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DISTRIBUTION OF RESONANCES FOR
ASYMPTOTICALLY EUCLIDEAN MANIFOLDS

JARED WUNSCH & MACIEJ ZWORSKI

Abstract
In this paper we discuss meromorphic continuation of the resolvent and
bounds on the number of resonances for scattering manifolds, a class of
manifolds generalizing Euclidian n-space. Subject to the basic assump-
tion of analyticity near infinity, we show that resolvent of the Laplacian
has a meromorphic continuation to a conic neighborhood of the continuous
spectrum. This involves a geometric interpretation of the complex scaling
method in terms of deformations in the Grauert tube of the manifold. We
then show that the number of resonances (poles of the meromorphic con-
tinuation of the resolvent) in a conic neighborhood of R+ of absolute value
less than r2 is O(rn). Under the stronger assumption of global analyticity
and hyperbolicity of the geodesic flow, we prove a finer, Weyl-type upper
bound for the counting function for resonances in small neighborhoods of
the real axis. This estimate has an exponent which involves the dimension
of the trapped set of the geodesic flow.

1. Introduction and statement of results

Resonances replace discrete spectral data for operators on non-com-
pact domains and are defined as poles of the meromorphic continuation
of the resolvent. They are related to the long time behaviour of the wave
equation and, in physics, to the existence of states with rest energies
and rates of decay given by the real and imaginary parts of resonances
— see [33] for an elementary survey and references.

In this paper we consider a class of manifolds generalizing Euclidean
n-space and we prove meromorphic continuation of the resolvent of the
Laplacian to conic neighbourhoods of the continuous spectrum. This is
done under the basic assumption of analyticity near infinity. We give
an upper bound O(rn) on the number of resonances, that is, poles of
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the meromorphically continued resolvent, with absolute value less than
r2.

Under a stronger assumption of global analyticity and hyperbolicity
of the geodesic flow, finer estimates are possible. Proceeding in the spirit
of [23] and [32] we prove that the counting function for resonances in
small neighbourhoods of the real axis satisfies a Weyl type estimate with
the exponent related to the dimension of the trapped set of the geodesic
flow, K ⊂ T ∗X, and the size of the neighbourhood. In particular, when
we count in a fixed strip of width r, the bound is essentially given by
Crm/2, m = dimK, which (very weakly) generalizes the standard Weyl
estimate on the number of eigenvalues for a compact manifold, X, where
K = T ∗X.

The assumptions referred to in the statements of the following the-
orems will be discussed in detail in Section 2. Manifolds with boundary
endowed with scattering metrics [14],[15], generalize asymptotically Eu-
clidean cones. The boundary of such a manifold should be thought of
as the boundary of the compactified infinite conic end.

Theorem 1. Let X be a manifold with boundary which is real
analytic near ∂X, with the scattering metric holomorphic near ∂X in a
conic neighbourhood of X in its Grauert tube with base at the Grauert
tube of ∂X. Then for θ0 > 0 sufficiently small, the resolvent, R(z) =
(∆ − z)−1, continues meromorphically from {z : Im z < 0} to {z :
arg z < 2θ0} as an operator

R(z) : C∞
c (X◦) −→ C∞(X◦) .

The poles are of finite rank and their multiplicities are given by

mX(z) = rank
∫
γ
R(z̃)dz̃, [0, 2π) � t �→ γ(t) = z + εeit, 0 < ε� 1.

Resonances are defined as poles of the meromorphic continuation.
The following theorem establishes the natural bound on their number:

Theorem 2. Let X be a scattering manifold satisfying the as-
sumptions of Theorem 1. For θ0 > 0 sufficiently small, the counting
function of the poles of R(z) satisfies∑

1<|z|<r2
arg z<θ0

mX(z) ≤ Crn .
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This generalizes to this setting the Euclidean estimates of Melrose,
Sjöstrand, Vodev and the second author (see [25] and [33] for references).
When a neighbourhood of infinity is isometric to Rn/Γ, Γ ⊂ GL(n),
finite, then global upper bounds were obtained by Edward [4].

Theorem 2 is optimal, as can already be seen from many Euclidean
examples. We can, however, state a result which holds in great gener-
ality. The methods presented in Section 3 below allow a generalization
of the results of Sjöstrand [25] needed in the argument of Tang and the
second author [30] on the existence of resonances (inspired by earlier
results of Stefanov and Vodev). Using a refinement of the counting
argument of that paper given by Stefanov [29], and the KAM-based
quasimode theory of Lazutkin and Popov (see [18] and references given
there) one can prove

Theorem 3. Let X be a scattering manifold satisfying the assump-
tions of Theorem 1. If there exists an elliptic non-degenerate closed orbit
of the geodesic flow on X then for any N > 0∑

1<|z|<r2
Im z<|z|−N

mX(z) ≥ rn/CN .

For the proof we refer to [25],[30], and [29] with the needed modifi-
cations provided in Section 3 below.

When the flow is hyperbolic we obtain finer upper bounds but no
corresponding lower bounds. In the Euclidean case the following the-
orem is a special case of semiclassical results of Sjöstrand [23] and for
X = Γ\H2, non-compact with no cusps, it was proved by the second
author [32]. A very weak example showing its optimality is given in
Section 2. Obtaining lower bounds and generalizations to higher di-
mensional hyperbolic-like spaces present outstanding problems.

Theorem 4. Let X be a real analytic scattering manifold satisfying
the assumptions of Theorem 1. Let K ⊂ T ∗X be the trapped set of
the geodesic flow on T ∗X and let us assume that the geodesic flow is
hyperbolic on a neighbourhood of K. Then for α > 0, a, b > 0, and any
ε > 0, ∑

1<|z|<r2
Im z<a|z|α+b

mX(z) ≤ Cεr
(1−α)

m
2 +αn+ε ,

where m = Minkowski dimension of K .
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When K is of pure dimension then ε can be taken to be 0.

The assumption about the flow can be fulfilled when all sectional
curvatures are negative on a compact neighborhood of π(K).

The Minkowski dimension is defined as follows: for a bounded set
L ⊂ Rm we set

dimL = m− sup {d : lim
ε→0

ε−d(vol {x ∈ Rm : d(x, L) < ε}) <∞} .
(1.1)

The set L is said to be of pure dimension if the supremum in (1.1) is
achieved. SinceK is homogeneous under the natural R+-action on T ∗X,
we can apply this definition to the intersection of K with the cosphere
bundle.

The starting point of the paper is the proof of Theorem 1. We
observe that the complex scaling method of mathematical physics (see
Section 3 and references given there) generalizes to the case of asymptot-
ically Euclidean manifolds which are analytic near infinity. The complex
dilatation is replaced by a deformation of the manifold inside its Grauert
tube: roughly speaking the boundary at infinity is kept fixed and we
move the manifold into its complex neighbourhood near that boundary
(see Figure 1). The gain of ellipticity thus achieved is particularly clear
in the scattering calculus (which we discuss in an appendix in both its
classical and semiclassical guises).

The adaptation of methods of Helffer and Sjöstrand [8], [23] to man-
ifolds was carried out in [24] and [32] and we can use those techniques
to prove Theorems 2 and 4. The situation is much clearer than in [32],
however, as there is no need for phase space scaling near infinity, which
is the main difficulty in the hyperbolic case. Roughly speaking, complex
scaling provides the needed gain in ellipticity near infinity so that the
microlocal scaling based on the FBI transformation is used a neighbour-
hood of the trapped set only. That allows us to avoid the development
of global FBI transformations generalizing the work of Helffer-Sjöstrand
from Rn to scattering manifold: near infinity we proceed more in the
spirit of [27] than [8]. The general philosophy is described in Section 2
of [32].

Finally, we remark that in the semi-classical setting of [23], a lower
bound of the same form as the upper bound in Theorem 4 has been
recently verified numerically [13]. Hence we should expect the analogue
of Theorem 3 to hold as well.
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2. Geometric assumptions

We assume that X is a compact real analytic n-manifold with with
a real analytic boundary ∂X. Let X� ⊃ X be an open analytic man-
ifold of the same dimension as X, without boundary. By taking the
Grauert tube of X� (see [6]) we obtain an open complex manifold X̃,
with dimC X̃ = n, such that X ⊂ X̃ is a totally real submanifold. That
X is totally real means that for m ∈ X◦ we have

TmX ∩ J TmX = {0},
where TmX ⊂ TmX̃, and J : TmX̃ → TmX̃ gives the complex structure.
By abuse of notation we let X̃ equal X outside of a neighbourhood of
∂X in the case the analyticity assumption is local near ∂X.

Using the results of [6] (see Sections 5.2 and 5.3 of [11]), we can find
a holomorphic embedding of any open precompact subset of X̃ into CN

for some N . Then, by using the usual metric on R2N we can obtain a
real analytic Riemannian metric on a neighbourhood of X in X�. We
can then use it to obtain global (near ∂X) real analytic normal geodesic
coordinates. In particular, we obtain a defining function x of ∂X:

x�∂X= 0 , dx�∂X �= 0 , x : X −→ [0,∞) is analytic near ∂X.

For the meromorphic continuation of the resolvent and for the bounds
on the number of resonances in small conic neighbourhoods, we need
only make an analyticity assumption near ∂X. In this case we think
of X̃ as a complex neighbourhood of X, containing a neighbourhood of
∂X in X as a totally real submanifold of maximal dimension.

