Pull-back of singular Levi-flat hypersurfaces

Andrés Beltrán, Arturo Fernández-Pérez and Hernán Neciosup

Abstract. We study singular real analytic Levi-flat subsets invariant by singular holomorphic foliations in complex projective spaces. We give sufficient conditions for a real analytic Levi-flat subset to be the pull-back of a semianalytic Levi-flat hypersurface in a complex projective surface under a rational map or to be the pull-back of a real algebraic curve under a meromorphic function. In particular, we give an application to the case of a singular real analytic Levi-flat hypersurface. Our results improve previous ones due to Lebl and Bretas-Fernández-Pérez-Mol.

1. Introduction and statement of the results

Let M be a complex manifold of $\dim_{\mathbb{C}} M = N \geq 2$, a closed subset $H \subset M$ is a real analytic subvariety if for every $p \in H$, there are real analytic functions with real values $\varphi_1, ..., \varphi_k$ defined in a neighborhood $U \subset M$ of p, such that $H \cap U$ is equal to the set where all $\varphi_1, ..., \varphi_k$ vanish. A complex subvariety is precisely the same notion, considering holomorphic functions instead of real analytic functions. We say that a real analytic subvariety H is irreducible if whenever we write $H = H_1 \cup H_2$ for two subvarieties H_1 and H_2 of M, then either $H_1 = H$ or $H_2 = H$. If H is irreducible, it has a well-defined dimension $\dim_{\mathbb{R}} H$. Let H_{reg} denote its regular part, i.e., the subset of points near which H is a real analytic submanifold of dimension equal to $\dim_{\mathbb{R}} H$. A set is semianalytic if it is locally constructed from real analytic sets by finite union, finite intersection, and complement. For a real analytic subvariety H, the set $\overline{H_{reg}}$ is a semianalytic subset where the closure is with the standard topology. In general, the inclusion $\overline{H_{reg}} \subset H$ is proper, which happens, for instance in the

This work was supported by the Pontifícia Universidad Católica del Perú project VRI-DGI-2018-0024. The second author is partially supported by CNPq-Brazil Grant Number 302790/2019-5.

Whitney umbrella. We really only study the set $\overline{H_{reg}}$, in this sense, we consider $Sing(H) := \overline{H_{reg}} \setminus H_{reg}$ as the singular set of H, this is not the usual definition of the singular set in the literature, see for instance [15].

If $H \subset M$ is a real analytic hypersurface i.e., a real analytic subvariety of real codimension one, then for each $p \in H_{reg}$, there is a unique complex hyperplane $\mathscr{L}_p \subset T_p H_{reg}$. This defines a real analytic distribution $p \mapsto \mathscr{L}_p$ of complex hyperplanes in TH_{reg} . When this distribution is *integrable* in the sense of Frobenius, we say that H is Levi-flat. Here, H_{reg} is foliated by codimension one immersed complex submanifolds. This foliation, denoted by \mathcal{L} , is known as Levi foliation. According to Cartan [4], \mathcal{L} can be extended to a non-singular holomorphic foliation in a neighborhood of H_{reg} in M, but in general, it is not possible to extend \mathscr{L} to a singular holomorphic foliation in a neighborhood of H. There are examples of singular Levi-flat hypersurfaces whose Levi foliations extend to singular holomorphic webs in the ambient space, see for instance [8] and [21]. When there is a singular holomorphic foliation \mathscr{F} in the ambient space M that coincide with the Levi foliation on H_{reg} , we say either that H is invariant by \mathscr{F} or that \mathscr{F} is tangent to H. Cerveau and Lins Neto [6] proved that germs of singular foliations of codimension one at $(\mathbb{C}^N,0)$ tangent to real analytic Levi-flat hypersurfaces have meromorphic (possibly holomorphic) first integrals. We recall that a non-constant function f is the first integral for a foliation \mathscr{F} if each leaf of \mathscr{F} is contained in a level set of f. In the global context, the same problem has been studied in [1] and [9].

The aim of this paper is to study holomorphic foliations tangent to real analytic Levi-flat subsets in complex manifolds. An irreducible real analytic subvariety $H \subset$ M, where M is an N-dimensional complex manifold, $N \ge 2$, is a Levi-flat subset if it has real dimension 2n+1 and its regular part H_{reg} is foliated by immersed complex manifolds of complex dimension n. Similarly to the case of hypersurfaces, this foliation is called Levi foliation of H and will be denoted by \mathcal{L} . The number n is the Levi dimension of H. We use the qualifier "Levi" for the foliation, its leaves, and its dimension. Since we deal with real analytic Levi-flat subsets in complex manifolds we shall consider that H is coherent. Coherence implies that H admits a global complexification [11, p. 40]. Here coherent means that its ideal sheaf $\mathcal{I}(H)$ in $\mathcal{A}_{\mathbb{R},M}$, the sheaf of germs of real analytic functions with real values in M, is a coherent sheaf of $\mathcal{A}_{\mathbb{R},M}$ -modules. It follows from Oka's theorem [17, p. 94, Proposition 5] that H is coherent if the sheaf $\mathcal{I}(H)$ is locally finitely generated, the latter means that for every point $p \in H$ there exists an open neighborhood $U \subset M$ and a finite number of functions φ_i , real analytic in U and vanishing on H, such that for any $q \in U$, the germs of φ_j at q generate the ideal $\mathcal{I}(H_q)$, where H_q is the germ of H at q. We remark that not every real analytic subset is coherent as we shall see in Section 3 of this paper.

In [3], singular Levi-flat subsets appear in the result of the lifting of a real analytic Levi-flat hypersurface to the projectivized cotangent bundle of the ambient space through the Levi foliation and in [20], the authors gave a complete characterization of dicritical singularities of local Levi-flat subsets in terms of their Segre varieties.

