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Duality for Witt–divisorial sheaves

Niklas Lemcke

Abstract. We adapt ideas from Ekedahl [Eke84] to prove a Serre-type duality for Witt-
divisorial sheaves of Q–Cartier divisors on a smooth projective variety over a perfect field of finite
characteristic. We also explain its relationship to Tanaka’s vanishing theorems [Tan20].
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Introduction

Kodaira Vanishing and its generalizations have been crucial in the develop-
ment of the Minimal Model Program (MMP) in characteristic zero. However, as
is well-known, they do not hold in positive characteristic. Tanaka [Tan20] pro-
posed a Kodaira-like vanishing theorem which holds for ample divisors in positive
characteristic.

Theorem 0.1. ([Tan20], cf. Theorem 2.5) Let k be a perfect field of charac-

teristic p>0, and X
φ−−→Spec k be an N–dimensional smooth projective variety. If

A is an ample Q–Cartier divisor on X, then

(i) Hj(X,WOX(−A))=pt–torsion, for some t, for any j<N .

Key words and phrases: de Rham-Witt complex, Serre duality, Kodaira vanishing theorem,
positive characteristic.
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(ii) • Riφ∗ HomWOX
(WOX(−A),WΩN

X)Q=0
• Hi(X,WΩN

X ⊗
WOX

WOX(A))=0 for any i>0, if A is Cartier.

Interestingly, the proof of (i) is easier than the proof of (ii). Ideally we would
want the theorem to hold for nef and big invertible sheaves, but this is not yet
known. The purpose of this paper is to establish a duality property for the Witt–
divisorial sheaf WOX(D) associated to a Q–Cartier divisor D on X.

In [Eke84], Ekedahl introduces a duality functor D, and eventually constructs
an isomorphism ([Eke84, Theorem III: 2.9])

D(RΓ(WΩ˝

X))(−N)[−N ]∼=RΓ(WΩ˝

X),

where (−N) and [−N ] denote shifts in module and complex degree, respectively.
He then shows that

D(RΓ(WΩ˝

X))∼=RHomR(RΓ(WΩ˝

X), ”R),

in D(R), where R is the Raynaud Ring (a non-commutative W -algebra), and ”R is
a certain R–module. Where Ekedahl uses the Raynaud ring R, we use the similar
Cartier-Dieudonné-ring W [F, V ]=:ω.

Theorem 0.2. (Cf. Theorem 3.10) Let X be a smooth projective variety over

a perfect field k of characteristic p>0, and D be a Q–Cartier divisor on X. Then

∏
t∈Z

Rφ∗R lim
n

RHomWnOX
(WnOX(ptD),WnΩN

X)

∼=RHomω

(⊕
t∈Z

Rφ∗WOX(ptD), “ω[−N ]
)
,

for a certain left–ω–module “ω.

This allows us to recover Tanaka’s vanishing theorem, as well as to make the
(possibly) non–vanishing torsion somewhat more explicit.

Acknowledgments. I want to thank the referee for many insightful comments,
in particular suggesting a much simpler proof for the vanishing of the higher derived
limits in Proposition 3.5. Further, I am particularly grateful to Professor Tanaka
Hiromu for agreeing to meet me and answer my questions regarding his work, as
well as my advisor Professor Kaji Hajime for his unwavering support and exacting
attention to detail during our discussions.
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1. Notation

Fix the following notations and conventions:
• A variety over k is a separated integral scheme of finite type over k.
• Throughout this paper we define X

φ−−→S=Spec k, where k is a perfect field
of characteristic p>0, and X is assumed to be a smooth projective variety.

• If C is a complex, C[i] denotes C shifted by i in complex degree.
• If Mn is an inverse system, then limn Mn denotes the inverse limit.
• For a module M , we write MQ :=M ⊗

Z
Q.

2. Preliminaries

This section serves to recall some definitions and known results.

2.1. Tanaka’s vanishing

The original Kodaira Vanishing is closely related to Hodge decomposition.
Hodge decomposition in turn resembles the slope decomposition of crystalline co-
homology in terms of the de Rham-Witt complex. This motivates the attempt at
finding a useful vanishing theorem in the context of de Rham-Witt.

Definition 2.1. (Teichmüller lifts of line bundles, cf. [Tan20]) For a ring A, any
element a∈A can be naturally identified with an element in W (A) by

A−→W (A)

a �−→ a := (a, 0, 0, ...).