Thus, we can write

X = X0 ∪X1 , X1 � [0, 1)x × (∂X)y ,
x : X → [0, 1), y : X → ∂X, real analytic on X1,

(2.1)
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and, near the boundary,

X̃ � U × ∂̃X,

where U is a neighbourhood of [0, 1) in C and ∂̃X is a Grauert tube of
∂X. The maps

x̃ : X̃ → U, ỹ : X̃ → ∂̃X,(2.2)

are holomorphic.
We assume that X is equipped with a scattering metric in the sense

of Melrose [14], that is with a metric g which near the boundary takes
the form

g =
(
dx

x2

)2

+
h

x2
,

where h ∈ C∞(X, Sym2 T ∗X) restricts to a metric on ∂X. As discussed
above, near the boundary we can use coordinates (x, y), x ∈ U ⊂ C, a
neighbourhood of 0 and y ∈ ∂̃X, a Grauert tube of ∂X. We assume
that

h is holomorphic in {(x, y) : | Imx| ≤ Rex/C, y ∈ ∂̃X}.(2.3)

A conic neighbourhood of this form is invariantly defined to first or-
der, in the sense that a change of an analytic defining function changes
the neighbourhood above into a set contained in, and containing, conic
neighbourhoods defined using the new defining function. In Theorem 4
we additionally assume that the metric g is holomorphic in a neighbor-
hood of X0 in X̃.

For finer upper bounds we need global assumptions related to the
structure of the trapped set:

K ⊂ T ∗X , K = Γ− ∩ Γ+ ,

Γ± = {m ∈ T ∗X : x(π(expHg(m))) �−→ 0 as t −→ ∓∞} .(2.4)

We now assume that the geodesic flow of g is strictly hyperbolic on
a neighbourhood of K. That can be guaranteed by making a stronger
assumption that

all sectional curvatures of (X◦, g) are negative.(2.5)
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Because of the scattering structure of the metric they have to converge
to 0 at the boundary.

Using (2.5) we can follow [23] and construct appropriate escape func-
tions on neighbourhoods of S∗X. By an escape function, also known as
Lyapunoff function, we mean G ∈ C1,1(T ∗X) such that

HgG ≥ 0 .(2.6)

We start by observing that for any scattering manifold, there exists an
escape function on a neighbourhood of the boundary:

G0 ∈ C∞(T ∗Xε) , Xε = {m ∈ X : 0 < x(m) < ε} ,
HgG0(m) > (2 −O(ε))g(m) .

In fact, we can take G0 = −τ/x, where η = τdx/x + µ · dy/y is the
first fundamental form. Expressing the Hamilton vector field in the
coordinates (x, y; τ, µ), g = τ2 + h(y, µ) + xg′, we see, as in Section 3 of
[16], that

Hg

(
−τ
x

)
= x scH1,0

g

(
−τ
x

)
= 2τ2 + 2h(y, µ) = 2g + O(x)g .

This implies in particular that the trapped set intersected with the
cosphere bundle, K ∩ S∗X, is compact.

To construct an escape function near K, we recall that the flow is
strongly hyperbolic near K:

∃W ⊂ S∗X , W ◦ ⊃ K ∩ S∗X ∃C ∀m ∈ S∗X ∃E±
m,

E0
m ⊂ Tm(S∗X) , dim E±

m = n− 1 , dim E0
m = 1 ,

E+
m + E−

m + E0
m = Tm(S∗X) ,

d(exp tHg)m(E•
m) = E•

exp tHg(m) , Hg(m) ∈ E0
m ,

∀m ∈W ‖d(exp tHg)m(v±)‖ ≤ C exp(±Ct)‖v±‖ , v± ∈ E±
m .

(2.7)

This holds globally (with constants uniform on compact sets) when we
have (2.5). The assumptions of Section 5 of [23] are satisfied and, just
as in Section 5 of [32], we can use them construct an escape function on
a neighbourhood of the trapped set. More precisely, let

S∗
δX = {m ∈ T ∗X : 1 − δ < g(m) < 1 + δ} , Kδ = K ∩ S∗

δX .
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Then by the construction in Section 5 of [32] there exists G1 defined on
a neighbourhood Ωε of K2ε in S∗

2εX such that

G1 , HgG1 ∈ C1,1
c (Ωε; R) , G ∈ C∞(Ωε \K2ε) ,

HgG1 ≥ ‖∇G1‖2/C , HgG1 ≥ d(•,Kε)2

on an open neighbourhood W of Kε in S∗
εX ∩ Ωε ,

HgG1 ≥ 1/C on Ωε ∩ S∗
εX \W .

(2.8)

We can now apply the results of the appendix to [5] to conclude that
the existence of G0 and G1 imply the existence of G satisfying

G ,HgG ∈ C1,1
c (S∗

2εX; R) , G ∈ C∞(S∗
2εX \K2ε) ,

HgG ≥ ‖∇G‖2/C , HgG ≥ d(•,Kε)2

on an open neighbourhood W of Kε in S∗
εX ,

HgG ≥ 1/C on S∗
εX \W .

(2.9)

A slightly modified version of this escape function will be crucial in the
proof of Theorem 4.

When discussing Theorem 4 we will make the further assumption
that

g is a real analytic metric on X.

Example. A simple example which satisfies the assumptions of
Theorem 4 is given by the catenoid. Since in that case we can un-
derstand the asymptotic distribution of resonances in strips — they
are generated by one hyperbolic orbit — it also shows that the result
is optimal. Conceptually, it is the same example as the ones used to
show the optimality of the results of [23] and [32]. Thus, we consider
a manifold, C, with global coordinates (r, θ) ∈ R × S1, and the metric
g = dr2+(r2+a2)dθ2. Taking x = 1/|r| near infinity shows that C satis-
fies the analytic assumptions. Since the mean curvature of C ⊂ R2 is 0,
the Gaussian curvature is negative. Hence the dynamical assumptions
are also satisfied.

The Laplacian is given by

∆g = D2
r +

1
i

r

r2 + a2
Dr +

1
r2 + a2

D2
θ

=
1
2π

∑
n∈Z

(
D2
r +

1
i

r

r2 + a2
Dr +

1
r2 + a2

n2

)
ein(θ−θ′)
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and

(r2 + a2)
1
4

(
D2
r +

1
i

r

r2 + a2
Dr +

1
r2 + a2

n2

)
(r2 + a2)−

1
4

= D2
r −

3
4

r2

(r2 + a2)2
+
n2 + 1

2

r2 + a2
.

(2.10)

Considered as a semiclassical Schrödinger operator with h = 1/n, the
last operator has an analytic potential with one non-degenerate maxi-
mum. Just as in [19], we can use the methods of Briet-Combes-Duclos
and Sjöstrand to determine the asymptotic distribution of resonances
in strips: for |z| > C and Im z < C the resonances are asymptotically
given by z = λ2 with

Reλ = na−1 + a0 + a1n
−1 + · · · ,

Imλ = a−1
(
k + 1

2

)
+ b1(k)n−1 + b2(k)n−2 + · · · ,

k ∈ Z , 0 ≤ k

(2.11)

For a numerical verification of this, see Figure 5 in Appendix B.
Many examples of real analytic surfaces with catenoidal ends and

with complicated geodesic hyperbolic flows can be obtained from sur-
faces constructed in [12].

3. Complex scaling on manifolds with boundary

The purpose of this section is to present a generalized version of the
complex scaling method. That method, which allows an effective mero-
morphic continuation of the resolvent, has a long tradition in math-
ematical physics, following the original work of Aguilar-Combes and
Balslev-Combes. See for instance [9] for a historical account. Here
we follow the approach of Sjöstrand and the second author [27], partly
motivated by the approach of Helffer and Sjöstrand [8].

Let P be a differential operator on X with coefficients holomorphic
in a set of the form (2.3). Let us denote the corresponding differen-
tial operator with holomorphic coefficients, P̃ . It is defined in a conic
neighbourhood, V , of ∂X in X̃.

If Γ ⊂ V ⊂ X̃ is a totally real submanifold of maximal dimension
then P̃ defines a differential operator on Γ by

PΓu =
(
P̃ ũ

)
�Γ ,
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where u ∈ C∞(Γ), ũ ∈ C∞(X̃),

ũ�Γ= u , ∂ũ�Γ= ON (d(•,Γ)N ), for all N,

that is, ũ is an almost analytic extension from Γ to X̃.
The differential operator we shall consider is the Laplacian for the

scattering metric satisfying analyticity assumptions near ∂X. In the
notation of [14] we have

∆ ∈ Ψ2,0
sc (X) .

We also note that ∆ − z ∈ Ψ2,0
sc (X) is elliptic as a scattering pseu-

dodifferential operator for z ∈ C \ R+. In particular, it is Fredholm
there, as the elements of the residual class Ψ−∞,∞

sc (X) are compact by
Proposition A.13.

We want to deform X in V ⊂ X̃ so that the operator induced by
∆̃ − z on the deformation is elliptic for z in a conic neighbourhood of
R. Thus we define a family of totally real submanifolds

Xθ ⊂ X̃, 0 ≤ θ < θ0

as follows: Given ε > 0, t1 > t0 > 0, there exists a sufficiently small θ
and a deformation γθ of [0, 1) in U satisfying (we write [0, 1) � t �→ γθ(t))

γ′θ(t) ≡ eiθ for t < t0

γθ(t) ≡ t for t > t1 , γθ(0) = 0
arg γθ(t) ≥ 0

0 ≤ arg γθ(t) − arg γ′θ(t) ≤ ε

0 ≤ 2 arg γθ(t) − arg γ′θ(t) ≤ θ + ε,

(3.1)

(see Figure 1). For example, we can set

γθ(t) = eiθtφ(t) + t(1 − φ(t))

where φ is a nonincreasing cutoff function that equals 1 for t < t0 and
0 for t > t1: all except the last two properties in (3.1) are trivially
satisfied. Since we have γθ(t) = t+ itθφ+ O(θ2)φ and γ′θ(t) = t−1γθ +
itθφ′+O(θ2)tφ′, we compute γ′θ(t)/γθ(t) = t−1+iθφ′(t)+O(θ2)φ′, hence
the penultimate inequality in (3.1) holds. Similarly,

γ′θ(t)/γθ(t)
2 = t−2(1 − iθφ+ itθφ′ + O(θ2)φ+ O(θ2)tφ′),
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Figure 1: The contour γθ in U .

so the last property is also satisfied.
Using (2.2), and for t1 and θ small enough, we then put Xθ �

(γθ × ∂X) ∪ X0, a totally real submanifold of X̃. By the procedure
described above, this gives

∆θ ∈ Ψ2,0
sc (Xθ).

