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Pull-back of singular Levi-flat hypersurfaces

Andrés Beltrán, Arturo Fernández-Pérez and Hernán Neciosup

Abstract. We study singular real analytic Levi-flat subsets invariant by singular holo-
morphic foliations in complex projective spaces. We give sufficient conditions for a real analytic
Levi-flat subset to be the pull-back of a semianalytic Levi-flat hypersurface in a complex projective
surface under a rational map or to be the pull-back of a real algebraic curve under a meromorphic
function. In particular, we give an application to the case of a singular real analytic Levi-flat
hypersurface. Our results improve previous ones due to Lebl and Bretas–Fernández-Pérez–Mol.

1. Introduction and statement of the results

Let M be a complex manifold of dimC M=N≥2, a closed subset H⊂M is a
real analytic subvariety if for every p∈H, there are real analytic functions with real
values ϕ1, ..., ϕk defined in a neighborhood U⊂M of p, such that H∩U is equal
to the set where all ϕ1, ..., ϕk vanish. A complex subvariety is precisely the same
notion, considering holomorphic functions instead of real analytic functions. We say
that a real analytic subvariety H is irreducible if whenever we write H=H1∪H2 for
two subvarieties H1 and H2 of M , then either H1=H or H2=H. If H is irreducible,
it has a well-defined dimension dimR H. Let Hreg denote its regular part, i.e., the
subset of points near which H is a real analytic submanifold of dimension equal to
dimR H. A set is semianalytic if it is locally constructed from real analytic sets by
finite union, finite intersection, and complement. For a real analytic subvariety H,
the set Hreg is a semianalytic subset where the closure is with the standard topology.
In general, the inclusion Hreg⊂H is proper, which happens, for instance in the
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Whitney umbrella. We really only study the set Hreg, in this sense, we consider
Sing(H):=Hreg\Hreg as the singular set of H, this is not the usual definition of the
singular set in the literature, see for instance [15].

If H⊂M is a real analytic hypersurface i.e., a real analytic subvariety of real
codimension one, then for each p∈Hreg, there is a unique complex hyperplane
Lp⊂TpHreg. This defines a real analytic distribution p �→Lp of complex hyper-
planes in THreg. When this distribution is integrable in the sense of Frobenius,
we say that H is Levi-flat. Here, Hreg is foliated by codimension one immersed
complex submanifolds. This foliation, denoted by L , is known as Levi foliation.
According to Cartan [4], L can be extended to a non-singular holomorphic foliation
in a neighborhood of Hreg in M , but in general, it is not possible to extend L to a
singular holomorphic foliation in a neighborhood of H. There are examples of sin-
gular Levi-flat hypersurfaces whose Levi foliations extend to singular holomorphic
webs in the ambient space, see for instance [8] and [21]. When there is a singular
holomorphic foliation F in the ambient space M that coincide with the Levi folia-
tion on Hreg, we say either that H is invariant by F or that F is tangent to H.
Cerveau and Lins Neto [6] proved that germs of singular foliations of codimension
one at (CN , 0) tangent to real analytic Levi-flat hypersurfaces have meromorphic
(possibly holomorphic) first integrals. We recall that a non-constant function f is
the first integral for a foliation F if each leaf of F is contained in a level set of f .
In the global context, the same problem has been studied in [1] and [9].

The aim of this paper is to study holomorphic foliations tangent to real analytic
Levi-flat subsets in complex manifolds. An irreducible real analytic subvariety H⊂
M , where M is an N -dimensional complex manifold, N≥2, is a Levi-flat subset
if it has real dimension 2n+1 and its regular part Hreg is foliated by immersed
complex manifolds of complex dimension n. Similarly to the case of hypersurfaces,
this foliation is called Levi foliation of H and will be denoted by L . The number n
is the Levi dimension of H. We use the qualifier “Levi” for the foliation, its leaves,
and its dimension. Since we deal with real analytic Levi-flat subsets in complex
manifolds we shall consider that H is coherent. Coherence implies that H admits
a global complexification [11, p. 40]. Here coherent means that its ideal sheaf
I(H) in AR,M , the sheaf of germs of real analytic functions with real values in M ,
is a coherent sheaf of AR,M -modules. It follows from Oka’s theorem [17, p. 94,
Proposition 5] that H is coherent if the sheaf I(H) is locally finitely generated, the
latter means that for every point p∈H there exists an open neighborhood U⊂M

