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Topology change of level sets in Morse theory

Andreas Knauf and Nikolay Martynchuk

Abstract. The classical Morse theory proceeds by considering sublevel sets f−1(−∞, a]
of a Morse function f : M→R, where M is a smooth finite-dimensional manifold. In this paper,
we study the topology of the level sets f−1(a) and give conditions under which the topology of
f−1(a) changes when passing a critical value. We show that for a general class of functions, which
includes all exhaustive Morse functions, the topology of a regular level f−1(a) always changes
when passing a single critical point, unless the index of the critical point is half the dimension of
the manifold M . When f is a natural Hamiltonian on a cotangent bundle, we obtain more precise
results in terms of the topology of the base space. (Counter-)examples and applications to celestial
mechanics are also discussed.

1. Introduction and notation

Let M be a smooth m-dimensional manifold without boundary (in this paper,
we consider only separable and metrizable manifolds). We recall that a function
f∈C2(M,R) is called a Morse function if for every critical point x∈M of f , the
Hessian

Hessf(x) :TxM×TxM −→R

is non-degenerate. One defines the index of a critical point by index(f, x):=dim(V ),
where V ⊆TxM is a subspace of maximal dimension on which Hessf(x) is negative
definite.

The classical Morse theory (see [24] and [27] for background material) proceeds
by considering sublevel sets

(1.1) M b := {x∈M | f(x)≤ b} and M b
a := {x∈M | a≤ f(x)≤ b}.
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Under standard compactness assumptions (for instance, if all the sets M b
a are com-

pact; see Section 2), for regular values a<b of f , the sublevel sets Ma and M b are
diffeomorphic if M b

a contains no critical points. If there is one critical point x in
the interior of M b

a, then M b∼=Ma∪Hm
k , with the handle Hm

k :=Dk×Dm−k of index
k :=index(f, x) attached along ∂Hm

k =Sk−1×Dm−k. We note that by the construc-
tion, the intersection Ma∩Hm

k is the subset Sk−1×Dm−k⊂∂Ma. In particular,
M b is homotopy equivalent to the space Ma∪Dk obtained from Ma by attaching
a k-cell Dk. This is implies that M b is not homotopy equivalent to Ma if M is
compact; cf. (2.1) below.

In the present paper we are interested in the topology of the level sets f−1(a)=
∂Ma. First we note that ∂M b and ∂Ma are always diffeomorphic if M b

a contains
no critical points. It is not difficult to see that the same can happen if M b

a contains
several critical points. In fact, simple examples (like Example 2.1 below) show that
for regular values a<b, ∂M b may be diffeomorphic to ∂Ma even when M b

a contains
a single critical point. This leads to the following natural question: under which
conditions does the topology of ∂Ma change (in the rough sense that H�(∂M b;G) 	=
H�(∂Ma;G) for some abelian group G and some �∈N0), when the function f passes
a critical level with one or several critical points? The main goal of the present paper
is to develop criteria to answer this question in many cases.

We note that the above topology change question is not completely new. It can
be traced back to Maxwell’s paper on Hills and Dales [21] published in 1870. It is
also very natural in the context of surgery theory, which according to [31] “studies
the possible handle structures on manifolds and cobordisms”. In particular, the
knot complement theorem [13], which states that non-trivial Dehn surgeries on non-
trivial knots in S3 do not give S3, and the so-called cosmetic surgery conjecture
[5] and [17], which is a generalisation of the knot complement theorem, are very
similar to this question. Recently, it has been raised by A. Albouy in connection
with the n-body problem and the topology of the corresponding integral manifolds
[2], [32] and [33]. The main question in this context, which motivated our work,
is whether for the n-body problem, the topology of the integral manifolds always
changes when passing through a bifurcation level. We note that this is true for the
two levels of the Kepler problem with a given nonzero value of angular momentum,
for n=3 celestial bodies [23], and for the planar n-body problem, provided that the
reduced Hamiltonian is a Morse function having at most two critical points on each
level set; see Section 4 and [22].

To conclude the introduction, we now give an outline of this work together
with a short summary of the results.

In Section 2, we consider level sets of abstract Morse functions, which satisfy
the so-called Palais-Smale condition [28] and for which the level sets have finitely
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generated homology groups; see Assumptions 2.2. We show that for such a function
f , the topology of f−1(a) changes when passing a single critical point, if the index k

of the critical point is different from m/2, where m is the dimension of the manifold
M . We also consider the case of several critical points on a given critical level and
prove the topology change under a certain assumption on the indices of these critical
points. Specifically, it turns out that the topology always changes when passing a
given critical level if it contains a critical point of index k 	=m/2 such that there
exists no other critical point of index k−1, k+1 or m−k; see Theorem 2.9. We note
that these results apply to functions which do not have to be everywhere Morse (it
is sufficient to assume non-degeneracy in a small neighborhood of a given critical
level), and the level sets do not have to be compact.

The general discussion of Section 2 is based on the assumption(1) that there
exists a critical point of index k 	=m/2, where m is the dimension of the ambient
manifold M . And this is to be expected, since to such a critical point there corre-
sponds a surgery on a level set that removes an embedded sphere of dimension k−1
and replaces it with a sphere of a different dimension m−k−1. When k=m/2 (note
that this is always the case in knot theory, for then k=4/2), the spheres have the
same dimension and, at least on the level of Morse function on abstract manifolds,
both outcomes for the topology change are possible. In fact, it is even possible for
a regular level set to bifurcate to another differentiable manifold without chang-
ing its homeomorphism type, as examples of exotic spheres show; see Remark 3.9.
Nonetheless, it is natural to ask for criteria which guarantee a topology change also
in this case of a middle dimension. We address this question in Section 3 for a
special class of Morse functions.

