s2n,

where ζ denotes the usual zeta function. Hence, for 0 < s < 1,

4πεV̄0 = 2(1 − s2)−1 +
1
s
− 2 log ε+G+ 2g(s),

with G = −2 log 2 + 2γ − 2, and where

g(s) =
∞∑

n=1

(ζ(2n+ 1) − 1)s2n

has radius of covergence at least 2 (by inspection of the coefficients),
and so defines a continuous (non-negative) function on [0, 1]. Now ob-
serve that

∫ ε
0 V̄

1/2
0 du = ε1/2

∫ 1
0 (εV̄0)1/2ds. The lower bound now follows

immediately by ignoring the first two terms in the expression for 4πεV̄0.
The upper bound follows by using the elementary fact that for α, β non-
negative real numbers, (α+β)1/2 ≤ α1/2+β1/2, along with the fact that
the integrals

∫ 1
0 s

−1/2ds and
∫ 1
0 (1 − s2)−1/2ds are finite. q.e.d.

Corollary 3.7. With notation as in Proposition 3.5, we suppose
D ⊂ D′ is a disc centred on the origin of radius a ≤ a′ < 1, and let
Diam(ε) denote the diameter of the total space of the elliptic fibration
over D, under an Ooguri–Vafa metric on X ′ with fibre volume ε. There
exists a constant C3 (independent of both ε and a) such that, if ε ≤ a,
then

Diam(ε) < C3a
1/2ε−1/2.

Proof. Consider the slice u = ε/2 of Y , and a radial curve γ from
y = 0 to y = aeiθ within this slice. There is a horizontal lift γ̃ of γ to
X; recalling that

ds2 = V du · du + V −1θ2
0,
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we deduce that the length of γ̃ is just∫
γ
V (y, ε/2)1/2|dy| =

∫ a

0
V (reiθ, ε/2)1/2dr.

Since by Proposition 3.5, the diameters of the fibres are bounded
above by

C1ε
1/2(log ε−1)1/2 < C1a

1/2ε−1/2,

if we can show that the latter integral is bounded above by Ca1/2ε−1/2,
for some constant C independent of both ε and a, then the desired
bound for Diam(ε) will follow (to go between any two fibres, we can
always take the route via the central fibre).

We estimate the above integral in two parts, from 0 to ε, and from
ε to a. We can estimate the first of these integrals most easily by
performing the useful transformation described in Remark 3.4. Recall
that

εV = Ṽ0 + f − 1
2π

log ε.

Now Ṽ0(|v|, 1/2) is bounded above for 0 ≤ |v| ≤ 1 by Ṽ0(0, 1/2), and so
εV (reiθ, ε/2) ≤ A′ − 1

2π log ε for 0 ≤ r ≤ ε, where A′ is some positive
constant. Thus∫ ε

0
V (reiθ, ε/2)1/2dr ≤ ε−1/2

∫ ε

0
(A′ − 1

2π
log ε)1/2dr

≤ C ′ε1/2(log ε−1)1/2,

for some positive constant C ′ independent of ε (and of course a).
We therefore now need to demonstrate that∫ a

ε
V (reiθ, ε/2)1/2dr

has a bound of the desired type. To do this, we use the expression for
V0 given in Lemma 3.1(b). From the proof of Lemma 3.1(c), we deduce
that, for |y| ≥ ε/π, we have

2πεV0 < − log |y| + 2C ′
1

e−2π|y|/ε

1 − e−2π|y|/ε
.

In particular, since the second term is decreasing in the range, we have,
for |y| ≥ ε, that

2πεV0 < − log |y| + 2C ′
1

e−2π

1 − e−2π
,
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and hence that
2πεV < − log |y| + C ′

2,

for some constant C ′
2 independent of ε and a. Using the assumption

that a ≤ a′ < 1, we have∫ a

ε
V (reiθ, ε/2)1/2dr < (2πε)−1/2

∫ a

ε
(C ′

2 − log r)1/2dr

< ε−1/2C ′
3

∫ a

ε
(log r−1)1/2dr

< ε−1/2C ′
3

∫ a

ε
r−1/2dr

< 2C ′
3ε

−1/2a1/2,

for an appropriate constant C ′
3, depending on a′ but independent of ε

and a. The result then follows immediately. q.e.d.

Proposition 3.8. With notation as in Proposition 3.5, let R(ε)
denote the curvature tensor of the total space X ′ of the elliptic fibration
over D′, under an Ooguri–Vafa metric on X ′ with fibre volume ε. Then
there exists positive constants C4, C

′
4 (independent of ε) such that, for

all sufficiently small ε,

C ′
4ε

−1 log(ε−1)−2 < ‖R(ε)‖C0 < C4ε
−1 log(ε−1),

where ‖ . ‖C0 denotes the usual C0-norm on X ′.

Proof. Recall first from Remark 2.4 that

‖R‖2 = 12V −6|∇V |4 + V −4∆(|∇V |2) − 6V −5(∇V ) · (∇(|∇V |2)).

We now perform our change of coordinates s = u/ε, v = y/ε. We
recall that V = V0 + f(y1, y2)/ε for some bounded harmonic function f
defined over D′, and that

εV = Ṽ0 + f − 1
2π

log ε.

Also observe that ∇u,y1,y2 = ε−1∇s,v1,v2 ; from now on ∇ will denote
∇s,v1,v2 , and ∆ will denote ∆s,v1,v2 . We set V1 = εV = Ṽ0 + f − 1

2π log ε,
considered as a function of s, v1, v2. Thus

ε2‖R‖2 = 12V −6
1 |∇V1|4 + V −4

1 ∆(|∇V1|2) − 6V −5
1 (∇V1) · (∇(|∇V1|2)).
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We first prove the upper bound for ‖R(ε)‖C0 , namely that

‖R(ε)‖ < C4ε
−1 log(ε−1)

at all points of X ′. The easy part of this is to deal with the points
in the range 1/2 ≤ |v| < a/ε (where a now denotes the radius of D′),
corresponding to |y| ≥ ε/2 in the disc D′. Here we use the Fourier
expansion for V1, namely

V1 = − 1
2π

log |v| + f − 1
2π

log ε+
m=∞∑
m=−∞

m�=0

1
2π
e2πimsK0(2π|mv|).

Recalling that K0(x) and its derivatives decay at least as fast as e−x

for large x, it is clear that |∇V1|4, ∆(|∇V1|2) and (∇V1) · (∇(|∇V1|2))
are bounded (independent of ε) for 1/2 ≤ |v| < a/ε. Moreover, for ε
sufficiently small,

εV = − 1
2π

log |y| + f(y) +
m=∞∑
m=−∞

m�=0

1
2π
e2πimu/εK0(2π|my|/ε)

is bounded below, over D′, by some positive constant (independent of
ε). Thus, V1 is bounded below on 1/2 ≤ |v| < a/ε, and hence ε‖R‖ is
bounded above on the given range by some constant, again independent
of ε.

The trickier argument is of course for the range 0 ≤ |v| ≤ 1/2,
corresponding to 0 ≤ |y| ≤ ε/2. We assume that ε is small enough that
3ε/4 ≤ a. We make our usual change of variables, so that

V1 = εV = Ṽ0 + f +
1
2π

log(ε−1)

defines an Ooguri–Vafa metric over the disc |v| < 3/4, fibres of volume
one, and periods {1, (2πi)−1 log v+(2πi)−1 log ε+ih}. Now choose A ≥ 0
such that f + A > 0 whenever |v| < 3/4, and set V2 = Ṽ0 + f + A; V2

then determines an Ooguri–Vafa metric over the disc |v| < 3/4, fibres of
volume one, and periods {1, (2πi)−1 log v+ ih+ iA}. We may obviously
assume that A < (2π)−1 log(ε−1). Let R1, respectively R2, denote the
curvature tensors of the metrics determined by V1, respectively V2. Our
aim now is to show that ‖R1‖2 < C log(ε−1)2 over the disc |v| ≤ 1/2; if
this is true, it follows from the above that ‖R‖ < C4ε

−1 log(ε−1) at all
points over D′, for some positive constant C4.
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Since the metric determined by V2 is independent of ε, it is clear
that ‖R2‖ is bounded over |v| ≤ 1/2, with the bound independent of ε.
Hence

(3.1) 12V −6
2 |∇V2|4 + V −4

2 ∆(|∇V2|2) − 6V −5
2 (∇V2) · (∇(|∇V2|2))

is bounded independent of ε over the range in question, |v| ≤ 1/2, which
from now on will be taken as understood. We wish to show that

‖R1‖2 = 12V −6
1 |∇V2|4 + V −4

1 ∆(|∇V2|2)
− 6V −5

1 (∇V2) · (∇(|∇V2|2))
≤ C(log(ε−1))2.

Since V1 = V2 + (2π)−1 log(ε−1) − A ≥ V2, it will be enough to prove
the same bound for

12V −2
1 V −4

2 |∇V2|4 + V −4
2 ∆(|∇V2|2)

− 6V −1
1 V −4

2 (∇V2) · (∇(|∇V2|2)).
(3.2)

By subtracting our previously bounded expression (3.1), we need then
only show boundedness for

12V −2
1 V −6

2 (V 2
2 − V 2

1 )|∇V2|4

− 6V −1
1 V −5

2 (V2 − V1)(∇V2) · (∇(|∇V2|2)).
(3.3)

Expanding this latter expression out, we get

6
(
(2π)−1 log(ε−1) −A

)
V −1

1

(
V −5

2 (∇V2) · (∇(|∇V2|2)).

− 2V −6
2 (1 +

V2

V1
)|∇V2|4

)
.

(3.4)

We now claim that∣∣V −1
1

(
V −5

2 (∇V2) · (∇(|∇V2|2)) − 4V −6
2 |∇V2|4

)∣∣
and

V −2
1 V −6

2 |∇V2|4

are bounded independent of ε. If this is true, then the latter bound will
imply that

V −1
1 (1 − V2

V1
)V −6

2 |∇V2|4 ≤ C ′(log(ε−1) − 2πA)
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for some positive C ′, and then the former bound implies that the ex-
pression we are interested in has a bound of the form

B1(log(ε−1) − 2πA)2 +B2(log(ε−1) − 2πA),

for suitable positive constants B1, B2. This then gives the required
result.

To show boundedness for the two remaining quantities, it is sufficient
to bound the functions

V −6
2

∣∣4V −1
2 |∇V2|4 − (∇V2) · (∇(|∇V2|2))

∣∣
and

V −8
2 |∇V2|4.

