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A recursive formula for osculating curves

Giosuè Muratore

Abstract. Let X be a smooth complex projective variety. Using a construction devised by
Gathmann, we present a recursive formula for some of the Gromov-Witten invariants of X. We
prove that, when X is homogeneous, this formula gives the number of osculating rational curves
at a general point of a general hypersurface of X. This generalizes the classical well known pairs
of inflection (asymptotic) lines for surfaces in P3 of Salmon, as well as Darboux’s 27 osculating
conics.

1. Introduction

Fix a general smooth complex surface Y of degree d≥3 in P3, and let p∈Y
be a point. In the family of tangent lines to Y at p, Salmon [Sal65, §265] proved
that there are exactly two lines whose contact order at p is at least 3. Note that
this number is independent of Y and p, as long as they are general. An analogous
result was proved by Darboux in [Dar80, p. 372]. Indeed, he proved that there are
exactly 27 conics whose contact order with Y at p is at least 7, and this number
depends neither on the degree of the surface, nor on the point p. In the case Y is a
cubic, he pointed out that those conics must be contained in Y by Bézout, so each
of them is the residual intersection of the plane spanned by p and one of the 27 lines
of Y . His argument in the case that Y has degree at least 4 rests on a vague and
intricate application of classical elimination theory. After that, no advances have
been made.

Our goal is to extend those results using the theory of Gromov-Witten invari-
ants. We propose the following

Definition 1.1. Let X be a smooth complex projective variety, let β be the
homological class of a curve and let Y be a very ample smooth hypersurface Y ⊂X.
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An osculating curve C of class β is an irreducible rational curve in X, not contained
in Y , such that the intersection index at a general point of Y with C is at least
c1(X)·β−1. We denote by OC(β,X) the number of osculating curves in X of class
β through a general point of Y .

For example, in the case X=P3 those curves are rational curves of degree n with
contact order 4n−1 at a general point of Y . In particular, Salmon and Darboux’s
curves are osculating.

In this paper, we will find a formula to compute the number of osculating
curves for certain X and β. Using Gathmann’s construction, we will find a recursive
formula for a GW invariant of X relative to Y (Equation (5.7)) under the hypothesis
that Y has no rational curves. Moreover, we will prove that this invariant coincides
with OC(β,X) (i.e., it is enumerative) when X is homogeneous (Proposition 4.1).
Finally we will see in Remark 5.3 that the number OC(β,X) does not depend on
Y , so it is an invariant of β. This was already noted in the case of lines and conics
in P3. Our main result is the following

Theorem 1.2. Let X be a homogeneous variety, let β be the homological class

of a curve. There exists a recursive formula for the number of curves of class β

osculating a very ample hypersurface.

For related results, see for example [FW20] and reference therein.
There exists a nice application of Salmon’s pair of inflectional lines. Taking the

directions of the two lines define a 2-web on Y . This web is used to show a bound
on the number of lines contained in Y . In the same way, Darboux’s 27 conics define
a 27-web. This web could give an upper bound to the number of conics on Y , see
[LP18]. We hope to address these questions elsewhere.

The paper is organized as follows. Sections 2 and 3 recall standard notations
of the moduli space of stable curves, Gromov-Witten invariants and Gathmann’s
construction of the moduli space of curves with tangency conditions. In Section 4,
we will study the connection between osculating curves and Gromov-Witten invari-
ants. Section 5 contains the proof of the recursive formula cited before. Finally,
Section 6 contains some application. In particular, we present an implementation
of OC(β,X) in case X is a product of projective spaces.

Acknowledgements. The author would like to thank Angelo Lopez and Ed-
uardo Esteves for numerous fruitful discussions, and Jorge Vitório Pereira for point-
ing me out the connection with webs. I thank Andreas Gathmann for his help.
I especially thank Israel Vainsencher for calling my attention on this problem and
for his constant support during this year at UFMG. The author is supported by
postdoctoral fellowship PNPD-CAPES.



A recursive formula for osculating curves 197

2. Kontsevich moduli space of stable maps

We begin by giving an informal discussion of the main properties of the Kont-
sevich moduli space of stable maps, following [FP97] and [HTK+03]. Let X be
a smooth complex projective variety, let β∈H2(X,Z) be a non torsion homology
class, and let Y ⊂X be a smooth very ample hypersurface. We denote by Y or [Y ]
the cohomology class of the subvariety Y in H2(X,Z), given by Poincaré duality.
The cohomology class of a point is denoted by pt.