This a is called the Teichmüller representative of a. For an invertible sheaf F

on X defined by local transition functions (fij), Tanaka defines the Teichmüller
lift F of an invertible OX–module to be the invertible WOX–module given by
the Teichmüller representatives of the transition functions (fij). The truncated
Teichmüller lift is defined by

F≤n :=WnOX ⊗
WOX

F .

Definition 2.2. (Witt-divisorial sheaves, cf. [Tan20]) Alternatively, the Witt-
divisorial sheaf associated to an R–divisor D is defined by

ΓV (WOX(D)) := {(φ0, φ1, ...)∈W (K(X)); div(φn)+pnD|V ≥ 0} .
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As Tanaka shows, for a Cartier divisor on a reasonably nice scheme, these two
notions are equivalent, since WO(D)|U =fWOX |U for U affine open in X and f a
local equation for D on U (cf. [Tan20, Proposition 3.12]). WnOX(D) is a coherent
WnOX–module (cf. [Tan20, Proposition 3.8]).

The following two propositions due to Tanaka [Tan20] will be used frequently
throughout this paper, often without explicit reference.

Proposition 2.3. (Cf. [Tan20, Proposition 3.15]) Let D be an R–divisor on

X. Then, for any 0≤e, 0<m≤n, there is an isomorphism

RHomWnOX
((F e)∗WmOX(D),WnΩN

X)∼= (F e)∗ HomWmOX
(WmOX(D),WmΩN

X)

in D(WOX−mod).

Proposition 2.4. (Cf. [Tan20, Proposition 4.9 and Lemma 2.10]) Let D be

an R–divisor on X. Let M be a coherent WnOX–module such that the induced

map M(U)→Mξ is injective for any non–empty open subset U⊂X, where Mξ de-

notes the stalk of M at the generic point ξ of X. Then the induced WOX–module

homomorphism

HomWnOX
(WnOX(D),M) θ−−→HomWOX

(WOX(D),M)

is an isomorphism.

WnΩN
X and grnWΩN

X are two such WnOX–modules.

Theorem 2.5. (Tanaka, cf. [Tan20, Theorem 1.1]) Let k be a perfect field of

characteristic p>0, and X be an N–dimensional smooth projective variety over k.

If A is an ample Q-Cartier divisor on X, then there exists s0 such that for all s0<s,

(i) • Hj(X,WnOX(−sA))=0 for any j<N, n∈N,
• Hj(X,WOX(−sA))=0 for any j<N ,

• Hj(X,WOX(−A))=pt–torsion, for some t, for any j<N .

(ii) • Riφ∗ HomWOX
(WOX(−A),WΩN

X)Q=0 for any 0<i,

• Riφ∗(WnOX(sA)⊗WnΩN
X)=0 for any 0<i, n∈N, A Cartier,

• Riφ∗(WOX(sA)⊗WΩN
X)=0 for any 0<i,A Cartier,

• Riφ∗(WOX(A)⊗WΩN
X)=0 for any 0<i,A Cartier.

Remark 2.6. The theorem appears to suggest a Serre-type duality. This duality
would be asymmetric in the sense that torsion from (i) does not appear in (ii). Note
that the proof of (i) is simple relative to that of (ii). So ideally duality would recover
(ii) from (i), potentially facilitating the proof of the theorem for nef and big D.
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3. Duality

3.1. Duality Theorem

Proposition 3.1. Let F be an invertible OX–module. For any n>0,

(3.1) WnΩN
X ⊗

WnOX

F≤n
∼=RHomWnOX

(F∨
≤n,WnΩN

X)

such that, in particular,

(3.2)
Hi(X,WnΩN

X ⊗
WnOX

F≤n)∼= HomWn(HN−i(X,F∨
≤n),Wn) for any i≥ 0, n> 0.

Proof. We have

WnΩN
X ⊗F≤n

∼=HomWnOX
(WnOX ,WnΩN

X ⊗F≤n)
∼=HomWnOX

(F∨
≤n,WnΩN

X),

where the second isomorphism holds because F≤n is locally free, and so −⊗F∨
≤n

is fully faithful. Since Ri Hom(F∨
≤n,WnΩN

X)=0 for any 0<i (by local freeness),
Equation 3.1 holds. To show Equation 3.2, take global sections of the derived
push-forward.