Let Y be a complex projective surface, $T \subset Y$ be a real analytic Levi-flat hypersurface, $X \subset \mathbb{P}^N$, $N \geq 3$, be a complex projective subvariety of complex dimension k < N and $\rho: X \dashrightarrow Y$ be a dominant rational map. Then it is easy to show that $H = \overline{\rho^{-1}(T)}$ is a real analytic Levi-flat subset in \mathbb{P}^N and so H is a Levi-flat subset defined via pull-back. Therefore, one natural question is:

Given a real analytic Levi-flat subset $H \subset \mathbb{P}^N$. Under what condition, H is given by the pull-back of a Levi-flat hypersurface in a projective complex surface via a rational map?

In [14], Lebl gave sufficient conditions for a real analytic Levi-flat hypersurface in \mathbb{P}^N to be a pull-back of a real algebraic curve in \mathbb{C} via a meromorphic function. In [2], Bretas et al. proved an analogous result for real analytic Levi-flat subsets in \mathbb{P}^N . The main hypothesis in these articles is that the Levi foliation has infinitely many algebraic leaves. In this paper, we give an answer to the question, assuming that H is invariant by a singular holomorphic foliation on \mathbb{P}^N with quasi-invariant subvarieties (see Section 2). An irreducible complex subvariety $S \subset X$ of complex dimension n is quasi-invariant by a global n-dimensional foliation \mathscr{F} on a complex projective manifold X if it is not \mathscr{F} -invariant, but the restriction to the foliation \mathscr{F} to S is an algebraically integrable foliation of dimension n-1, i.e. every leaf of $\mathscr{F}|_S$ is algebraic. The concept of quasi-invariant subvarieties was introduced by Pereira-Spicer [19] for codimension one holomorphic foliations on complex projective manifolds to prove a variant of the classical Darboux-Jouanolou Theorem. Here we shall use this concept for Levi foliations to prove our main result:

Theorem 1.1. Let $H \subset \mathbb{P}^N$, $N \geq 3$, be an irreducible real analytic Levi-flat subset of Levi dimension n invariant by an n-dimensional singular holomorphic foliation \mathscr{F} on \mathbb{P}^N . Suppose that H is coherent and n > N/2. If the Levi foliation has infinitely many quasi-invariant subvarieties of complex dimension n, then there exists a unique projective subvariety X of complex dimension n+1 containing H such that either there exists a rational map $R: X \dashrightarrow \mathbb{P}^1$, and real algebraic curve $C \subset \mathbb{P}^1$ such that $\overline{H_{reg}} \subset \overline{R^{-1}(C)}$ or there exists a dominant rational map $\rho: X \dashrightarrow Y$ on a projective surface Y and a semianalytic Levi-flat subset $T \subset Y$ such that $\overline{H_{reg}} \subset \overline{\rho^{-1}(T)}$.

We emphasize that the hypothesis n>N/2 implies that H is necessarily a real analytic subvariety with singularities. In fact, Ni-Wolfson [18, Theorem 2.4] proved

that no nonsingular real analytic Levi-flat subset of the Levi dimension n exist in \mathbb{P}^N , n>N/2.

Applying Theorem 1.1 to n=N-1, we get the following corollary:

Corollary 1.2. Let $H \subset \mathbb{P}^N$, $N \geq 3$, be an irreducible coherent real analytic Levi-flat hypersurface invariant by a codimension one holomorphic foliation \mathscr{F} on \mathbb{P}^N . If the Levi foliation has infinitely many quasi-invariant complex hypersurfaces, then either there exists a rational map $R: \mathbb{P}^N \dashrightarrow \mathbb{P}^1$, and real algebraic curve $C \subset \mathbb{P}^1$ such that $\overline{H_{reg}} \subset \overline{R^{-1}(C)}$ or there exists a dominant rational map $\rho: \mathbb{P}^N \dashrightarrow Y$ on a projective surface Y and a semianalytic Levi-flat subset $T \subset Y$ such that $\overline{H_{reg}} \subset \overline{\rho^{-1}(T)}$.

When H is a real analytic hypersurface, the above corollary gives a nice characterization of coherent real analytic Levi-flat hypersurfaces in \mathbb{P}^N , $N \ge 3$, invariant by codimension one holomorphic foliations which admit infinitely many quasi-invariant complex hypersurfaces. Observe that, in order to improve our results, we need to extend the Levi foliation of a Levi-flat subset to a holomorphic foliation in the ambient space. Therefore, another interesting question is:

Given a real analytic Levi-flat subset $H \subset \mathbb{P}^N$ with Levi foliation \mathcal{L} . Under what condition, \mathcal{L} extend to a singular holomorphic foliation on \mathbb{P}^N ?

When H is a local real analytic Levi-flat hypersurface, Lebl solved the above question in the non-districtal case in [15].

The paper is organized as follows: in Section 2, we define the concept of quasi-invariant subvarieties of a foliation with complex leaves and state the main result of [19], such a result is key to prove Theorem 1.1. Section 3 is devoted to the study of real analytic Levi-flat subset in complex manifolds, using some results of [3] and [2], we prove the algebraic extension of the intrinsic complexification of H. In Section 4, we prove Theorem 1.1 and in Section 5 we prove Corollary 1.2. Finally, in Section 6, we give two examples. The first is an example of a Levi-flat hypersurface where Theorem 1.1 applies. In the second example, we construct a Levi-flat hypersurface in \mathbb{P}^3 that is not a pull-back of a Levi-flat hypersurface of \mathbb{P}^2 under a rational map. Moreover, this example also is not a pull-back of a real algebraic curve under a meromorphic function.