and a finite number of functions ϕj , real analytic in U and vanishing on H, such
that for any q∈U , the germs of ϕj at q generate the ideal I(Hq), where Hq is the
germ of H at q. We remark that not every real analytic subset is coherent as we
shall see in Section 3 of this paper.
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In [3], singular Levi-flat subsets appear in the result of the lifting of a real an-
alytic Levi-flat hypersurface to the projectivized cotangent bundle of the ambient
space through the Levi foliation and in [20], the authors gave a complete charac-
terization of dicritical singularities of local Levi-flat subsets in terms of their Segre
varieties.

Let Y be a complex projective surface, T⊂Y be a real analytic Levi-flat hyper-
surface, X⊂P

N , N≥3, be a complex projective subvariety of complex dimension
k<N and ρ:X���Y be a dominant rational map. Then it is easy to show that
H=ρ−1(T ) is a real analytic Levi-flat subset in P

N and so H is a Levi-flat subset
defined via pull-back. Therefore, one natural question is:

Given a real analytic Levi-flat subset H⊂P
N . Under what condition, H is given by

the pull-back of a Levi-flat hypersurface in a projective complex surface via a
rational map?

In [14], Lebl gave sufficient conditions for a real analytic Levi-flat hypersurface
in P

N to be a pull-back of a real algebraic curve in C via a meromorphic function.
In [2], Bretas et al. proved an analogous result for real analytic Levi-flat subsets in
P
N . The main hypothesis in these articles is that the Levi foliation has infinitely

many algebraic leaves. In this paper, we give an answer to the question, assuming
that H is invariant by a singular holomorphic foliation on P

N with quasi-invariant
subvarieties (see Section 2). An irreducible complex subvariety S⊂X of complex
dimension n is quasi-invariant by a global n-dimensional foliation F on a complex
projective manifold X if it is not F -invariant, but the restriction to the foliation
F to S is an algebraically integrable foliation of dimension n−1, i.e. every leaf
of F |S is algebraic. The concept of quasi-invariant subvarieties was introduced by
Pereira-Spicer [19] for codimension one holomorphic foliations on complex projective
manifolds to prove a variant of the classical Darboux-Jouanolou Theorem. Here we
shall use this concept for Levi foliations to prove our main result:

Theorem 1.1. Let H⊂P
N , N≥3, be an irreducible real analytic Levi-flat sub-

set of Levi dimension n invariant by an n-dimensional singular holomorphic folia-

tion F on P
N . Suppose that H is coherent and n>N/2. If the Levi foliation has in-

finitely many quasi-invariant subvarieties of complex dimension n, then there exists

a unique projective subvariety X of complex dimension n+1 containing H such that

either there exists a rational map R:X���P1, and real algebraic curve C⊂P
1 such

that Hreg⊂R−1(C) or there exists a dominant rational map ρ:X���Y on a projec-

tive surface Y and a semianalytic Levi-flat subset T⊂Y such that Hreg⊂ρ−1(T ).

We emphasize that the hypothesis n>N/2 implies that H is necessarily a real
analytic subvariety with singularities. In fact, Ni-Wolfson [18, Theorem 2.4] proved
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that no nonsingular real analytic Levi-flat subset of the Levi dimension n exist in
PN , n>N/2.

Applying Theorem 1.1 to n=N−1, we get the following corollary:

Corollary 1.2. Let H⊂P
N , N≥3, be an irreducible coherent real analytic

Levi-flat hypersurface invariant by a codimension one holomorphic foliation F on

P
N . If the Levi foliation has infinitely many quasi-invariant complex hypersurfaces,

then either there exists a rational map R:PN ���P1, and real algebraic curve C⊂P1

such that Hreg⊂R−1(C) or there exists a dominant rational map ρ:PN ���Y on

a projective surface Y and a semianalytic Levi-flat subset T⊂Y such that Hreg⊂
ρ−1(T ).