ΓS(Rφ∗(WnΩN
X ⊗

WnOX

F≤n))∼= ΓS(Rφ∗RHomWnOX
(F∨

≤n,WnΩN
X))

∼= ΓS(RHomWnOS
∼=Wn(Rφ∗(F∨

≤n),Wn[−N ]))
∼= HomWn((Rφ∗F

∨
≤n)[N ],Wn),

where Wn is the constant sheaf, the second isomorphism is due to Coherent Duality
and [Eke84, I, Theorem 4.1], and the third isomorphism is due to Wn being an
injective Wn–module. In particular for all i there are isomorphisms

Hi(X,WnΩN
X ⊗

WnOX

F≤n)∼= HomWn(HN−i(X,F∨
≤n),Wn). �

We now attempt passing to the limit. First, recall the following result.

Lemma 3.2. (Chatzistamatiou, Rülling, cf. [CR11, Lemma 1.5.1]) Let (X,OX)
be a ringed space and E=(En) a projective system of OX–modules (indexed by

integers 1≤n). Let B be a basis of the topology of X. We consider the following

two conditions:

(1) For all U∈B, Hi(U,En)=0 for any i, 1≤n.

(2) For all U∈B, the projective system (H0(U,En))n≥1 satisfies the Mittag–

Leffler condition.
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Then

• If E satisfies condition (1), then Ri limn En=0 for any 2≤i.

• If E satisfies conditions (1) and (2), then Ri limn En=0 for any 1≤i, i.e. E

is lim–acyclic.

Lemma 3.3. For F an invertible sheaf of OX–modules,

(3.3) WΩN
X ⊗

WOX

F ∼= lim
n

(WnΩN
X ⊗

WnOX

F≤n)∼=R lim
n

(WnΩN
X ⊗

WnOX

F≤n).

Proof.
WΩN

X ⊗
WOX

F ∼= lim
n

WnΩN
X ⊗

WOX

F

∼= lim
n

(WnΩN
X ⊗

WOX

F )

∼= lim
n

(WnΩN
X ⊗

WnOX

F≤n).

Take the exact sequence (cf. [Ill79]) of Wn+1OX–modules

0−→ grnWΩN
X −→Wn+1ΩN

X −→WnΩN
X −→ 0,

where grnWΩN
X is coherent. Tensoring with F over WOX yields an exact sequence

0−→ grnWΩN
X ⊗

Wn+1OX/p
F≤n+1/p

−→Wn+1ΩN
X ⊗

Wn+1OX

F≤n+1 −→WnΩN
X ⊗

WnOX

F≤n −→ 0.

For any x∈X, let Ux be an affine open neighborhood of x. Then

H1(Ux, grnWΩN
X ⊗

Wn+1OX/p
F≤n+1/p)= 0

by coherence, and therefore
(i) Hi(Ux,WnΩN

X ⊗
WnOX

F≤n)=0 for any i>0, again by coherence,

(ii) H0(Ux,Wn+1ΩN
X ⊗

Wn+1OX

F≤n+1)→H0(Ux,WnΩN
X ⊗

WnOX

F≤n)

is surjective for all n>0.
In this fashion a basis U for the topology of X can be found, such that the above
two properties hold for all U∈U , and so by Lemma 3.2, Equation 3.3 holds. �

The following ‘twisting’ lemma is the reason for the asymmetry between the
vanishing theorems.
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Lemma 3.4. (Twisting) Let D be a Q–Cartier divisor on X such that ptD is

a Z–divisor for some positive integer t. Then

HomWOX,Q
(WOX(D)Q,WΩN

XQ)∼=F∗ HomWOX,Q
(WOX(pD)Q,WΩN

XQ).

Furthermore, if D is Z–Cartier, then

WΩN
X ⊗

WOX

WOX(D)∼= (F )∗(WΩN
X ⊗

WOX

WOX(pD)).

Proof. The proof is due to Tanaka, see for example [Tan20, Theorem 4.2 (4)
and Theorem 4.13]. It is repeated here for the reader’s convenience.

We have an induced isomorphism

(X,WOX,Q)
F
∼−−→ (X,WOX,Q).