For any non-negative integer n, we denote by M0,n and M0,n(X,β) the moduli
spaces of n-pointed genus zero stable curves and stable maps to X of class β,
respectively. The markings provide evaluation morphisms evi :M0,n(X,β)→X. We
have tautological classes ψi :=c1(Li) where Li is the line bundle whose fiber at a
stable map (C, p1, ..., pn, f) is the cotangent line to C at point pi. When n=1, we
omit the index.

Definition 2.1. The virtual dimension of M0,n(X,β) is the number

vdimM0,n(X,β)=dimX+c1(X)·β+n−3.

Since X is projective, there exists a homology class, the virtual fundamental
class [M0,n(X,β)]virt, of dimension vdimM0,n(X,β) (see [HTK+03, Chapter 26]
for further discussions). If X is also a homogeneous variety (i.e., a quotient G/P ,
where G is a Lie group and P is a parabolic subgroup), and M0,n(X,β) �=∅, then
M0,n(X,β) exists as a projective non singular stack or orbifold coarse moduli space
of pure dimension vdimM0,n(X,β) [FP97, Theorem 1, 2, 3].

Definition 2.2. For every choice of classes γ1, ..., γn∈H∗(X,Z), and non neg-
ative integers a1, ..., an∈Z such that

∑n
i=1 codimγi+ai=vdimM0,n(X,β), we have

the numbers

IXn,β(γ1ψ
a1
1 ⊗...⊗γnψ

an
n ) := ev∗

1(γ1)·ψa1
1 ·...·ev∗

n(γn)·ψan
n ·[M0,n(X,β)]virt,

called descendant invariants.

We can extend this definition to every integer a1, ..., an∈Z, by imposing

IXn,β(γ1ψ
a1
1 ⊗...⊗γnψ

an
n )= 0

if ai<0 for some i.
We adopt the well established notation that encodes all 1-point invariants of

class β in a single cohomology class:

IX1,β := ev∗

(
1

1−ψ

[
M0,1(X,β)

]virt)
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:=
∑
i,j

IX1,β(T iψj)·Ti,

where {T i} and {Ti} are bases of H∗(X,Z)⊗Q dual to each other. Note that

IX1,β(T iψj)

is zero when j �=vdimM0,1(X,β)−i. We define IX1,0 :=1X , i.e., the unity of the ring
H∗(X,Z)⊗Q.

Example 2.3. A very useful descendant invariant is the following. Let X=Ps,
so that every class β will be of the form β=n[line] for some positive integer n. It is
known by [Pan98, Section 1.4] that

IP
s

1,β(ptψ(s+1)·n−2)= 1
(n!)s+1 .

3. Gathmann construction

We recall briefly the construction given in [Gat02] and [Gat03]. Let m be
a non negative integer. There exists a closed subspace M

Y

(m)(X,β)⊆M0,1(X,β)
which parameterizes curves such that the contact order with Y is at least m at the
marked point. As a set, it has the following simple description.

Definition 3.1. ([Gat02, Definition 1.1]) The space M
Y

(m)(X,β) is the locus in
M0,1(X,β) of all stable maps (C, p, f) such that

1. f(p)∈Y if m>0.
2. f∗Y −mp in the Chow group A0(f−1(Y )) is effective.

Curves with multiplicity 0 are just unrestricted curves in X, whereas a multi-
plicity of Y ·β+1 forces at least the irreducible curves to lie inside Y . This space
comes equipped with a virtual fundamental class [MY

(m)(X,β)]virt of dimension
vdim(M0,n(X,β))−m.

By M0,n(Y, β) we mean the space of n-pointed stable maps to Y of all homology
classes whose push-forward to X is β. For every integer i=1, ..., n, we denote by
ẽvi :M0,n(Y, β)→Y the evaluation maps to Y instead of X.

The explicit form of [MY

(m)(X,β)]virt is given by the following

Theorem 3.2. ([Gat03, Theorem 0.1]) For all m≥0 we have

(3.1) (mψ+ev∗Y )·
[
M

Y

(m)(X,β)
]virt

=
[
M

Y

(m+1)(X,β)
]virt

+
[
DY

(m)(X,β)
]virt

.
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Here, the correction term DY
(m)(X,β)=