2. Foliations with complex leaves and quasi-invariant subvarieties

2.1. Foliations with complex leaves

A foliation with complex leaves of complex dimension n is a smooth foliation \mathcal{G} of dimension 2n whose local models are domains $U=W\times B$ of $\mathbb{C}^n\times\mathbb{R}^k$, $W\subset\mathbb{C}^n$,

 $B \subset \mathbb{R}^k$ and whose local transformations are of the form

(1)
$$\varphi(z,t) = (f(z,t), h(t)),$$

where f is holomorphic with respect to z. A domain U as above is said to be a distinguished coordinate domain of \mathcal{G} and $z=(z_1,...,z_n)$, $t=(t_1,...,t_k)$ are said to be distinguished local coordinates. As examples of such foliations we have the Levi foliations of Levi-flat hypersurfaces of \mathbb{C}^n , see for instance [5] and [10].

If we replace \mathbb{R}^k by \mathbb{C}^k and in (1) we assume $t \in \mathbb{C}^k$ and that f, h are holomorphic with respect to z, t then we get the notion of holomorphic foliation of complex codimension k.

Now we define foliations with singularities. Let M be a complex manifold. A singular foliation with complex leaves \mathcal{G} of dimension n on M is a foliation with complex leaves of dimension n on $M \setminus E$, where E is a real analytic subvariety of M of real dimension <2n. A point $p \in E$ is called a removable singularity of \mathcal{G} of there is a chart (U, φ) around p, compatible with the atlas \mathcal{A} of \mathcal{G} restricted to $M \setminus E$, in the sense that $\varphi \circ \varphi_i^{-1}$ and $\varphi_i \circ \varphi^{-1}$ have the form (1) for all $(U_i, \varphi_i) \in \mathcal{A}$ with $U \cap U_i \neq \emptyset$. The set of non-removable singularities of \mathcal{G} in E is called the singular set of \mathcal{G} , and is denoted by $\mathsf{Sing}(\mathcal{G})$.

2.2. Quasi-invariant subvarieties

Let Z be a projective manifold of complex dimension $N \ge 2$ and let $\mathscr G$ be a foliation with complex leaves of dimension n on Z.

Definition 2.1. We say that \mathscr{G} is an algebraically integrable foliation on Z if every leaf of \mathscr{G} is algebraic, i.e. every leaf of \mathscr{G} is a projective complex subvariety in Z.

Motivated by [19], we define the concept of a *subvariety quasi-invariant* by a real analytic foliation with complex leaves.

Definition 2.2. An irreducible subvariety $S \subset Z$ of complex dimension n is quasi-invariant by a foliation \mathcal{G} if it is not \mathcal{G} -invariant, but the restriction of the foliation \mathcal{G} to S is an algebraically integrable foliation.

We note that the restriction foliation $\mathscr{G}|_S$ is a codimension one foliation on S and when $\mathscr{G}|_S$ is an algebraically integrable foliation, we have that every leaf of $\mathscr{G}|_S$ are projective complex hypersurfaces in S. Codimension one holomorphic foliations on Z which admit infinitely many quasi-invariant hypersurfaces have been studied in [19] and its main result is the following.

Theorem 2.3. (Pereira-Spicer [19]) Let \mathscr{F} be a codimension one holomorphic foliation on a projective manifold Z. If \mathscr{F} admits infinitely many quasi-invariant hypersurfaces then either \mathscr{F} is an algebraically integrable foliation, or \mathscr{F} is a pull-back of a foliation of dimension one on a projective surface under a dominant rational map.

3. Real analytic subsets

3.1. Coherent real analytic subsets.

We present some of the fundamental results concerning coherent real analytic subsets.

Let H be a real analytic subset in an open set $U \subset \mathbb{C}^n$ and let $\mathcal{I}(H)$ be its ideal sheaf, it is the sheaf of germs of real analytic functions with real values vanishing on H.

Definition 3.1. H is said to be coherent if $\mathcal{I}(H)$ is a coherent sheaf of $\mathcal{A}_{\mathbb{R},U}$ -modules, where $\mathcal{A}_{\mathbb{R},U}$ is the sheaf of germs of real analytic functions with real values in U.

Proposition 3.2. ([17, p. 95]) If H is a coherent real analytic subset and the germ H_p of H at p is irreducible, then for q near p, we have

$$\dim_{\mathbb{R}} H_p = \dim_{\mathbb{R}} H_q.$$

It is well known that locally, a real analytic subset always admits a complexification (see for instance [11, p. 40]) and it is not true for global real analytic subsets. It is shown in [11, p. 54] that the global complexification of a coherent real analytic subset in a complex manifold always exists.

Theorem 3.3. ([11, p. 54]) A real analytic subset in a complex manifold is coherent if and only if it admits a global complexification.

Now we build an irreducible real analytic hypersurface in \mathbb{P}^3 which is not coherent. Let $[z_0:z_1:z_2:z_3]$ be the homogeneous coordinates in \mathbb{P}^3 and set $H\subset\mathbb{P}^3$ be the complex cone whose equation is

$$H = \{(z_3\bar{z}_0 + \bar{z}_3z_0) ((z_1\bar{z}_0 + \bar{z}_1z_0)^2 + (z_2\bar{z}_0 + \bar{z}_2z_0)^2) - (z_1\bar{z}_0 + \bar{z}_1z_0)^3 = 0\}.$$

The germ H_p of H at p=[1:0:0:0] is irreducible and of real dimension 5 at p. However, in a neighborhood of [1:0:0:z], $z\neq 0$, H reduces to the complex line $z_1=z_2=0$, which is of real dimension 2. By Proposition 3.2, it follows that H is not coherent.