In particular, F ∗
¨F∗=F∗¨F

∗=1. We obtain the following chain of isomorphisms:

HomWOX,Q
(WOX(D)Q,WΩN

X,Q)∼=F∗F
∗ HomWOX,Q

(WOX(D)Q,WΩN
X,Q)

∼=F∗ HomF∗WOX,Q
(F ∗WOX(D)Q, F ∗WΩN

X,Q)
∼=F∗ HomWOX,Q

(WOX(pD)Q, F ∗F∗WΩN
X,Q)

∼=F∗ HomWOX,Q
(WOX(pD)Q,WΩN

X,Q).

This proves the first statement.
For the second statement, recall that the Frobenius homomorphism

WΩN
X

F−−→F∗WΩN
X

is an isomorphism of WOX–modules (cf. [Tan20, Theorem 2.9]). Therefore

WΩN
X ⊗

WOX

WOX(D)∼=F∗(WΩN
X) ⊗

WOX

WOX(D)

∼=F∗(WΩN
X ⊗

WOX

F ∗WOX(D))

∼=F∗(WΩN
X ⊗

WOX

WOX(pD)).

where the second isomorphism is the projection formula. �

We can now observe a first, tenuous duality between Theorem 2.5 (i) and (ii).
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Proposition 3.5. Let D be a Q–Cartier divisor on X such that ptD is a

Z–divisor for some positive integer t. Then

Ri lim
n

Rjφ∗ HomWnOX
(WnOX(D),WnΩN

X)= 0 for any 0<i, j ∈N.

Suppose there exists t such that

Hj(X,WnOX(ptD))= 0 for any 0<n, j <N.

Then

Riφ∗ HomWOX
(WOX(D),WΩN

X)Q =0 for any 0<i.

If further D is Cartier, then

Hi(X,WΩN
X ⊗

WOX

WOX(−D))= 0 for any 0<i.

Proof. Set En :=HomWnOS
(Rjφ∗WnOX(D),Wn). Since S=Spec k, we have

Hi(S,En)=0 for any 0<i. By Lemma 3.2 then Ri limn En=0 for any 1<i. WnX

is a proper scheme, so by coherence Hj(X,WnOX(D)) and En are finite, hence Ar-
tinian Wn–modules. But a projective system of Artinian Wn–modules satisfies the
Mittag–Leffler condition, and so the first statement holds by Lemma 3.2, Coherent
Duality and [Eke84, I, Theorem 4.1]. By the Twisting Lemma we have

Rφ∗ HomWOX,Q
(WOX(D)Q,WΩN

XQ)
∼= (F t

S)∗Rφ∗ HomWOX
(WOX(ptD),WΩN

X)Q
∼= (F t

S)∗
(
R lim

n
HomWn(HN (X,WnOX(ptD)),Wn)

)
Q

∼= (F t
S)∗

(
lim
n

HomWn(HN (X,WnOX(ptD)),Wn)
)
Q
.

This proves the second statement.
For the third statement write F :=OX(−D) and consider the derived push–

forward of WΩN
X ⊗F :

Rφ∗(WΩN
X ⊗

WOX

F )∼= (F t
S)∗(Rφ∗(WΩN

X ⊗
WOX

F pt

)) (by Lem. 3.4)

∼= (F t
S)∗Rφ∗(lim

n
(WnΩN

X) ⊗
WOX

F pt

)

∼= (F t
S)∗R lim

n
Rφ∗(WnΩN

X ⊗
WnOX

F pt

≤n) (by Lem. 3.3)

∼= (F t
S)∗R lim

n
Rφ∗(RHomWnOX

(F−pt

≤n ,WnΩN
X)) (by Prop. 3.1)

∼= (F t
S)∗R lim

n
HomWnOS

(RNφ∗F
−pt

≤n ,Wn),
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for large enough t, where the last isomorphism is again due to Ekedal [Eke84,
Theorem 4.1]. The third statement then follows analogously to the proof of the
second statement. �

Remark 3.6. While not the same, the proof of Proposition 3.5 is quite similar
in spirit to those of [Tan20]. One might therefore view it as a mere reformulation
of his theorems from a duality–oriented viewpoint.

We now attempt to establish a more general duality in the spirit of Ekedahl
[Eke84]. A crucial ingredient to Ekedahl’s result was the isomorphism in D(W [d]):

Rn

L
⊗
R
RΓS(WΩ˝

X)∼=RΓS(WnΩ˝

X).