∐
r

∐
B,M DY (X,B,M) is a disjoint union

of individual terms

DY (X,B,M) :=M0,1+r(Y, β(0))×Y r

r∏
i=1

M
Y

(m(i))(X,β(i))

where r≥0, B=(β(0), ..., β(r)) with β(i)∈H2(X)/torsion and β(i) �=0 for i>0, and
M=(m(1), ...,m(r)) with m(i)>0. The maps to Y r are the evaluation maps for the

last r marked points of M1+r(Y, β(0)) and each of the marked points of

M
Y

(m(i))(X,β(i)), respectively. The union in DY
(m)(X,β) is taken over all r, B,

and M subject to the following three conditions:

r∑
i=0

β(i) =β (degree condition)

Y ·β(0)+
r∑

i=1
m(i) =m (multiplicity condition)

if β(0) =0 then r≥ 2. (stability condition)

In (3.1), the virtual fundamental class of the summands DY (X,B,M) is de-

fined to be m(1)...m(r)

r! times the class induced by the virtual fundamental classes of

the factors M0,1+r(Y, β(0)) and M
Y

(m(i))(X,β(i)). The spaces DY (X,B,M) can be

considered to be subspaces of M0,1(X,β), so the equation of the theorem makes sense

in the Chow group of M0,1(X,β).

Note that this theorem implies immediately the following

Fact 3.3. If DY
(m)(X,β)=0 for all 0≤m≤n, then[

M
Y

(n+1)(X,β)
]virt

= cn+1(Pn(Y )),

where Pn(Y ) is the bundle of n-jets of ev∗(OX(Y )). This follows from the initial

condition[
M

Y

(1)(X,β)
]virt

=(0ψ+ev∗Y )·
[
M

Y

(0)(X,β)
]virt

=ev∗Y = c1(P0(Y )),

and from the exact sequence

(3.2) 0−→L⊗m⊗ev∗(OX(Y ))−→Pm(Y )−→Pm−1(Y )−→ 0.

Finally, we define descendant invariants of X relative to Y .
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Definition 3.4. ([Gat03, Section 1]) For every m≥0 and γ∈H∗(X,Z) we define

Iβ,(m)(γψj) := ev∗(γ)·ψj ·[MY

(m)(X,β)]virt,

where j=vdimM0,1(X,β)−m−codimγ. We assemble all those invariants in a
unique cohomology class of X,

Iβ,(m) := ev∗

(
1

1−ψ

[
M

Y

(m)(X,β)
]virt)

:=
∑
i,j

Iβ,(m)(T iψj)·Ti.

Moreover, we have another cohomology class, Jβ,(m), defined as follow

Jβ,(m) := ev∗

(
1

1−ψ

[
DY

(m)(X,β)
]virt)

+m·ev∗
[
M

Y

(m)(X,β)
]virt

.

Definition 3.5. ([Gat02, Definition 5.1]) For cohomology classes γi∈H∗(X,Z)
we define IYn,β(γ1ψ

a1
1 ⊗...⊗γnψ

an
n ) in the same way of Definition 2.2, replacing

M0,n(X,β) by M0,n(Y, β), but keeping the evi to denote the evaluation maps to
X. More generally, we can take some of the cohomology classes γi to be classes of
Y instead of X. In that case we simply use ẽvi(γi) instead of evi(γi).

By construction, Iβ,(0)=IX1,β . From (3.1) it follows

Lemma 3.6. ([Gat03, Lemma 1.2]) For all torsion free effective class β �=0,
and m≥0 we have

(3.3) (Y +m)·Iβ,(m) = Iβ,(m+1)+Jβ,(m) ∈H∗(X,Z).

The number m in Y +m should be taken as m1X .
A construction very similar to Gathmann’s was used ante litteram by Kock for

counting bitangents of a plane curve. See [AC06] and [Koc99] for more details.

4. Osculating curves

We denote by Cβ the number

Cβ := c1(X)·β−2.

This constant has the property that the virtual fundamental class of MY

(Cβ+1)(X,β)
has the same dimension of Y .
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When X is homogeneous, there is a smooth dense open subspace M∗
0,1(X,β)

in M0,1(X,β) whose points are stable maps with no non-trivial automorphisms and
with smooth domain [FP97, Lemma 13 & Theorem 2]. We denote by M0,1(X,β)b
the (possibly empty) open subspace of M∗

0,1(X,β) whose points are birational maps.
The following proposition clarifies the enumerative meaning of [MY

(Cβ+1)(X,β)]virt.

Proposition 4.1. Let X be a homogeneous variety, and let Y ⊂X be a general

hypersurface which does not contain rational curves. Let T be any Q-cohomological

class, of codimension dimX−1, such that T ·Y =pt. Then the number of osculating

curves at a general point of Y is Iβ,(Cβ+1)(T ).