3.2. Levi-flat subset in complex manifolds.

We give a brief resume of definitions and some known results about real analytic Levi-flat subsets in complex manifolds. Let H be an irreducible real analytic Levi-flat subset of Levi dimension n in an N-dimensional complex manifold M. The notion of Levi-flat subset germifies and, in general, we do not distinguish a germ at $(\mathbb{C}^N,0)$ from its realization in some neighborhood U of $0\in\mathbb{C}^N$. If $p\in H_{reg}$ then, according to [2, Proposition 3.1], there exists a holomorphic coordinate system $z=(z',z'')\in\mathbb{C}^{n+1}\times\mathbb{C}^{N-n-1}$ such that $z(p)=0\in\mathbb{C}^N$ and the germ of H at p is defined by

(2)
$$H = \{z = (z', z'') \in \mathbb{C}^{n+1} \times \mathbb{C}^{N-n-1} : \operatorname{Im}(z_{n+1}) = 0, z'' = 0\},$$

where $z' = (z_1, ..., z_{n+1})$ and $z'' = (z_{n+2}, ..., z_N)$ and the Levi foliation is given by

$$\{z = (z', z'') \in \mathbb{C}^{n+1} \times \mathbb{C}^{N-n-1} : z_{n+1} = c, z'' = 0, \text{ with } c \in \mathbb{R}\}.$$

This trivial model is, in fact, a local form for a non-singular real analytic Levi-flat subset. Note that in the local form (2), $\{z''=0\}$ corresponds to the unique local (n+1)-dimensional complex subvariety of the ambient space containing the germ of H_{reg} at p. These local subvarieties glue together forming a complex variety defined in a whole neighborhood of H_{reg} . It is analytically extendable to a neighborhood of $\overline{H_{reg}}$ by the following theorem:

Theorem 3.4. (Brunella [3]) Let M be an N-dimensional complex manifold and $H \subset M$ be a real analytic Levi-flat subset of Levi dimension n. Then, there exists a neighborhood $V \subset M$ of $\overline{H_{reg}}$ and a unique complex variety $X \subset V$ of dimension n+1 containing H.

The variety X is the realization in the neighborhood V of a germ of complex analytic variety around H. We denote it — or its germ — by H^i and call it intrinsic complexification or i-complexification of H. It plays a central role in the theory of real analytic Levi-flat subsets. The notion of intrinsic complexification also appears in [22] with the name of the Segre envelope. If H is invariant by a holomorphic foliation on M, the same holds for its i-complexification, see for instance [2, Proposition 3.3].

Proposition 3.5. Let $H \subset M$ be a real analytic Levi-flat subset of Levi dimension n, where M is a complex manifold of dimension N. If H is invariant by an n-dimensional holomorphic foliation \mathcal{F} on M, then its i-complexification H^i is also invariant by \mathcal{F} .

As a consequence, if we denote by $\mathscr{F}^i := \mathscr{F}|_{H^i}$ (the restriction of \mathscr{F} to H^i), we have \mathscr{F}^i has codimension one in H^i . The following proposition shows the importance of the assumption of the *coherence* of a Levi-flat subset.

Proposition 3.6. ([2, Proposition 3.6]) Let M be an N-dimensional complex manifold and $H \subset M$ be an irreducible real analytic Levi-flat subset of Levi dimension n. Suppose that H is coherent. Then, there exist an open neighborhood $V \subset M$ of H and a unique irreducible complex subvariety X of V of complex dimension n+1 containing H.

The variety X is the small variety of complex dimension n+1 that contains H. Again, let us denote this variety by H^i , the intrinsic complexification of H.

3.3. Levi-flat subsets in complex projective spaces

In this subsection, we state some results of real analytic Levi-flat subset in \mathbb{P}^N . Let $\sigma: \mathbb{C}^{N+1} \to \mathbb{P}^N$ be the natural projection. Suppose that H is a real-analytic subvariety of \mathbb{P}^N . Define the set $\tau(H)$ to be the set of points $z \in \mathbb{C}^{N+1}$ such that $\sigma(z) \in H$ or z = 0. A real analytic subvariety $H \subset \mathbb{P}^N$ is said to be algebraic if $H = \sigma(V)$ for some real algebraic complex cone V in \mathbb{C}^{N+1} . A set V is a complex cone when $p \in V$ implies $\lambda p \in V$ for all $\lambda \in \mathbb{C}$.

The following construction offers several examples of Levi-flat subsets in \mathbb{P}^N .

Proposition 3.7. [2, Proposition 6.1] Let $X \subset \mathbb{P}^N$ be an irreducible (n+1)-dimensional algebraic variety, R be a rational function in X and $C \subset \mathbb{P}^1$ be a real algebraic one-dimensional subvariety. Then the set $\overline{R^{-1}(C)}$ is a real algebraic Levi-flat subset of Levi dimension n whose i-complexification is X.

When we add the hypothesis that the Levi-flat subset is invariant by a singular holomorphic foliation in the ambient space, we can state a reciprocal result.

Proposition 3.8. ([2, Proposition 6.3]) Let \mathscr{F} be a singular holomorphic foliation in \mathbb{P}^N tangent to a real analytic Levi-flat subset H of Levi dimension n. Suppose that H is coherent and its i-complexification extends to an algebraic subvariety H^i in \mathbb{P}^N . If \mathscr{F}^i has a rational first integral R, then there exists a real algebraic one-dimensional subvariety $C \subset \mathbb{P}^1$ such that $\overline{H_{reg}} \subset \overline{R^{-1}(C)}$.