Both these functions are defined away from {0}×Z and are periodic in
s; moreover, they plainly do not depend on ε. If we show that they are
in fact both continuous at the origin (v = 0, s = 0), the existence of the
required bounds will follow automatically.

We now write 4πV2 = ρ−1 + w, where ρ = (s2 + v2
1 + v2

2)
1/2 and w

is a harmonic function on a neighbourhood of the origin. Then we see
that (4π)4|∇V2|4 = ρ−8 + O(ρ−6). Since (4πV2)−8 = ρ8(1 + wρ)−8, we
deduce that V −8

2 |∇V2|4 is regular at the origin, taking the value (4π)4

there. Moreover, it is easily checked that

(4π)3(∇V2) · (∇(|∇V2|2)) = 4ρ−7 +O(ρ−5),

and so in particular

4V −7
2 |∇V2|4 − V −6

2 (∇V2) · (∇(|∇V2|2))

is also regular at the origin, and vanishes there.
We now turn to the lower bound for ‖R(ε)‖C0 . We work on the

transformed elliptic fibration over the disc |v| ≤ 1/2, and let M denote
the C0-norm of the function given by (3.1).

From the above calculations, at all points P with sufficiently small
value of ρ, we have∣∣V −6

2 (∇V2) · (∇(|∇V2|2) − 4V −7
2 |∇V2|4

∣∣ < M , V −7
2 |∇V2|4 > 2M.

We now fix such a point P ; note that the coordinates s, v1, v2 are then
taken to be fixed, and so this does not correspond to taking a fixed point
(independent of ε) on our original family X ′.
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Observe now that

V1/V2 = 1 +
(2π)−1 log(ε−1) −A

V2
;

so for P fixed, V1(P )/V2(P ) > 2 for ε sufficiently small. From this it
follows that, when evaluated at P ,∣∣∣∣V −6

2 (∇V2) · (∇(|∇V2|2)) − 2V −7
2 (1 +

V2

V1
)|∇V2|4

∣∣∣∣ > M,

for ε sufficiently small. Hence, for ε sufficiently small, the modulus of
(3.4) evaluated at P is at least 3M say, and thus the same is true of (3.3).
From this, and our original choice for M , it follows that the modulus of
(3.2) evaluated at P is at least 2M . Therefore, for ε sufficiently small,

‖R1(P )‖2 > B(log(ε−1))−4

for some constant B independent of ε. Thus

‖R(ε)‖C0 > B1/2ε−1(log(ε−1))−2,

as required. q.e.d.

4. Almost Ricci-flat metrics on elliptic K3 surfaces

Our goal in this section is to construct Kähler metrics on elliptic K3
surfaces which are very close to being Ricci-flat by gluing the Ooguri–
Vafa metric in neighbourhoods of singular fibres to the semi-flat metric
away from the singular fibres.

We begin by producing one such metric on a Jacobian elliptic fibra-
tion. Fix a K3 surface X with a fixed holomorphic 2-form Ω and an
elliptic fibration f : X → B = P1, which we will take to have a holo-
morphic section σ0. Furthermore, assume all singular fibres of f are of
Kodaira type I1; there will then be 24 such fibres. Let p1, . . . , p24 ∈ B
be those points for which Xpi = f−1(pi) is singular, ∆ = {p1, . . . , p24},
B0 = B − ∆, X0 = f−1(B0), and X# = X − Sing(f−1(∆)). There is
an exact sequence, already mentioned in §1,

0−→R1f∗Z−→T ∗
B

φ−→X#−→0,

with the property that φmaps the zero section of T ∗
B to σ0 and φ∗Ω is the

canonical holomorphic 2-form on T ∗
B , which is dx∧dy if y is a coordinate
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on B and x a canonical fibre coordinate. (See [14], Proposition 7.2).
Here x = 0 defines the zero section.

Given this data, by Example 2.2, for each ε, there exists a well-
defined Ricci-flat metric on X0, the standard semi-flat metric ωSF , with
the area of each fibre being ε. The reader should keep in mind the
dependence of ωSF on ε.

Now let y be a holomorphic coordinate on B defined in a neigh-
bourhood U of p ∈ ∆, U contractible with U ∩ ∆ = {p}, and y = 0
at the point p. Let x be the corresponding canonical fibre coordinate.
Let U∗ = U − {p}, XU∗ = f−1(U∗). We can then choose over U∗ holo-
morphic periods τ1(y), τ2(y), representing possibly multi-valued holo-
morphic sections of T ∗

U∗ generating the period lattice. Because the

monodromy about an I1 fibre in a suitable basis is
(

1 1
0 1

)
, we can

take one of these, say τ1, to be single-valued, though τ2 will be multi-
valued around the I1 fibre. We will always choose τ1 and τ2 so that
Im(τ̄1τ2) > 0. Set

W0(y) = 1/Im(τ̄1τ2)

b0(x, y) = − Im(τ2x̄)∂yτ1 + Im(τ̄1x)∂yτ2
Im(τ̄1τ2)

and

∂v = W−1
0 ∂x

∂h = ∂y − b0∂x

ϑv = W0(dx+ b0dy)
ϑh = dy

as in §2. The latter two 1-forms are well-defined on X∗
U , so form a basis

for (1, 0) forms. We denote by ∂̄v et cetera the complex conjugates of
the above as usual.

Lemma 4.1. Let ω be a real closed (1, 1) form on XU∗, with

ω =
i

2
(α ϑv ∧ ϑ̄v + β ϑh ∧ ϑ̄v + β̄ ϑv ∧ ϑ̄h + γ ϑh ∧ ϑ̄h).

There exists a function ϕ on XU∗ such that ω = i∂∂̄ϕ if and only if ω
represents the zero cohomology class on XU∗ and∫

Xb

β dx1 ∧ dx2 = 0
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for all b ∈ U∗. Furthermore, for 0 < r1 < r2, let Ur1,r2 = {y ∈ U | r1 <
|y| < r2}. If r1 < r′1 < r′2 < r2 and U r1,r2 ⊆ U∗, then there exists
a constant C depending only on r1, r2, r

′
1, r

′
2 and the periods of f over

Ur1,r2 such that ϕ can be chosen with

‖ϕ‖′Ck+2,α ≤ C(‖α‖Ck,α + ‖β‖Ck,α + ‖γ‖Ck,α).

Here, we compute the Ck,α norm of a function on f−1(Ur1,r2) by thinking
of them as functions on T ∗

Ur1,r2
, which we embed in C2 by the coordinates

x and y. We can then use the standard Ck,α norms on a bounded open
set of T ∗

Ur1,r2
which contains a fundamental domain of each fibre. The

norm ‖ · ‖′
Ck,α denotes the similar norm of a function over Ur′1,r′2.

Remark 4.2. We note that the definition of the Ck,α norm
given above depends on the choice of holomorphic coordinate y and
the bounded open set, but any two such norms will be equivalent.

Proof. Before beginning the proof, we observe from (2.4) and (2.3)
that

∂ϑ̄v =((∂vW0)ϑv + (∂hW0)ϑh) ∧W−1
0 ϑ̄v

+W0((∂vb̄0)ϑv + (∂hb̄0)ϑh) ∧ ϑ̄h

∂̄ϑ̄v =0.

(4.1)

Furthermore, locally for the base, a function on X∗
U can be expanded

in a Fourier series on the fibres, yielding

f(x, y) =
∑

n,m∈Z

an,m(y)e2πi(nIm(τ2x̄)+mIm(τ̄1x))/Im(τ̄1τ2).

A direct calculation shows that

∂hf =
∑

n,m∈Z

∂y(an,m)e2πi(nIm(τ2x̄)+mIm(τ̄1x))/Im(τ̄1τ2).

If a ϕ exists, then of course ω represents the zero cohomology class
on XU∗ . Also,

i∂∂̄ϕ = i∂((∂̄vϕ)ϑ̄v + (∂̄hϕ)ϑ̄h).

From (4.1) it then follows that if ω = i∂∂̄ϕ, then

β = 2(∂h∂̄vϕ+ (∂̄vϕ)W−1
0 ∂hW0),

and then by looking at the constant term a0,0 of the Fourier expansion
of β, it is clear that

∫
Xb
βdx1 ∧ dx2 = 0.
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Conversely, first suppose ω is cohomologically trivial. Then there
exists a one-form ξ of type (1, 0) such that i

2d(ξ̄ − ξ) = ω (since ω is
real). Necessarily ∂ξ = ∂̄ξ̄ = 0. Thus ξ̄ represents a class in H0,1(XU∗).
If this class is zero, then there exists a function ϕ such that ∂̄ϕ = ξ̄,
and then ∂ϕ̄ = ξ, so

ω =
i

2
(∂∂̄ϕ− ∂̄∂ϕ̄) =

i

2
∂∂̄(ϕ+ ϕ̄) = i∂∂̄ Reϕ,

as desired. Thus we need to understand when ξ̄ represents the zero
class.

Now H0,1(XU∗) = H1(XU∗ ,OXU∗ ), which by the Leray spectral se-
quence for f is isomorphic to H0(U∗, R1f∗OXU∗ ), as H i(U∗, f∗OXU∗ ) =
H i(U∗,OU∗) = 0 for i ≥ 1. Thus ξ̄ represents zero in H0,1(XU∗) if
and only if ξ̄|Xb

represents the zero class in H0,1(Xb) for all b ∈ U∗. If
we write ξ̄ = ḡϑ̄v + h̄ϑ̄h, this is equivalent to the constant term in the
Fourier expansion of ḡ on the fibre being zero. Denote this constant
term by ḡ0(y).

What kind of function is ḡ0? Well, by (4.1),

0 = ∂̄ξ̄ = (∂̄hḡ − ∂̄vh̄)ϑ̄h ∧ ϑ̄v.

By looking at the constant term of the Fourier expansion of this coef-
ficient, we see ∂ȳ ḡ0 = 0, so ḡ0 is a holomorphic function on U∗. This
function gives the section of R1f∗OXU∗ defined by ξ̄.

Now let us compute the coefficient β of ϑh ∧ ϑ̄v in ω in terms of g
and h. From ω = i

2(∂ξ̄ − ∂̄ξ) and (4.1), it follows that

β = ∂hḡ + ∂̄vh+ ḡW−1
0 ∂hW0 + gW0∂̄vb0.

If β0 is the constant term in the Fourier expansion of β, then we get,
using (2.2′) for the second line,

β0 = ∂y ḡ0 + ḡ0W
−1
0 ∂hW0 + g0W0∂̄vb0

= ∂y ḡ0 + ḡ0∂xb0 + g0∂x̄b0

= ∂y ḡ0 +
ḡ0(τ̄2∂yτ1 − τ̄1∂yτ2) − g0(τ2∂yτ1 − τ1∂yτ2)

τ̄1τ2 − τ1τ̄2
= ∂y ḡ0 + b0(ḡ0, y).