Proof. Since we have just one marked point, there are no different labelings of
the marked points that give the same osculating curve.

Let s∈Γ(X,OX(Y )) be the global section defining Y . It defines a global sec-
tion ∂(s) of the jet bundle PCβ (Y ). We know that M0,1(X,β) is irreducible of the
expected dimension (Section 2). The osculating curves are parameterized by those
stable maps in M0,1(X,β)b at which the section ∂(s) vanishes. The rank of PCβ (Y )
is Cβ+1. By generality of Y , and by the hypothesis that Y has no rational curves,
the locus of osculating curves in M0,1(X,β)b has codimension Cβ+1, which means
that it has dimension dimY . This locus is contained in M

Y

(Cβ+1)(X,β) by Defini-
tion 3.1. Let i:Y →X be the inclusion. By construction of MY

(Cβ+1)(X,β), there is
a map ẽv:MY

(Cβ+1)(X,β)→Y which makes the following diagram commutative.

M
Y

(Cβ+1)(X,β) ẽv ��

ev

����
���

���
���

Y

i

��

X

That is, ẽv sends each curve (C, p, f) to the point of tangency f(p)∈Y . If
M0,1(X,β)b �=∅, then the moduli space M

Y

(Cβ+1)(X,β) has a component M
b of

the expected dimension dim Y , where each general point represents a stable map in
M0,1(X,β)b whose image is an osculating curve. We may have another component,
M

c, whose points parameterize maps (P1, p, f) where f is a not generically injec-
tive map. In this case, we can find a decomposition f :P1 g→P1 h→X with g :P1→P1 a
finite cover, and h:P1→X generically injective (h is the normalization of the curve
f(P1)).

We want to prove that ẽv(M c) has dimension strictly less that dimY . Let us fix
a map (P1, p, f)∈M c where g is a cover of degree k≥2, and let m be the multiplicity
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of intersection of h with Y at g(p). If we denote by β′ the class h∗[P1], we clearly
have kβ′=β. The contact order of f and Y at p is at most km, depending on the
degree of ramification of p. If we want that km be at least Cβ+1=c1(X)·β−1, then
clearly m≥c1(X)·β′=Cβ′ +2. This implies that (P1, g(p), h) is in M0,1(X,β′)b and
kills a general section of PCβ′+1(Y ). The dimension of the zero set of that general
section is

dimX−2+c1(X)·β′−(Cβ′ +2)=dimX−2.

This dimension is strictly less than dimY . Hence there is no rational irreducible
curve of class β′ through a general point of Y with multiplicity Cβ′ +2 at that
point. Since ẽv(P1, p, f)=h(g(p)), we deduce that ẽv(M c) has dimension strictly
less than dimY , as claimed. So, for a general point y∈Y , the inverse image ẽv−1(y)
is supported on M

b, and it is possibly empty.
This implies by projection formula that every cycle τ∈HdimY (M c

,Z) is con-
tracted by ẽv. So the contribution to [MY

(Cβ+1)(X,β)]virt∈HdimY (MY

(Cβ+1)(X,β),
Z) from M

c does not intersect ẽv∗(pt). Therefore

(4.1) ẽv∗(pt)·
[
M

Y

(Cβ+1)(X,β)
]virt

= ẽv∗(pt)·
[
M

∗∪M c
]virt

= ẽv∗(pt)·
[
M

b
]virt

.

But M b has the expected dimension, so its virtual fundamental class coincides with
the usual fundamental class. Let T be the Q-cohomology class of the statement.
Using (4.1) we get

ev∗(T )·
[
M

Y

(Cβ+1)(X,β)
]virt

= ẽv∗(i∗(T ))·
[
M

Y

(Cβ+1)(X,β)
]virt

= ẽv∗(pt)·
[
M

Y

(Cβ+1)(X,β)
]virt

= ẽv∗(pt)·
[
M

b
]
.

We deduce that if M
b=∅, then Iβ,(Cβ+1)(T )=0. If M

b �=∅, then Iβ,(Cβ+1)(T ) is
equal to the degree of the map ẽv|Mb :M b→Y , i.e., to the number of osculating
curves through a general point of Y . �

Example 4.2. Take X=P2, Y a general curve of degree d>2 and β the class of
a conic, so that Cβ+1=5. It is clear that we have just one osculating conic at every
point of Y . Because if we had two, then every curve in the linear system that they
span would be an osculating conic. Let l be the tangent line at a general point p∈Y .
A double cover of l branched at y will have multiplicity 4, hence it is not osculating.
If we take p to be a flex point, then a double cover of l will have multiplicity 6,
so it is osculating at p. But the flex points are not dense in Y . This implies that
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M
Y

(Cβ+1)(X,β) has the following components: M
b which is mapped isomorphically

to Y by ẽv, and a 1-dimensional irreducible component for each flex point p. Such
a component parameterizes double covers of the tangent l at p, branched at p.