Here we use the space of scattering pseudodifferential operators: for a
discussion of the scattering calculus and scattering Sobolev spaces, see
Appendix A or [14].

The assumptions above guarantee that ∆θ − z is elliptic for arg z <
2θ, or more precisely,

∆θ − z ∈ Ψ2,0
sc (Xθ) is elliptic for z ∈ C \ e2iθR+ .

In fact, at the boundary (i.e., in T
sc ∗

∂Xθ
Xθ), ∆θ has the same the scat-

tering principal symbol as (x2Dx)2 + x2∆∂X , x ∈ γθ:

((γθ(t)/t)2(γ′θ(t))
−1t2Dt)2 + (γθ(t)/t)2t2∆∂X , 0 < t < t1 ,

and the conditions (3.1), with θ and t1 small enough guarantee the
ellipticity.

This immediately shows that

∆θ − z : H2,0
sc (Xθ) −→ L2

sc(Xθ)

is a Fredholm operator for z ∈ C \ e2iθR+, and consequently ∆θ has a
discrete spectrum there.
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We now want to show that for some θ0
σ(∆θ1) ∩ {z : 2(θ1 − π) < arg z < 2θ2}

= σ(∆θ2) ∩ {z : 2(θ1 − π) < arg z < 2θ2}, θ2 < θ1 ≤ θ0 .
(3.2)

To prove (3.2) we start by recalling a well known local result about
analytic continuation (see [27],[26] and references given there; Figure 2
illustrates the geometry):

Lemma 3.1. Let Ω ⊂ Cn be open, K � Ω, and let Γt, t ∈ [0, 1] be
a smoothly varying family of totally real submanifolds in Ω, of maximal
dimensions, such that Γt∩ (Ω \K) = Γt′ ∩ (Ω \K) for all t, t′ ∈ [0, 1]. If
P̃ is a differential operator with holomorphic coefficients in Ω and PΓt

is elliptic for each t ∈ [0, 1] then

u ∈ D′(Γ0)
PΓ0u extends holomorphically
to a neighbourhood of

⋃
t∈[0,1] Γt




=⇒
{ ∀ t ∈ [0, 1] ∃ ut holomorphic near Γt,
ut = us near Γs when |s− t| is small enough

� �

��

� �

��

Figure 2: The family of totally real submanifolds Γt.

In particular u extends holomorphically, to a a possibly multi-valued
function, on a neighbourhood of

⋃
t∈[0,1] Γt. We use this lemma to obtain

the crucial

Lemma 3.2. Assume that 0 ≤ θ2 < θ1 < θ0 and that

z ∈ C \
⋃

θ2≤θ≤θ1
eiθR+.
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Then for all k ∈ N

dim ker (∆θ1 − z)k = dim ker (∆θ2 − z)k .

Proof. For ε > 0 we introduce a new deformation Xε
θ1,θ2

, obtained
by replacing γθ1 by γεθ1,θ2 shown in Figure 3:

γεθ1,θ2 = γθ1 + χ
(x
ε

)
γθ2 , χ ∈ C∞(R),

χ(t) = 0 for t < 1, χ(t) = 1 for t > 2.

This defines a family of totally real submanifolds Xε
θ1,θ2

, with the prop-
erty that

∆ε
θ1,θ2

def= ∆�Xε
θ1,θ2

∈ Ψ2,0
sc (Xε

θ1,θ2),

is uniformly elliptic for z ∈ C \ ⋃
θ2≤θ≤θ1 e

iθR+ with all the symbol
estimates independent of ε. A local application of Lemma 3.1 (using a
partition of unity on ∂X and a construction of suitable Γt’s covering
Xε
θ1,θ2

) shows that if (∆θ1 − z)kuθ1 = 0 then there exist an open set
Wθ1,θ2 ⊂ X̃ such that ⋃

θ2≤θ≤θ1
(Xθ \ ∂X) ⊂Wθ1,θ2 ,

and a (possibly multivalued) holomorphic function, U , on Wθ1,θ2 , such
that

U�Xθ1
= uθ1 .

For uθ2 = U �Xθ2
, we clearly have (∆θ2 − z)kuθ2 = 0, and we need to

show that

uθ1 ∈ L2
sc(Xθ1) =⇒ uθ2 ∈ L2

sc(Xθ2) .

Since (∆ε
θ1,θ2

− z) is uniformly elliptic in ε, we obtain a parametrix:

P εθ1,θ2(∆
ε
θ1,θ2 − z)k = Id +Rεθ1,θ2 ,

with

Rεθ1,θ2 = Ol,m(1) : H−m,−l
sc (Xε

θ1,θ2) −→ Hm,l
sc (Xε

θ1,θ2),

P εθ1,θ2 : Hm,l
sc (Xε

θ1,θ2) −→ Hm+2,l
sc (Xε

θ1,θ2) .
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Let ψ ∈ C∞
c have the property that ψ ≡ 1 on supp χ and ψ ≡ 0 in a

neighbourhood of 0. Then

uεθ1,θ2 = U�Xε
θ1,θ2

, (∆ε
θ1,θ2 − z)kuεθ1,θ2 = 0 ,

and (for simplicity we put k = 1 here)

ψ
(x
ε

)
uεθ1,θ2 = P εθ1,θ2

(
[∆ε

θ1,θ2 , ψ(x/ε)]uεθ1,θ2
) −Rεθ1,θ2(ψ(x/ε)uεθ1,θ2)

= P εθ1,θ2 ([∆θ1 , ψ(x/ε)]uθ1) −Rεθ1,θ2(ψ(x/ε)uεθ1,θ2) .

Hence,

‖ψ(x/ε)uεθ1,θ2‖L2
sc(X

ε
θ1,θ2

) ≤ C‖uθ1‖L2
sc(Xθ1

) + C‖ψ(x/ε)uεθ1,θ2‖H0,l
sc (Xε

θ1,θ2
)

≤ C‖uθ1‖L2
sc(Xθ1

) + C‖ψ(x/δ)uθ2‖H0,l
sc (Xθ2

)

+ Cδl‖ψ(x/ε)u‖L2
sc(X

ε
θ1,θ2

) ,

δ > ε, since for v supported where x < δ, ‖v‖
H0,l

sc
= ‖xlv‖L2

sc
≤

δl‖v‖L2
sc
. The second term of the right hand side above is bounded,

and consequently, by taking δ > ε small, we obtain a uniform bound on
‖ψ(x/ε)uεθ1,θ2‖L2

sc(X
ε
θ1,θ2

), which in turn bounds ‖ψ̃(x/ε)uθ2‖L2
sc(Xθ2

) for

any ψ̃ ∈ C∞(R) such that ψ ≡ 1 on the support of ψ̃. A uniform bound
on ‖uθ2‖L2

sc(Xθ2
) is an immediate consequence.

γθ1

γθ2

γεθ1,θ2

ε

Figure 3: The interpolating contour γεθ1,θ2 .

In the case the kernel of (∆θ1 − z)k has higher dimension, the uθ2 ’s
corresponding to independent uθ1 ’s are clearly independent. The rôles
of θ1 and θ2 in the argument can be reversed and that concludes the
proof. q.e.d.

The fact that considering kernels is sufficient is due to the following
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Lemma 3.3. For z ∈ C \ e2iθR+,

∆θ − z : H2,0
sc (Xθ) −→ L2

sc(Xθ)

is a Fredholm operator with index zero.

Proof. We already pointed out that the Fredholm property comes
directly from the scattering calculus. To see that the index is 0, we
follow [27] and note that the index of ∆θ − z is constant in {(θ, z) : 0 ≤
θ < θ0 , z ∈ C \ e2iθR+}. Thus, we can deform ∆θ − z, first to ∆θ + i
and then to ∆ + i which is invertible. q.e.d.

As in [27], we now conclude that for 0 ≤ arg z < 2θ,

mX(z) =
1

2πi
tr

∫
γ
(z̃ − ∆θ)−1dz̃,

[0, 2π) � t �→ γ(t) = z + εeit, 0 < ε� 1,
(3.3)

gives a divisor independent of the choice of θ and of the choice of the
contour γθ satifying (3.1). It remains to prove Theorem 1 and to show
that mX(z) agrees with the one given there:

Proof of Theorem 1. Suppose that z is not an eigenvalue of
∆θ for arg z < 2θ and that f ∈ C∞

c (X◦). We want to construct
R(z)f ∈ C∞(X◦), which will be the continuation of (P−ζ)−1f , Im ζ < 0.
Let supp f ⊂ K � X◦. We can choose γθ satisfying (3.1) so that no
deformation takes place in K. We then put

R(z)f = U�X0 , X0 = X, (∆θ − z)uθ = f,(3.4)

where U is the holomorphic continuation of uθ, as discussed in the proof
of Lemma 3.2. Near a pole, z0, the resolvent (∆θ− z)−1, can written as

M(z0)∑
j=1

Aθj(z0)
(z − z0)j

+ R̃θ(z, z0) ,

where Aθj(z0)’s are finite rank operators and R̃θ(z, z0) is holomorphic
near z0. The first term, Aθ1(z0), is a projection onto the kernel of
(∆θ − z0)M(z0) and its Schwartz kernel extends holomorphically to a
neighbourhood of Γ

θ̃
, θ̃ < θ, by the method described in Lemmas 3.1

and 3.2. The same is true for the coefficients of the more singular terms
which are given by Aθj(z0) = (∆θ − z0)j−1Aθ1(z0). Unique continuation
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of solutions of (∆θ − z)M(z0) (which, near ∂Xθ = ∂X is a restriction
of a holomorphic operator to Xθ) also shows that the rank of Aθ1(z0) is
the same as the rank of 1WAθ1(z0)1W , for any W � X◦ with X \W
sufficiently close to the boundary. Hence (3.4) provides a meromorphic
continuation of (∆ − z)−1 : C∞

c (X◦) → C∞(X◦), with poles of finite
rank and with the rank of the residues given by mX . q.e.d.

