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Exponential mixing property for
automorphisms of compact Kähler manifolds

Hao Wu

Abstract. Let f be a holomorphic automorphism of a compact Kähler manifold. Assume
that f admits a unique maximal dynamic degree dp with only one eigenvalue of maximal modulus.
Let μ be its equilibrium measure. In this paper, we prove that μ is exponentially mixing for all
d.s.h. test functions.

1. Introduction and main results

Let (X,ω) be a compact Kähler manifold of dimension k and let f be a holo-
morphic automorphism of X. Denote by f∗ the pull-back operator acting on the
Hodge cohomology groups H∗,∗(X,C). Recall that the dynamic degree of order
q of f is the spectral radius of f∗ on Hq,q(X,C), and denoted by dq. We have
d0=dk=1. Khovanskii-Teissier-Gromov [11] proved that the function q �→log dq is
concave. Thus there are integers 0≤p≤p′≤k such that

1 = d0 < ...< dp = ...= dp′ > ...> dk =1.

When p=p′ and in addition, when f∗ acting on Hp,p(X,C), admits only one
eigenvalue of maximal modulus (necessary equal to dp), there is a unique invariant
probability measure μ:=T+∧T−, where T+ is the Green (p, p)-current of f and T−
is the Green (k−p, k−p)-current of f−1. They satisfy f∗(T+)=dpT

+ and f∗(T−)=
dk−pT−. Moreover, for any positive closed (p, p)-current (resp. (k−p, k−p)-current)
S of mass 1, we have d−n

p (fn)∗(S) (resp. d−n
k−p(fn)∗(S)) converge to T+ (resp. T−).

And T+ (resp. T−) is the unique positive closed current in the class {T+} (resp.
{T−}). The measure μ is called the equilibrium measure of f . For the constructions
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of μ, T+, T−, the readers may refer to [10]. And see e.g. [13] and [14] for interesting
examples.

Recall that a function is quasi-plurisubharmonic (quasi-p.s.h. for short) on X

if locally it is the difference of a plurisubharmonic (p.s.h. for short) function and a
smooth one. The following theorem is our first main result.

Theorem 1.1. Let f be a holomorphic automorphism on a compact Kähler

manifold X of dimension k and let μ be its equilibrium measure. Let dq be the

dynamic degree of order q, 0≤q≤k. Assume that there is a integer p such that

dp is strictly large than other dynamic degrees and dp admits only one eigenvalue

of maximal modulus dp. Then μ is exponentially mixing for bounded quasi-p.s.h.

observables. More precisely, if δ is a constant such that max{dp−1, dp+1}<δ<dp
and all the eigenvalues of f∗, acting on Hp,p(X,C), except dp, are strictly smaller

than δ. Then there exists a constant c>0, such that∣∣∣ ∫
(ϕ ¨ fn)ψ dμ−

( ∫
ϕdμ

)(∫
ψ dμ

)∣∣∣≤ c(dp/δ)−n/2‖ϕ‖L∞‖ψ‖L∞

for all n≥0 and all bounded quasi-p.s.h. functions ϕ and ψ satisfy ddcϕ≥−ω, ddcψ≥
−ω.

The conditions ddcϕ≥−ω, ddcψ≥−ω in Theorem 1.1 relate to the ∗-norm de-
fined in Section 2. Another version of Theorem 1.1 has been proved in [9] for ϕ,ψ∈
C 2 and it can be extended to C α case, 0<α≤2, using interpolation theory between
Banach spaces. In this case, one considers the new system (z, w) �→

(
f−1(z), f(w)

)
on X×X and the test function ϕ(z)ψ(w), which plays a linear “role” in the new
system. Since ϕ(z)ψ(w) is of class C 2 and in particular, it is Hölder continuous,
some estimates of super-potentials on the currents with Hölder continuous super-
potentials imply the desired result.

However, in the study of complex dynamics, sometimes we need to investigate
the behaviors of the functions with some singularities under the action of f . For
example, the class of quasi-p.s.h. functions or d.s.h. functions (see the definition
below). When ϕ and ψ are not of class of C 2, then idea in [9] can not be directly
applied. In this case, firstly, the super-potentials may not be well defined on the
space of non-smooth currents. Secondly, when ϕ and ψ are not in C 2, the func-
tion ϕ(z)ψ(w) will not be Hölder continuous any more. In the proof, we do some
regularization of quasi-p.s.h. functions. After that we combine the idea in [9] with
some techniques in [15] to prove the main theorem. Similarly estimates of super-
potentials on the currents with Hölder continuous super-potentials also are obtained
at the end of Section 2.