Let d be a positive integer, and Y ′ a general element in the linear system
|OX(dY )|. For every non zero effective 1-cycle γ of Y ′, by adjunction

−KY ′ ·γ =(−KX−dY )|Y ′ ·γ

will be negative for some large d. Indeed, as Y is very ample, Y|Y ′ ·γ>0 by Kleiman’s
Positivity Theorem [Kle66, Chapter 3, §1]. This implies that

vdimM0,1(Y ′, γ)< 0

for d
0, i.e., M0,1(Y ′, γ) is virtually empty. It can happen that the requested
intersection multiplicity between Y and the osculating curve is so high that the
curve must be contained in Y (take lines tangent to linear subspaces). In order to
avoid that, we could substitute Y with Y ′ for d
0. We will see that Iβ,(Cβ+1)(T )
does not depend on d, as well as on Y , as long as Y has no rational curves. So, it
makes sense to omit Y in OC(β,X).

5. Recursive formula

In this section we will give a recursive formula for Iβ,(Cβ+1)(T ). We use the
same notation as before. The variety Y ⊂X is a smooth very ample hypersurface
with no rational curves. We suppose that 1X , Y ∈{T i}. We denote by T the dual
of Y in {Ti}. When Y generates H2(X,Z)⊗Q, the class T is uniquely determined.
The number Iβ,(Cβ+1)(T ) can be described as the coefficient of Y in Iβ,(Cβ+1), as
seen in Definition 3.4.

We apply Theorem 3.2 to compute Iβ,(Cβ+1)(T ). Using Equation 3.3 we have

Iβ,(Cβ+1) = (Y +Cβ)Iβ,(Cβ)−Jβ,(Cβ)

= (Y +Cβ)(Y +Cβ−1)Iβ,(Cβ−1)−(Y +Cβ)Jβ,(Cβ−1)−Jβ,(Cβ)

... ...

=

⎛⎝Cβ∏
i=0

(Y +i)

⎞⎠ Iβ,(0)−
Cβ−1∑
i=0

⎛⎝ Cβ∏
j=i+1

(Y +j)

⎞⎠Jβ,(i)−Jβ,(Cβ).(5.1)

Let us compute the first term of this sum in Equation (5.2). In the next display,
following [Gat03], modH3 means that we omit cohomology classes of codimension
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greater than 1.⎛⎝Cβ∏
i=0

(Y +i)

⎞⎠ Iβ,(0) =

⎛⎝Cβ∏
i=1

(Y +i)

⎞⎠Y Iβ,(0)

=

⎛⎝Cβ∏
i=1

(Y +i)

⎞⎠Y IX1,β(ptψCβ ) (modH3)

= Cβ !IX1,β(ptψCβ )Y (modH3).(5.2)

Back in (5.1), we need to find the contribution of each Jβ,(i). Gathmann computed
explicitly all the Jβ,(i) in [Gat03, Lemma 1.8] using that −KY is nef. Since we want
that Y has no rational curves, we need that −KY ·γ is negative for every rational
curve γ in Y , as explained at the end of Section 4. So −KY is not nef.

Remark 5.1. For each 0≤m≤Cβ−1, dimensional reasons ensure that the class
ev∗[M (m)(X,β)]virt has trivial H0 and H2 part. Moreover ev∗[M (Cβ)(X,β)]virt has
trivial H2 part.

Let us compute the contribution of ev∗( 1
1−ψ [DY

(m)(X,β)]virt).
Let D:=DY (X,B,M) be one of the individual term as in Theorem 3.2, with

B=(β(0), ..., β(r)) and M=(m(1), ...,m(r)), m(i)>0. If β(0) �=0, then M0,1(Y, β(0))
is empty by our hypothesis that Y has no rational curves. So that D has no
contribution. Let β(0)=0, in particular we have the following conditions on D:

r∑
i=1

β(i) =β (degree condition)

r∑
i=1

m(i) =m (multiplicity condition)

r≥ 2. (stability condition).