Now, since H is coherent, the intrinsic complexification H^i is well-defined as a complex subvariety in a neighborhood of H. Our aim is to extend H^i to an algebraic subvariety in \mathbb{P}^N . To get this, we use the following extension theorem.

Theorem 3.9. (Chow [7]) Let $Z \subset \mathbb{P}^N$ be a complex algebraic subvariety of dimension k and V be a connected neighborhood of Z in \mathbb{P}^N . Then any complex

analytic subvariety of dimension higher than N-k in V that intersects Z extends algebraically to \mathbb{P}^N .

Under certain hypotheses, we can prove that the *i*-complexification H^i can be extended to \mathbb{P}^N .

Proposition 3.10. Let $H \subset \mathbb{P}^N$, $N \geq 3$, be an irreducible coherent real analytic Levi-flat subset of Levi dimension n such that n > N/2. If the Levi foliation \mathcal{L} has a quasi-invariant complex algebraic subvariety of complex dimension n, then H^i extends algebraically to \mathbb{P}^N .

Proof. Denote by L such quasi-invariant algebraic complex subvariety with $\dim_{\mathbb{C}} L = n - 1$. Since L algebraic with $L \subset H^i$ and $\dim_{\mathbb{C}} H^i = n + 1 > N - (n - 1)$, we can apply Theorem 3.9 to prove that H^i extends algebraically to \mathbb{P}^N . \square

To end this section, we shall prove the following proposition.

Proposition 3.11. Let $H \subset \mathbb{P}^N$ be an irreducible coherent real analytic Leviflat subset of Levi dimension n invariant by an n-dimensional singular holomorphic foliation \mathscr{F} in \mathbb{P}^N . Suppose that the i-complexification H^i extends to an algebraic variety in \mathbb{P}^N . If the Levi-foliation \mathcal{L} has infinitely many quasi-invariant algebraic subvarieties of complex dimension n-1. Then, either the foliation $\mathscr{F}^i = \mathscr{F}|_{H^i}$ has a rational first integral in H^i , or \mathscr{F}^i is a pull-back of a foliation on a projective surface under a dominant rational map.

Proof. First of all, we need to desingularize the *i*-complexification H^i . According to Hironaka desingularization theorem, there exist a complex manifold \widetilde{H}^i and a proper bimeromorphic morphism $\pi\colon \widetilde{H}^i \to H^i$ such that

- 1. $\pi: \widetilde{H^i} \setminus (\pi^{-1}(\mathsf{Sing}(H^i)) \to H^i \setminus \mathsf{Sing}(H^i)$ is a biholomorphism,
- 2. $\pi^{-1}(\mathsf{Sing}(H^i))$ is a simple normal crossing divisor.

Since H^i is compact then $\widetilde{H^i}$ is too. We lift \mathscr{F}^i to an n-dimensional singular holomorphic foliation $\widetilde{\mathscr{F}^i}$ on $\widetilde{H^i}$. Since $\dim_{\mathbb{C}} \widetilde{H^i} = n+1$, we have $\widetilde{\mathscr{F}^i}$ has codimension one on H^i and the tangency condition between \mathscr{F}^i and H implies that \mathscr{F}^i has infinitely many quasi-invariant closed subvarieties (these are algebraic and of codimension one in H^i). Thus the same holds for $\widetilde{\mathscr{F}^i}$. By Theorem 2.3, either $\widetilde{\mathscr{F}^i}$ has a rational first integral or there exist a dominant rational map $\widetilde{\rho}: \widetilde{H^i} \dashrightarrow Y$, where Y is a projective complex surface, \mathcal{G} is a foliation by curves on Y and $\widetilde{\mathscr{F}^i} = \widetilde{\rho}^*(\mathcal{G})$. If $\widetilde{\mathscr{F}^i}$ admits a rational first integral in H^i , then all leaves of $\widetilde{\mathscr{F}^i}$ are compact and so their π -images are compact leaves of \mathscr{F}^i in H^i . Applying Gómez-Mont's theorem [12], we have that there exists a one-dimensional projective manifold S and a rational map $f: H^i \dashrightarrow S$ whose fibers contain the leaves of \mathscr{F}^i . A rational first integral is obtained by composing f with any non-constant rational map $f: S \dashrightarrow \mathbb{P}^1$. If $\widetilde{\mathscr{F}^i}$ is

a pull-back of a foliation \mathcal{G} on a projective complex surface Y under a dominant rational map $\tilde{\rho}:\widetilde{H}^i \dashrightarrow Y$ then \mathscr{F}^i is the pull-back of \mathcal{G} under $\rho:=\tilde{\rho}\circ\pi^{-1}:H^i \dashrightarrow Y$, since π is a birational map. \square

4. Proof of Theorem 1.1

With all the above results, we can prove Theorem 1.1.

Theorem 4.1. Let $H \subset \mathbb{P}^N$, $N \geq 3$, be an irreducible real analytic Levi-flat subset of Levi dimension n invariant by an n-dimensional singular holomorphic foliation \mathscr{F} on \mathbb{P}^N . Suppose that H is coherent and n > N/2. If the Levi foliation has infinitely many quasi-invariant subvarieties of complex dimension n, then there exists a unique projective subvariety X of complex dimension n+1 containing H such that either there exists a rational map $R: X \dashrightarrow \mathbb{P}^1$, and real algebraic curve $C \subset \mathbb{P}^1$ such that $\overline{H_{reg}} \subset \overline{R^{-1}(C)}$ or there exists a dominant rational map $\rho: X \dashrightarrow Y$ on a projective surface Y and a semianalytic Levi-flat subset $T \subset Y$ such that $\overline{H_{reg}} \subset \overline{\rho^{-1}(T)}$.