When H is a real analytic hypersurface, the above corollary gives a nice charac-
terization of coherent real analytic Levi-flat hypersurfaces in PN , N≥3, invariant by
codimension one holomorphic foliations which admit infinitely many quasi-invariant
complex hypersurfaces. Observe that, in order to improve our results, we need to
extend the Levi foliation of a Levi-flat subset to a holomorphic foliation in the
ambient space. Therefore, another interesting question is:

Given a real analytic Levi-flat subset H⊂P
N with Levi foliation L. Under what

condition, L extend to a singular holomorphic foliation on PN?

When H is a local real analytic Levi-flat hypersurface, Lebl solved the above
question in the non-dicritical case in [15].

The paper is organized as follows: in Section 2, we define the concept of quasi-
invariant subvarieties of a foliation with complex leaves and state the main result of
[19], such a result is key to prove Theorem 1.1. Section 3 is devoted to the study of
real analytic Levi-flat subset in complex manifolds, using some results of [3] and [2],
we prove the algebraic extension of the intrinsic complexification of H. In Section 4,
we prove Theorem 1.1 and in Section 5 we prove Corollary 1.2. Finally, in Section 6,
we give two examples. The first is an example of a Levi-flat hypersurface where
Theorem 1.1 applies. In the second example, we construct a Levi-flat hypersurface
in P

3 that is not a pull-back of a Levi-flat hypersurface of P2 under a rational map.
Moreover, this example also is not a pull-back of a real algebraic curve under a
meromorphic function.

2. Foliations with complex leaves and quasi-invariant subvarieties

2.1. Foliations with complex leaves

A foliation with complex leaves of complex dimension n is a smooth foliation
G of dimension 2n whose local models are domains U=W×B of Cn×R

k, W⊂C
n,
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B⊂R
k and whose local transformations are of the form

ϕ(z, t)= (f(z, t), h(t)),(1)

where f is holomorphic with respect to z. A domain U as above is said to be a
distinguished coordinate domain of G and z=(z1, ..., zn), t=(t1, ..., tk) are said to
be distinguished local coordinates. As examples of such foliations we have the Levi
foliations of Levi-flat hypersurfaces of Cn, see for instance [5] and [10].

If we replace Rk by Ck and in (1) we assume t∈Ck and that f, h are holomorphic
with respect to z, t then we get the notion of holomorphic foliation of complex
codimension k.

Now we define foliations with singularities. Let M be a complex manifold.
A singular foliation with complex leaves G of dimension n on M is a foliation with
complex leaves of dimension n on M \E, where E is a real analytic subvariety of M
of real dimension <2n. A point p∈E is called a removable singularity of G of there is
a chart (U,ϕ) around p, compatible with the atlas A of G restricted to M \E, in the
sense that ϕ¨ϕ−1

i and ϕi¨ϕ
−1 have the form (1) for all (Ui, ϕi)∈A with U∩Ui �=∅.

The set of non-removable singularities of G in E is called the singular set of G, and
is denoted by Sing(G).

2.2. Quasi-invariant subvarieties

Let Z be a projective manifold of complex dimension N≥2 and let G be a
foliation with complex leaves of dimension n on Z.

Definition 2.1. We say that G is an algebraically integrable foliation on Z if
every leaf of G is algebraic, i.e. every leaf of G is a projective complex subvariety
in Z.

Motivated by [19], we define the concept of a subvariety quasi-invariant by a
real analytic foliation with complex leaves.

Definition 2.2. An irreducible subvariety S⊂Z of complex dimension n is quasi-
invariant by a foliation G if it is not G -invariant, but the restriction of the foliation
G to S is an algebraically integrable foliation.