The value of ev∗( 1
1−ψ [D]virt) is given by the formula [Gat03, Remark 1.4, Equa-

tion (2)]

(5.3)
∑

IY0 (T iψj⊗γ1⊗...⊗γr)·
1
r!

r∏
k=1

(
m(k) ·Iβ(k),(m(k))(γ∨

k )
)
·Ti,

where the γk run in a basis of the part of H∗(Y )⊗Q induced by X [Gat02, Re-
mark 5.4], and γ∨

k is the dual as a Q-class in X. By Lefschetz Hyperplane Theorem,
we can take such a basis as {T i

|Y }. We will look for the conditions on D such that
this contribution is non zero.
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Lemma 5.2. The coefficient of Y in ev∗( 1
1−ψ [D]virt) is

1
r!

r∏
k=1

(
(Cβ(k) +1)Iβ(k),(C

β(k)+1)(T )
)

if r=Cβ+2−m, and zero otherwise.

Proof. The coefficient of Y is given by the sum in Equation (5.3), when T i=T ,
γk∈{T i

|Y } for 1≤k≤r, and

j = dim[D]virt−codim(T )
= vdimM (m+1)(X,β)−(dimX−1)
= dimX+c1(X)·β−2−(m+1)−dimX+1
= Cβ−m.

By Definition 3.5, we know that

(5.4) IY0 (Tψj⊗γ1⊗...⊗γr)= ev∗
1(T )·ψj ·ẽv∗

2(γ1)·...·ẽv∗
r+1(γr)·[M0,1+r(Y, 0)]virt.

It is well known that M0,1+r(Y, 0)∼=M0,1+r×Y , and each map ẽvi is the second
projection. Moreover, ev∗

1(T )=ẽv∗
i (pt). So for every i,

ev∗
1(T )·ẽv∗

i (1X|Y )= ẽvi(pt·1Y )= ẽvi(pt).

If one of the γi is not 1X|Y =1Y , then ev∗
1(T )·ẽv∗

i+1(γi)=0 for dimensional reasons.
This implies that the expression (5.4) is zero if γk �=1Y for some 1≤k≤r.

Now we want to compute IY0 (Tψj⊗1Y ⊗...⊗1Y ), where 1Y appears r times.
Using (r−2)-times the string equation [Pan98, 1.2.I], we get

IY0 (Tψj⊗1⊗r
Y ) = IY0 (Tψj−1⊗1⊗r−1

Y )
... ...

= IY0 (Tψj−(r−2)⊗1Y ⊗1Y ).

Hence,
IY0 (Tψj−(r−2)⊗1Y ⊗1Y )=T|Y ·1Y ·1Y ·ψj−(r−2) ·

[
M0,3×Y

]
.

This expression is 1 if j−(r−2)=0, and 0 otherwise. We proved that the coefficient
of Y is zero if Cβ−m−(r−2) �=0. So, necessarily r=Cβ+2−m, as asserted.

We need to determine the value of m(k) in m(k)Iβ(k),(m(k))(γ∨
k ). First of all,

since γk=1Y , then γ∨
k =T , hence

m(k)Iβ(k),(m(k))(γ∨
k )=m(k)Iβ(k),(m(k))(T ).
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Consider

(5.5) Iβ(k),(m(k))(T )= ev∗(T )·ψs ·[M (m(k))(X,β(k))]virt,

where

s = dim[M (m(k))(X,β(k))]virt−codim(T )

= Cβ(k)−m(k)+1.

If we want (5.5) to be non zero, s≥0 so that each term m(k) must be at most
Cβ(k) +1. This forces each m(k) to be exactly Cβ(k) +1, indeed

r∑
i=1

(Cβ(i) +1) =
r∑

i=1

(
c1(X)·β(i)−1

)
=

(
r∑

i=1
c1(X)·β(i)

)
−r

= Cβ+2−r.

=
r∑

i=1
m(i).

Finally, the coefficient of Y in ev∗( 1
1−ψ [D]virt) is

1
r!

r∏
k=1

(
(Cβ(k) +1)Iβ(k),(C

β(k)+1)(T )
)
. �

Let us go back to Equation (5.1). We are interested in the coefficient of Y in
Jβ,(Cβ) and also in each term

(5.6)

⎛⎝ Cβ∏
j=i+1

(Y +j)

⎞⎠ Jβ,(i), i=0, ..., Cβ−1.