We will employ a similar property to our case.
Define ω to be the Cartier-Dieudonné ring Wσ[F, V ], that is the (non-commu-

tative) W -algebra generated by V and F , subject to the relations

aV =V σ(a), Fa=σ(a)F for any a∈W ;V F =FV = p,

where σ is the Frobenius map on W , induced from that on k. While as a set ω

is equal to (
⊕

i WV i)⊕(
⊕

j WF j), it is a non-commutative ring with an evident
left–W–module structure. It follows from the definition (and the fact that kp=k)
that every element of ω can be uniquely described by a sum∑

0<i

a−iV
i+

∑
0≤j

bjF
j , ai, bj ∈W.

Let
ωn :=ω/V nω,

which is a (W,ω)–bimodule, since V nω is a sub–left–W–module of ω and a right-ω–
ideal generated by V n. We then have, as sets,

ωn =
⊕

0<i<n

a−iV
i⊕

⊕
0≤j

bjF
j , a−i ∈Wn−i, bj ∈Wn.

This yields two sets of left–ω–module homomorphisms: an obvious restriction map
ωn

π−−→ωn−1, as well as an injective map ωn−1
�−−→ωn, both induced by the respective

maps R and �={multiplication by p} on W˝.

Lemma 3.7. Let A be a k-algebra. Then W (A) has a natural structure of

left–ω–modules and there is an isomorphism of left–W–modules

ωn

L
⊗
ω
W (A)∼=Wn(A).
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For a sheaf of left–ω–modules M on X,

ωn

L
⊗
ω
RΓ(M)∼=RΓ(Mn),

where Mn :=M/V nM∼=ωn ⊗
ω
M .

Proof. The left–ω–module structure on W (A) is given by

ω×W (A) W (A)

(ΣiaiV
i+ΣjbjF

j , w) ΣiaiV
i(w)+ΣjbjF

j(w).

·

To compute the derived tensor product

D(ω−lmod)
ωn

L
⊗
ω
·

−−−−→D(ab),

take a projective resolution P ˝ of ωn:

0−→ω
V n·−−→ω−→ωn −→ 0.

This complex of right–ω–modules, when tensored with W (A), yields a complex
P ˝⊗ωW (A):

0−→W (A) V n

−−→W (A)−→ 0.

To see that this represents Wn(A) simply observe that the map induced by ω
V n·−−→ω

via the tensor product is precisely the n-fold Verschiebungs-map on W (A):

W (A) ω⊗
ω
W (A) ω⊗

ω
W (A) W (A)

a 1⊗ a V ⊗ a V ·a=V (a).

∼ V ∼

Analogously, the action F · on W (A) induced via the tensor product is the familiar
Frobenius map F .

Moreover, since ωn is a left–W–module, so is ωn⊗L
ωW (A). Lastly, to see that

the D(ab)–isomorphism is in fact in D(W−lmod), simply observe that the left–W–
module structures on both sides coincide via the isomorphism.

For the second statement, let M∈(X,ω), that is M is a sheaf of left–ω–modules
on X. Let P ˝ be the projective resolution of ωn

0−→ω
V n·−−→ω−→ωn −→ 0.

Then, since P i is flat for all i,

ωn⊗L
ωRΓ(M)∼=P ˝ ⊗

ω
RΓ(M)∼=RΓ(P ˝ ⊗

ω
M)∼=RΓ(ωn⊗L

ωM)∼=RΓ(Mn). �
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Lemma 3.8. The ring ω has a natural Z–grading given by F and V :

ω=
(⊕

0<i

WV i

)
⊕

⎛
⎝⊕

0≤j

WF j

⎞
⎠ .

Let D be a Q–Cartier divisor on X, and write ω(D):=
⊕

t∈Z WOX(ptD). Then

ω(D) is a sheaf of graded left–ω–modules, and

ωn

L
⊗
ω
ω(D)∼=ωn(D) :=

⊕
t∈Z

WnOX(ptD).

By Lemma 3.7 then

ωn

L
⊗
ω
RΓX(ω(D))∼=RΓX(ωn(D)).

Proof. We have the following maps F and V :

WOX(D) F−−→F∗WOX(pD)

F∗WOX(pD) V−−→WOX(D).