Recall that a function u on X with values in R∪{±∞} is said to be d.s.h. if
outside a pluripolar set it is equal to a difference of two quasi-p.s.h. functions. Two
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d.s.h. functions are identified when they are equal out of a pluripolar set. Denote
the set of d.s.h. functions by DSH(X). Clearly it is a vector space and equips with
a norm

‖u‖DSH :=
∣∣∣ ∫

X

uωk
∣∣∣+min ‖T±‖,

where the minimum is taken on all positive closed (1, 1)-currents T± such that
ddcu=T+−T−.

A positive measure ν on X is said to be moderate if for any bounded family F

of d.s.h. functions on X, there are constants α>0 and c>0 such that

ν{z ∈X : |ψ(z)|>M}≤ ce−αM

for M≥0 and ψ∈F (see [5], [6] and [8]). The papers [5] and [10] show that if f is
a holomorphic automorphism of a compact Kähler surface or more generally, on a
compact Kähler manifold, then the equilibrium measure μ of f is moderate. Using
the moderate property of μ and following the same approach as in the proof of
[15, Theorem 1.3], we get the following theorem, which removes the boundedness
conditions of ϕ and ψ.

Theorem 1.2. Let f, dp, μ be as in Theorem 1.1. Then the equilibrium mea-

sure μ is exponentially mixing for all d.s.h observables. More precisely, if δ is a

constant such that max{dp−1, dp+1}<δ<dp and all the eigenvalues of f∗, acting on

Hp,p(X,C), except dp, are strictly smaller than δ. Then for any two d.s.h. functions

ϕ,ψ, there exists a constant c>0, such that

∣∣∣ ∫
(ϕ ¨ fn)ψ dμ−

( ∫
ϕdμ

)(∫
ψ dμ

)∣∣∣≤ c(dp/δ)−n/2

for all n≥0.

In Theorem 1.2, the constant c depends on ϕ and ψ. It is not hard to see that
we can take a common c for any compact family of d.s.h. functions.

Now we consider a particular case. When X is a compact Kähler surface and
f is of positive entropy, Gromov [12] and Yomdin [16] showed that the entropy is
equal to log d1. Thus in this case, d1>1. Moreover, Cantat [1] proved that the
eigenvalues of f∗, acting on H1,1(X,C), are d1, 1/d1 and others with modulus 1.
Thus we get the following corollary.

Corollary 1.3. Let f be a holomorphic automorphism of positive entropy on a

compact Kähler surface X. Then the equilibrium measure μ is exponentially mixing

for all d.s.h. observables.
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In this paper, the symbols � and � stand for inequalities up to a multiplicative
constant.
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2. Super-potentials of currents

In this section, we will introduce the notion called super-potential. The readers
may refer to [7] and [10] for details. Some estimates of super-potentials on a family
of currents with Hölder continuous super-potentials are obtained at the end of this
section.

Denote by Dq the real space that generated by all positive closed (q, q)-currents
on X. Define a norm ‖·‖∗ on Dq by

‖Ω‖∗ :=min{‖Ω+‖+‖Ω−‖},

where ‖Ω±‖:=〈Ω±, ωk−q〉 are the mass of Ω±, and the minimum is taken over all
the positive closed currents Ω± with Ω=Ω+−Ω−. Observe that ‖Ω±‖ only depend
on the cohomology classes of Ω± in Hq,q(X,R). We have the following lemma.

Lemma 2.1. Let Ω be a real ddc-exact (q, q)-current on X and assume Ω≥−S

for some positive closed (q, q)-current S, then ‖Ω‖∗≤2‖S‖.

Proof. Note that Ω+S is a positive closed current and we can write Ω as

Ω= (Ω+S)−S.

The mass of Ω+S is ‖S‖ because Ω is ddc-exact. �

We introduce the ∗-topology on Dq: for a sequence of currents Sn in Dq, we
say Sn converge to a current S in Dq if Sn converge to S in the sense of currents
and if ‖Sn‖∗ are uniformly bounded. Note that smooth forms are dense in Dq for
this topology.

Let D0
q be the subspace of Dq which contains all the currents of class {0} in

Hq,q(X,R). It is not hard to see D0
q is closed under the above topology.

Now we define the super-potential of a current S∈Dq. Fix a basis of Hq,q(X,R),
denoted by {α}:=

{
{α1}, ..., {αt}

}
. We can take all the αj being smooth forms. For

any R∈D0
k−q+1, there exists a real (k−q, k−q)-current UR such that ddcUR=R.