For Jβ,(Cβ), by Lemma 5.2 and Remark 5.1 the required coefficient is

∑ 1
2

2∏
k=1

(
(Cβ(k) +1)Iβ(k),(C

β(k)+1)(T )
)
,

where the sum runs over all the ordered partitions (β(1), β(2)) of β, with two non
zero summands. The reason why we take ordered partitions is the following. Since
the marked points in M0,1+r(Y, 0) are ordered, the two spaces

M0,3(Y, 0)×Y M
Y

(m(k))(X,β(k))×Y M
Y

(m(3−k))(X,β(3−k)), k∈{1, 2},
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are isomorphic, but not the same if β(1) �=β(2). So, we have to compute the con-
tribution of each of them. For (Y +Cβ)Jβ,(Cβ−1), since Jβ,(Cβ−1) has trivial H0

coefficient as noted in Remark 5.1, we can ignore the class Y in (Y +Cβ). So the
coefficient of Y is

Cβ

∑ 1
3!

3∏
k=1

(
(Cβ(k) +1)Iβ(k),(C

β(k)+1)(T )
)
,

where the sum runs over all the ordered partitions of β with three non zero sum-
mands. For any other term in (5.6) we proceed in the same way. We get that the
contribution of those terms to (5.1) is the coefficient of Y in Jβ,(i) times the number∏Cβ

j=i+1 j=
Cβ !
i! . At the very end, we get that Iβ,(Cβ+1)(T ) is equal to

Cβ !IX1,β(ptψCβ )−
∑
K

Cβ !
(Cβ+2−rK)!

1
rK !

rK∏
k=1

(Cβ(k) +1)Iβ(k),(C
β(k)+1)(T ),

or, equivalently,

(5.7) Cβ !IX1,β(ptψCβ )−
∑
K

(
Cβ

rK−2

)
1

rK(rK−1)

rK∏
k=1

(Cβ(k) +1)Iβ(k),(C
β(k)+1)(T ),

where the sum is taken among all the ordered partitions K of β:

K =(β(1), ..., β(rK)) such that
rK∑
k=1

β(k) =β, β(k) > 0, rK ≥ 2.

Remark 5.3. Note that Iβ,(Cβ+1)(T ) does not depend on Y , but only on X and
β. To prove that, we can use a simple induction argument on the maximal length
max(β) of all the partitions of β. If max(β)=1, i.e., β is primitive, then

Iβ,(Cβ+1)(T )=Cβ !IX1,β(ptψCβ ).

In the general case, Iβ,(Cβ+1)(T ) is a combination of Iβ(k),(C
β(k)+1)(T ) and other

terms independent of Y . But Iβ(k),(C
β(k)+1)(T ) is independent of Y by induction,

since clearly max(β(k))<max(β).

Example 5.4. Let us give an example of a calculation using (5.7). If X=P3,
then IP

3

1,β(ptψ4n−2)= 1
(n!)4 where β=n[line] by Example 2.3. By a simple calculation,

we see that OC(1,P3)=2. If β is the class of a conic, the unique partition is the
sum of two lines, so

OC(2,P3) = C2!
24 − C2!

(C2+2−2)!
1
2

2∏
k=1

(C1+1)OC(1,P3)
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= 45− 1
2 ·3·2·3·2

= 27,

as stated in Introduction.

6. Applications

In this section X will be a homogeneous variety, so by Proposition 4.1 OC(β,X)
coincides with Iβ,(Cβ+1)(T ). To compute OC(β,X), we need IX1,β(ptψCβ ). The
opposite direction is also possible: once we know OC(β,X) for some β, then we
can get IX1,β(ptψCβ ). For example, no point of M0,1(P1, n) represents a birational
stable map if n≥2, so by the proof of Proposition 4.1 we expect OC(1,P1)=1 and
OC(n,P1)=0 for n≥2. Equation (5.7) implies immediately IP

1

1,1(pt)=1, whilst for
n≥2 the only non zero term of the sum

∑
K

Cβ !
(Cβ+2−rK)!

1
rK !

rK∏
i=1

(Cβi +1)OC(βi,P
1)

appears when K=(1, ..., 1). So the entire sum is equal to

Cβ !
(Cβ+2−n)!

1
n!

n∏
i=1

(C1+1)OC(1,P1) = Cβ !
n!

1
n! 1 = Cβ !

(n!)2 .

Finally, the equation

OC(n,P1)=Cn!IP
1

1,n(ptψ2n−2)− Cn!
(n!)2

implies IP
1

1,n(ptψ2n−2)= 1
(n!)2 .

Using the same technique, we prove IP
s

1,1(ptψ(s+1)n−2)=1 for every s≥1. In-
deed, for n=1 (5.7) reduces to OC(1,Ps)=(s−1)!IPs

1,1(ptψ(s+1)n−2). So, it is enough
to prove the following

Proposition 6.1. OC(1,Ps)=(s−1)!.