That is, by definition, since

V n(WOX(ptD))⊂WOX(pt−n) and Fn(WOX(ptD))⊂WOX(pt+nD),

ω(D) is in fact a sheaf of Z–graded left–ω–modules. The last statement follows
from Lemma 3.7 and the fact that WnOX(D)∼=WOX(D)/V n((Fn)∗WOX(pnD)).
�

Proposition 3.9. As left–W–modules, ω∼=(
⊕

i W )⊕(
⊕

j W ). Similarly, as

left–Wn–modules, ωn
∼=(

⊕
i<n Wn−i)⊕(

⊕
j Wn). It follows that

HomWn(ωn,Wn)∼=
( ⊕

0<i<n

Wn−i

)
⊕

⎛
⎝∏

0≤j

Wn

⎞
⎠

as Wn–modules. With the left–ω–module structure induced by the right–structure

on ωn, there is an isomorphism

HomWn(ωn,Wn)∼=
⊕

0<i<n

F iWn−i⊕
∏
0≤j

F−jWn

of left–ω–modules.
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Proof. Since k=kp, elements a∈ω can be uniquely written as

a=
∑
i

aiV
i+

∑
j

bjF
j , ai, bj ∈W.

The natural identification is clearly additive and bijective:

W

ω (
⊕

i W )⊕(
⊕

j W )

∑
i aiV

i+
∑

j bjF
j

∑
i ai+

∑
j bj .

∼

It is W–linear (on the left), since the left–W–module structure of ω is simply
multiplication on the left. Analogously, ωn

∼=(
⊕

i<n Wn−i)⊕(
⊕

j Wn) as left–W–
modules. Therefore in (W−mod),

(3.4)

HomWn(ωn,Wn)∼=
( ⊕

0<i<n

HomWn(Wn−i,Wn)
)

⊕

⎛
⎝∏

0≤j

HomWn(Wn,Wn)

⎞
⎠

∼=
( ⊕

0<i<n

Wn−i

)
⊕

⎛
⎝∏

0≤j

Wn

⎞
⎠=: “ωn.

The right–ω–module structure on ωn induces a structure of (graded) left–ω–
modules on HomWn(ωn,Wn). For any α∈“ωn,

V ·(ωn
α−−→Wn)=ωn

α¨(·V )−−−−→Wn,

F ·(ωn
α−−→Wn)=ωn

α¨(·F )−−−−→Wn.

Let
α=

⊕
i

αi ∈
⊕

0≤i<n

HomWn(Wn−iV
i,Wn)∼=

⊕
0≤i<n

Wn−i,

β =
∏
j

βj ∈
∏
0≤j

HomWn(WnF
j ,Wn)∼=

∏
0≤j

Wn.
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Under the above isomorphisms, αi∈Wn−i corresponds to the map in Hom(Wn−i,Wn)
which takes 1 to that element in Wn which corresponds to αi under the isomor-
phism Wn−i

pi

−−→im(pi)⊂Wn. That is, it takes 1 to piαi∈Wn. Similarly, βj∈Wn

corresponds to the map in Hom(Wn,Wn) which takes 1 to βj .
Let αk=0 for any k 
=i, βl=0 for any l 
=j. That is α is zero outside of Wn−iV

i⊂
ωn, and β is zero outside of WnF

j⊂ωn. Then

V ·α= p−i+1((V ·αi)(1))= p−i+1((αi ¨ (·V ))(1))
= p−i+1piαi = pαi ∈Wn−i+1 for any 0≤ i,

V ·β =(V ·βj)(1)= (βj ¨ (·V ))(1)
=βj(p)= pβj ∈Wn for any 0<j;

F ·α= p−i−1((F ·αi)(1))= p−i−1((αi ¨ (·F ))(1))
= p−i−1(αi(p))= p−i−1(ppiαi)=R(αi)∈Wn−i−1 for any 0≤ i

F ·β =(F ·βj)(1)= (βj ¨ (·F ))(1)
=βj(1)=βj ∈Wn for any 0<j,

where R is the natural restriction map Wk
R−−→Wk−1. There is thus an isomorphism

of left–ω–modules
“ωn

∼=
⊕

0<i<n

F iWn−i⊕
∏
0≤j

F−jWn

∼=
⊕

0<i<n

F iWn−i⊕
∏
0≤j

V jp−jWn,

where the graded left–ω–module structure on the latter is the natural one, that is
multiplication on the left. �

Note that the injective left–W–linear maps ωn−1
�−−→ωn form a direct system.