We note that the restriction foliation G |S is a codimension one foliation on S

and when G |S is an algebraically integrable foliation, we have that every leaf of G |S
are projective complex hypersurfaces in S. Codimension one holomorphic foliations
on Z which admit infinitely many quasi-invariant hypersurfaces have been studied
in [19] and its main result is the following.
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Theorem 2.3. (Pereira-Spicer [19]) Let F be a codimension one holomorphic

foliation on a projective manifold Z. If F admits infinitely many quasi-invariant hy-

persurfaces then either F is an algebraically integrable foliation, or F is a pull-back

of a foliation of dimension one on a projective surface under a dominant rational

map.

3. Real analytic subsets

3.1. Coherent real analytic subsets.

We present some of the fundamental results concerning coherent real analytic
subsets.

Let H be a real analytic subset in an open set U⊂C
n and let I(H) be its ideal

sheaf, it is the sheaf of germs of real analytic functions with real values vanishing
on H.

Definition 3.1. H is said to be coherent if I(H) is a coherent sheaf of
AR,U -modules, where AR,U is the sheaf of germs of real analytic functions with
real values in U .

Proposition 3.2. ([17, p. 95]) If H is a coherent real analytic subset and the

germ Hp of H at p is irreducible, then for q near p, we have

dimR Hp =dimR Hq.

It is well known that locally, a real analytic subset always admits a complexifi-
cation (see for instance [11, p. 40]) and it is not true for global real analytic subsets.
It is shown in [11, p. 54] that the global complexification of a coherent real analytic
subset in a complex manifold always exists.

Theorem 3.3. ([11, p. 54]) A real analytic subset in a complex manifold is

coherent if and only if it admits a global complexification.

Now we build an irreducible real analytic hypersurface in P
3 which is not

coherent. Let [z0 :z1 :z2 :z3] be the homogeneous coordinates in P
3 and set H⊂P

3

be the complex cone whose equation is

H = {(z3z̄0+z̄3z0)
(
(z1z̄0+z̄1z0)2+(z2z̄0+z̄2z0)2

)
−(z1z̄0+z̄1z0)3 =0}.

The germ Hp of H at p=[1:0:0:0] is irreducible and of real dimension 5 at p.
However, in a neighborhood of [1:0:0:z], z �=0, H reduces to the complex line z1=
z2=0, which is of real dimension 2. By Proposition 3.2, it follows that H is not
coherent.
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3.2. Levi-flat subset in complex manifolds.

We give a brief resume of definitions and some known results about real analytic
Levi-flat subsets in complex manifolds. Let H be an irreducible real analytic Levi-
flat subset of Levi dimension n in an N -dimensional complex manifold M . The
notion of Levi-flat subset germifies and, in general, we do not distinguish a germ
at (CN , 0) from its realization in some neighborhood U of 0∈CN . If p∈Hreg then,
according to [2, Proposition 3.1], there exists a holomorphic coordinate system
z=(z′, z′′)∈Cn+1×C

N−n−1 such that z(p)=0∈CN and the germ of H at p is defined
by

(2) H = {z =(z′, z′′)∈C
n+1×C

N−n−1 : Im(zn+1)= 0, z′′ =0},

where z′=(z1, ..., zn+1) and z′′=(zn+2, ..., zN ) and the Levi foliation is given by

{z =(z′, z′′)∈C
n+1×C

N−n−1 : zn+1 = c, z′′ =0, with c∈R}.

This trivial model is, in fact, a local form for a non-singular real analytic Levi-flat
subset. Note that in the local form (2), {z′′=0} corresponds to the unique local
(n+1)-dimensional complex subvariety of the ambient space containing the germ of
Hreg at p. These local subvarieties glue together forming a complex variety defined
in a whole neighborhood of Hreg. It is analytically extendable to a neighborhood
of Hreg by the following theorem:

Theorem 3.4. (Brunella [3]) Let M be an N -dimensional complex manifold

and H⊂M be a real analytic Levi-flat subset of Levi dimension n. Then, there exists

a neighborhood V ⊂M of Hreg and a unique complex variety X⊂V of dimension

n+1 containing H.