We conclude with another characterization of multiplicities:

Proposition 3.4. Let arg z < 2θ and mX(z) be given by (3.3).
Then there exists a holomorphic family R̃(z̃) defined near z, and finite
rank operators Aj(z), such that

R(z̃) =
M(z)∑
j=1

Aj(z)
(z̃ − z)j

+ R̃(z̃),

and if we define V (z) ⊂ C∞(X◦) by

V (z) =
M(z)∑
j=1

Aj(z)(C∞
c (X◦))

then
mX(z) = dim V (z)

Proof. This follows from the usual structure corresponding to the
Jordan normal form (see [27]) and already alluded to in the proof of
Theorem 1. The operators obtained by holomorphic continuation of the
Schwartz kernels of Aj(z) : C∞

c (X◦) → C∞(X◦), have that structure
and that proves the equivalence of the two notions of multiplicity: one
given by the dimension of V (z) and the other by the rank of the residue
of R(z). q.e.d.

4. The FBI transformation and microlocal deformations

To define a global FBI transformation on Xθ we first have to con-
sider admissible phase functions defined on T ∗Xθ × Xθ. Since Xθ is
not real analytic we will want functions which are holomorphic in a
neighbourhood of Xθ \W , where W � X ∩Xθ. We allow the presence
of W in case we only have the assumptions of Theorem 2. When the
assumptions of Theorem 4 hold, then W = ∅.
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Let D be a small conic neighbourhood of

∆∗
0 = {(α, z) ∈ T ∗X◦ ×X◦ : π(α) = z}

and let D̃ be a small open neighbourhood of ∆∗
0 in

(T ∗X̃◦ \W × X̃◦ \W ) ∪ (T ∗W1 ×W1) , W � W ◦
1 , W1 � Xθ ∩X .

Here ˜ denotes a Grauert tube. By a holomorphic function on D̃ we
will mean, somewhat abusively, a function which is holomorphic on
D̃ ∩ (T ∗X̃◦ \W × X̃◦ \W ) and C∞ on D̃ ∩ (T ∗W1 ×W1).

A holomorphic function, φ̃, on D̃, will be called an admissible phase
function if, for α ∈ T ∗X◦ we have (with π : T ∗X → X, the natural
projection)

φ̃(α, π(α)) = 0

dzφ̃(α, z)�z=π(α)= −αξ
d2
z

(
Im φ̃(α, z)

)
�z=π(α)� 1

C 〈αξ〉Id
uniformly on compact sets,

φ is homogeneous of degree one in αξ.

(4.1)

Note that for α ∈ T ∗X◦, that is for α real, Im dzφ̃�z=π(α)= 0, so that
d2
z(Im φ̃) is well defined.

By taking θ small enough, we can make D̃ contain a neighbourhood
of T ∗Xθ ×Xθ. We can then define

φθ = φ̃�T ∗Xθ×Xθ
.

The properties of φ̃ (4.1), show that for

α ∈ (T ∗Xθ ⊂ T ∗X̃◦ \W × X̃◦ \W ) ∪ (T ∗W1 ×W1) ,

we have

φθ(α, π(α)) = 0
dzφθ(α, z)�z=π(α)= −α

φ is homogeneous of degree one in αξ.

(4.2)

Slightly less obvious is the property that

d2
z (Imφθ(α, z))�z=π(α)� |〈αξ〉|Id , uniformly on compact sets.(4.3)
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In fact, since Xθ is totally real, dz(Imφθ(α, z)) �z=π(α)= 0, and the
Hessian is again well defined. Since θ is small, (4.3) follows from the
assumption at θ = 0.

For a specific choice of φ̃ we can follow [24], [32] and put

φ̃(α, z) = −〈αξ, exp−1
αx

(z)〉 + i
2〈αξ〉d̃(αx, z)2 ,(4.4)

where d̃2 is the holomorphic continuation of the square of the distance
function.

For u ∈ C∞
c (X◦

θ ), we can now define

Tu(α;h) =
∫
Xθ

eiφθ(α,z)/haθ(α, z;h)χθ(αz, z)u(z)dvolgθ
,

α = (αz, αζ) ∈ T ∗Xθ

The amplitude aθ is obtained by restricting an elliptic holomorphic sym-
bol on D̃, to D̃ ∩ (T ∗Xθ ×Xθ):

aθ = a�
D̃∩(T ∗Xθ×Xθ)

, a ∈ S
3n
4 ,

n
4

phg (D̃) .

Here Sm,kphg denotes the class of semiclassical polyhomogeneous holo-
morphic symbols bounded by h−m〈αζ〉m — see [24], (1.6)–(1.8). On
T ∗W1 × W1, they are assumed to be the usual symbols. The cutoff
function χθ is obtained by restricting a cutoff function on X̃ × X̃ to
Xθ ×Xθ:

χθ = χ�Xθ×Xθ
, χ ∈ C∞(X̃ × X̃) , suppχ ⊂ π(D̃) ,

where π : T̃ ∗X×X̃ → X̃×X̃. We assume that χ ≡ 1 on a neighbourhood
of {(α, z) ∈ T̃ ∗X × X̃ : π(α) = x}.

The transformation we introduced has all the essential properties
of the global FBI transformation discussed in Section 1 of [24], when
W = ∅ and all the properties of the C∞ FBI transformation of [31]. Thus

the same argument as those papers shows that there exists b ∈ S
3n
4 ,

n
4 (D̃)

such that we have an approximate inverse of T :

Sθv(z) =
∫
T ∗Xθ

e−iφ
∗
θ(α,z)bθ(α, z, h)χθ(αz, z)dα , bθ = b�

D̃∩T ∗Xθ×Xθ
,
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where φ∗θ is the restriction to T ∗Xθ×Xθ of the holomorphic continuation

of φ̃�
D̃∩T ∗X×X and dα is the canonical measure on T ∗Xθ. We have

SθTθu = u+Rθu , u ∈ L2
comp(Xθ) ,{ |∂kz ∂lz′Rθ(z, z′;h)| ≤ Ck,l,Nh

N , W �= ∅
|∂kz ∂lz′Rθ(z, z′;h)| ≤ Ck,l exp(−1/Ch) , W = ∅ ,

uniformly on compact sets. This follows as in [24] when W = ∅ and as
in [31] when W �= ∅, that is when we only use the C∞ FBI theory.

When W = ∅ we can use the holomorphy of the phase and the
amplitude to deform the FBI transformation. Let Gθ ∈ C1,1

c (T ∗Xθ).
We can obtain a C1,1 extension of Gθ to the Grauert tube of T ∗Xθ with
the property that

(dGθ)ρ�JTρ(T ∗Xθ)= 0(4.5)

where
J : Tρ(T̃ ∗Xθ) = Tρ(T̃ ∗X) → Tρ(T̃ ∗X) = Tρ(T̃ ∗Xθ)

is the complex structure: Identify ˜T ∗Xθ ∩ U , where U is relatively com-
pact neighbourhood of supp Gθ, with a neighbourhood of the zero sec-
tion in T ∗(T ∗Xθ ∩ U) in which J and the metric give the canonical
symplectic structure; then make G constant on the fibers.

Denoting the extension by the same symbol, G ∈ C1,1(T̃ ∗Xθ), we
now define a Lipschitz I-Lagrangian, R-symplectic submanifold of T̃ ∗Xθ:

ΛtGθ
= exp(tHImσ

Gθ
)(T ∗Xθ) ⊂ T̃ ∗Xθ,

where

Imσ(v,HImσ
Gθ

) = dGθ(v) , σ = dαζ ∧ dαz .
Here by a Lipschitz manifold we mean a graph of a Lipschitz function.
We remark that a Lipschitz graph in T̃ ∗X over T ∗X (and hence for
small θ over T ∗Xθ) which is I-Lagrangian (i.e., its almost everywhere
defined tangent plane is Lagrangian with respect to Imσ) can be locally
written as a graph of a differential of a C1,1 function G̃, on T ∗X � T ∗Rn

(locally):

{(x, ξ) ∈ T ∗Cn : Imx =
∂G̃

∂ Re ξ
(Rex,Re ξ) ,

Im ξ = − ∂G̃

∂ Rex
(Rex,Re ξ) } ,

(Rex,Re ξ) ∈ T ∗Rn � T ∗X ,
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see [24], [32] and the references given there.
The form − Im ζdz�ΛtGθ

is compactly supported and (formally) closed.
Since ΛtGθ

is close to T ∗Xθ,

H1
c (ΛtGθ

) ∼= H1
c (T

∗Xθ) ∼= H2n−1(T ∗Xθ) ∼= H2n−1(Xθ) = 0,

where the second equivalence is by Poincaré duality. Hence − Im ζdz�ΛtGθ

has a unique compactly supported primitive HΛtGθ
which is a Lipschitz

function on ΛtGθ
. More explicitly,

HΛtGθ
=

∫ t

0
exp((s− t)HImσ

G )∗(G− 〈HImG
G , Im(ζdz)〉) ds

(see Example in Section 1 of [24]). Clearly, HΛtGθ
∈ Lip (ΛtGθ

; R). It
is unique through the normalization that it is equal to 0 for |αζ | large
enough.