HomWn(ωn,Wn[−N ]) then form an inverse system (cf. [Eke84, III.2.3.*]) with
boundary maps π defined by the commutativity of the diagram

(3.5)
HomWn(ωn,Wn[−N ]) HomWn(jn,∗ωn−1,Wn[−N ])

jn,∗ HomWn−1(ωn−1,Wn−1[−N ]).

�∗

π
�∗

Here Wn−1S
jn−−→WnS is the natural immersion. There exist unique such maps π

because, by coherent duality and the fact that Wn−1∼=j!
nWn, �∗ is an isomorphism.

We can now prove the main duality theorem.
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Theorem 3.10. Let X be a smooth projective variety over a perfect field k of

characteristic p>0, and D be a Q–Cartier divisor on X. Write

“ω :=
∏
j∈Z

F jW

Then ∏
t∈Z

Rφ∗R lim
n

RHomWnOX
(WnOX(ptD),WnΩN

X)

∼=RHomω (Rφ∗ω(D), “ω[−N ]) .

Proof.
∏
t∈Z

Rφ∗R lim
n

RHomWnOX
(WnOX(ptD),WnΩN

X)

∼=R lim
n

∏
t∈Z

Rφ∗RHomWnOX
(WnOX(ptD),WnΩN

X) (e.g. [Stacks, 0BKP])

∼=R lim
n

RHomWnOS

(⊕
t∈Z

Rφ∗WnOX(ptD),Wn[−N ]
)

(by [Eke84, Thm. 4.1])

∼= lim
n

RHomWn

(
ωn

L
⊗
ω
RΓX(ω(D)),Wn[−N ]

)
. (by Lem. 3.8 and Prop. 3.5)

By derived tensor–hom adjunction (see for instance [Yek19, Proposition 14.3.18])
we have an isomorphism

(3.6)
R lim

n
RHomWn

(
ωn

L
⊗
ω
RΓX(ω(D)),Wn[−N ]

)
∼=R lim

n
RHomω (RΓX(ω(D)), RHomWn(ωn,Wn[−N ]))

in D(W−bimod).
Let 0 
=w∈Hom(Wn−i,Wn)∼=Wn−i. Since π is induced by the commutative

Diagram 3.5, π(w) is the unique map such that the following diagram commutes:

Wn−i Wn

Wn−i−1 Wn−1

w

�

π(w)

� .

This unique map is R(w) (since for τ∈Wn−i−1, �(R(w)(τ))=w�(τ)∈Wn). The in-
duced maps Wn

π−−→Wn−1 are therefore precisely the term-wise restriction maps R.
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Taking the limit yields an isomorphism of right–Wn–modules

lim
n

HomWn(ωn,Wn)∼= lim
n

⎧⎨
⎩
( ⊕

0<i<n

Wn−i

)
⊕

⎛
⎝∏

0≤j

Wn

⎞
⎠
⎫⎬
⎭

∼=
∏
j∈Z

W,

whose ω–module structure is given by that on the “ωn (cf. Proposition 3.9). That
is as sets

lim
n

HomWn(ωn,Wn)∼=
∏
j∈Z

F−jW =: “ω.

with the obvious structure of graded left–ω–modules. The result then follows from
Equation 3.6. �

3.2. Computation and application to vanishing

In this section we consider divisors D such that

RjΓX(WOX(ptD)) = 0 for any j <N, large enough t,

RNΓX(WOX(ptD)) = torsion–free for large enough t.

In particular this is the case for D such that −D is ample (cf. [Tan20, Theorem
4.14 and 5.3, Step 5]). For such D the following finiteness lemma holds.

Lemma 3.11.

RjΓX(WOX(ptD))∼=RjΓX(WnOX(ptD))

for any j<N, n0≤n, where n0 depends on t, for any t.

Proof. By assumption, for large enough n the short exact sequence of WOX–
modules

0−→Fn
∗ WOX(pt+nD) V n

−−→WOX(ptD) R−−→WnOX(ptD)−→ 0

induces exact sequences of W–modules

0−→ 0 V n

−−→RjΓX(WOX(ptD)) R−−→RjΓX(WnOX(ptD))−→ 0

for all j<N . �

The following corollary shows that the dual’s cohomology’s vanishing depends
on the V –torsion of the cohomology.
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Corollary 3.12. Under the above assumptions,

Riφ∗ HomWOX
(WOX(ptD),WΩN

X))
∼= Ri−2ΓX

(
R1 lim

n
HomWOX

(WOX(ptD),WnΩN
X)

)
for any 0<i, t∈Z.