(4.2)

If we now assume in addition that
∫
Xb
βdx1 ∧ dx2 = 0 for all b ∈ U∗,

then β0 = 0, so
∂y ḡ0 + b0(ḡ0, y) = 0.
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Now write ḡ0(y) = a1(y)τ1(y) + a2(y)τ2(y), where a1, a2 are real func-
tions of y. Then b0(ḡ0, y) = −a1∂yτ1 − a2∂yτ2, so

0 = ∂y ḡ0 + b0(ḡ0, y) = (∂ya1)τ1 + (∂ya2)τ2.

But

0 = ∂ȳ ḡ0 = (∂ȳa1)τ1 + (∂ȳa2)τ2.

Thus combining these two equations gives

(∂y1a1)τ1 + (∂y1a2)τ2 = 0
(∂y2a1)τ1 + (∂y2a2)τ2 = 0,

and by linear independence of τ1 and τ2 we see a1 and a2 are constant.
Since ḡ0 is well-defined and we are assuming τ1 is the monodromy in-
variant period, we have ḡ0 = aτ1, a a constant. Now a calculation shows
that

i

2
d(τ1ϑ̄v − τ̄1ϑv) = 0,

so we can subtract aτ1ϑ̄v from ξ̄ without affecting i
2d(ξ̄ − ξ) = ω. Thus

we can assume ḡ0 = 0, and then ξ̄ represents the zero class inH0,1(XU∗),
allowing us to complete the proof of the existence of ϕ.

Now we need to control the norm of ϕ. First note that

W 2
0α = 2∂x∂x̄ϕ =

1
2
∆xϕ,

where ∆x = ∂2
x1

+ ∂2
x2

denotes the standard Laplacian on fibres. Writ-
ing ϕ = ϕ0 + ϕv where ϕ0 is the pull-back of a function on U∗ and∫
Xb
ϕvdx1dx2 = 0 for all b ∈ U∗, we have W 2

0α = ∆xϕv/2. It then fol-
lows that |ϕv| is bounded on each fibre (being a torus) with the bound
proportional to a bound for |α| on that fibre, with the constant of pro-
portionality depending on the periods at that point. (To see this, one
can just work with Fourier series). Thus

‖ϕv‖C0 ≤ C1‖α‖C0

on Ur1,r2 , where C1 depends on the periods over Ur1,r2 .
Next restrict ϕ and ω to the zero section of f : XU → U . On this
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zero-section,

ω =
i

2
γ dy ∧ dȳ

= i∂∂̄ϕ

= i∂y∂ȳϕ dy ∧ dȳ

=
i

4
∆yϕ dy ∧ dȳ.

so ∆yϕ = 2γ on the zero section, where ∆y is the the standard Laplacian
∂2

y1
+ ∂2

y2
on U∗.

Now let ψ be a harmonic function on Ur1,r2 such that ψ|∂Ur1,r2
=

ϕ|∂Ur1,r2
. (Here we are identifying Ur1,r2 with its image under the zero

section.) This function exists and is unique. Then

∆y

(
ϕ− ψ +

‖2γ‖C0

4
(y2

1 + y2
2)
)

= 2γ + ‖2γ‖C0 ≥ 0.

Thus by the maximum principal, ϕ − ψ + ‖2γ‖C0(y2
1 + y2

2)/4 achieves
its maximum when either |y| = r1 or |y| = r2, and since ϕ − ψ = 0 on
the boundary of Ur1,r2 , we have

ϕ− ψ ≤ ‖2γ‖C0 r22/4.

Similarly, ψ − ϕ ≤ ‖2γ‖C0 r22/4, so

‖ϕ− ψ‖C0 ≤ ‖γ‖C0 r22.

This estimate holds on Ur1,r2 , but from ‖ϕv‖C0 ≤ C1‖α‖C0 , it is clear
that the oscillation of ϕ along the fibres is bounded by C1‖α‖C0 , and
thus on f−1(Ur1,r2),

‖ϕ− ψ‖C0 ≤ C2(‖α‖C0 + ‖γ‖C0)

for some constant C2 depending on the periods, r1, and r2. Noting
that ∂∂̄ψ = 0, we can replace ϕ by ϕ − ψ. Then the Ck+2,α estimates
follow from the standard interior Schauder estimates for the Laplacian
(see [11], problem 6.1.) This is because the ordinary Laplacian (in the
coordinates x1, x2, y1, y2) of ϕ can be expressed in terms of α, β and γ.

q.e.d.

Lemma 4.3. Let ω be a Kähler form on XU , ωSF the semi-flat
Kähler form on X0, such that∫

Xb

ω =
∫

Xb

ωSF = ε.
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Then [ωSF − ω] = 0 in H2(XU∗ ,R), and furthermore, there exists a
holomorphic section σ of f : XU → U and a function ϕ on XU∗ such
that

ωSF − T ∗
σω = i∂∂̄ϕ,

where Tσ is translation by the section σ.

Proof. To show the first part, we first observe that H2(XU∗ ,Z) is
generated by the homology classes of two submanifolds: Xb for some
b ∈ U∗, and T , where T is a torus fibred in circles over a simple closed
loop γ : [0, 1] → U∗ generating π1(U∗), with the class of the fibre being
the monodromy invariant cycle. To show [ωSF − ω] = 0, we just need∫
Xb
ωSF − ω = 0, which is obvious, and

∫
T ωSF − ω = 0. Now

∫
T ω = 0

since ω is defined on XU , where T is homologous to zero. On the other
hand, if we describe T explicitly, parametrised by coordinates s, t with
µ : [0, 1]2 → XU∗ given by

µ(s, t) = (x(s, t), y(s, t)) = (sτ1(γ(t)), γ(t)),

then a calculation shows that µ∗ωSF = 0, and hence
∫
T ωSF = 0. Thus

[ωSF − ω] = 0.
As in Lemma 4.1, write, for each section σ of f : XU∗ → U∗,

ωSF − T ∗
σω =

i

2
(ασϑv ∧ ϑ̄v + βσϑh ∧ ϑ̄v + · · · ).

Let σ0 be the zero section, so that Tσ0 is the identity. We showed in
(4.2) that the function β0, the constant term in the Fourier expansion
of βσ0 , was of the form

β0 = ∂yk + b0(k, y)

where k(y) is a holomorphic function on U∗.
Now write

ω =
i

2
(WW−2

0 ϑv ∧ ϑ̄v + βωϑh ∧ ϑ̄v + · · · )

where necessarily the constant term of W is

(Imτ̄1τ2)−1

∫
Xb

Wdx1 ∧ dx2 = (Imτ̄1τ2)−1

∫
Xb

i

2
WW−2

0 ϑv ∧ ϑ̄v

= ε/Im(τ̄1τ2).
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We calculate T ∗
σω. First note that

T ∗
σ (ϑv) = W0(d(x+ σ(y)) + b0(x+ σ(y), y) dy)

= W0(dx+ b0 dy) +W0(∂yσ(y) + b0(σ(y), y)) dy
= ϑv +W0(∂yσ + b0(σ(y), y)) ϑh.

Thus the coefficient of ϑh ∧ ϑ̄v in T ∗
σ (ω) is

i

2

(
βω ◦ Tσ +

W

W0
(∂yσ + b0(σ(y), y))

)
.

On the other hand, ωSF = i
2W

−1
0 (ε ϑv ∧ ϑ̄v + ε−1 ϑh ∧ ϑ̄h). Thus βσ0 =

−βω, and

βσ = βσ0 ◦ Tσ − W

W0
(∂yσ + b0(σ(y), y)).

So

(Imτ̄1τ2)−1

∫
Xb

βσ dx1 ∧ dx2

= (Imτ̄1τ2)−1

(∫
Xb

βσ0 ◦ Tσ dx1 ∧ dx2

−W−1
0 (∂yσ + b0(σ(y), y))

∫
Xb

W dx1 ∧ dx2

)
= β0 − ε(∂yσ + b0(σ(y), y)).

If we take σ(y) = k(y)/ε, this will yield zero. So for this choice of σ,
ωSF − T ∗

σω = i∂∂̄ϕ for some function ϕ on XU∗ .
Note that a holomorphic section of f over U∗ always extends to a

holomorphic section of f on U . q.e.d.

Theorem 4.4. Let f : X → P1 be an elliptically fibred K3 surface
with a holomorphic section and 24 singular fibres over ∆ = {p1, . . . , p24}
as above. Then there exists open sets U i

1 ⊆ U i
2 ⊆ P1, i = 1, . . . , 24, each

diffeomorphic to a disc, U i
j ∩ ∆ = {pi}, positive constants D1, . . . , D6

and ε0 such that, for all ε < ε0, there exists a Kähler metric ωε on X
with the following properties:

(1)
∫

X
ω2

ε =
∫

X
(Re Ω)2 =

∫
X

(Im Ω)2.

(2)
∫

Xb

ωε = ε.
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(3) ωε|f−1(P1\⋃i U i
2) = ωSF .

(4) ωε|f−1(U i
1) = T ∗

σi
ωOV , where ωOV is an Ooguri–Vafa metric and

Tσi denotes translation by some holomorphic section σi.

(5) If Fε = log
(

Ω∧Ω̄/2
ω2

ε

)
, then

‖Fε‖C0 ≤ D1e
−D2/ε

and
‖∆Fε‖C0 ≤ D1e

−D2/ε

where ∆ denotes the Laplacian with respect to the metric ωε.

(6) infv{Ric(v, v) | |v|ωε = 1} ≥ −D3e
−D4/ε.

(7) With the Riemannian metric induced by ωε, Diam(X) ≤ D5ε
−1/2.

(8) If R denotes the Riemann curvature tensor, then

‖R‖C0 ≤ D6ε
−1 log ε−1,

‖R‖C0 → ∞ as ε→ 0,

and on any non-singular fibre, there exists a constant C depending
on the fibre such that

‖R‖ ≤ Cε.