We call UR a potential of R. After adding some closed form to UR we can assume
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〈UR, αj〉=0 for all 1≤j≤t. After that we say UR is α-normalized. If in addition, R
is smooth, then we can choose UR smooth.

The α-normalized super-potential US of S is a linear functional on the smooth
forms in D0

k−q+1, and it is defined by

US(R) := 〈S,UR〉,

where UR is a smooth α-normalized potential of R. Note that US(R) does not
depend on the choice of UR.

If US can be extended continuously to a linear functional on D0
k−q+1 for the

∗-topology we defined above, then we say S has a continuous super-potential. If
S∈D0

q , then US does not depend on the choice of α. If S is smooth, then it has
a continuous super-potential and we have US(R)=UR(S), where UR is the super-
potential of R. The equality still holds if we only assume S has a continuous
super-potential (see [10]).

For 0<l<∞, we define the norm ‖·‖C−l and the distance distl on Dq by

‖Ω‖C−l := sup
‖Φ‖Cl≤1

|〈Ω,Φ〉| and distl(Ω,Ω′) := ‖Ω−Ω′‖C−l ,

where Φ is a smooth test (k−q, k−q)-form on X. For 0<l<l′<∞, on any ‖·
‖∗-bounded subset of Dp, we have

distl′ ≤distl ≤ cl,l′(dist)l/l
′

for some positive constant cl,l′ (see [10]).
For S∈Dq and constants l>0, 0<λ≤1,M≥0, a super-potential US of S is said

to be (l, λ,M)-Hölder continuous if it is continuous and it satisfies

|US(R)| ≤M‖R‖λC−l

for all R∈D0
k−q+1 with ‖R‖∗≤1. If l′>0 is another constant, the above identity

for distl and distl′ implies that US is also (l′, λ′,M ′)-Hölder continuous for some
constants λ′ and M ′ independent of S. And this definition does not depend on the
normalization of the super-potential. We need the following two lemmas which are
originally stated in [9].

Lemma 2.2. Let R∈D0
k−p+1 with ‖R‖∗≤1 and UR is (2, λ,M)-Hölder con-

tinuous. There is a constant A>0 independent of R, λ and M such that the super-

potential US of S satisfies

|US(R)| ≤A(1+λ−1 log+ M),

for any S∈D0
p with ‖S‖∗≤1, where log+ :=max{0, log}.
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Lemma 2.3. Let f, p be as in Theorem 1.1 and let R∈D0
k−p+1 whose super-

potential UR is (2, λ,M)-Hölder continuous. Then there is a constant A0≥1 inde-

pendent of R, λ,M such that the super-potential Uf∗(R) of f∗(R) is (2, λ, A0M)-Höl-
der continuous.

We will use the above two lemmas to show the following result. A simple case
was shown in [9, Proposition 3.1], which is crucial in the proof of exponential mixing
theorem for C α observables for 0<α≤2. Since T+ is the unique positive current in
{T+}, if S∈Dp, then d−n

p (fn)∗(S) converge to a multiple of T+.

Proposition 2.4. Let f, dp, δ be as in Theorem 1.1 and S∈Dp. Let r be the

constant such that dp(fn)∗(S) converge to rT+. Let {Rε}0<ε≤1/2 be a family of

currents in D0
k−p+1 with ‖Rε‖∗≤1 whose super-potentials URε are (2, λ, ε−2)-Hölder

continuous. Let Un and U+ be the α-normalized super-potential of d−n
p (fn)∗(S) and

T+ respectively. Then there exists a constant A>0 independent of the family {Rε}
such that

|Un(Rε)−rU+(Rε)| ≤−A log ε(dp/δ)−n

for all n and ε.

Proof. It was shown in [9, Section 3] and [10, Section 4] that for S∈Dp smooth
and closed, we have |Un(R)−rUn(R)|�(dp/δ)−n‖R‖∗ for all R∈D0

k−p+1. So we
can subtract a smooth closed (p, p)-form from S and assume that S∈D0

p and r=0.
Fix a constant δ0 such that max{dp−1, dp+1}<δ0<δ and δ0 satisfies the same

properties of δ as in Theorem 1.1. By Poincaré duality, the dynamic degree dp−1 of
f is equal to the dynamic degree dk−p+1(f−1) of f−1. Since the mass of a positive
current can be computed cohomologically, we have ‖(fn)∗(Rε)‖∗�δn0 ‖Rε‖∗.

Define Rn,ε :=c−1δ−n
0 (fn)∗(Rε) where c≥1 is a fixed constant large enough

such that ‖Rn,ε‖∗≤1 for all n and ε. By Lemma 2.3, the super-potential of Rn,ε,
denoted by URn,ε , is (2, λ, An

0 ε
−2)-Hölder continuous for some A0≥1. On the other

hand, since S∈D0
p , by definition we have

Un(Rε)= d−n
p US

(
(fn)∗(Rε)

)
= c(dp/δ0)−nUS(Rn,ε).