Thanks to the global properties of the amplitude and the phase
function of Tθ we can continue it in α to a neighbourhood T̃ ∗Xθ of
T ∗Xθ in T ∗X̃ and in particular we can define

TΛtGθ
u(α;h) = Tθu�ΛtGθ

(α;h) , α ∈ ΛtGθ
.

A deformation argument which despite the irregularity of ΛtGθ
proceeds

as in Section 1 of [24] gives an approximate inverse, SΛtGθ
, with the same

properties as Sθ above.
Following [24] (see also [32]) we can now put, for u ∈ C∞

c (Xθ),

‖u‖2
H(Xθ;ΛtGθ

,〈αζ〉m)

=
∫

ΛtGθ

|TΛtGθ
u(α;h)|2|〈αζ〉|2me−2HΛtGθ

(α)/h
dα ,

(4.6)

where again dα is the canonical measure on the totally real (as a sub-
manifold of T ∗X̃), R-symplectic manifold ΛtGθ

. Using SΛtGθ
we can

show the independence of this norm of the choice of a specific phase
function (see Lemma 7.3 in [32] for a similar argument).

As in [32], we now want to replace the norm given in (4.6) by a
locally-defined norm which in which we can do the Bergman kernel
computations which will be necessary to prove Lemma 5.2.

We first introduce some local coordinates. Recall that K denotes
the trapped set of the geodesic flow. Let Y be a neighbourhood of π(K)
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in X such that Y � X ∩Xθ. We denote by Ỹ a neighbourhood of Y in
X̃. We then cover Ỹ by holomorphic coordinate charts:

Ỹ ⊂
Q⋃
q=1

Ωq , χq : Ωq → Cn , χq : Ωq ∩X → Rn .

We also assume that there exist Ω′
q, X̃ ⊃ Ω′

q � Ωq, such that χq extend
to holomorphic coordinate maps on the Ω′

q’s.
We now recall the definition of the unitary Bargman type FBI trans-

form: let

L(dz) = (2i)−1dz ∧ dz and Φ0(z) = (Im z)2/2

and define

T0 : L2(Rn) → H2
Φ0

(Cn) = {u ∈ D′(Cn) :
∫

Cn

|u(z)|2e−2Φ0(z)/hL(dz) ,

u is holomorphic on Cn} ,
T0u(z, h) = cnh

−3n
4

∫
R2

e−(x−z)2/2hu(x)dx.

Let Ω�
q be an open precompact subset of χq(Ωq ∩X) + iRn ⊂ Cn which

can be identified with a subset of T ∗
Ωq
X using χq.

We now define a new transformation Tq by

Tqu(z, h) = T0((χ−1
q )∗(u�Ω′

q∩X))�
Ω�

q
,(4.7)

which is independent of the extensions of u�Ω′
q∩X up to exponentially

small errors.
The main technical result of Section 6 of [32] relates the globally-

defined norm (4.6) to norms defined using the local transforms (4.7). It
is based on techniques of [8], [23] and we recall it without proof:

Proposition 4.1 We can choose Ω�
q in (4.7) and

Φt,q(w) = 1
2(Imw)2 + Fq,t , Fq,t ∈ C1,1(Ω�

q) ,

ψq ∈ C∞
c (Ω�

q; [0, 1]), ψ̃ ∈ C∞
c (T ∗Xθ; [0, 1]), ψ̃ ≡ 1 on a neighbourhood of
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S∗
YXθ in T̃ ∗X, such that the norm

|||u|||2H(Xθ,ΛtGθ
;〈αξ〉m)

=
Q∑
q=1

∫
Ω�

q

ψq|Tqu(w;h)|2e−2Φq,t(w)/hL(dw)

+
∫

ΛtGθ

(1 − ψ̃)|TΛtGθ
u(α;h)|2e−2HΛtGθ

(α)/h|〈αξ〉|2mdα ,

and the corresponding inner product, are equivalent to the ones given by
(4.6), uniformly on compact sets:

1
C
‖u‖H(Xθ,ΛtGθ

;1) ≤ |||u|||H(Xθ,ΛtGθ
;1) ≤ C‖u‖H(Xθ,ΛtGθ

;1) ,

u ∈ C∞
c (W ), W � Xθ, C = C(W ).

The global norms we will now use are given by

|||u|||2 = ‖ψu‖2
H(Xθ;T ∗Xθ,1)

+ ‖(1 − ψ)u‖2
L2

sc(Xθ) W �= ∅
|||u|||2tGθ

= |||ψu|||2H(Xθ,ΛtGθ
;1) + ‖(1 − ψ)u‖2

L2
sc(Xθ) W = ∅ ,(4.8)

where ψ ∈ C∞
c (Xθ), ψ ≡ 1 on a neighbourhood of X ∩ Xθ and

(∆θ − z)−1 ∈ Ψ2,0
sc (Xθ) is elliptic (for arg z > −2θ) on the support

of (1 − ψ).
We note that these norms are equivalent to the usual L2

sc norm
(trivially so in the case where W �= ∅) uniformly in h for the first norm
but without uniformity in h for the second one:

C−1
ψ ‖u‖L2

sc(Xθ) ≤ |||u|||2 ≤ Cψ‖u‖L2
sc(Xθ) ,

e−C/h‖u‖L2
sc(Xθ) ≤ |||u|||2tGθ

≤ eC/h‖u‖L2
sc(Xθ) .

5. Proof of the main estimate

To prove Theorems 2 and 4 we will use the method originating from
[23] with improvements from [27] and [28].
Proof of Theorem 2. We will show that for

ω0 ∈ C , Reω0 > 0 , Imω0 = −r0 < 0 ,
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we have

|||(h2∆θ − ω0)u|||2 ≥ (
(r0 + µ)2 −O(h)

) |||u|||2
−O(µ+ ε0)|||Qµ,hu|||2 ,

rank Qµ,θ = Oθ,µ(h−n) , h < h0(θ) , µ < µ0(θ)

(5.1)

where ε0 > 0 is fixed by our construction of the deformation γθ, and
can be made as small as desired.

To obtain this let us introduce ψ1 ∈ C∞
c (X◦

θ ) and ψ2 ∈ C∞(Xθ), such
that ψ2

1 + ψ2
2 ≡ 1. Then

|||(h2∆θ − ω0)u|||2 = |||ψ1(h2∆θ − ω0)u|||2 + |||ψ2(h2∆θ − ω0)u|||2

≥
∑
i=1,2

|||(h2∆θ − ω0)ψiu|||2 −
∑
i=1,2

|||[ψi, h2∆θ]u|||2

− 2
∑
i=1,2

|||ψi(h2∆θ − ω0)u||||||[ψi, h2∆θ]u|||.

By Proposition A.10, [ψi, h2∆θ] ∈ Ψ1,∞,−1
sc,h (Xθ) = hΨ1,∞,0

sc,h (Xθ). Fur-
thermore,

‖u‖2
H1,∞

sc,h (Xθ)
≤ C

(| 〈(h2∆θ − ω0)u, u
〉 | + ‖u‖L2

sc(Xθ)

)
≤ C(|||u||| + |||(h2∆θ − ω0)u|||)2.

Hence

|||[ψi, h2∆θ]u||| = O(h)(|||u||| + |||(h2∆θ − ω0)u|||) , i = 1, 2 ,

and we conclude that

|||(h2∆θ − ω0)u|||2 ≥
∑
i=1,2

|||(h2∆θ − ω0)ψiu|||2

−O(h)
(|||(h2∆θ − ω0)u|||2 + |||u|||2) .

Thus we can consider ψiu, i = 1, 2, separately. For the case i = 2 we
need the following

Lemma 5.1. If supp ψ2 is sufficiently close to ∂Xθ then

|||(h2∆θ − Reω0)ψ2u||| ≥ 1
Cθ,ψ

|||ψ2u||| ,

Im〈∆θψ2u, ψ2u〉 ≥ −Cε|||ψ2u|||2 ,
where ε = max{x(m) : m ∈ supp ψ2}, 0 < ε� θ.
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Proof. To prove the first inequality we extend ∆θ from suppψ2 to an
operator Qθ ∈ Ψ2,0,0

sc,h (Xθ), so that σ2,0,0
sc (Qθ) − w �= 0 for w ∈ R+. This

is possible since it holds for σ2,0,0
sc (∆θ) over the support of ψ2 (which

taken to be sufficiently close to ∂Xθ). Then h2Qθ − Reω0 is uniformly
elliptic in the semiclassical scattering calculus (see Proposition A.11 in
Appendix A), and consequently we have a parametrix:

Tθ(h2Qθ − Reω0) = Id +Rθ ,

Tθ = Oθ(1) : L2
sc(Xθ) → H2

sc,h(Xθ) ,

Rθ = Oθ(h) : L2
sc,h(Xθ) → L2

sc(Xθ) .

Hence for small h, (I +Rθ)−1 = Oθ(1) exists and

|||(h2∆θ − Reω0)ψ2u|||2 =|||(h2Qθ − Reω0)ψ2u|||2
≥ C−1

ψ ‖(h2Qθ − Reω0)ψ2u‖2
L2

sc(Xθ)

≥ C(θ)−1C−1
ψ ‖(I +Rθ)−1

Tθ(h2∆θ − Reω0)ψ2u‖2
L2

sc(Xθ)

= C(θ)−1C−1
ψ ‖ψ2u‖2

L2
sc(Xθ)

≥ C(θ)−1C−2
ψ |||ψ2u|||2 .