If ptD is Z–Cartier or i=1, this is equal to zero. Otherwise it is torsion.

Proof. First we will show that

(3.7)

∏
t∈Z

Riφ∗R lim
n

RHomWnOX
(WnOX(ptD),WnΩN

X)

∼=hi

(
lim
n

RHomWn

(
ωn

L
⊗
ω
RΓX(ω(D)),Wn[−N ]

))
=0 for any 0<i.

There is a spectral sequence

Ep,q
n,2 :=ωn⊗Lp

ω RqΓX(ω(D))=⇒ωn⊗Lp+q

ω RΓX(ω(D))=:Ep+q
n .

The sequence degenerates at the second sheet, and so we have an exact sequence

0−→E0,j
n,2 −→Ej

n −→E−1,j+1
n,2 −→ 0.

We now consider the two outer terms E0,j
n,2

∼=ωn ⊗RtΓ(ω(D)) and E−1,j+1
n,2

∼=Rj+1Γ(ω(D))[V n] (where M [V n] denotes the V n–torsion of a left–ω–module M)
separately.

By tensor–hom adjunction we have an isomorphism

lim
n

HomWn

(
ωn ⊗

ω
R−iΓX(ω(D)),Wn[−N ]

)
∼= lim

n
Homω

(
R−iΓX(ω(D)),HomWn(ωn,Wn[−N ])

)
∼= lim

n
Homω

(
RN−iΓX(ω(D)), “ωn)

)
∼=Homω

(
RN−iΓX(ω(D)), “ω)

)
=0 for any 0<i

in D(W−bimod), where the final equality follows from the assumption on torsion.
Consider now the right outer term.

lim
n

HomWn

(
ker

(
RN−i+1ΓX(ω(D)) V n

−−→RN−i+1ΓX(ω(D)
)
,Wn

)
∼=
∏
t

lim
n

HomWn

(
ker

(
RN−i+1ΓX(WOX(pt+nD)) V n

−−→RN−i+1ΓX(WOX(ptD)
)
,Wn

)
.
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RjΓX(WOX(ptD)) is torsion–free for large enough t and any j. So only finitely
many objects of each inverse system are non–zero, wherefore the inverse limit is
also zero.

Since lim Hom(E0,j
n,2,Wn)=0=lim Hom(E−1,j+1

n,2 ,Wn) for any j<N ,

lim
n

HomWn(Ej
n,Wn)= 0 for any j <N.

We have now shown that Equation 3.7 holds. Unfortunately, we do not know
whether

R1 lim
n

HomWnOX
(WnOX(D),WnΩN

X)= 0,

and thus whether

HomWOX
(WOX(D),WΩN

X)∼=R lim
n

RHomWnOX
(WnOX(D),WnΩN

X)

holds for D not Z–Cartier. In order to describe the left hand side using Theo-
rem 3.10, we therefore need to consider another spectral sequence. Write Hn,t :=
HomWOX

(WOX(ptD),WnΩN
X). There is a spectral sequence

(3.8) Ep,q
t,2 :=Rpφ∗R

q lim
n

Hn,t =⇒Rp+qφ∗R lim
n

Hn,t =:Ep+q
t .

Since Ri limHn,t=0 for any 1<i (condition (1) of Lemma 3.2 is satisfied), page
two of the spectral sequence contains only two nonzero rows, q=1 and q=0. Con-
sequently it degenerates at page three, and

FilnEn
t
∼=En,0

t,3
∼=En,0

t,2 /d(En−2,1
t,2 ).

We obtain a long exact sequence

(3.9) ...−→En−2,1
t,2 −→En,0

t,2 −→En
t −→En−1,1

t,2 −→ ....

We have En
t =0 for 0<n. Therefore E1,0

t,2
∼=E−1,1

t,2 =0, and Ei,0
t,2

∼=Ei−2,1
t,2 for 1<i. Due

to the Twisting Lemma 3.4,

(Ei,0
t,2)Q =(Ei,0

t+s,2)Q =0,

for large enough s∈N. �
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