Finally, applying Lemma 2.2, we obtain

|Un(Rε)|= c(dp/δ0)−n|US(Rn,ε)|� (dp/δ0)−n
(
1+λ−1 log+(An

0 ε
−2)

)
�− log ε(dp/δ)−n.

This finishes the proof. �
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3. Exponentially mixing of μ

From now on, let f, dp and δ be as in Theorem 1.1, and let S be a fixed positive
closed (p, p)-current of mass 1 on X. Define a sequence of currents Sn by Sn :=
d−n
p (fn)∗(S). We know that Sn converge to T+. Fix a basis {α}:=

{
{α1}, ..., {αt}

}
of Hp,p(X,R). Denote by Un and U+ be the α-normalized super-potentials of Sn

and T+ respectively.
For any bounded quasi-p.s.h. function φ on X such that ddcφ≥−ω, |φ|≤1,

we consider the same regularization of φ as in [3, Theorem 2.1] (when X=Pk,
see also [7, Section 2]), which is using a standard convolution and a partition of
unity to regularize the function locally, then gluing them globally by using maximal
regularization function [2, I.5]. So there exists a family of smooth functions φε, 0<
ε≤1/2 such that ddcφε≥−ω, and φε decreases to φ0 :=φ when ε decreases to 0.
And φε satisfies the following two estimates:

(3.1) ‖φε−φ‖L1(ωk) � ε and ‖φε‖C 2 � ε−2,

where the �’s are independent of φ.
We define a sequence of functions hn and h on (0, 1/2] by

hn(ε)=Un(ddcφε∧T−) and h(ε)=U+(ddcφε∧T−).

By definition,

hn(ε)= 〈Sn∧T−, φε〉−〈Sn,Kε〉 and h(ε)= 〈T+∧T−, φε〉−〈T+,Kε〉,

where Kε is a smooth closed (k−p, k−p)-form depends on ε such that φεT−−Kε is
the α-normalized potential of ddcφε∧T−, i.e. 〈φεT−−Kε, αj〉=0 for all j. Observe
that hn converge pointwise to h on (0, 1/2].

On the other hand, note that {ωk} is a basis of Hk,k(X,R). We consider the
{ωk}-normalized super potential of μ=T+∧T− and define the function

g(ε) :=Uμ(ddcφε)= 〈T+∧T−, φε〉−〈ωk, φε〉.

The function g is well defined at ε=0 because T+∧T− has a Hölder continuous
super-potential (see [10]). We prove two lemmas first.

Lemma 3.1. There exists a constant c>0 independent of φ such that

|〈Sn,Kε〉−〈T+,Kε〉|≤ c(dp/δ)−n

for ε∈(0, 1/2].
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Proof. Let (an,1, an,2, ..., an,t) be the vector which represents the class {Sn} in
Hp,p(X,R) with respect to the basis {α}, i.e. {Sn}=

∑t
j=1 an,j{αj}. Let (b1, b2, ...,

bt) be the vector which represents {T+}. Since Kε is closed, we have

〈Sn−T+,Kε〉=
t∑

j=1

〈
(an,j−bj)αj ,Kε

〉
.

Combining with 〈φεT−−Kε, αj〉=0 for all j, we get

〈Sn−T+,Kε〉=
t∑

j=1
(an,j−bj)〈αj , φεT−〉.

On the other hand, by Perron-Frobenius theorem, ‖{Sn}−{T+}‖�(dp/δ)−n in
the finite dimensional vector space Hp,p(X,R) (see also [9, Section 3]). Therefore,
we have

‖(an,1−b1, an,2−b2, ..., an,t−bt)‖� (dp/δ)−n.

Finally, observe that 〈αj , φεT−〉 is uniformly bounded independent of φ. Hence

|〈Sn−T+,Kε〉|� (dp/δ)−n.

The proof of this lemma is finished. �

Lemma 3.2. The function g is Hölder continuous at 0, more precisely, there

exists a constant c>0 independent of φ such that for ε∈(0, 1/2], we have |g(ε)−
g(0)|≤cεα for some 0<α≤1.