The variety X is the realization in the neighborhood V of a germ of complex
analytic variety around H. We denote it — or its germ — by Hı and call it
intrinsic complexification or ı-complexification of H. It plays a central role in the
theory of real analytic Levi-flat subsets. The notion of intrinsic complexification
also appears in [22] with the name of the Segre envelope. If H is invariant by
a holomorphic foliation on M , the same holds for its ı-complexification, see for
instance [2, Proposition 3.3].

Proposition 3.5. Let H⊂M be a real analytic Levi-flat subset of Levi dimen-

sion n, where M is a complex manifold of dimension N . If H is invariant by an

n-dimensional holomorphic foliation F on M , then its ı-complexification Hı is also

invariant by F .
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As a consequence, if we denote by F ı :=F |Hı (the restriction of F to Hı), we
have F ı has codimension one in Hı. The following proposition shows the impor-
tance of the assumption of the coherence of a Levi-flat subset.

Proposition 3.6. ([2, Proposition 3.6]) Let M be an N -dimensional complex

manifold and H⊂M be an irreducible real analytic Levi-flat subset of Levi dimension

n. Suppose that H is coherent. Then, there exist an open neighborhood V ⊂M of

H and a unique irreducible complex subvariety X of V of complex dimension n+1
containing H.

The variety X is the small variety of complex dimension n+1 that contains H.
Again, let us denote this variety by Hı, the intrinsic complexification of H.

3.3. Levi-flat subsets in complex projective spaces

In this subsection, we state some results of real analytic Levi-flat subset in
P
N . Let σ :CN+1→P

N be the natural projection. Suppose that H is a real-analytic
subvariety of PN . Define the set τ(H) to be the set of points z∈CN+1 such that
σ(z)∈H or z=0. A real analytic subvariety H⊂P

N is said to be algebraic if H=σ(V )
for some real algebraic complex cone V in CN+1. A set V is a complex cone when
p∈V implies λp∈V for all λ∈C.

The following construction offers several examples of Levi-flat subsets in P
N .

Proposition 3.7. [2, Proposition 6.1] Let X⊂P
N be an irreducible

(n+1)-dimensional algebraic variety, R be a rational function in X and C⊂P
1 be a

real algebraic one-dimensional subvariety. Then the set R−1(C) is a real algebraic

Levi-flat subset of Levi dimension n whose ı-complexification is X.

When we add the hypothesis that the Levi-flat subset is invariant by a singular
holomorphic foliation in the ambient space, we can state a reciprocal result.

Proposition 3.8. ([2, Proposition 6.3]) Let F be a singular holomorphic fo-

liation in P
N tangent to a real analytic Levi-flat subset H of Levi dimension n.

Suppose that H is coherent and its ı-complexification extends to an algebraic sub-

variety Hı in P
N . If F ı has a rational first integral R, then there exists a real

algebraic one-dimensional subvariety C⊂P
1 such that Hreg⊂R−1(C).

Now, since H is coherent, the intrinsic complexification Hı is well-defined as a
complex subvariety in a neighborhood of H. Our aim is to extend Hı to an algebraic
subvariety in PN . To get this, we use the following extension theorem.

Theorem 3.9. (Chow [7]) Let Z⊂P
N be a complex algebraic subvariety of

dimension k and V be a connected neighborhood of Z in P
N . Then any complex
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analytic subvariety of dimension higher than N−k in V that intersects Z extends

algebraically to PN .

Under certain hypotheses, we can prove that the ı-complexification Hı can be
extended to P

N .

Proposition 3.10. Let H⊂P
N , N≥3, be an irreducible coherent real analytic

Levi-flat subset of Levi dimension n such that n>N/2. If the Levi foliation L has

a quasi-invariant complex algebraic subvariety of complex dimension n, then Hı

extends algebraically to P
N .