To prove the second inequality we can assume that

Xθ ∩ suppψ2 �
(
eiθ[0, ε] × ∂X

)
∩ suppψ2 ,

so that (see Section 3 above and Section 3 in [14]),

∆θ = e2iθ
[
(x2Dx)2 + i(n− 1)x3Dx + x2∆∂X

]
+ x3Diff2

b(X) ,

and consequently

Im〈∆θψ2u, ψ2u〉
≥ sin 2θ

(‖x2Dx(ψ2u)‖L2
sc

+ 〈x2∆∂X(ψ2u), ψ2u〉
)

− Cε
(
‖x2Dx(ψ2u)‖L2

sc
+ 〈x2∆∂X(ψ2u), ψ2u〉 + ‖ψ2u‖2

L2
sc

)
,

from which the inequality follows. q.e.d.

Using the lemma we conclude that

|||(h2∆θ − ω0)ψ2u|||2 = |||(h2∆θ − Reω0)ψ2u|||2 + r20|||ψ2u|||
+ 2r0 Im〈h2∆θψ2u, ψ2u〉

≥
(
C−2
θ,ψ + r20 − Cεh2r0

)
|||ψ2u||| ,

(5.2)
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and hence we need to prove (5.1) with u replaced by ψ1u. There are
many alternative ways to proceed and we choose the C∞ FBI transform
approach as described in [31] (see methods of Sections 3 and 5 of [28],
and references given there for a slightly different approach). We first
demand that ψψ1 = ψ1, as we certainly may by changing ψ in the
definition of ||| • |||. Since that means changing ψ in a way dependent
on θ, we obtain a new θ dependent constant. Then

|||(h2∆θ − ω0)(ψ1u)|||2
= ‖T (

h2∆θ − ω0)ψ1u
) ‖2

L2(T ∗Xθ,dα)

= ‖ |σ2(∆θ) − ω0|T (ψ1u)‖2
L2(T ∗Xθ,dα) + O(h)|||〈hD〉ψ1u|||2

≥ (r0 + µ)2‖T (ψ1u)‖2
L2(T ∗Xθ,dα)

−O(µ+ ε0)‖1{α:|σ2(∆θ)−ω0|≤r0+µ}T (ψ1u)‖2
L2(T ∗Xθ,dα)

−O(h)|||ψ1u|||2 ,

(5.3)

where we used the facts that Imσ2(∆θ) > −ε0 Reσ2(∆θ) with ε0 as
small as desired depending on the construction of γθ (described in (3.1);
see also the proof of Lemma 5.1), hence

|σ2(∆θ) − ω0| ≤ r0 + µ =⇒ (r0 + µ)2 − |σ2(∆θ) − ω0|2 ≤ C(µ+ ε0) .
(5.4)

We have also used the intertwining property of T : when P is a second
order semi-classical differential operator then

‖TP (ψ1u)‖2
L2(T ∗Xθ,dα) = ‖σ2(P )T (ψ1u)‖2

L2(T ∗Xθ,dα)

+ O(h)‖〈hD〉u‖2
L2(Xθ) .

We were able to drop 〈hD〉 in the last inequality in (5.3) because of the
classical ellipticity of ∆θ − ω0. We are using σ2 to denote the (total)
semiclassical symbol of a second order operator on a compact manifold
or over the interior of a noncompact one.

It is a well known fact (recalled in [31]) that there exists an operator
Q̃θ,µ such that

Π1{α:|σ2(∆θ)−ω0|≤r0+µ}Π = Q̃θ,µ + ON (hN 〈αξ〉−N ) ,

rank Q̃θ,µ = O(h−n) ,

where Π is the orthogonal projection on L2(T ∗Xθ) onto the image of
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T ψ̃1, ψ̃1 ∈ C∞
c (Xθ), ψ̃1 ≡ 1 on supp ψ1. This concludes the proof of

(5.1).
For the reader’s convenience we now recall the counting argument

from [23, 27, 28]. Let us take ω0 = 1 − ir0 with r0 small and let
z1, · · · , zN be the eigenvalues of h2∆θ − ω0 in D(ω0, r0 + µ/2). The
characteristic values of h2∆θ − ω0 are defined as the the eigenvalues

µ1, µ2, . . . of the self-adjoint operator [(h2∆θ−ω0)∗(h2∆θ−ω0)]
1
2 (with

the convention that if there are only finitely many eigenvalues we repeat
the bottom of the essential spectrum infinitely many times). A version
of the celebrated Weyl inequality says that

µ1 · · ·µN ≤ |z1 − ω0| · · · |zN − ω0|
(see Appendix A to [23]). Thus we need to estimate the number of µj .
The estimate (5.1) and the max-min principle show that

M(µ) def= #{µj : µj ≤ r0 + µ} ≤ Cθ,µh
−n ,

µ < inf σess([(h2∆θ − ω0)∗(h2∆θ − ω0)]
1
2 ) − r0 ,

(5.5)

where, by Lemma 5.1, inf σess > r0 +1/Cθ — see (5.2). (Equation (5.2)
suffices because the essential spectrum is determined by behaviour near
infinity—see for instance [2].) Equation (5.1) also shows that µ1 > r0−ε
where ε > 0 can be made as small as desired by appropriate construction
of γθ. If N ≤M(µ) then we have a desired local bound on the number
of zj ’s. If N > M(µ) then, by the Weyl inequality,

(r0 − ε)M(µ)(r0 + µ)N−M(µ) ≤ (r0 + µ/2)N

=⇒

N ≤
(

log
(

r0 + µ

r0 + µ/2

))−1

log
(
r0 + µ

r0 − ε

)
M(µ) ≤ C̃µ,θ(h−n) .

From the local bound we obtain the global bound by a covering argu-
ment, and we have proven Theorem 2. q.e.d.

Proof of Theorem 4. The proof is basically a simpler version of
the proof given in Section 8 of [32], with the large part coming again
from Sjöstrand’s work, [23]. The only significant difference compared
to [32] is the same as in the proof of Theorem 2. Therefore we restrict
ourselves to an outline.

The manifold Xθ is a scattering manifold which differs from X only
on a small neighbourhood of the boundary. Hence the same construction
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of the escape function G0 works near the boundary and the same escape
function G1 can be used near K ⊂ T ∗X ∩ T ∗Xθ — see Section 2.
Hence we obtain a global escape function, G̃θ, satisfying (2.9). Let
ψ3 ∈ C∞

c (Xθ) have the following properties

suppψ3 ⊂ {ψ = 1} , Imσ2(∆θ) ≥ C−1
θ Reσ2(∆θ) on supp (1 − ψ3) ,

where ψ in (4.8) is chosen as in the proof of Theorem 2. We then put
Gθ = ψ3G̃θ, and use it in the definition of ||| • |||tGθ

given by (4.6) and
(4.8). The point is that, where the cutoff function produces the failure
of HpGθ > 0, we already have the ellipticity of the imaginary part of
σ2(∆θ).

As in the proof of Theorem 2 we only need to consider ψ1u (by
choosing ψ1 and ψ), as the estimate involving ψ2u is the same as the
proof of Theorem 2.

The proof of the following lemma follows from the proof of Lemma
8.4 of [32]. It depends on the fact that Imσ2(∆θ)�ΛtGθ

≥ 0, so that (5.4)
holds with C(µ + ε0) replaced by Cµ (see Lemma 5.3 below and the
properties of the escape function, G, in (2.9)).

Lemma 5.2. If u ∈ C∞
c (Xθ) and ψ1 is as in the proof of Theo-

rem 2, then with a suitable choice of ψ̃ and ψq’s in Proposition 4.1, and
for t small enough and negative, µ < µ0(θ), h < h0(θ),

|||(h2∆θ − ω0)(ψ1u)|||2H(Xθ;ΛtGθ
,1)

≥ ((r0 + µ)2 −O(h))|||ψ1u|||2H(Xθ;ΛtGθ
,1)

−O(µ)
Q∑
q=1

‖fµq,tTqu‖2
Φq,t

,

(5.6)

where Φq,t is as in Proposition 4.1 and fµq,t is the characteristic function
of

π ◦ κq
(
{α ∈ ΛtGθ

∩ T̃ ∗Y : |σ2(∆θ)�ΛtGθ
(α) − ω0|2 ≤ (r0 + µ)2}

)
,

(5.7)

where T̃ ∗Y is a complex neighbourhood of T ∗Y in T̃ ∗X, σ2(∆θ) is the
holomorphic continuation of the principal symbol of ∆θ and where

κq : T̃ ∗Y � (z,−∂zφ1(w, z)) �−→ (w, ∂wφq(w, z)) ∈ T ∗Cn ,

φq(w, z) = i
2(χq(z) − w)2 ,

and π : T ∗Cn → Cn is the natural projection.



70 j. wunsch & m. zworski

As in Section 3 of [23], for any ε > 0 there exist finite rank operators
Ξµ,εq,t such that for v ∈ H2

Φq,t
(Ω�

q)

‖fµq,t(v − Ξµ,εq,t v)‖Φq,t ≤ Cε‖v‖Φq,t

rank Ξµ,εq,t ≤ min


M : supp fµq,t ⊂

M⋃
j=1

B(wj , εh
1
2 ) , wj ∈ Ω�

q


 .