Proof. Since T+∧T− has a Hölder continuous super-potential, by definition, we
have

|g(ε)−g(0)| ≤M dist2(ddcφε, dd
cφ)α

for some constants 0<α≤1,M>0.
Since φε is decreasing when ε decreases, by definition and estimates (3.1) we

obtain

dist2(ddcφε, dd
cφ)= sup

‖Φ‖C2≤1
|〈ddcφε−ddcφ,Φ〉|= sup

‖Φ‖C2≤1
|〈φε−φ, ddcΦ〉|

� 〈φε−φ, ωk〉= ‖φε−φ‖L1(ωk) � ε

since ‖Φ‖C 2≤1 implies ±ddcΦ≤c′ωk, where c′ is a positive constant only depending
on (X,ω). Therefore,

|g(ε)−g(0)| ≤M dist2(ddcφε, dd
cφ)α � εα.

The proof of this lemma is complete. �
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Since φε is smooth for every ε 
=0, in particular it is Hölder continuous. We
can easily obtain the estimates of hn(ε)−h(ε) for ε 
=0 by using Proposition 2.4.
Combining with the above two lemmas we get the following key proposition.

Proposition 3.3. Let Sn and φ be as above. There exists a constant c>0
independent of φ such that

〈Sn∧T−, φ〉−〈T+∧T−, φ〉≤ c(dp/δ)−n

for all n.

Proof. Again, we fix a constant δ0 such that max{dp−1, dp+1}<δ0<δ and δ0
satisfies the same properties of δ as in Theorem 1.1. By Lemma 2.1, ‖ddcφε‖∗≤2 for
all ε, thus ‖ddcφε∧T−‖∗ are uniformly bounded for 1<ε≤1/2. Since ‖φε‖C 2 �ε−2

and T− has a Hölder continuous super-potential (see [10]), by [10, Proposition 3.4.2],
ddcφε∧T− has a (2, λ,Mε−2)-Hölder continuous super-potential for some constant
λ and M independent of φ. Multiplying φ by some constant allows us to assume
M=1 and ‖ddcφε∧T−‖∗≤1 for all 0<ε≤1/2. Applying Proposition 2.4 to the
family {ddcφε∧T−} instead of {Rε}, we get that for 0<ε≤1/2,

hn(ε)−h(ε)�− log ε(dp/δ0)−n,

where the � is independent of φ. Combining this with estimates (3.1), Lemma 3.1
and Lemma 3.2, we have for ε∈(0, 1/2],

〈Sn∧T−, φ〉−〈T+∧T−, φ〉≤ 〈Sn∧T−, φε〉−〈T+∧T−, φ〉
= 〈Sn∧T−, φε〉−〈T+∧T−, φε〉+〈T+∧T−, φε〉−〈T+∧T−, φ〉
=hn(ε)−h(ε)+〈Sn,Kε〉−〈T+,Kε〉+g(ε)+〈ωk, φε〉−g(0)−〈ωk, φ〉
�− log ε(dp/δ0)−n+(dp/δ0)−n+εα+ε,

where the first inequality is because φε is decreasing as ε decreasing and Sn∧T− is
positive.

Finally, since α≤1, by taking ε=(dp/δ0)−n/α, we get

〈Sn∧T−, φ〉−〈T+∧T−, φ〉�n log(dp/δ0)(dp/δ0)−n+(dp/δ0)−n � (dp/δ)−n.

Since the constant c in Lemma 3.1 and Lemma 3.2 are independent of φ, the �
above is independent of φ. �

In Proposition 3.3, the constant c depends on S. Note that we do not have
a lower bound estimate. Otherwise, we can follow the approach in [9] to show
Theorem 1.1 directly. Here we need some extra techniques from [15].
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Proof of Theorem 1.1. Multiplying ϕ and ψ by some constant allows us to
assume ‖ϕ‖L∞≤1/2 and ‖ψ‖L∞≤1/2. It is sufficient to prove Theorem 1.1 for n

even because applying it to ϕ and ψ¨f gives the case of odd n. Using the invariance
of μ, it is enough to show that

(3.2)
∣∣〈μ, (ϕ ¨ fn)(ψ ¨ f−n)

〉
−〈μ, ϕ〉〈μ, ψ〉

∣∣≤ c(dp/δ)−n

for some c>0. It is equivalent to prove〈
μ, (ϕ ¨ fn)(ψ ¨ f−n)

〉
−〈μ, ϕ〉〈μ, ψ〉≤ c(dp/δ)−n

and 〈
μ, (ϕ ¨ fn)(−ψ ¨ f−n)

〉
−〈μ, ϕ〉〈μ,−ψ〉≤ c(dp/δ)−n.