Proof. Denote by L such quasi-invariant algebraic complex subvariety with
dimC L=n−1. Since L algebraic with L⊂Hı and dimC Hı=n+1>N−(n−1), we
can apply Theorem 3.9 to prove that Hı extends algebraically to P

N . �

To end this section, we shall prove the following proposition.

Proposition 3.11. Let H⊂P
N be an irreducible coherent real analytic Levi-

flat subset of Levi dimension n invariant by an n-dimensional singular holomorphic

foliation F in P
N . Suppose that the ı-complexification Hı extends to an algebraic

variety in P
N . If the Levi-foliation L has infinitely many quasi-invariant algebraic

subvarieties of complex dimension n−1. Then, either the foliation F ι=F |Hı has

a rational first integral in Hı, or F ι is a pull-back of a foliation on a projective

surface under a dominant rational map.

Proof. First of all, we need to desingularize the ı-complexification Hı. Accord-
ing to Hironaka desingularization theorem, there exist a complex manifold H̃ı and
a proper bimeromorphic morphism π :H̃ı→Hı such that

1. π :H̃ı\(π−1(Sing(Hı))→Hı\Sing(Hı) is a biholomorphism,
2. π−1(Sing(Hı)) is a simple normal crossing divisor.

Since Hı is compact then H̃ı is too. We lift F ı to an n-dimensional singular holo-
morphic foliation F̃ ı on H̃ı. Since dimC H̃ı=n+1, we have F̃ ı has codimension
one on H̃ı and the tangency condition between F ı and H implies that F ı has
infinitely many quasi-invariant closed subvarieties (these are algebraic and of codi-
mension one in H̃ı). Thus the same holds for F̃ ı. By Theorem 2.3, either F̃ ı has a
rational first integral or there exist a dominant rational map ρ̃:H̃ı���Y , where Y is
a projective complex surface, G is a foliation by curves on Y and F̃ ı=ρ̃∗(G). If F̃ ı

admits a rational first integral in H̃ı, then all leaves of F̃ ı are compact and so their
π-images are compact leaves of F ı in Hı. Applying Gómez-Mont’s theorem [12],
we have that there exists a one-dimensional projective manifold S and a rational
map f :Hı���S whose fibers contain the leaves of F ı. A rational first integral is
obtained by composing f with any non-constant rational map r :S���P1. If F̃ ı is
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a pull-back of a foliation G on a projective complex surface Y under a dominant
rational map ρ̃:H̃ı���Y then F ı is the pull-back of G under ρ:=ρ̃¨π−1 :Hı���Y ,
since π is a birational map. �

4. Proof of Theorem 1.1

With all the above results, we can prove Theorem 1.1.

Theorem 4.1. Let H⊂P
N , N≥3, be an irreducible real analytic Levi-flat sub-

set of Levi dimension n invariant by an n-dimensional singular holomorphic folia-

tion F on P
N . Suppose that H is coherent and n>N/2. If the Levi foliation has in-

finitely many quasi-invariant subvarieties of complex dimension n, then there exists

a unique projective subvariety X of complex dimension n+1 containing H such that

either there exists a rational map R:X���P1, and real algebraic curve C⊂P1 such

that Hreg⊂R−1(C) or there exists a dominant rational map ρ:X���Y on a projec-

tive surface Y and a semianalytic Levi-flat subset T⊂Y such that Hreg⊂ρ−1(T ).

Proof. By Proposition 3.6, there exist an open neighborhood V ⊂PN of H

and a unique irreducible complex subvariety Hı of V of complex dimension n+1
containing H. The Proposition 3.5 implies that Hı is invariant by F and moreover
it extends algebraically to P

N by Proposition 3.10. We denote F ı :=F |Hı the
restrict foliation to Hı. Observe now that F ı is a foliation of codimension one on
Hı which admit infinitely many quasi-invariant subvarieties of complex dimension
n−1. Therefore, either F ι has a rational first integral in Hı, or F ι is a pull-back of a
foliation on a projective surface under a dominant rational map by Proposition 3.11.