We now recall another lemma crucial in [8], [23], and [32]:

Lemma 5.3. Let p denote the holomorphic extension of the prin-
cipal symbol of ∆ to T ∗X̃ and pθ its restriction to T ∗Xθ. Then

p(exp tHImσ
Gθ

(m)) = pθ(m) − itHgθ
Gθ(m) + O(t2) + O(tθ) ,

m ∈ T ∗Xθ ,
(5.8)

where gθ = Re pθ and the last error term can be omitted in T ∗Y
⊂ T ∗Xθ ∩ T ∗X. Moreover, in a neighbourhood W of K in S∗

εX we
have

p(exp tHImσ
Gθ

(m)) = p(m) − i(1 + O(t))tHgθ
Gθ(m) , m ∈W .(5.9)

For the case at hand, of manifolds and irregular escape functions, the
proof is given in Section 8 of [32]. Note that we took t to be negative so
that we guarantee a non-negative imaginary part of the symbol. q.e.d.

Using the lemma and the definitions of fq,t’s, Ξq,t’s and of the
Minkowski dimension, m, we conclude that for any number m̃ > m
we have

rank Ξµ,εq,t ≤ Cµ(2n−m̃+1)/2

(
εh

1
2

)−2n

.

When K is of pure dimension then we can take m̃ = m.
Consequently Lemma 5.2 and the argument based on Lemma 5.1

give

|||(h2∆θ − ω0)u|||2tGθ
≥ (

(r0 + µ)2 −O(h) −O(εµ)
) |||u|||2tGθ

− |||Qµ,εθ u|||2tGθ
,

rank Qµ,εθ ≤ Cεµ
(2n−m̃+1)/2h−n .

For Ch < µ < µ0 �t 1 we can now apply the Weyl estimates for
eigenvalues in terms of characteristic values (see Section 7 of [28]) to
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obtain the bound O(µ(2n−m̃+1)/2h−n) on the number of resonances of

h2∆ in |Re z − 1| < µ
1
2 /C, − Im z > µ. When µ = Ch1−α then a

covering argument gives the bound O(h−
1
2 (1−α)h(1−α)(2n+m̃−1)/2h−n) =

O (
h−n+(1−α)(2−m̃/2)) on the number of resonances in

|Re z − 1| ≤ 1
2 , − Im z > Ch1−α , 0 ≤ α ≤ 1 .

Another covering argument (see Section 7 of [28]) completes the proof
of Theorem 4. q.e.d.

Appendix A

The algebra of semiclassical scattering pseudodifferential operators
is defined on any manifold X with boundary. The non-semiclassical ver-
sion of this calculus has been known for a long time. On Rn (identified,
for our purposes, with the interior of its radial compactification) it was
studied by Shubin [22], Parenti [17], and Cordes [1]; it is also the Weyl
calculus for the metric

|dz|2
1 + |z|2 +

|dξ|2
1 + |ξ|2

(see [10]). On manifolds it has been discussed by Schrohe [20], [21],
Melrose [14], and Melrose-Zworski [16]. The approach to the calculus
described below is a hybrid of those of Schrohe [20] and Melrose [14]. A
different perspective on the semiclassical scattering calculus on Rn can
also be found in [8].

The classical versions of all the following concepts can be recovered
by setting h = 1 throughout (and will be written without the subscript h
or the index indicating powers of h). We will indicate when the classical
case departs from the semiclassical; otherwise, all results hold “with h
omitted.”

We begin by defining the semiclassical scattering algebra on the
ball, considered as the radial compactification of Rn. We define this
compactification by identifying Bn with Sn+, the upper hemisphere of
the unit sphere in Rn, and mapping

RC : z �→
(
z

〈z〉 ,
1
〈z〉

)
∈ Sn+

(see Figure 4.) We can use x = (RC−1)∗|z|−1 as a boundary defining
function for Sn+.
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(z, 1)

RC(z)

(0, 1)
Rn

Sn+

Figure 4: The radial compactification of Rn

Definition A.1. A function a ∈ C∞((0, 1)×T ∗Rn) is a semiclassical
scattering symbol of multiorder (m, l, k) (we write a ∈ Sm,l,k(Rn)) if for
all multiindices α, β ∈ Nn, we have∣∣∣∂αz ∂βξ a∣∣∣ ≤ Cα,βh

−k〈z〉−l−α〈ξ〉m−β.

In the interests of brevity, we will restrict ourselves in this paper to
the smaller class of polyhomogeneous symbols, denote Sm,l,kphg ; these are
symbols a ∈ C∞([0, 1) × T ∗Rn) such that

a(h, z, ξ) ∼ h−k
∞∑

i1,i2,i3=0

hi1al+i3,m−i2

where ap,q is independent of h and homogeneous in z and ξ of order −p
and q respectively, and the expansion means

a(h, z, ξ) − hk
N1,N2,N3∑
i1,i2,i3=1

hi1al+i3,m−i2 ∈ SN1−1,N2+1,N3+1(Rn).

This definition is clearer if we radially compactify T ∗Rn in both
base and fibers to obtain Sn+ × Sn+; we can use x = 1/|z|, σ = 1/|ξ| as
boundary defining functions in the respective factors. Then a (polyho-
mogeneous) symbol a is a function of the form

h−kσ−mxla0, where a0 ∈ C∞([0, 1) × Sn+ × Sn+)

Definition A.2. An operator A : S(Rn) → S ′(Rn) is an element
of the space Ψm,l,k

sc,h (Rn) of (polyhomogeneous) semiclassical scattering
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pseudodifferential operators if it is given by

Au(z) =
(

1
2πh

)n ∫
ei(z−w)·ξ/ha(h, z, ξ)u(w)dw dξ.(A.10)

where a ∈ Sm,l,kphg (Rn).

Before transferring our definition to arbitrary manifolds with bound-
ary, we define a residual space of operators:

Definition A.3. Let X be a manifold with boundary. The residual
space Ψ−∞,∞,−∞

sc,h (X) consists of operators

A : C−∞(X) → h∞Ċ∞(X),

i.e., operators with Schwartz kernels in h∞Ċ∞(X×X). (Here the space
Ċ∞(X) consists of smooth functions on X vanishing to infinite order at
∂X, and C−∞(X) is the dual space of distributions; to make the pairing
possible, we assume a scattering metric is fixed on X.)

We can consider the operators on Rn in Definition A.2 as operators
on Ċ∞(Sn+) via radial compactification. More generally, we can, by
localization, extend the definition to any manifold with boundary, by
the following proposition

Proposition A.4. Let A ∈ Ψm,l,k
sc,h (Rn) and let ψ : Rn → Rn be a

diffeomorphism such that RC ◦ψ ◦RC−1 extends from (Sn+)◦ to a diffeo-
morphism Sn+ → Sn+. Then

ψ∗ ◦A ◦ (ψ−1)∗ ∈ Ψm,l,k
sc,h (Rn).

Proof. The following argument is mostly from [20], where the inter-
ested reader can find further detail.

Applying the Kuranishi trick of change of fiber variable, we now find
that under ψ, (A.10) pulls back to the same expression with a replaced
by

a(h, ψ(z), (F t)−1(z, w)ξ)
|det ∂ψi/∂wj |

|detFij | ;

where Fij(z, w) =
∫ 1
0 ∂ψi/∂zj(zt + w(1 − t))dt. F and det ∂ψ/∂w are

clearly smooth on Sn+ × Sn+ by our assumptions on ψ. Furthermore, we
have a polyhomogeneous expansion

ψ ∼ ψ1 + ψ0 + ψ−1 + . . .
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with ψj homogeneous of degree j; hence ψ′′(z) = O(|z|−1), and we
estimate

‖Fij(z, w) − Fij(w)‖ ≤ C|z − w| sup
t∈[0,1]

∥∥ψ′′(zt+ w(1 − t))
∥∥

≤ Cmax{|z|−1, |w|−1}|z − w|.

Hence if χ(z, w) = φ(|z − w|/〈z〉) with φ a smooth cutoff supported
sufficiently near zero, then Fij is invertible on suppχ. Furthermore, one
can show that(

1
2πh

)n ∫
ei(z−w)·ξ/h(1 − χ(z, w))a(h, ψ(z),

(F t)−1(z, w)ξ)
|det ∂ψi/∂wj |

|detFij | dξ ∈ Ψ−∞,∞,−∞
sc,h (X)

so that modulo residual operators, ψ∗ ◦A ◦ (ψ−1)∗ has Schwartz kernel

(
1

2πh

)n ∫
ei(z−w)·ξ/hχ(z, w)a(h, ψ(z), (F t)−1(z, w)ξ)

|det ∂ψi/∂wj |
|detFij | dξ.

Modulo a further residual error, we can rewrite this in the form

(
1

2πh

)n ∫
ei(z−w)·ξ/hã(h, z, ξ) dξ

in the usual manner, setting

b = χ(z, w)a(h, ψ(z), (F t)−1(z, w)ξ)
|det ∂ψi/∂wj |

|detFij |(A.11)

and

ã(h, z, ξ) ∼
∑
α

h|α|i−|α|

α!
∂αξ ∂

α
wb(h, z, w, ξ)�z=w;(A.12)

the appearance of χ in the definition of b is irrelevant to the definition
of ã owing to the restriction to the diagonal; the same is true of the Ja-
cobian factors. The ψi’s and therefore Fij are polyhomogeneous; hence
the symbol ã is also polyhomogeneous. q.e.d.
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Definition A.5. Let X be a manifold with boundary. Then an
operator A : Ċ∞(X) → C−∞(X) is in Ψm,l,k

sc,h (X) if for every φ1, φ2 with
suppφ1 ∩ suppφ2 = ∅, we have

φ1Aφ2 ∈ Ψ−∞,∞,−∞
sc,h (X),

and on the other hand, if φ1 and φ2 have support in an open set U ⊂ X
such that there is a diffeomorphism ψ : U → V ⊂ Sn+,

(RC)∗(ψ−1)∗φ1Aφ2(ψ)∗(RC−1)∗ ∈ Ψm,l,k
sc,h (Rn).