Proof. By Proposition 3.6, there exist an open neighborhood $V \subset \mathbb{P}^N$ of H and a unique irreducible complex subvariety H^i of V of complex dimension n+1 containing H. The Proposition 3.5 implies that H^i is invariant by \mathscr{F} and moreover it extends algebraically to \mathbb{P}^N by Proposition 3.10. We denote $\mathscr{F}^i := \mathscr{F}|_{H^i}$ the restrict foliation to H^i . Observe now that \mathscr{F}^i is a foliation of codimension one on H^i which admit infinitely many quasi-invariant subvarieties of complex dimension n-1. Therefore, either \mathscr{F}^i has a rational first integral in H^i , or \mathscr{F}^i is a pull-back of a foliation on a projective surface under a dominant rational map by Proposition 3.11.

If \mathscr{F}^i has a first integral R then there exists a real algebraic curve $C \subset \mathbb{P}^1$ such that $\overline{H_{reg}} \subset \overline{R^{-1}(C)}$ by Proposition 3.8. Now if we assume that \mathscr{F}^i is a pull-back of a foliation \mathscr{G} on a projective complex surface Y under a dominant rational map $\rho: H^i \dashrightarrow Y$. Then we can take $X = H^i$. Let us prove that there exists a semianalytic Levi-flat subset $T \subset Y$. Indeed, let $z \in H_{reg} \setminus Ind(\rho)$ (here $Ind(\rho)$ denotes the indeterminacy set of ρ). Then there exists a neighborhood $U \subset H^i \setminus Ind(\rho)$ of z and a non-singular real analytic curve $\gamma: (-\varepsilon, \varepsilon) \to U$ such that $\gamma(0) = z$, $\{\gamma\} \subset H_{reg}$, and such that γ is transverse to the Levi foliation $\mathscr L$ on H_{reg} . Let $L_{\gamma(t)}$ be the leaf of $\mathscr L$ through $\gamma(t)$. Since $L_{\gamma(t)}$ is also a leaf of $\mathscr F^i$ and $\mathscr F^i = \rho^*(\mathscr G)$, then $\rho(L_{\gamma(t)})$ is a leaf of $\mathscr G$. Let us denote $A_t = \overline{\rho(L_{\gamma(t)})} \subset Y$ and define

$$T_z := \bigcup_{t \in (-\varepsilon, \varepsilon)} A_t \subset V_z,$$

where V_z is a neighborhood of T_z on Y. Note that T_z is a union of complex subvarieties parametrized by t such that each A_t contains leaves of \mathcal{G} , thus T_z is a semian-

alytic Levi-flat subset on V_z . These local constructions are sufficiently canonical to be patched together when z varies on H_{reg} : if $T_{z_1} \subset V_{z_1}$ and $T_{z_2} \subset V_{z_2}$ are as above, with $V_{z_1} \cap V_{z_2} \neq \emptyset$, then $T_{z_1} \cap V_{z_1} \cap V_{z_2}$ and $T_{z_2} \cap V_{z_1} \cap V_{z_2}$ have some common leaves of \mathcal{G} because \mathcal{G} is a global foliation defined on Y, so T_{z_1} and T_{z_2} can be glued by identifying these leaves. In this way, we get a semianalytic Levi-flat subset T in Y.

Finally, we assert that $\overline{H_{reg}} \subset \overline{\rho^{-1}(T)}$. In fact, let $w \in \overline{H_{reg}}$, then there exists a sequence $z_k \to w$, $z_k \in H_{reg}$, so $\rho(z_k) \in T$ which imply that $z_k \in \rho^{-1}(T)$ and $w \in \overline{\rho^{-1}(T)}$. This finishes the proof. \square

5. Proof of Corollary 1.2

Corollary 5.1. Let $H \subset \mathbb{P}^N$, $N \geq 3$, be an irreducible coherent real analytic Levi-flat hypersurface invariant by a codimension one holomorphic foliation \mathscr{F} on \mathbb{P}^N . If the Levi foliation has infinitely many quasi-invariant complex hypersurfaces, then either there exists a rational map $R: \mathbb{P}^N \dashrightarrow \mathbb{P}^1$, and real algebraic curve $C \subset \mathbb{P}^1$ such that $\overline{H_{reg}} \subset \overline{R^{-1}(C)}$ or there exists a dominant rational map $\rho: \mathbb{P}^N \dashrightarrow Y$ on a projective complex surface Y and a semianalytic Levi-flat subset $T \subset Y$ such that $\overline{H_{reg}} \subset \overline{\rho^{-1}(T)}$.

Proof. If H is an irreducible real analytic Levi-flat hypersurface in \mathbb{P}^N , $N \ge 3$, then the Levi dimension of H is N-1. Moreover

$$N-1 > N/2 \iff N > 2.$$

Thus, we can apply Theorem 1.1 to H, so there exist a unique projective subvariety X of complex dimension N containing H such that either there exists a rational map $R: X \dashrightarrow \mathbb{C}$, and real algebraic curve $C \subset \mathbb{C}$ such that $\overline{H_{reg}} \subset \overline{R^{-1}(C)}$ or there exists a dominant rational map $\rho: X \dashrightarrow Y$ on a projective complex surface Y and a semianalytic Levi-flat subset $T \subset Y$ such that $\overline{H_{reg}} \subset \overline{\rho^{-1}(T)}$. Since $X \subset \mathbb{P}^N$ has complex dimension N, we must have $X = \mathbb{P}^N$ and hence we conclude the proof. \square

6. Examples

Example 6.1. We give an example of a real analytic Levi-flat hypersurface in \mathbb{P}^3 where Theorem 1.1 applies. Let

$$H = \{ [z_0: z_1: z_2: z_3] \in \mathbb{P}^3: z_0 z_1 \bar{z}_2 \bar{z}_3 - z_2 z_3 \bar{z}_0 \bar{z}_1 = 0 \},\$$

then H is Levi-flat because it is foliated by the complex hypersurfaces

(3)
$$z_0 z_1 = c z_2 z_3$$
, where $c \in \mathbb{R}$.