Proof. Let p ∈ ∆; we fix our attention near this point. Choosing a
holomorphic coordinate y in a neighbourhood of p, we can express the
holomorphic periods of f as τ1(y), τ2(y), where τ1 is taken to be single
valued. In T ∗

B , this coincides with the holomorphic differential τ1(y)dy.
Locally, there exists a function g(y) with dg = τ1(y)dy; since τ1(p) �= 0,
we can use g as a local holomorphic coordinate in a neighbourhood of
p. Replacing y by g, we can then assume that τ1(y) = 1 and also that
y = 0 at p. By results of §3, we can then construct for all ε less than
some ε0, a metric ωOV on f−1(U), for some U = {y | |y| < r}, for some r
which only depends on the period τ2 and ε0, but not ε. Fix r1 < r2 < r,
and let Ui = {y | |y| < ri}. If p = pj , we set U j

i = Ui.
Remaining focused near p, let ψ : (0, (r2 + δ)2) → [0, 1] be a fixed

C∞ cut-off function, with ψ(r2) = 1 for r ≤ r1, ψ(r2) = 0 for r ≥ r2.
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Now apply Lemma 4.3 with ω = ωOV . Then there exists a holomorphic
section σ of f over U , such that

ωSF − T ∗
σωOV = i∂∂̄ϕ

for some function ϕ on XU∗ . We can then glue T ∗
σωOV and ωSF by

ωnew = ωSF − i∂∂̄(ψ(|y|2)ϕ).

For |y| ≥ r2, ωnew coincides with ωSF ; for |y| ≤ r1, ωnew coincides with
T ∗

σωOV . This can be done at each singular fibre, obtaining a global
closed real (1, 1) form ωnew.

We still need to check ωnew is positive. One calculates that on XU∗ ,

ωnew =(1 − ψ(|y|2))ωSF + ψ(|y|2)T ∗
σωOV − i

(
ψ′(|y|2)ȳ dy ∧ ∂̄ϕ

+ ψ′(|y|2)y ∂ϕ ∧ dȳ + ψ′′(|y|2)|y|2ϕ dy ∧ dȳ
)
.

The sum of the first two terms is positive, so we need to make sure the
last three terms are small. Thus we need to control the size of ϕ. To do
so, we need to show ωSF − T ∗

σωOV is small. Now

ωSF =
i

2
W−1

0 (ε ϑv ∧ ϑ̄v + ε−1 ϑh ∧ ϑ̄h).

On the other hand, we can assume σ is the zero section by having
chosen the right holomorphic section in Construction 2.6 to perform
the transformation between coordinates, and write, with W = V −1,

ωOV =
i

2
(W (dx+ b dy) ∧ (dx+ b dy) +W−1 dy ∧ dȳ)

=
i

2

(
W (dx+ b0 dy) ∧ (dx+ b0 dy) +W (b− b0) dy ∧ (dx+ b0 dy)

+W (b̄− b̄0)(dx+ b0 dy) ∧ dȳ + (W |b− b0|2 +W−1) dy ∧ dȳ
)

=
i

2

(
WW−2

0 ϑv ∧ ϑ̄v +
W

W0
(b− b0) ϑh ∧ ϑ̄v

+
W

W0
(b̄− b̄0)(ϑv ∧ ϑ̄h) + (W |b− b0|2 +W−1) ϑh ∧ ϑ̄h

)
.

Thus we are applying Lemma 4.1 with α = εW−1
0 − WW−2

0 , β =
W
W0

(b0 − b), and γ = ε−1W−1
0 −W−1 −W |b − b0|2. Now we work in

Gibbons–Hawking coordinates using the fact that α, β and γ are invari-
ant under the action x1 �→ x1 + t. So if we bound the Ck norm of α, β
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and γ as functions on Ur1,r2 ×R/εZ, with coordinates y and u, we can
apply (2.5) to bound the Ck norms of α, β, γ with respect to the coor-
dinates x and y. The interpolation inequalities then give Ck′,α′

bounds
for any k′ < k.

First look at α. Now

V = V0 +
1

4πε
log |y|2 + ε−1 Im(τ2)

= ε−1 Im(τ2) + g(u, y)

= ε−1W−1
0 + g(u, y),

where g(u, y) is, by Lemma 3.1 (c), a harmonic function on Ur1,r2×R/εZ
with ‖g‖C0 being O(e−C/ε). It then follows from [11], Theorem 2.10,
that for each k, ‖g‖Ck is also O(e−C/ε). Thus

α = εW−1
0 −WW−2

0

=
ε

W0
− ε

W0 + εgW 2
0

=
ε2gW 2

0

W0(W0 + εgW 2
0 )
.

Now using the fact that the denominator is bounded above and below,
and observing that any derivative of α will have, in the numerator, only
terms which include factors of g or its derivatives, we see that for each
k, ‖α‖Ck is O(e−C/ε).

Next look at β. By construction,

0 =
∫

Xb

βdx1 ∧ dx2 =
∫

Xb

βθ0 ∧ V du =
∫ ε

0
W−1

0 (b− b0)du.

Thus b− b0, which is a function on Ur1,r2 ×S1(ε) (even though b and b0
are not) has no constant term in its Fourier expansion. Both b and b0,
however, are quasi-periodic in u, i.e., consist of a linear plus periodic
term. Let b̃ and b̃0 denote the periodic part (not including the constant
term) of b and b0 respectively. Then b − b0 = b̃ − b̃0, and we can
bound the Ck norm of b̃ and b̃0 separately. For example, by (2.6),
∂ub̃ = 2i∂yg(u, y), which is O(e−C/ε), and then the Poincaré inequality
implies ‖b̃‖C0 is O(e−C/ε). Similar arguments apply to ‖b̃0‖C0 , using
the explicit form for b0, and from this one obtains O(e−C/ε) bounds on
‖β‖Ck for each k. Similar arguments apply for γ = −g(u, y)−W |b−b0|2.

Thus the last three terms of ωnew are O(e−C/ε), and since the sum
of the first two terms have eigenvalues O(ε−1) and O(ε), it is clear that
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for sufficiently small ε, ωnew is positive definite. On the other hand,
it is not clear that

∫
X ω2

new =
∫
X(Re Ω)2. However, by construction

ω2
new = (Re Ω)2 outside of f−1(Ur1,r2), and ω2

new and (Re Ω)2 differ only
by O(e−C/ε) on f−1(Ur1,r2), so

∫
X ω2

new −
∫
X(Re Ω)2 = O(e−C/ε). Now

noting that
([ωnew] + aE)2 = [ωnew]2 + 2aε,

we can find a two-form α on B supported on Ur1,r2 with Ck norm
O(e−C/ε) such that

∫
X(ωnew+f∗α)2 =

∫
X(Re Ω)2. Set ωε = ωnew+f∗α.

Because α is still small, ωε is still positive and defines the desired Kähler
metric. Properties (1)–(4) are then satisfied by construction. Note that
Fε = log(Ω ∧ Ω̄/2ω2

ε ) is zero outside of f−1(Ur1,r2), and ωε is within
O(e−C/ε) of ωSF on f−1(Ur1,r2). Thus ‖Fε‖C0 is O(e−C/ε). The same
is true of ‖Fε‖C2 , and since the coefficients of the metric are at worst
O(ε) or O(ε−1) in f−1(Ur1,r2), ‖∆Fε‖C0 is also O(e−C/ε). Furthermore,
the Ricci form is i∂∂̄Fε, which is O(e−C/ε). This gives (5) and (6).

To bound the diameter of X with the metric ωε, first restrict the
metric to the zero section σ0 of f . Identifying σ0 with the base B,
we note that on B \

⋃
U i

2, the Kähler form of this restricted metric
is i

2(εW0)((εW0)−2 + |b0|2)dy ∧ dȳ. But b0 = 0 on σ0, so this is just
i
2ε

−1W−1
0 dy ∧ dȳ. Let D be the diameter of B \

⋃
U i

2 under the metric
i
2W

−1
0 dy∧dȳ; this is independent of ε. Thus Diam(B \

⋃
U i

2) = Dε−1/2

under the metric induced by ωε. On the other hand, the diameter of
each fibre over B \

⋃
U i

2 is bounded by some constant times ε1/2, so
Diam(f−1(B \

⋃
U i

2)) ≤ D′ε−1/2 for sufficiently small ε. Then applying
Corollary 3.7 to each f−1(U i

2), (keeping in mind that the changes to the
metric in the gluing area are negligible for small ε), we see in fact that

Diam(X) ≤ D′ε−1/2 +D′′ε−1/2,

which we can always bound byD5ε
−1/2 for some constantD5. Hence (7).

Finally, (8) follows immediately from Proposition 3.8, Remark 2.7,
and the fact that any non-singular fibre has a neighbourhood in which
ωε is arbitrarily close to the semi-flat metric for ε sufficiently small.

q.e.d.

Theorem 4.5. Let j : J → P1 be an elliptically fibred K3 surface
with section and 24 singular fibres over ∆ = {p1, . . . , p24} as above.
Then there exists open sets U i

1 ⊆ U i
2 ⊆ P1, i = 1, . . . , 24, each diffeo-

morphic to a disc, U i
j ∩∆ = {pi}, positive constants D1, D2, D3, D4, D5

and ε0 such that, for all ε < ε0, for any elliptic fibration f : X → P1
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with Jacobian j : J → P1 with holomorphic 2-form Ω with [Re Ω]2 =
[Re ΩJ ]2, and for any Kähler class [ωε] on X with [ωε].Xb = ε and
[ωε]2 = [Re Ω]2 = [Im Ω]2, there exists a Kähler metric ωε representing
[ωε] on X with the following properties:

(1) ωε|f−1(P1\⋃i U i
2) is a semi-flat metric (not necessarily the standard

one).

(2) ωε|f1(U i
1) = T ∗

σi
ωOV , where ωOV is an Ooguri–Vafa metric and Tσi

denotes translation by a (not necessarily holomorphic) section.

(3) If Fε = log
(

Ω∧Ω̄/2
ω2

ε

)
, then

‖Fε‖C0 ≤ D1e
−D2/ε

and
‖∆Fε‖C0 ≤ D1e

−D2/ε,

where ∆ denotes the Laplacian with respect to ωε.

(4)
infv{Ric(v, v) | |v|ωε = 1} ≥ −D3e

−D4/ε.

(5) With the Riemannian metric induced by ωε, Diam(X) ≤ D5ε
−1/2.

(6) If R denotes the Riemann curvature tensor, then

‖R‖C0 ≤ D6ε
−1 log ε−1,

‖R‖C0 → ∞ as ε→ 0,

and on any non-singular fibre, there exists a constant C depending
on the fibre such that

‖R‖ ≤ Cε.