For j=1, 2, we define

ϕ+
j :=ϕ2+jϕ+A, ϕ−

j :=ϕ2+jϕ−A, ψ+
j :=ψ2+jψ+A, ψ−

j :=−ψ2−jψ+A,

where A is a positive constant whose value will be determined later. Consider the
following eight functions on X×X:

Φ+
jl(z, w) :=ϕ+

j (z)ψ+
l (w), Φ−

jl(z, w) :=ϕ−
j (z)ψ−

l (w),

where j, l=1, 2. We need the following lemma.

Lemma 3.4. The functions Φ±
jl are quasi-p.s.h. on X×X for A large enough.

Proof. We only show Φ+
11 and Φ−

11 are quasi-p.s.h. because the other cases can
be obtained in the same way. By a direct computation (see also [15, Lemma 3.1]),
we have

i∂∂Φ+
11 =(ψ2+ψ+A)

(
(2ϕ+1)i∂∂ϕ+2i∂ϕ∧∂ϕ

)
+(2ϕ+1)(2ψ+1)i∂ϕ∧∂ψ

+(2ϕ+1)(2ψ+1)i∂ψ∧∂ϕ+(ϕ2+ϕ+A)
(
(2ψ+1)i∂∂ψ+2i∂ψ∧∂ψ

)
.

Combining with the identity

i∂ϕ∧∂ϕ+i∂ϕ∧∂ψ+i∂ψ∧∂ϕ+i∂ψ∧∂ψ= i∂(ϕ+ψ)∧∂(ϕ+ψ)≥ 0,

we get

i∂∂Φ+
11 ≥ (ψ2+ψ+A)(2ϕ+1)i∂∂ϕ+(ϕ2+ϕ+A)(2ψ+1)i∂∂ψ

+
(
2ψ2+2ψ+2A−(2ϕ+1)(2ψ+1)

)
i∂ϕ∧∂ϕ

+
(
2ϕ2+2ϕ+2A−(2ϕ+1)(2ψ+1)

)
i∂ψ∧∂ψ.
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Recall that we assume ‖ϕ‖L∞≤1/2 and ‖ψ‖L∞≤1/2. So 2ϕ+1≥0, 2ψ+1≥0. We
take A large enough such that ψ2+ψ+A,ϕ2+ϕ+A, 2ψ2+2ψ+2A−(2ϕ+1)(2ψ+
1), 2ϕ2+2ϕ+2A−(2ϕ+1)(2ψ+1) are all positive. Since ϕ and ψ are quasi-p.s.h.
on X and i∂ϕ∧∂ϕ, i∂ψ∧∂ψ are positive, we deduce that Φ+

11 is quasi-p.s.h. on
X×X.

For Φ−
11, we have

i∂∂Φ−
11 =(−ψ2−ψ+A)

(
(2ϕ+1)i∂∂ϕ+2i∂ϕ∧∂ϕ

)
−(2ϕ+1)(2ψ+1)i∂ϕ∧∂ψ

−(2ϕ+1)(2ψ+1)i∂ψ∧∂ϕ+(ϕ2+ϕ−A)
(
−(2ψ+1)i∂∂ψ−2i∂ψ∧∂ψ

)
.

Combining with the identity

i∂ϕ∧∂ϕ−i∂ϕ∧∂ψ−i∂ψ∧∂ϕ+i∂ψ∧∂ψ= i∂(ϕ−ψ)∧∂(ϕ−ψ)≥ 0,

we get

i∂∂Φ−
11 ≥ (−ψ2−ψ+A)(2ϕ+1)i∂∂ϕ+(−ϕ2−ϕ+A)(2ψ+1)i∂∂ψ

+
(
−2ψ2−2ψ+2A−(2ϕ+1)(2ψ+1)

)
i∂ϕ∧∂ϕ

+
(
−2ϕ2−2ϕ+2A−(2ϕ+1)(2ψ+1)

)
i∂ψ∧∂ψ.

Repeating the same argument as above, we get that Φ−
11 is quasi-p.s.h. for A large

enough. The proof is complete. �

We choose A large enough such that all the Φ±
jl are bounded and quasi-p.s.h. on

X×X. Note that the choice of A is independent of ϕ and ψ. Define ω̃ :=π∗
1ω+π∗

2ω,
where π1, π2 are the two canonical projections of X×X onto its factors. Then ω̃ is
the canonical Kähler form on X×X. Recall that we assume ddcϕ≥−ω, ddcψ≥−ω.
From the computations in Lemma 3.4, we deduce that ddcΦ+

11≥−3Aω̃ when A is
large. And observe that Φ+

11 is bounded by 4A2.
Next we consider the automorphism F of X×X which is defined by

F (z, w) :=
(
f−1(z), f(w)

)
.