Let ${\mathscr F}$ be the codimension one holomorphic foliation on ${\mathbb P}^3$ of degree two defined by

$$\omega = z_1 z_2 z_3 dz_0 + z_0 z_2 z_3 dz_1 - z_0 z_1 z_3 dz_2 - z_0 z_1 z_2 dz_3,$$

then \mathscr{F} has a rational first integral $R:\mathbb{P}^3 \dashrightarrow \mathbb{P}^1$ given by

$$R[z_0:z_1:z_2:z_3] = [z_0z_1:z_2z_3].$$

Since the leaves of $\mathscr{F}|_H$ coincide with the leaves of the Levi foliation (3), H must be invariant by \mathscr{F} . On the other hand, note that $H = \overline{R^{-1}(C)}$, where

$$C = \{ [t : u] \in \mathbb{P}^1 : t\bar{u} - u\bar{t} = 0 \}.$$

Example 6.2. In the following example, we construct a real analytic Levi-flat hypersurface H in \mathbb{P}^3 that is not a pull-back of a Levi-flat hypersurface of \mathbb{P}^2 under a rational map, furthermore, H also is not a pull-back of a real algebraic curve under a meromorphic function.

Consider $z=(z_0, z_1, z_2, z_3), \bar{z}=(\bar{z}_0, \bar{z}_1, \bar{z}_2, \bar{z}_3)$ and

$$F(z,\bar{z}) = \det \begin{pmatrix} z_0 \ z_1 \ z_2 \ z_3 \ 0 \ 0 \\ 0 \ z_0 \ z_1 \ z_2 \ z_3 \ 0 \\ 0 \ 0 \ z_0 \ z_1 \ z_2 \ z_3 \\ \bar{z}_0 \ \bar{z}_1 \ \bar{z}_2 \ \bar{z}_3 \ 0 \ 0 \\ 0 \ \bar{z}_0 \ \bar{z}_1 \ \bar{z}_2 \ \bar{z}_3 \ 0 \\ 0 \ 0 \ \bar{z}_0 \ \bar{z}_1 \ \bar{z}_2 \ \bar{z}_3 \end{pmatrix}$$

Define $H = \{[z_0:z_1:z_2:z_3] \in \mathbb{P}^3: F(z,\bar{z})=0\}$, H is a real analytic hypersurface well defined since F is a bihomogeneous polynomial of bi-degree (3,3). Moreover, H is Levi-flat, because it is foliated by the complex hyperplanes

(4)
$$z_0 + cz_1 + c^2 z_2 + c^3 z_3 = 0$$
, where $c \in \mathbb{R}$.

Let \mathcal{W} be the codimension one holomorphic 3-web on \mathbb{P}^3 given by the implicit differential equation $\Omega=0$,

$$\Omega = \det \begin{pmatrix} z_0 & z_1 & z_2 & z_3 & 0 & 0 \\ 0 & z_0 & z_1 & z_2 & z_3 & 0 \\ 0 & 0 & z_0 & z_1 & z_2 & z_3 \\ dz_0 & dz_1 & dz_2 & dz_3 & 0 & 0 \\ 0 & dz_0 & dz_1 & dz_2 & dz_3 & 0 \\ 0 & 0 & dz_0 & dz_1 & dz_2 & dz_3 \end{pmatrix}$$

Since the leaves of $\mathcal{W}|_H$ and \mathcal{L} are the same, we get H is invariant by \mathcal{W} .

Now, we prove that H is not a pull-back of a Levi-flat hypersurface of \mathbb{P}^2 . To prove this fact, we use the following result of [13, Proposition 4.4]:

Proposition 6.3. Let ω_1 , ω_2 and ω_3 be independent germs of integrable 1-forms at $(\mathbb{C}^3,0)$ with singular sets of codimension at least two. Suppose that there exists a non-zero holomorphic 2-form η , locally decomposable outside its singular set, that is tangent to each ω_i , for i=1,2,3. Then ω_1 , ω_2 and ω_3 define foliations that are in a pencil. Furthermore, η is integrable, defining the axis foliation of this pencil.

Suppose by contradiction that H is a pull-back of a Levi-flat hypersurface under a dominant rational map $\rho\colon \mathbb{P}^3 \dashrightarrow \mathbb{P}^2$. Then pick a point $p\in U_0$, where U_0 is an open subset in \mathbb{P}^3 such that $\rho|_{U_0}\colon U_0\subset \mathbb{C}^3\to \mathbb{C}^2$ is a holomorphic submersion. We may have needed to perhaps move to yet another point $p'\in U_0$ such that U_0 does not intersect the discriminant set of the web \mathscr{W} . We set p=p' and works in a neighborhood of U_0 . Therefore, the germ of \mathscr{W} at p is a decomposable 3-web, defined by the superposition of three independent foliations \mathscr{F}_1 , \mathscr{F}_2 , and \mathscr{F}_3 . We can assume that these foliations are defined by independent germs of integrable 1-forms ω_1 , ω_2 , and ω_3 respectively. Since H is given by a pull-back, all the leaves of \mathscr{L} and, hence the leaves of \mathscr{W} in $H\cap U_0$ are tangent to the fibers of $\rho|_{U_0}$, these fibers define a non-zero holomorphic 2-form η_ρ that is tangent to each ω_i , for i=1,2,3. Then, according to Proposition 6.3, ω_1 , ω_2 , and ω_3 define foliations that are in a pencil, an absurd. Hence, the assertion is proved.