Proof. First note that as in §1, we think of X as a K3 surface
obtained from J simply by altering the holomorphic 2-form ΩJ on J to
ΩJ + j∗α, for some 2-form α on P1. Thus it is natural to identify the
underlying manifolds X and J , and we are only changing the complex
structure. So we can think of [ωε] ∈ H2(J,R), and in particular, in the
notation of §1, we can write

[ωε] = ε(σ0 + B) modE
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for some B ∈ E⊥/E ⊗ R. Furthermore, given the values of the classes
[ωε] and [Ω] modulo E, and given that [ωε], [Re Ω], [Im Ω] form a hy-
perkähler triple, the classes [ωε] and [Ω] are completely determined.
Thus the choice of B uniquely determines the Kähler class and complex
structure.

We modify the role of B slightly. Let ω0
ε be the Kähler form on J

provided by Theorem 4.4. Then in fact we can write

[ωε] − [ω0
ε ] = εBmodE

for some B ∈ E⊥/E ⊗ R. The class B still determines all data. So fix
this class in E⊥/E ⊗R. This latter vector space is naturally identified
with H1(P1, R1j∗R). Consider the exact sequence

0 → R1j∗R → C∞(T ∗
B) → F → 0.

Here C∞(T ∗
B) denotes the sheaf of C∞ sections of T ∗

B , and the first map
is induced by tensoring the inclusion R1j∗Z ↪→ T ∗

B with R. This gives
a surjection H0(P1,F) → H1(P1, R1j∗R). Now a section of F is given
by an open covering {Ui} of P1 and sections σi ∈ Γ(Ui, C

∞(T ∗
B)) with

σi − σj ∈ Γ(Ui, R
1j∗R). This open covering {Ui} can always be chosen

with the following properties:

(1) Each Ui contains at most one point of ∆, and if pj ∈ Ui, then

U j
2 ⊆ Ui.

(2) Each Ui is convex with respect to some metric on P1, so that all
multiple intersections of the Ui’s are contractible.

(3) If Ui ∩ ∆ = φ, then Ui ∩
⋃

j U
j
2 = φ.

In fact, fixing one such open covering, all sections of F can be rep-
resented over this open covering.

Now represent B by (Ui, σi), and let Tσi : f−1(Ui) → f−1(Ui) denote
translation by the section σi. Now consider the forms T ∗

σi
ω0

ε and T ∗
σi

ΩJ .
On f−1(Ui∩Uj), ω0

ε is the standard semi-flat metric, by condition (3) on
the open covering above, and since σj−σi is a flat section with respect to
the Gauss-Manin connection, Tσj−σi is an isometry, i.e., T ∗

σj−σi
ω0

ε = ω0
ε ,

T ∗
σj−σi

ΩJ = ΩJ (see Example 2.2). Thus

T ∗
σi
ω0

ε = T ∗
σi
T ∗

σj−σi
ω0

ε = T ∗
σj
ω0

ε ,
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and similarly T ∗
σi

ΩJ = T ∗
σj

ΩJ . Thus these forms glue, to give global
forms ωε, Ω on the manifold J . The 2-form Ω satisfies Ω ∧ Ω = 0, and
thus induces a new complex structure on J . An easy local calculation
shows that Ω = ΩJ + j∗α′, for some 2-form α′ on P1. Furthermore, it
is clear that

∫
Jb
ωε = ε,

∫
J ωε ∧ Ω = 0, and

∫
J ω

2
ε =

∫
J(Re Ω)2 =

∫
J(Im Ω)2.

Thus the cohomology classes [ωε], [Re Ω] and [Im Ω] form a hyperkähler
triple. If we show that

[ωε] − [ω0
ε ] = εBmodE,

then we have constructed a Kähler form in the desired class (deducing
moreover that the new complex structure is just that obtained from X).

To see the required identity, observe that we have an exact sequence

H2
f−1(∆)(X,R)

ϕ−→H2(X,R)−→H2(X0,R)−→H3
f−1(∆)(X,R).

Now H2
f−1(∆)(X,R) = H0(f−1(∆),R) = R24, and the image of ϕ is just

the one-dimensional subspace of H2(X,R) spanned by [E], the class of
a fibre. Thus it is enough to show that

[ωε|X0 ] − [ω0
ε |X0 ] = εB ∈ H2(X,R)/E ⊆ H2(X0,R).

Now on X0, ω0
ε is cohomologous to ωSF by construction, and ωε is

cohomologous to a Kähler form ω′
SF obtained in the same way as ωε via

translation and gluing, but starting from ωSF rather than ω0
ε . Thus it

is enough to show that on X0

[ω′
SF ] − [ωSF ] = εB.

Over an open set Ui, write

ωSF =
i

2
W−1

0 (ε ϑv ∧ ϑ̄v + ε−1 ϑh ∧ ϑ̄h).

Now

T ∗
σi

(ϑv) = ϑv +W0(∂yσi + b0(σi(y), y))ϑh +W0(∂ȳσ) ϑ̄h,
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so over Ui

ω′
SF − ωSF =T ∗

σi
ωSF − ωSF

=
εi

2

(
(∂yσi + b0(σi(y), y)) ϑh ∧ ϑ̄v + ∂ȳσi ϑ̄h ∧ ϑ̄v

+ ∂yσ̄i ϑv ∧ ϑh

+ (∂ȳσ̄i + b̄0(σi(y), y)) ϑv ∧ ϑ̄h

)
modϑh ∧ ϑ̄h

=
εi

2
d(σiϑ̄v − σ̄iϑv) modϑh ∧ ϑ̄h

as can be easily seen using (4.1) and a calculation similar to that of
(4.2).

How does the two-form ω′
SF − ωSF determine an element of

H1(B0, R
1f0∗R)? Given the open covering {Ui} of B0, if ω′

SF − ωSF is
an exact form on each f−1(Ui), we can write ω′

SF −ωSF = dαi for some
1-form αi on f−1(Ui). Then on f−1(Ui∩Uj), αi−αj is closed, and hence
determines an element of H1(f−1(Ui∩Uj),R) = Γ(Ui∩Uj , R

1f0∗R) for
our choice of open covering. Now we have found such αi modulo ϑh∧ϑ̄h,
so ω′

SF − ωSF is represented by a Čech cocycle for R1f0∗R given by

(Ui ∩ Uj ,
εi

2
((σi − σj)ϑ̄v − (σ̄i − σ̄j)ϑv)).

By integrating this one-form over the periods, one sees this is precisely
the section of Γ(Ui ∩Uj , R

1f0∗R) given by ε(σi − σj). Thus ω′
SF − ωSF

represents the class εB.
Finally, properties (1)–(4) and (6) follow immediately from Theo-

rem 4.4, (3)–(6) and (8). On the other hand, the diameter of f−1(Ui)
with respect to ωε is the same as the diameter of f−1(Ui) with respect
to the metric ω0

ε . Since there are a fixed number of Ui’s, the estimate
on the diameter continues to hold from Theorem 4.4, (7). q.e.d.

Remark 4.6. In the construction of the proof of Theorem 4.5,
we may sometimes want to be able to control the sections σi we use
to represent the class B. This can be done as follows. The class of B
depends on the choice of the zero section σ0. Changing the class of the
zero section changes B by an element of E⊥/E. Thus B really should be
thought of as living in E⊥/E⊗R/Z. (See [13] or [14], §7.) Thus in some
cases we might want to choose a compact set F in E⊥/E⊗R containing
a fundamental domain for E⊥/E. We can then choose for each B ∈ F
a representative (σi) of B with various norms, as required, bounded
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by constants independent of B ∈ F . We will say we are choosing the
B-field B in a fundamental domain for the B-field.

5. Ricci-flat metrics

We will continue with the setting of Theorem 4.5. In other words,
we have a fixed Jacobian elliptic fibration j : J → P1. Our goal is
to show that there exists an ε0 such that for any f : X → P1 with
Jacobian j : J → P1, and any ε < ε0, and any metric ωε given by
Theorem 4.5, there exists a function uε such that ωε + i∂∂̄uε is a Ricci-
flat metric, and furthermore that uε is very small in the Ck,α sense. Of
course, that such a uε exists is Yau’s proof of the Calabi conjecture.
Here we apply standard techniques, following [20], to obtain control of
uε. As mentioned in the introduction, the only subtle difference is that
as ε→ 0, Diam(X) → ∞, and this requires us to be a bit more careful
in estimating constants. However, we follow [20] closely.

More precisely, we wish to solve the equations

(ωε + i∂∂̄uε)2 = eFεω2
ε∫

X
uεω

2
ε = 0.

(5.1)

Here Fε = log(Ω∧Ω̄/2
ω2

ε
). By [35], we know such a uε exists.

We begin with some standard lemmas. For convenience, we will
assume V ol(X) = 1. This can be achieved since we are holding the
volume of X constant anyway, so we just scale the original Ω so that∫
J(Re Ω)2 = 1.

Lemma 5.1. Let X, ωε be as in Theorem 4.5. Assume V ol(X) =
1. Then there exists a function I(ε) depending only on ε and J with
I(ε) ≥ Cε5, C depending only on J , such that:

(1) For any function f on X such that
∫
X fω2

ε = 0,

‖df‖2
2 ≥ I(ε)‖f‖2

4.

(2) For any function f on X,

‖df‖2
2 ≥ I(ε)(‖f‖2

4 − ‖f‖2
2).
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Proof. These are the standard Sobolev inequalities, but we just
need to be careful about the constants. We have, by [23], Lemmas 1
and 2, for a function f such that

∫
X fω2

ε = 0,

‖df‖2
2 ≥ C2‖f‖2

4

while for an arbitrary function, we have

‖df‖2
2 ≥ D(4)C2(‖f‖2

4 − ‖f‖2
2).

Here, we are using Li’s notation for the constants C0, C1, C2, D(n) and
the fact that the volume is 1 and the dimension is 4. Again by [23],
D(4) is an absolute constant, C2 = D(4)C1/2

0 , and 2C1 ≥ C0 ≥ C1,
where C1 is the constant in the isoperimetric inequality

C1(min{V (M1), V (M2)})3 ≤ V (N)4

where V denotes volume, and N is any codimension one submanifold of
X dividing it into M1 and M2. In [9], Croke calls this constant Φ(M).

Theorem 13 from [9] says that

C1 ≥ C4

(∫ Diam(X)

0
((
√

1/K) sinh(
√
Kr))3dr

)−5

,

where C4 again is an absolute constant, and Ric(X) ≥ −3K, where
3K ≤ D3e

−D4/ε by Theorem 4.5, (4). Now the integral is bounded
above by

Diam(X)(
√

1/K sinh(
√
KDiam(X)))3.