By using Künneth formula, one can show that the dynamic degree of order k of F is
equal to d2

p (see also [9, Section 4]), and the dynamical degrees and the eigenvalues
of F ∗ on Hk,k(X×X,R), except d2

p, are strictly smaller than dpδ. Hence F and dpδ

satisfy the conditions of f and δ respectively in Theorem 1.1.
It is not hard to see that the Green (k, k)-currents of F and F−1 are T−⊗T+

and T+⊗T− respectively, and they satisfy

F ∗(T−⊗T+)= d2
p(T−⊗T+), F∗(T+⊗T−)= d2

p(T+⊗T−).

In particular, they have Hölder continuous super-potentials. Let Δ denote the
diagonal of X×X. Then [Δ] is a positive closed (k, k)-current on X×X. With the
help of F , we get the following estimates.
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Lemma 3.5. There exists a constant c>0 such that〈
μ, (ϕ+

j ¨ fn)(ψ+
l ¨ f−n)

〉
−〈μ, ϕ+

j 〉〈μ, ψ+
l 〉≤ c(dp/δ)−n

and 〈
μ, (ϕ−

j ¨ fn)(ψ−
l ¨ f−n)

〉
−〈μ, ϕ−

j 〉〈μ, ψ−
l 〉≤ c(dp/δ)−n

for all j, l and n.

Proof. We only show this lemma holds for ϕ+
1 and ψ+

1 , the proofs of others are
similar. For the automorphism F , consider the sequence of currents d−2n

p (Fn)∗[Δ],
which are positive closed currents of mass 1 converging to T−⊗T+. Since ddcΦ+

11≥
−3Aω̃ and |Φ+

11|≤4A2, after dividing Φ+
11 by 4A2, we can assume ddcΦ+

11≥−ω̃ and
|Φ+

11|≤1. Applying Proposition 3.3 to d−2n
p (Fn)∗[Δ], T+⊗T− and Φ+

11 instead of
Sn, T− and φ, we deduce that there exists a constant c>0 such that〈

d−2n
p (Fn)∗[Δ]∧(T+⊗T−),Φ+

11
〉
−

〈
(T−⊗T+)∧(T+⊗T−),Φ+

11
〉
≤ c

(
d2
p/(dpδ)

)−n

for all n. Here c is independent of ϕ and ψ because A is independent of them.
On the other hand, by definition, we have〈

d−2n
p (Fn)∗[Δ]∧(T+⊗T−),Φ+

11
〉
=

〈
[Δ], d−2n

p (Fn)∗
[
(T+⊗T−)∧Φ+

11
]〉

=
〈
[Δ]∧(T+⊗T−),Φ+

11 ¨F
−n

〉
=

〈
T+∧T−, (ϕ+

1 ¨ fn)(ψ+
1 ¨ f−n)

〉
,

and 〈
(T−⊗T+)∧(T+⊗T−),Φ+

11
〉
= 〈μ⊗μ,Φ+

11〉= 〈μ, ϕ+
1 〉〈μ, ψ+

1 〉.

This finishes the proof of this lemma. �

Now we can finish the proof of Theorem 1.1 using the invariant property of μ.

End of the proof of Theorem 1.1. Consider α+
11=2, α+

22=α−
11=α−

21=α−
12=1 and

α+
21=α+

12=α−
22=0. A direct computation gives

∑
j,l=1,2

(
α+
jl(ϕ

+
j ¨ fn)(ψ+

l ¨ f−n)+α−
jl(ϕ

−
j ¨ fn)(ψ−

l ¨ f−n)
)

=(ϕ ¨ fn)(ψ ¨ f−n)+β1ϕ
2
¨ fn+β2ψ

2
¨ f−n+β3ϕ ¨ fn+β4ψ ¨ f−n+β5

for some constants βt, 1≤t≤5. We now apply this identity and Lemma 3.5. Observe
that the invariance of μ implies that

〈μ, ϕm
¨ f±n〉= 〈μ, ϕm〉 and 〈μ, ψm

¨ f±n〉= 〈μ, ψm〉.
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Hence the terms involving βt cancel each other out. We obtain〈
μ, (ϕ ¨ fn)(ψ ¨ f−n)

〉
−〈μ, ϕ〉〈μ, ψ〉≤

( ∑
j,l=1,2

(
α+
jl+α−

jl

))
c(dp/δ)−n =6c(dp/δ)−n.