Now we assert that H is not a pull-back of a real algebraic curve under a meromorphic function. In fact, H is a Levi-flat hypersurface in \mathbb{P}^3 such that there does not exist a point contained in infinitely many leaves of \mathcal{L} , because, the leaves of \mathcal{L} are given by the equation (4) and through at a point only pass three leaves. If H is defined by a pull-back of a meromorphic function, there has to exist a point p of indeterminacy since the dimension is at least 2. Then through at p pass infinitely many leaves of \mathcal{L} . Since H does not satisfy this property, we finish the proof of the assertion.

Acknowledgments. The authors wish to express gratitude to Maria Aparecida Soares Ruas (ICMC – USP, São Carlos) and Judith Brinkschulte (Universität Leipzig) for many valuable conversations and suggestions.

References

- Beltrán, A., Fernández-Pérez, A. and Neciosup, H., Existence of dicritical singularities of Levi-flat hypersurfaces and holomorphic foliations, Geom. Dedic. (2017). doi:10.1007/s10711-017-0303-4
- Bretas, J., Fernández-Pérez, A. and Mol, R., Holomorphic foliations tangent to Levi-flat subsets, J. Geom. Anal. 29 (2019), 1407. doi:10.1007/s12220-018-0043-1

- 3. Brunella, M., Singular Levi-flat hypersurfaces and codimension one foliations, *Ann. Sc. Norm. Super. Pisa, Cl. Sci.* (5) **VI** (2007), 661–672.
- CARTAN, E., Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, Ann. Mat. Pura Appl. 11 (1933), 17–90.
- CERVEAU, D. and SAD, P., Fonctions et feuilletages Levi-flat. ètude locale, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 3 (2004), 427–445.
- CERVEAU, D. and LINS NETO, A., Local Levi-flat hypersurfaces invariants by a codimension one holomorphic foliation, Am. J. Math. 133 (2011), 677–716. doi:10.1353/ajm.2011.0018
- Chow, W. L., On meromorphic maps of algebraic varieties, Ann. Math. 2 (1969), 391–403.
- FERNÁNDEZ-PÉREZ, A., On Levi-flat hypersurfaces with generic real singular set, J. Geom. Anal. 23 (2013), 2020. doi:10.1007/s12220-012-9317-1
- 9. Fernández-Pérez, A., Levi-flat hypersurfaces tangent to projective foliations, J. Geom. Anal. 24 (2014), 1959. doi:10.1007/s12220-013-9404-y
- FERNÁNDEZ-PÉREZ, A., MOL, R. and ROSAS, R., On singular real analytic Levi-flat foliations, Asian J. Math. (2020). doi:10.4310/AJM.2020.v24.n6.a4
- GUARALDO, F., MACRÌ, P. and TANCREDI, A., Topics on real analytic spaces, Springer, Berlin, 2013.
- GÓMEZ-MONT, X., Integrals for holomorphic foliations with singularities having all leaves compact, Ann. Inst. Fourier 39 (1989), 451–458.
- Junca, D. and Mol, R., Holomorphic vector fields tangent to foliations in dimension three, An. Acad. Brasil. Ciênc. 93 (2021). doi:10.1590/0001-3765202020181390
- LEBL, J., Algebraic Levi-flat hypervarieties in complex projective space, *J. Geom. Anal.* 22 (2012), 410. doi:10.1007/s12220-010-9201-9
- 15. Lebl., J., Singular set of a Levi-flat hypersurface is Levi-flat, Math. Ann. 355 (2013), $1177.\ doi:10.1007/s00208-012-0821-1$
- Leble, J., Singular Levi-flat hypersurfaces in complex projective space induced by curves in the Grassmannian, Int. J. Math. 26, 1550036 (2015), 17 pp.
- 17. NARASIMHAN, R., Introduction to the theory of analytic spaces, Lectures Notes in Mathematics, Springer, Berlin Heidelberg, 1966, doi:10.1007/BFb0077071
- NI, L. and WOLFSON, J., The Lefschetz theorem for CR submanifolds and the nonexistence of real analytic Levi flat submanifolds, Commun. Anal. Geom. 11 (2003), 553–564.
- 19. Pereira, J. V. and Spicer, C., Hypersurfaces quasi-invariant by codimension one foliations, *Math. Ann.* (2019). doi:10.1007/s00208-019-01833-4
- 20. PINCHUK, S., SHAFIKOV, R. and SUKHOV, A., On dicritical singularities of Levi-flat sets, *Ark. Mat.* **56** (2018), 395–408. doi:10.4310/ARKIV.2018.v56.n2.a12
- SHAFIKOV, R. and SUKHOV, A., Germs of singular Levi-flat hypersurfaces and holomorphic foliations, Comment. Math. Helv. 90 (2015), 479–502.
- Sukhov, A., Levi-flat world: a survey of local theory, Ufimsk. Mat. Zh. 9 (2017), 172–185.

Andrés Beltrán Dpto. Ciencias – Sección Matemáticas Pontifícia Universidad Católica del Perú Av. Universitaria 1801, San Miguel Lima PE-32 Peru abeltra@pucp.pe

Arturo Fernández-Pérez
Departamento de Matemática - ICEX
Universidade Federal de Minas Gerais,
UFMG
Av. Antônio Carlos 6627
Belo Horizonte-MG BR-31270-901
Brasil
fernandez@ufmg.br

Received June 16, 2020

Hernán Neciosup Dpto. Ciencias – Sección Matemáticas Pontifícia Universidad Católica del Perú Av. Universitaria 1801, San Miguel Lima PE-32 Peru hneciosup@pucp.pe