Now by Theorem 4.5, (5),
√
KDiam(X) → 0 as ε→ 0, so for sufficiently

small ε, using the first term of the Taylor series expansion of sinh, this
is bounded by

C5Diam(X)4 ≤ C6ε
−2

so C1 ≥ C7ε
10, hence C0 ≥ C8ε

10 and we can take

I(ε) = min(D(4), 1)C2 ≥ C9ε
5. q.e.d.

Lemma 5.2. (The C0 estimate.) Let uε be the solution to Equations
(5.1). There exists a constant C depending only on J , such that for all
ε < ε0, (ε0, D2 as in Theorem 4.5)

‖uε‖∞ ≤ Cε−5e−D2/ε.
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Proof. The starting point is the inequality (23) of [20]:∫
X
|d|uε|p/2|2 ≤ Ap

∫
X
|Fε||uε|p−1.

All integrals are with measure ω2
ε . See also the expanded derivation of

this inequality in [24]. One can check the constant A is independent of
p and ε.

We apply this first with p = 2. The left-hand side is ‖duε‖2
2 ≥

A1ε
5‖uε‖2

4 by Lemma 5.1, (1), so by applying Hölder’s inequality to the
right-hand side, we get

(∫
X
|uε|4

)1/2

≤ A2ε
−5

(∫
X
|Fε|4/3

)3/4(∫
X
|uε|4

)1/4

or

‖uε‖4 ≤ A3ε
−5

(∫
X
|Fε|4/3

)3/4

≤ C1ε
−5e−D2/ε.

(5.2)

Now for arbitrary p, using Lemma 5.1, (2)

‖uε‖p
2p =

(∫
X
|u2p

ε |
)1/2

= ‖ |uε|p/2‖2
4

≤ A4ε
−5‖ d|uε|p/2‖2

2 + ‖ |uε|p/2‖2
2

≤ A5pε
−5

(∫
X
|Fε| |uε|p−1

)
+ ‖ |uε|p/2‖2

2.

Applying Hölder’s inequality to the first term, we have, with q = p,
q′ = 1/(1 − 1/p) = p/(p− 1),∫

X
|Fε| |uε|p−1 ≤ ‖Fε‖p ‖ |uε|p−1‖p/(p−1)

= ‖Fε‖p ‖uε‖p−1
p ,

so

‖uε‖p
2p ≤ A5pε

−5‖Fε‖p ‖uε‖p−1
p + ‖uε‖p

p

=
(
A5pε

−5‖Fε‖p + ‖uε‖p

)
‖uε‖p−1

p .
(5.3)
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Now we claim that if we set pn = 2n+1, there exists constants Cn

such that
‖uε‖pn ≤ Cnε

−5e−D2/ε

for all ε < ε0. This holds for n = 1 by (5.2). Suppose it holds for a
given n. Then by (5.3),

‖uε‖pn
pn+1

≤ (A5pnε
−5D1e

−D2/ε + Cnε
−5e−D2/ε)(Cnε

−5e−D2/ε)pn−1

≤
{

(A5D12n+1 + 1)(Cnε
−5e−D2/ε)pn if Cn ≥ 1;

(A5D12n+1 + 1)(ε−5e−D2/ε)pn if Cn ≤ 1.

Thus we can take

Cn+1 ≤
{

(A5D12n+1 + 1)2
−(n+1)

Cn if Cn ≥ 1;
(A5D12n+1 + 1)2

−(n+1)
if Cn ≤ 1.

It then follows as in [20], page 299, that Cn ≤ A6 for some constant A6

independent of n and ε. Thus we conclude that

‖uε‖∞ ≤ A6ε
−5e−D2/ε

for all ε < ε0. q.e.d.

Lemma 5.3. (The C2 estimate.) Let uε be the solution to Equations
(5.1). There are constants C and ε0 depending only on J (possibly
smaller than the ε0 of Theorem 4.5) such that for all ε < ε0,

C−1ωε ≤ ω̃ε ≤ Cωε

where ω̃ε = ωε + i∂∂̄uε.

Proof. Let Rε = supi	=j |Rīijj̄ |, where Rīijj̄ is the holomorphic bi-
sectional curvature of the metric ωε, and the supremum is over all points
of X and unitary bases at each point. Since the holomorphic bisectional
curvature determines the curvature, ([6], pg. 76) and sup ‖R‖ → ∞ as
ε → 0 by Theorem 4.5 (6), we must have Rε > 1 for small ε. So if
cε = 2Rε, then cε + inf Rīijj̄ ≥ Rε > 1. Here the infinum is as before
over all unitary frames and points on X. Then [35], (2.22), reads

ecεuε∆′(e−cεuε(2 + ∆uε)) ≥ (∆Fε − 4 inf
i	=j

Rīijj̄(x))

− 2cε(2 + ∆uε)

+ (cε + inf
i	=j

Rīijj̄(x)) e
−Fε (2 + ∆uε)2
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where the infina are now only at the given point (but still over all unitary
bases). Here ∆′ is the Laplacian with respect to the metric ωε + i∂∂̄uε,
and ∆ is the Laplacian with respect to ωε. Let

k(x) = − inf
i	=j

Rīijj̄(x)/Rε,

so that |k(x)| ≤ 1.
Now suppose e−cεuε(2+∆uε) assumes its maximum at x ∈ X. Then

by the maximum principal, the Laplacian must be non-positive there,
so at the point x

0 ≥ecεuε∆′(e−cεuε(2 + ∆uε))

≥(∆Fε + 4k(x)Rε) − 2cε(2 + ∆uε) + (cε − k(x)Rε)e−Fε(2 + ∆uε)2

=(∆Fε + 4k(x)Rε) − 4Rε(2 + ∆uε) + (2 − k(x))Rεe
−Fε(2 + ∆uε)2

=e−Fε(2 − k(x))Rε

[(
(2 + ∆uε) −

2eFε

2 − k(x)

)2

−
(

2eFε

2 − k(x)

)2

+
eFε(∆Fε + 4Rεk(x))

(2 − k(x))Rε

]

and since |k(x)| ≤ 1, we get

∣∣∣∣(2 + ∆uε) −
2eFε

2 − k(x)

∣∣∣∣ ≤
∣∣∣∣∣
(

2eFε

2 − k(x)

)2

− eFε(∆Fε + 4Rεk(x))
(2 − k(x))Rε

∣∣∣∣∣
1/2

.

If we are outside of the region where the gluing is taking place, then
Fε = 0, so we get

∣∣∣∣(2 + ∆uε) −
2

2 − k(x)

∣∣∣∣ ≤
∣∣∣∣∣
(

2
2 − k(x)

)2

− 4k(x)
2 − k(x)

∣∣∣∣∣
1/2

,

or

2 + ∆uε ≤
2

2 − k(x)
+

∣∣∣∣∣
(

2
2 − k(x)

)2

− 4k(x)
2 − k(x)

∣∣∣∣∣
1/2

= 2.

In the gluing region, by Theorem 4.5 (6), there is a constant C1

|k(x)| ≤ C1ε/Rε.
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Also in the gluing region, we can use the bounds of Theorem 4.5,
(3) on Fε and ∆Fε, to get, for a constant C2 bounding eFε ,

2 + ∆uε ≤
2eFε

2 − k(x)
+

∣∣∣∣∣
(

2eFε

2 − k(x)

)2

− eFε(∆Fε + 4Rεk(x)))
(2 − k(x))Rε

∣∣∣∣∣
1/2

≤ 2C2

2 − C1ε/Rε
+

∣∣∣∣∣
(

2C2

2 − C1ε/Rε

)2

+
C2(D1e

−D2/ε + 4C1ε)
2 − C1ε/Rε

∣∣∣∣∣
1/2

.

Now as ε→ 0, ε/Rε → 0 by Theorem 4.5, (6). So what we get is

(2 + ∆uε)(x) ≤ C3

for sufficiently small ε, and C3 independent of ε.
Now

e−cεuε(y)(2 + ∆uε)(y) ≤ e−cεuε(x)(2 + ∆uε)(x)

for all points y, so

2 + ∆uε ≤ ecε(uε(y)−uε(x))C3

≤ ecε(sup uε−inf uε)C3

≤ eRεC4ε−5e−D2/ε
C3.

By Theorem 4.5, (6),
Rεε

−5e−D2/ε → 0,

so we get
2 + ∆uε ≤ C5

for sufficiently small ε.
Now working in a choice of coordinates z1, z2 at a point so that

∂z1 , ∂z2 are unitary at the point with respect to ωε and which also diag-
onalizes ω̃ε = ωε + i∂∂̄uε, then

(ω̃ε)ij̄ = δij(1 + (uε)īi),

and each 1 + uīi is positive, so 1 + (uε)īi ≤ C5, so ω̃ε ≤ C5ωε. Also,

ω̃2
ε =

∏
(1 + (uε)īi) ω

2
ε = eFεω2

ε .

Since 1 + (uε)īi is bounded above by C5, it must be bounded below by
something close to C−1

5 , so changing C5 slightly if necessary, we get

C−1
5 ωε ≤ ω̃ε ≤ C5ωε. q.e.d.
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We note here that for some purposes, Lemma 5.3 is already sufficient.
For example, if we wish to know that the fibres collapse to points as
ε → 0, Lemma 5.3 along with Proposition 3.5 tells us the diameter of
each fibre under the Ricci-flat metric goes to zero as ε → 0. However,
if we wish to get a clearer picture of the asymptotic behaviour of the
metric, we need stronger results.

Lemma 5.4. (The C2,α estimate.) Let uε be the solution to Equa-
tions (5.1). If U ⊆ B is a simply connected open set with U ⊆ B0 =
B \∆, then there exists constants α and ε0 and a polynomial P , depend-
ing on J and U , such that

‖uε‖C2,α ≤ P (ε−1)

in f−1(U) for all ε < ε0 and B in a fundamental domain for the B-
field (see Remark 4.6). Here the C2,α norm is on f−1(U) as defined in
Lemma 4.1, and so α, ε0 and P also depend on the choice of holomor-
phic coordinate y and fixed bounded domain T ′, as specified in the proof
below.

Proof. We need to apply the basic result of [11], Theorem 17.14.
However, we must be careful about the constants. Let π : T ∗

B → B be
the projection, and let T ′ ⊆ π−1(U) ⊆ T ∗

B be a fixed bounded domain
which contains a fundamental domain of each fibre of f over U . We
will be computing norms in the domain T ′. To do so, we choose a
holomorphic coordinate y in the base, yielding holomorphic canonical
coordinates x, y on T ∗

U . Now take a bigger open set T (ε) containing T ′.
This open set will also be bounded, but will depend on ε. We choose
it as follows. First let V ⊆ B0 be an open set with U ⊆ V , V ⊆ B0,
and the holomorphic coordinate y extending to V . Let T ⊆ π−1(V ) be
a domain containing T ′ and containing a fundamental domain of each
fibre over V . Let

T (ε) = {(x, y) ∈ T ∗
V | there exists (x̃, y) ∈ T with |x− x̃| < ε−1/2}.