These operators form a calculus:

Proposition A.6. Let A ∈ Ψm,l,k
sc,h (X) and B ∈ Ψm′,l′,k′

sc,h (X) then

AB ∈ Ψm+m′,l+l′,k+k′
sc,h (X) and A∗ ∈ Ψm,l,k

sc,h (X).

(The proof proceeds just as with the ordinary Kohn-Nirenberg cal-
culus; for the explicit symbol computations on Rn, see Section 7 of [3].)

There is a principal symbol map for the semiclassical scattering cal-
culus that contains more information than just the ordinary principal
symbol of the pseudodifferential operator over X◦; the symbol measures
how the operator behaves under conjugation by oscillatory distributions
near ∂X (the “boundary at infinity”) as well as by distributions sup-
ported in X◦ with oscillatory Fourier transform (this is the traditional
notion of principal symbol). We begin by describing where the symbol
lives:

Definition A.7. Let Vb(X) denote the Lie algebra of vector fields
on X, tangent to ∂X. Let Tsc X be the vector bundle on X whose
sections lie in xVb. Let Tsc ∗X be its dual bundle. Let T

sc ∗
X denote the

fiber radial compactification of Tsc ∗X (it is a manifold with corners).
Let Ssc ∗X be the unit cosphere bundle of Tsc ∗X, considered as the fiber
boundary of T

sc ∗
X.

Definition A.8. Let A ∈ Ψm,l,k
sc,h (Sn+) be given by

Au(z) =
(

1
2πh

)n ∫
ei(z−w)·ξ/ha(h, z, ξ)u(w)dwdξ.

(in Euclidean coordinates) with a ∈ Sm,l,kphg (Rn). Let (RC−1 ×RC−1)∗a
denote the pullback of a to h−kσ−mxl times a smooth function on
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[0, 1) × Sn+ × Sn+ Then the symbol of A is defined as

σm,l,ksc,h (A) = (RC−1 ×RC−1)∗a

∈ h−kσ−mxlC∞([0, 1) × Sn+ × Sn+)
h−k+1σ−m+1xl+1C∞([0, 1) × Sn+ × Sn+).

Loosely speaking (i.e., forgetting about overall powers of defining
functions), we can think of the symbol as the restriction of
(RC−1 ×RC−1)∗a to the boundary of [0, 1) × Sn+ × Sn+. The part of
the symbol defined in [0, 1) × (Sn+)◦ × ∂Sn+ is just the ordinary prin-
cipal symbol of A as a pseudodifferential operator on Rn. Note that
[0, 1)× Sn+ × Sn+ is a manifold with corners with three codimension-one
boundary faces (unless n = 1).

The manifold Sn+ × Sn+ should really be thought of as T
sc ∗

Sn+, as is
indicated by

Proposition A.9. Definition A.8 makes invariant sense, i.e.,
σm,l,ksc,h (A) is an invariantly defined element of

h−kσ−mxlC∞([0, 1) × T
sc ∗

Sn+)/h−k+1σ−m+1xl+1C∞([0, 1) × T
sc ∗

Sn+).

Proof. Evaluate (A.11) at z = w and insert it into the α = 0 term
of (A.12); the other terms vanish at each of the three boundary faces
h = 0, x = 0, σ = 0. q.e.d.

As a result of Propositions A.4 and A.9, the definition of σsc,h can
be extended to a map

σm,l,ksc,h : Ψm,l,k
sc,h (X)

→ h−kσ−mxlC∞([0, 1) × T
sc ∗

X)/h−k+1σ−m+1xl+1C∞([0, 1) × T
sc ∗

X),

where X is a manifold with boundary.

Example . Let ∆ be the Laplacian with respect to a scattering
metric g on Sn+. Let ∆ be the corresponding Laplace-Beltrami operator.
Then ∆ ∈ Ψ2,0

sc (X) and h2∆ ∈ Ψ2,0,0
sc,h (X). We have

σ2,0
sc,h(h

2∆) = g(z, ξ) = σ2,0,0
sc (∆),

where we abuse notation, confusing g(z, ξ) with its restriction to the
various boundary faces in question. See [14].
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The semiclassical scattering symbol has all the desirable properties
of a commutative symbol:

Proposition A.10. The symbol map is multiplicative: if
A ∈ Ψm,l,k

sc,h (X) and B ∈ Ψm′,l′,k′
sc,h (X), then

σm+m′,l+l′,k+k′
sc,h (AB) = σm,l,ksc,h (A)σm

′,l′,k′
sc,h (B),

and σm,l,ksc,h (A∗) = σm,l,ksc,h (A).
There is a short exact sequence

0 → Ψm−1,l+1,k−1
sc,h (X) → Ψm,l,k

sc,h (X)

σm,l,k
sc,h−→ h−kσ−mxlC∞([0, 1) × T

sc ∗
X)

h−k+1σ−m+1xl+1C∞([0, 1) × T
sc ∗

X)
→ 0.

That σsc,h is the “correct” notion of symbol is demonstrated by

Proposition A.11. If A ∈ Ψm,l,k
sc,h (X) is elliptic in the sense that

σm,l,ksc,h (A) does not vanish on ∂([0, 1)× T
sc ∗

X) then there exists a parametrix

B ∈ Ψ−m,−l,−k
sc,h (X) such that

AB − Id, BA− Id ∈ Ψ−∞,∞,−∞
sc,h (X).

If σm,l,ksc,h (A) does not vanish on 0× T
sc ∗

X then the same is true for
h sufficiently small.

If σm,l,ksc,h (A) does not vanish on [0, 1) × ∂ T
sc ∗

X then there exists

B ∈ Ψ−m,−l,−k
sc,h (X) such that

AB − Id, BA− Id ∈ Ψ−∞,∞,0
sc,h (X).

The proof is the usual iterative argument.

Remark. In the classical case, the symbol is a function only on
∂( T

sc ∗
X). Nonvanishing of σsc(A) on ∂( T

sc ∗
X) ensures invertibility of

A modulo Ψ−∞,∞
sc (X).

We now introduce a scale of Sobolev spaces adapted to the semiclas-
sical scattering calculus.

Definition A.12. Let L2
sc(X) denote the space of distributions on

X that are square-integrable with respect to a scattering metric, and
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let L2
sc,h(X) = C([0, 1);L2

sc(X)). Set

Hm,l
sc,h(X)

=
{
u ∈ C([0, 1); C−∞(X)) : x−l(Id + h2∆)m/2u ∈ C([0, 1);L2

sc(X))
}

and

Hm,l
sc (X) =

{
u ∈ C−∞(X) : x−l(Id + ∆)m/2u ∈ L2

sc(X)
}

with x a boundary defining function and ∆ the Laplacian with respect
to a scattering metric.

Proposition A.13. Let A ∈ Ψm,l,k
sc,h (X) and p, q ∈ R. Then

A = O(h−k) : Hp,q
sc,h(X) → Hp−m,q+l

sc,h (X).

Let B ∈ Ψm,l
sc (X). Then

B : Hp,q
sc (X) → Hp−m,q+l

sc (X)

is bounded.
The inclusions Hp,q

sc,h(X) ⊂ Hp′,q′
sc,h (X) and Hp,q

sc (X) ⊂ Hp′,q′
sc (X) are

compact if p < p′, q, q′.

The proof is by the usual Hörmander square root method [10] to
show boundedness on L2, together with the basic properties of the cal-
culus. Compact embedding of weighted Sobolev spaces is also standard.

Appendix B (with Edith Mooers)

The complex scaling method can be applied efficiently in many con-
crete situations—see references in [19]. In the simplest case, when there
is a single hyperbolic orbit, numerical computations show the accuracy
of the semiclassical results recalled in the Example in Section 2. We
now briefly describe the numerical method used. We stress that we can-
not compute the resonances explicitly by the special function methods
which are available for the case of the hyperbolic cylinder (see [7] and
references therein)

The Laplacian (2.10) decomposes into a family of one-dimensional
operators depending on the spectral parameter n of the circle. The
resonances for each of these operators are computed by first applying
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Figure 5: The catenoid.

complex scaling (a substitution r = r′eiθ) in one dimension, and then
reducing the problem to finite dimension by truncating a basis of L2(R).
The simplest basis to choose, and one particularly well-adapted to this
problem (because of the presence of a non-degenerate potential maxi-
mum), is that of eigenfunctions of the quantum harmonic oscillator.
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Figure 6: Resonances for the catenoid with a = 1, and the lattice given
by the first terms of the semiclassical approximation (2.11).

This program was implemented in Mathematica, c© using the first 50
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of the built-in Hermite functions. Matrix elements for the complex-
scaled operators were computed numerically, and the eigenvalues of
the resulting nonselfadjoint matrix were then evaluated. Most of these
eigenvalues correspond to the rotated continuous spectrum. Computa-
tions for several angles of complex scaling were compared in order to
sift out eigenvalues which correspond closely to actual resonances.

References

[1] H. O. Cordes, , A global parametrix for pseudodifferential operators over Rn with
applications, Preprint No. 90, SFB 72, Bonn, 1976.

[2] H. L. Cycoon, R. G. Froese, W. Kirsch & B. Simon, Schrödinger operators, Springer,
1987.
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[23] J. Sjöstrand, Geometric bounds on the density of of resonances for semi-classical
problems, Duke Math. J. 60 (1990) 1–57.

[24] , Density of resonances for strictly convex analytic obstacles, Canad. J.
Math. 48 (1996) 397–447.

[25] , A Trace Formula and Review of Some Estimates for Resonances, Mi-
crolocal analysis and spectral theory (Lucca, 1996), 377–437, NATO Adv. Sci.
Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997.

[26] , Resonances for bottles and trace formulae, Preprint, June, 1998.
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