Similarly, taking γ−
11=2, γ+

11=γ+
21=γ+

12=γ−
22=1 and γ+

22=γ−
21=γ−

12=0, we get
〈
μ, (ϕ ¨ fn)(−ψ ¨ f−n)

〉
−〈μ, ϕ〉〈μ,−ψ〉≤

( ∑
j,l=1,2

(
γ+
jl+γ−

jl

))
c(dp/δ)−n =6c(dp/δ)−n.

The above two inequalities imply inequality (3.2) and finish the proof of Theo-
rem 1.1. �

Using the moderate property of μ and the technical of replacing δ by δ0, we
can prove Theorem 1.2.

Proof of Theorem 1.2. It is enough to prove this theorem for all negative quasi-
p.s.h. functions ϕ and ψ. Multiplying them by some constant allows us to assume
ddcϕ≥−ω, ddcψ≥−ω and 〈μ, |ϕ|〉≤1, 〈μ, |ψ|〉≤1. Define

ϕ1 :=max{ϕ,−M}, ψ1 :=max{ψ,−M},

and
ϕ2 :=ϕ−ϕ1, ψ2 :=ψ−ψ1.

Then ϕ1 and ψ1 are bounded quasi-p.s.h. functions which satisfy ddcϕ1≥
−ω, ddcψ1≥−ω. Fix a constant δ0 such that max{dp−1, dp+1}<δ0<δ and δ0 satis-
fies the same properties of δ as in Theorem 1.1. Applying Theorem 1.1 to ϕ1 and
ψ1, we get ∣∣∣ ∫

(ϕ1 ¨ f
n)ψ1 dμ−

( ∫
ϕ1 dμ

)( ∫
ψ1 dμ

)∣∣∣ � (dp/δ0)−n/2M2.

On the other hand, since μ is moderate, by [4, Lemma 2.1] or the proof of [15,
Theorem 1.3], we get for some α>0,

‖ϕ2‖L1(μ) � e−αM/2, ‖ψ2‖L1(μ) � e−αM/2,

‖ϕ2‖L2(μ) � e−αM/2, ‖ψ2‖L2(μ) � e−αM/2.

From the invariance of μ, we have that ‖ϕ2¨f
n‖Lp(μ)=‖ϕ2‖Lp(μ) and ‖ψ2¨

fn‖Lp(μ)=‖ψ2‖Lp(μ) for 1≤p≤∞. We do the following direct computation (see
also [15, Theorem 1.3]),∣∣〈μ, (ϕ ¨ fn)ψ

〉
−〈μ, ϕ〉〈μ, ψ〉

∣∣
=

∣∣〈μ, (ϕ1 ¨ f
n+ϕ2 ¨ f

n)(ψ1+ψ2)
〉
−〈μ, ϕ1+ϕ2〉〈μ, ψ1+ψ2〉

∣∣
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≤
∣∣〈μ, (ϕ1 ¨ f

n)ψ1
〉
−〈μ, ϕ1〉〈μ, ψ1〉

∣∣+∣∣〈μ, (ϕ1 ¨ f
n)ψ2

〉∣∣+∣∣〈μ, (ϕ2 ¨ f
n)ψ1

〉∣∣
+

∣∣〈μ, (ϕ2 ¨ f
n)ψ2

〉∣∣+|〈μ, ϕ2〉〈μ, ψ1〉|+|〈μ, ϕ1〉〈μ, ψ2〉|+|〈μ, ϕ2〉〈μ, ψ2〉|
≤

∣∣〈μ, (ϕ1 ¨ f
n)ψ1

〉
−〈μ, ϕ1〉〈μ, ψ1〉

∣∣+M‖ϕ2‖L1(μ)+M‖ψ2‖L1(μ)

+‖ϕ2‖L2(μ)‖ψ2‖L2(μ)+‖ϕ2‖L1(μ)+‖ψ2‖L1(μ)+‖ϕ2‖L1(μ)‖ψ2‖L1(μ)

� (dp/δ0)−n/2M2+(2M+2)e−αM/2+2e−αM .

Taking M=
(
n log(dp/δ0)

)
/α, we obtain the estimate

(dp/δ0)−n/2M2+(2M+2)e−αM/2+2e−αM �n2(dp/δ0)−n/2 � (dp/δ)−n/2.

Therefore, ∣∣∣ ∫
(ϕ ¨ fn)ψ dμ−

( ∫
ϕdμ

)( ∫
ψ dμ

)∣∣∣ � (dp/δ)−n/2.

The proof is finished. �

Remark 3.6. In the last step of the proof above, there is an n2 appearing in
the middle before replacing δ0 by δ. It somehow represents the singularities of ϕ
and ψ. The constant c in Theorem 1.1 and Theorem 1.2 can be made more explicit,
but it needs a long calculation so we chose not to do here.
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