The point of this choice is as follows. Consider the change of variable
y′ = ε−1/2y, x′ = ε1/2x. Then using x′, y′ to identify T ∗

U with a subset of
C2, we get Dist(∂T (ε), T ′) ≥ 1, for sufficiently small ε, in the euclidean
distance in C2.

Pulling back ωε to T (ε), we can write

ωε = i∂∂̄(ϕ1 + ϕ2)
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where i∂∂̄ϕ1 is a semi-flat metric and i∂∂̄ϕ2 is the correction to this
metric resulting from the gluing process. By applying Lemma 4.1, we
can choose ε sufficiently small so that the C2,α norm of ϕ2 on T ′ is as
small as we like (and the C2 norm of ϕ2 on T (ε)). On the other hand,
ϕ1 can be taken to be a translation of the Kähler potential given for
the standard semi-flat metric in Example 2.2. Since we have chosen B
in a fundamental domain, we can then bound the C2,α norm of ϕ1 on
T ′ independently of B as a polynomial in ε−1. The same is true of the
C2 norm of ϕ1 on T ′(ε).

Now the equation that uε satisfies is

(i∂∂̄ψε)2 = Ω ∧ Ω̄/2

where ψε = ϕ1 + ϕ2 + uε. Thus a C2,α bound on ψε polynomial in ε−1

yields a C2,α bound on uε polynomial in ε−1. Now changing coordinates
between x, y and x′, y′ also only affects the C2,α norm of a function by a
factor polynomial in ε−1, so we can work with respect to the coordinates
x′, y′. Now in these coordinates,

i∂∂̄(ϕ1) =
i

2
(W0(dx′ + εbdy′) ∧ (dx′ + εbdy′) +W−1

0 dy′ ∧ dȳ′).

By looking at the explicit form of b for the semi-flat metric, we see εb
in fact goes to zero as ε→ 0 on T (ε). Thus the eigenvalues of i∂∂̄ϕ1 on
T (ε), i.e., the eigenvalues of the matrix(

W0 εbW0

εb̄W0 W−1
0 + ε2|b|2

)
,

can be bounded below and above by some constants λ and Λ indepen-
dently of ε. Since ϕ2 is small, the same is true of ωε on T (ε). Finally, by
Lemma 5.3, the eigenvalues of i∂∂̄ψε are bounded below and above by
C−1λ and CΛ, independently of ε. Furthermore, Lemmas 5.2 and 5.3
imply the C2 norm of ψε on T (ε) is bounded by a polynomial in ε−1.
We can now apply [11], Theorem 17.14 to the domains T ′ ⊆ T (ε), to
obtain the desired result. q.e.d.

We shall now follow the standard method of continuity from [35],
and, for t ∈ [0, 1], look at the solution uε,t to the equation

(5.4) (ωε + i∂∂̄uε,t)2 = (1 + t(eFε − 1))ω2
ε ,

(5.5)
∫

X
uε,t ω

2
ε = 0.
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We set ωε,t = ωε + i∂∂̄uε,t, the Kähler form of a metric on the given
complex manifold X. For t = 0, we just get back our original (glued)
metric, whilst t = 1 is the case we have just looked at, yielding the Ricci
flat metric with Kähler form ω̃ε. Since log(1 + t(eFε − 1)) has the same
properties as Fε for t ∈ [0, 1], all the above estimates of Lemmas 5.2–5.4
work equally well for uε,t. In particular,

C−1ωε ≤ ωε,t ≤ Cωε

for some constant C independent of t ∈ [0, 1] and ε, and

‖uε,t‖C2,α ≤ P (ε−1),

with the polynomial P independent of t ∈ [0, 1] and ε.
Moreover, the Ricci form of the metric ωε,t is given by

i

2π
∂∂̄(Fε − log(1 + t(eFε − 1))),

and so the Ricci curvature Ricωε,t has a similar lower bound (indepen-
dent of t) as Ricωε .

Lemma 5.5. Let Gε,t(x, y) denote Green’s function for the Lapla-
cian ∆ε,t associated to the metric ωε,t, normalised so that∫

X
Gε,t(x, y)ω2

ε,t(x) = 0.

Then, for ε sufficiently small and any t ∈ [0, 1],

Gε,t(x, y) ≥ −Aε−11,

for some constant A independent of ε and t.

Proof. For ease of notation, we drop the suffices ε, t. We follow the
proof of Lemma 3.3 from [24], which is due to Peter Li. The volume
of X is 1, and we set K(x, y, s) = H(x, y, s) − 1, where H is the heat
kernel on X. As in [24], we need to find a lower bound for the integral of
K(x, y, s) over 1 ≤ s ≤ ∞, of the same form as that claimed for G(x, y).
Lu observes that

K(x, y, s) ≥ −K1/2(x, x, s)K1/2(y, y, s),

and that furthermore, for any x ∈ X,

K(x, x, s) ≤ K(x, x, 1)e−λ(s−1),



large complex structure limits 537

for all s ≥ 1, where λ denotes the first (positive) eigenvalue of the
Laplacian. If now we can suitably bound λ from below, and K(x, x, 1)
from above, we’ll be able to integrate the resulting function which
bounds K1/2(x, x, s)K1/2(y, y, s) from above, obtaining a lower bound
for
∫∞
1 K(x, y, s)ds.

The bound from below for λ comes from Theorem 4 on page 116 of
[31]. Since the metric is within a fixed constant factor of our original
metric, all the quantities in the given formula are known, and so using
Theorem 4.5, and we deduce that

λ ≥ A1Diam(X)−2 ≥ A2ε,

for appropriate absolute constants A1, A2. The proof of Lemma 5.1
may be applied to the metric ωε,t to obtain a similar bound on the
Sobolev constant, and then the bound from above for K(x, x, 1) is im-
plied by Equation (3.12) of [36], where the argument given there has
been run for the function K(x, y, s) = H(x, y, s) − 1 (so in particular∫
X K(x, z, s)ω2

ε,t(z) = 0). For an appropriate constant A3 independent
of t, we have

K(x, x, 1) ≤ A3ε
−10.

Thus for all s ≥ 1

K(x, x, s) ≤ A3ε
−10e−A2ε(s−1),

which then implies that

K(x, y, s) ≥ −A4ε
−10e−A2ε(s−1),

for some constant A4 independent of ε and t. On integrating, we obtain
the claimed bound in the form stated (a rather more involved argument
in fact gives a boundK(x, x, 1) ≤ A′

3ε
−3, and henceGε,t(x, y) ≥ −A′ε−4,

but this extra accuracy is not required). q.e.d.

We are now ready for our main theorem.

Theorem 5.6. For any simply connected open set U ⊆ B0 with
U ⊆ B0, and any k ≥ 2, 0 < α < 1, there exists constants C,C ′, and
ε0 such that for all choices of B in a fundamental domain for the B-
field and any ε < ε0 giving ωε as in Theorem 4.5, and uε satisfying the
equations

(ωε + i∂∂̄uε)2 = eFεω2
ε∫

X
uεω

2
ε = 0
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with Fε = log(Ω∧Ω̄/2
ω2

ε
), we have

‖uε‖Ck,α ≤ Ce−C′/ε.

Here, the norm is as in Lemma 4.1 on the region f−1(U), and the
constants C,C ′ are independent of ε.

Proof. This is now completely standard. Following [20] and [24],
we differentiate (5.4) with respect to t, getting

∆ε,t
duε,t

dt
=

eFε − 1
1 + t(eFε − 1)

.

The right hand side is very small, which along with the estimate of
Lemma 5.5, allows us to bound duε,t/dt. Indeed, by Green’s formula
and (5.5), we have

duε,t(x)
dt

= −
∫

X

(
∆ε,t

duε,t

dt

)
G̃ε,t(x, y)ω2

ε,t(y).

Here G̃ε,t is the Green’s function for the Laplacian for ωε,t, normalized so
that infX G̃ε,t = 0. Lemma 5.5 tells us that

∫
X G̃ε,t(x, y)ω2

ε,t(y) ≤ Aε−11

for some constant A independent of ε and t, so bounds on Fε imply

(5.6) ‖duε,t/dt‖C0 ≤ C1e
−C2/ε

for some constants C1 and C2 independent of t and ε, for sufficiently
small ε.

We can now apply the interior Schauder estimates (see [11] Theorem
6.2) to obtain

(5.7) ‖duε,t/dt‖C2,α ≤ C3e
−C4/ε

for sufficiently small ε. This holds for α as given by Lemma 5.4. We note
that a certain amount of care must be taken in applying these estimates:
first, we need to use the estimate of (5.6) and Lemma 5.4 on a larger
open set U ′ with U ⊆ U ′ ⊆ B0. Second we note that by Lemma 5.4,
the C0,α estimates for the coefficients of the second order operator ∆ε,t

depend only polynomially on ε−1, and the same is true, much as in the
proof of Lemma 5.4, for the constants λ and Λ needed in applying [11],
Theorem 6.2. The constant arising in the Schauder estimate can be
verified to depend only polynomially on λ and Λ. Taking these things
into account, one obtains (5.7).
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Now integrating (5.7) with respect to t we obtain

‖uε‖C2,α ≤ C3e
−C4/ε.

Using Schauder estimates again repeatedly in the standard way (see
[35], Formula (4.5) and following text), one can then find for each k,
constants C and C ′ such that

‖uε‖Ck,α ≤ Ce−C′/ε.

To get this inequality for any α, one uses the interpolation inequalities.
q.e.d.

Remark 5.7. The construction of the Ooguri–Vafa metric in §3
clearly works also for singular fibres of type In, simply by quotienting
at the appropriate stage by εnZ instead of εZ, and the above proofs
go through unchanged in this case. Thus all the results of this section
remain valid for elliptic K3 surfaces with semi-stable fibres.

6. Gromov–Hausdorff convergence

We now return to the notion of convergence alluded to in the in-
troduction. We wish to show that with the proper normalization, the
results of §5 imply that in the large complex structure limit, K3 sur-
faces in fact converge to 2-spheres. To make this precise, we first recall
the notion of Gromov–Hausdorff distance. The definition given below
can be easily seen to be equivalent to a definition in terms of ε-dense
subsets, c.f. [30] pg. 276.