Proof. Let Y be a hypersurface of degree d
0. All spaces DY
(m)(Ps, 1) are

empty. So by Fact 3.3, the number of osculating lines is cCβ+1(PCβ (Y ))ev∗([Y ]∨),
where Cβ=s−1. It a general fact that M0,0(Ps, 1) and M0,1(Ps, 1) are canonically
isomorphic to, respectively, the Grassmannian G=G(2, s+1) of lines in Ps and its
universal family. There exists a rank 2 tautological vector bundle E on G such that
M0,1(Ps, 1)∼=P(E). Moreover, ψ coincides with the first Chern class of the relative
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cotangent bundle of the natural map π :M0,1(Ps, 1)→G. From the exact sequence
(3.2) we get, by a simple recursion,

cs(Ps−1(Y )) = c1(L⊗s−1⊗ev∗(OPs(d)))·cs−1(Ps−2(Y ))

=
s−1∏
i=0

c1(L⊗i⊗ev∗(OPs(d)))

= dξ

s−1∏
i=1

(iψ+dξ),

where ξ :=c1(ev∗(OPs(1))). By definition ev∗([Y ]∨)= 1
dξ

s−1, so

cs(Ps−1(Y ))ev∗([Y ]∨) =
(
dξ

s−1∏
i=1

(iψ+dξ)
)

1
d
ξs−1

= ξs
s−1∏
i=1

(iψ+dξ).

Since ξi=0 if i>s, we have cs(Ps−1(Y ))[Y ]∨=ξs(s−1)!ψs−1. Moreover, it is known
that ψ=π∗c1(E∨)−2ξ (see, e.g., [EH16, Theorem 11.4]), so

cs(Ps−1(Y ))[Y ]∨ =(s−1)!ξsπ∗c1(E∨)s−1.

The degree of the zero cycle ξsπ∗c1(E∨)s−1 is equal to the number of lines through
a point and s−1 general linear subspaces of codimension 2. To prove that such
number is 1, we can use Schubert calculus as explained in [EH16, Chapter 4]. The
Schubert cycle of lines through a codimension 2 linear subspace is σ(1,0). The
Schubert cycles of lines through a point is σ(s−1,0). Using Pieri’s formula, for each
integer k≤s−1 we have (σ(1,0))k ·σ(s−1,0)=σ(s−1,k). Finally

ξsπ∗c1(E∨)s−1 =(σ(1,0))s−1 ·σ(s−1,0) =σ(s−1,s−1) =1. �

On the other hand in the case n=2, (5.7) reduces to

OC(2,Ps) = C2!IP
s

1,2(ptψ(s+1)2−2)− 1
2(C1+1)2OC(1,Ps)2(6.1)

= (2s)!IP
s

1,2(ptψ(s+1)2−2)− 1
2(s(s−1)!)2.

We have seen in Example 4.2 that OC(2,P2)=1. The case OC(2,P3)=27 was proved
by Darboux. By (6.1) we have IP

s

1,2(ptψ(s+1)2−2)= 1
2s+1 for s=2, 3.
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6.1. Computational aspects

If H2(X,Z)=Z, then by Poincaré duality all the effective homology classes of
a curve are multiples of a unique homology class. In those cases, in Equation (5.7)
K is equivalent to an ordered partition of an integer n, where n is a multiple of the
cohomology class generating H2(X,Z). The following is a Wolfram Mathematica
code for the case X=Ps, (OC(n, s) is OC(n[line],Ps)):

OC[n_, s_]:=((s+1)*n-2)!/n!^(s+1)-Sum[(((s+1)*n-2)!/((s+1)*n
-Length[K])!)*(Length[Permutations[K]]/Length[K]!)*Product
[((s+1)*K[[i]]-1)*OC[K[[i]],s],{i,1,Length[K]}],
{K,IntegerPartitions[n,{2,n}]}];

We have made several computer checks using GROWI [Gat]. All results were as
expected.

The code we give for OC(n[line],Ps) can be generalized for other varieties.
What really changes is that we have to find a way to write all the partitions of an
effective homology class β. We wrote a code when X is a product of projective
spaces. In all computations we made, the result was always an integer number,
as expected by Proposition 4.1. For example, the number of osculating curves
of class (3, 4) in P5×P6 is precisely 1237651772190153893157497812054065×107.
A Wolfram Mathematica notebook of this code can be provided upon request.
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