If F ı has a first integral R then there exists a real algebraic curve C⊂P
1 such

that Hreg⊂R−1(C) by Proposition 3.8. Now if we assume that F ı is a pull-back
of a foliation G on a projective complex surface Y under a dominant rational map
ρ:Hı���Y . Then we can take X=Hı. Let us prove that there exists a semiana-
lytic Levi-flat subset T⊂Y . Indeed, let z∈Hreg\Ind(ρ) (here Ind(ρ) denotes the
indeterminacy set of ρ). Then there exists a neighborhood U⊂Hı\Ind(ρ) of z and
a non-singular real analytic curve γ :(−ε, ε)→U such that γ(0)=z, {γ}⊂Hreg, and
such that γ is transverse to the Levi foliation L on Hreg. Let Lγ(t) be the leaf of
L through γ(t). Since Lγ(t) is also a leaf of F ı and F ı=ρ∗(G), then ρ(Lγ(t)) is a
leaf of G. Let us denote At=ρ(Lγ(t))⊂Y and define

Tz :=
⋃

t∈(−ε,ε)

At ⊂Vz,

where Vz is a neighborhood of Tz on Y . Note that Tz is a union of complex subvari-
eties parametrized by t such that each At contains leaves of G, thus Tz is a semian-
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alytic Levi-flat subset on Vz. These local constructions are sufficiently canonical to
be patched together when z varies on Hreg: if Tz1⊂Vz1 and Tz2⊂Vz2 are as above,
with Vz1∩Vz2 �=∅, then Tz1∩Vz1∩Vz2 and Tz2∩Vz1∩Vz2 have some common leaves
of G because G is a global foliation defined on Y , so Tz1 and Tz2 can be glued by
identifying these leaves. In this way, we get a semianalytic Levi-flat subset T in Y .

Finally, we assert that Hreg⊂ρ−1(T ). In fact, let w∈Hreg, then there exists a
sequence zk→w, zk∈Hreg, so ρ(zk)∈T which imply that zk∈ρ−1(T ) and w∈ρ−1(T ).
This finishes the proof. �

5. Proof of Corollary 1.2

Corollary 5.1. Let H⊂P
N , N≥3, be an irreducible coherent real analytic

Levi-flat hypersurface invariant by a codimension one holomorphic foliation F on

P
N . If the Levi foliation has infinitely many quasi-invariant complex hypersurfaces,

then either there exists a rational map R:PN ���P1, and real algebraic curve C⊂P
1

such that Hreg⊂R−1(C) or there exists a dominant rational map ρ:PN ���Y on a

projective complex surface Y and a semianalytic Levi-flat subset T⊂Y such that

Hreg⊂ρ−1(T ).

Proof. If H is an irreducible real analytic Levi-flat hypersurface in P
N , N≥3,

then the Levi dimension of H is N−1. Moreover

N−1>N/2 ⇐==⇒ N > 2.

Thus, we can apply Theorem 1.1 to H, so there exist a unique projective subvariety
X of complex dimension N containing H such that either there exists a rational
map R:X���C, and real algebraic curve C⊂C such that Hreg⊂R−1(C) or there
exists a dominant rational map ρ:X���Y on a projective complex surface Y and
a semianalytic Levi-flat subset T⊂Y such that Hreg⊂ρ−1(T ). Since X⊂P

N has
complex dimension N , we must have X=PN and hence we conclude the proof. �

6. Examples

Example 6.1. We give an example of a real analytic Levi-flat hypersurface in
P

3 where Theorem 1.1 applies. Let

H = {[z0 : z1 : z2 : z3]∈P
3 : z0z1z̄2z̄3−z2z3z̄0z̄1 =0},

then H is Levi-flat because it is foliated by the complex hypersurfaces

z0z1 = cz2z3, where c∈R.(3)
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Let F be the codimension one holomorphic foliation on P
3 of degree two defined

by
ω= z1z2z3dz0+z0z2z3dz1−z0z1z3dz2−z0z1z2dz3,

then F has a rational first integral R:P3���P1 given by

R[z0 : z1 : z2 : z3] = [z0z1 : z2z3].