Definition 6.1. Let (X, dX), (Y, dY ) be two compact metric
spaces. Suppose there exists maps f : X → Y and g : Y → X (not
necessarily continuous) such that for all x1, x2 ∈ X,

|dX(x1, x2) − dY (f(x1), f(x2))| < ε

and for all x ∈ X,
dX(x, g ◦ f(x)) < ε,

and the two symmetric properties for Y hold. Then we say the Gromov–
Hausdorff distance between X and Y is at most ε. The Gromov–
Hausdorff distance dGH(X,Y ) is the infinum of all such ε.

The Gromov–Hausdorff distance defines a topology on the set of
compact metric spaces, and hence a notion of convergence. It follows
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from results of Gromov (see e.g. [30], pg. 281, Cor. 1.11) that the
class of compact Ricci-flat manifolds with diameter ≤ D is precompact.
Thus in particular, if we have a sequence of Calabi–Yau n-folds whose
complex structure converges to a large complex structure limit point
(or any other boundary point for that matter) and whose metrics have
diameter bounded above, then there is a convergent subsequence, and
then the basic question is: what is the limit? The conjecture which
motivated the work of this paper is the following:

Conjecture 6.2. Let M be a compactified moduli space of complex
deformations of a simply-connected Calabi–Yau n-fold X with holonomy
group SU(n), and let p ∈ M be a large complex structure limit point (see
[27] for the precise Hodge-theoretic definition of this notion). Let (Xi, gi)
be a sequence of Calabi–Yau manifolds with Ricci-flat Kähler metric
which are complex deformations of X, with the sequence [Xi] ∈ M
converging suitably to p, and C1 ≥ Diam(Xi) ≥ C2 > 0 for all i.
Then a subsequence of (Xi, gi) converges to a metric space (X∞, d∞),
where X∞ is homeomorphic to Sn. Furthermore, d∞ is induced by a
Riemannian metric on X∞ \ ∆, with ∆ ⊆ X∞ a set of codimension 2.

A similar conjecture was also made by Kontsevich, Soibelman and
Todorov (see [22], [25]).

Remark 6.3. Conjecture 6.2 is obvious in the elliptic curve case
(ignoring the fact that elliptic curves are not simply-connected), no mat-
ter how the sequence of points approaches the large complex structure
limit point. However, in the K3 case, more care must be taken. In this
paper, we have considered limits mirror to points approaching the large
Kähler limit along a ray in the Kähler cone. However, if a sequence
of points approaching the large Kähler limit approaches the boundary
of the projectivized Kähler cone, we might expect further degeneracies
in the Gromov-Hausdorff limits. For example, a product of two elliptic
curves E1 × E2 = R4/Z4, with a metric



ε−3 0 0 0
0 ε 0 0
0 0 ε 0
0 0 0 ε




has a special Lagrangian fibration given by projection on the the first
and third factors, and has fibres of area ε. When we normalise the
metrics to have diameter one, the sequence of Riemannian manifolds
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converges to an S1 as ε → 0. As pointed out to us by N.C. Leung,
this construction descends to the corresponding Kummer surfaces. The
limit of the Kummer surfaces is then a closed interval.

Thus we expect that the correct restriction on sequences of points
in the complex moduli space in Conjecture 6.2 should correspond in the
mirror to Kähler classes staying within a proper subcone of the Kähler
cone. We can now prove the conjecture for the limits of K3 surfaces
considered in this paper, where the Kähler class tends to ∞ along a ray,
which we have seen reduces to the following result.

Theorem 6.4. Let j : J → B be an elliptically fibred K3 surface
with a section and singular fibres all of type I1, and let fi : Xi → B
be a sequence of elliptically fibred K3 surfaces with jacobian j. Let ωi

correspond to a Ricci-flat Kähler metric on Xi with ω2
i independent of

i, and with
∫
f−1

i (b) ωi = εi → 0 as i → ∞. Then the sequence of Rie-
mannian manifolds (Xi, εiωi) converges in the Gromov–Hausdorff sense
to B, the metric on B being induced from the (singular) Riemannian
metric given, in local coordinates, by W−1

0 dy ⊗ dȳ, with W0 as defined
in §4.

Proof. As usual, after choosing a topological zero-section of each
Xi, we can identifyXi with J as a manifold. We may then view the ωi as
corresponding to a sequence of Riemannian metrics gi on J , and prove
that the sequence Ji = (J, εigi) converges in the Gromov–Hausdorff
sense to B (with the given metric).

Using Remark 4.6, we can choose the class Bi determining ωi in a
fundamental domain for the B-field by making, for each i, a judicious
choice of zero-section σ0.

Consider now B along with the metric W−1
0 dy ⊗ dȳ. Near each

singular fibre one can find a coordinate y so that τ1 = 1 and τ2 =
1

2πi log y+h(y), for some holomorphic function h, and from this one can
see that each point of ∆ ⊆ B is at finite distance under this metric, and
thus B becomes a compact metric space using geodesic distance.

Now we need to show that for each δ > 0, dGH(Ji, B) < δ for
sufficiently large i. We will apply Definition 6.1 to the maps fi = j :
J → B and σ0 : B → J .

Choose, using Corollary 3.7 and Lemma 5.3, for each point pj ∈ ∆,
a small disc Dj around pj with the property that:

(1) Diam(Dj) < δ/100.

(2) Diam(f−1(Dj)) < δ/100 for sufficiently small εi.
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Let U = B \
⋃
Dj . Now let x1, x2 ∈ J . Let γ be a path joining x1

and x2 such that, for a given i,

lεigi(γ) < dεigi(x1, x2) + δ/100.

Here l denotes length, and the subscript denotes the metric being used.
At the risk of increasing the length of γ by 24δ/100, we can assume that
γ enters and leaves each f−1(Dj) at most once, and write γ = γ1 + γ2,
with γ1 ⊆ f−1(U) and γ2 ⊆ f−1(

⋃
Dj), with lεigi(γ2) ≤ 24δ/100. Now

if f−1(U) carried a semi-flat metric, then f−1(U) → U would in fact be
a Riemannian submersion, and distances decrease under submersions.
On the other hand, if εi is sufficiently small, it follows from Theorem 5.6
that the metric εigi is close to a semi-flat metric in the C0 sense. Thus
for sufficiently large i, depending on δ,

lB(f(γ1)) ≤ lSF (γ1) ≤ lεigi(γ1) + C(εi),

where lSF denotes length with respect to the suitably normalized semi-
flat metric close to εigi, and C(εi) is a constant depending on εi (and δ)
but independent of the path. Furthermore, C(εi) → 0 as εi → 0. Thus,
possibly replacing f(γ2) with a shorter path, we see that

dB(f(x1), f(x2)) ≤ lB(f(γ1)) + 24δ/100
≤ lεigi(γ1) + C(εi) + 24δ/100.

Thus for sufficiently small εi, we always have

dB(f(x1), f(x2)) < dεigi(x1, x2) + δ.

Next, let y1, y2 ∈ B, and let γ be a path joining y1 and y2 with

lB(γ) < dB(y1, y2) + δ/100.

As before, we can assume that γ enters and leaves each Di once, and
write γ = γ1 +γ2. Consider now the metric on σ0(B); locally, this takes
the form εi(W−1 +W |b|2)dy⊗ dȳ for some W and b. Again, the metric
on f−1(U) is close to a semi-flat metric, hence this metric is close, in
the C0 sense, to (W−1

0 + ε2iW0|bSF |2)dy⊗dȳ. Now the point of choosing
Bi to be in a fundamental domain for the B-field is that |bSF |2 can then
be uniformly bounded, independent of i. Thus for small εi, this metric
is close to the given metric on B. Thus there exists a constant C(εi)
with C(εi) → 0 as εi → 0 such that

lεigi(σ0(γ1)) ≤ lB(γ1) + C(εi).
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Therefore dεigi(σ0(y1), σ0(y2)) ≤ lB(γ) + C(εi) + 24δ/100 so for suffi-
ciently small εi,

dεigi(σ0(y1), σ0(y2)) ≤ dB(y1, y2) + δ.

Thus for sufficiently small ε,

|dB(y1, y2) − dεigi(σ0(y1), σ0(y2))| < δ

for all y1, y2 ∈ B.
If x1, x2 ∈ J , similar arguments show that

dεigi(x1, x2) < dB(f(x1), f(x2)) + δ

by joining x1 and x2 by a path which first connects x1 to σ0(B) inside a
fibre or inside f−1(Dj) for some j, then follows a geodesic inside σ0(B)
to the fibre containing x2, and then connects up to x2 inside this fibre.
The inequality follows for sufficiently small εi since the diameter with
respect to εigi of any fibre f−1(y) for y ∈ U , for small εi, is bounded by
Cεi, where C depends only on the periods over U .

This shows

|dεigi(x1, x2) − dB(f(x1), f(x2))| < δ

for sufficiently small εi. Finally, similar methods show

|dεigi(x1, x2) − dεigi(σ0(f(x1)), σ0(f(x2))| < δ

for all x1, x2 ∈ X, and εi sufficiently small. q.e.d.

Remark 6.5. The metric on the base B is McLean’s metric (see
[26], [19], [14]) on the base of the special Lagrangian T 2-fibration ob-
tained by hyperkähler rotation. In higher dimensions we also expect this
metric to appear in the limit, showing a residual effect of the conjectural
special Lagrangian fibration. This metric would then be singular along
some subset of the limit, corresponding to the limit of the discriminant
loci of the conjectural special Lagrangian fibrations. We hope this will
be codimension 2. See [16] for further speculation along these lines.

Conversely, we hope that one approach to understanding the exis-
tence of special Lagrangian fibrations would be to prove Conjecture 6.2,
which gives us insight into the behaviour of Ricci-flat metrics near large
complex structure limits. However, it is clear that any approach to
prove Conjecture 6.2 in higher dimensions must be substantially differ-
ent to the one given here for K3 surfaces, where we have made use of
the existence of special Lagrangian fibrations as well as the hyperkähler
trick to reduce to a question of Kähler degenerations.
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manifold, Ann. Sci. École Norm. Sup. 13 (1980) 451–468.

[24] P. Lu, Kähler-Einstein metrics on Kummer threefold and special Lagrangian tori,
Comm. Anal. Geom. 7 (1999) 787–806.

[25] Yu. Manin, Moduli, motives, mirrors, preprint, math.AG/0005144.

[26] R. C. McLean, Deformations of calibrated submanifolds, Comm. Anal. Geom. 6
(1998) 705–747.

[27] D. Morrison, Compactifications of moduli spaces inspired by mirror symmetry, J.
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