Since the leaves of F |H coincide with the leaves of the Levi foliation (3), H must
be invariant by F . On the other hand, note that H=R−1(C), where

C = {[t :u]∈P
1 : tū−ut̄=0}.

Example 6.2. In the following example, we construct a real analytic Levi-flat
hypersurface H in P

3 that is not a pull-back of a Levi-flat hypersurface of P2 under
a rational map, furthermore, H also is not a pull-back of a real algebraic curve
under a meromorphic function.

Consider z=(z0, z1, z2, z3), z̄=(z̄0, z̄1, z̄2, z̄3) and

F (z, z̄)=det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z0 z1 z2 z3 0 0
0 z0 z1 z2 z3 0
0 0 z0 z1 z2 z3
z̄0 z̄1 z̄2 z̄3 0 0
0 z̄0 z̄1 z̄2 z̄3 0
0 0 z̄0 z̄1 z̄2 z̄3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Define H={[z0 :z1 :z2 :z3]∈P3 :F (z, z̄)=0}, H is a real analytic hypersurface well
defined since F is a bihomogeneous polynomial of bi-degree (3, 3). Moreover, H is
Levi-flat, because it is foliated by the complex hyperplanes

z0+cz1+c2z2+c3z3 =0, where c∈R.(4)

Let W be the codimension one holomorphic 3-web on P
3 given by the implicit

differential equation Ω=0,

Ω = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z0 z1 z2 z3 0 0
0 z0 z1 z2 z3 0
0 0 z0 z1 z2 z3
dz0 dz1 dz2 dz3 0 0
0 dz0 dz1 dz2 dz3 0
0 0 dz0 dz1 dz2 dz3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Since the leaves of W |H and L are the same, we get H is invariant by W .
Now, we prove that H is not a pull-back of a Levi-flat hypersurface of P2. To

prove this fact, we use the following result of [13, Proposition 4.4]:
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Proposition 6.3. Let ω1, ω2 and ω3 be independent germs of integrable

1-forms at (C3, 0) with singular sets of codimension at least two. Suppose that there

exists a non-zero holomorphic 2-form η, locally decomposable outside its singular set,

that is tangent to each ωi, for i=1, 2, 3. Then ω1, ω2 and ω3 define foliations that

are in a pencil. Furthermore, η is integrable, defining the axis foliation of this pencil.

Suppose by contradiction that H is a pull-back of a Levi-flat hypersurface under
a dominant rational map ρ:P3���P2. Then pick a point p∈U0, where U0 is an open
subset in P

3 such that ρ|U0 :U0⊂C
3→C

2 is a holomorphic submersion. We may have
needed to perhaps move to yet another point p′∈U0 such that U0 does not intersect
the discriminant set of the web W . We set p=p′ and works in a neighborhood
of U0. Therefore, the germ of W at p is a decomposable 3-web, defined by the
superposition of three independent foliations F1, F2, and F3. We can assume that
these foliations are defined by independent germs of integrable 1-forms ω1, ω2, and
ω3 respectively. Since H is given by a pull-back, all the leaves of L and, hence the
leaves of W in H∩U0 are tangent to the fibers of ρ|U0 , these fibers define a non-zero
holomorphic 2-form ηρ that is tangent to each ωi, for i=1, 2, 3. Then, according
to Proposition 6.3, ω1, ω2, and ω3 define foliations that are in a pencil, an absurd.
Hence, the assertion is proved.

Now we assert that H is not a pull-back of a real algebraic curve under a
meromorphic function. In fact, H is a Levi-flat hypersurface in P

3 such that there
does not exist a point contained in infinitely many leaves of L , because, the leaves
of L are given by the equation (4) and through at a point only pass three leaves. If
H is defined by a pull-back of a meromorphic function, there has to exist a point p
of indeterminacy since the dimension is at least 2. Then through at p pass infinitely
many leaves of L . Since H does not satisfy this property, we finish the proof of the
assertion.
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