More specifically, in Section 3, we consider the case when the manifold M is
a rank n vector bundle over an n-manifold N and the Morse function f is (up to
translations) a sum of a fiberwise positive definite quadratic form and a ‘potential’
function, which is constant on the fibers. The most important such case is the one
of a Hamiltonian function

(1.2) H :M =T ∗N −→R, H(q, p)=K(p−A(q))+V (q)

on the cotangent bundle of a base manifold N ; here K and V are the system’s kinetic
and potential energy, and A is the magnetic potential. In this case, we show that
the topology of H−1(h) always changes when passing a single critical point if the
Euler characteristic of the base space N is different from ±1. In the case of abstract
vector bundles, we obtain a similar result in terms of the Euler number. We note
that the Euler number plays an important role also in the context of classification

(1) We note that a related condition k<m/2 appears very classically in a procedure of killing
the homotopy groups of manifolds [16] and [25].
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of integrable Hamiltonian systems with two degrees of freedom [4] and [12] and
monodromy of such systems [10], [19] and [20]. In Section 3 we also consider the
special case when N is an n-sphere. Because of Adams’ result on the Hopf invariant
one problem [1], it follows that in this case, no topology change is possible only in
dimensions n=2, 4 and 8.

We remark that the results of Section 3 indicate that the question of the topol-
ogy change that we consider in this paper is not only a question about surgeries on
abstract level sets; at least for the case of natural Hamiltonians on cotangent bun-
dles, it is intimately related to the global topology of the ambient manifold M=T ∗N

on which the Morse function is defined; see Theorem 3.6 and Corollary 3.8.
In Section 4, we illustrate the developed theory on specific examples from

Hamiltonian and celestial mechanics: on the quadratic spherical pendulum, the
restricted three-body problem, and the planar n-body problem. In particular, we
demonstrate that there is always a topology change for the planar n-body problem,
provided that the reduced Hamiltonian is Morse having at most two critical points
on each level set; cf [22].

We conclude the paper with the Appendix, where details of some proofs and a
few miscellaneous results are given.

2. Level sets of Morse functions

Let f∈C2(M,R) be a Morse function on a manifold M and let m:=dim(M)>0
denote the dimension of this manifold. It is not difficult to see that two level sets
f−1(a) and f−1(b) may be diffeomorphic even if there are critical values in the
subinterval [a, b]. Indeed, one can take a closed manifold M and a Morse function
f on this manifold that has unique global minimum and maximum points xmin and
xmax; then f−1(f(xmax)−ε) and f−1(f(xmin)+ε) are diffeomorphic to a sphere
Sm−1.

This is also possible if between the levels there is only one critical level with a
single critical point:

Example 2.1. (No topology change of level sets) Consider the Morse function
f=f̃ ¨π−1 :RP(2)→R, induced by

f̃ :S2 ⊆R
3 −→R, f̃(x)=

∑3
k=1 k |xk|2,

with projection π : S2→RP(2)∼=S2/S0. Then f−1(2) is a critical level with the
unique critical point ±(0 1 0), and f−1(2+ε)∼=S1∼=f−1(2−ε). Note that a similar
phenomenon arises for a perfect Morse function f on the complex projective space
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CP(2)∼=S5/S1, with regular level sets diffeomorphic to the sphere S3. So it is not
caused by lack of orientability.

More generally, there is no topology change for m even at the level of the index
m/2 critical point of the Morse function f=

∑m+1
k=1 k |xk|2 on RP(m) and, similarly,

at the level of the index m critical point of f=
∑m+1

k=1 k |zk|2 on CP(m)∼=S2m+1/S1

(m is assumed even in both cases).

So we consider the following general question: How does the homology of level
sets of a Morse function f :M→R on an m-dimensional manifold M change when
passing a critical value c∈R?

First, consider the more usual case of sublevel sets (1.1) and assume, for the
moment, that f is exhaustive, that is, that all the sublevel sets

Ma = f−1(−∞, a]

are compact. Consider a<c<b such that there is only one critical point xc∈f−1(c)
of f in M b

a. For k :=index(f, xc),
1. M b (M b

a) is homotopy equivalent to Ma (respectively, ∂Ma) with a k-cell
Dk attached.

2. M b is diffeomorphic to Ma with an m-dimensional handle Hm
k :=Dk×Dm−k

of index k attached, see [7, Theorem 17.5]. Note that this uses as data the embed-
ding S→∂Ma of a sphere S :=Sk−1 with trivial normal bundle T⊥

S (∂Ma) and, see
[27, p. 24], a bundle isomorphism

ϕ :S×R
m−k −→T⊥

S (∂Ma).

Then by excision [27, Section 2.3], one has

H
˝
(M b,Ma)∼=H

˝
(Dk, ∂Dk).

Here H
˝
(X,A)≡H

˝
(X,A;F) denotes the relative homology chain complex of a pair

(X,A). (Unless stated otherwise, the coefficients are in a field F.) By subadditivity
[27, Lemma 2.14] for the long exact homological sequence of the pair (M b,Ma), one
gets the inequality

P (Ma)+P (M b,Ma)�P (M b)

of Poincaré polynomials, with relative Poincaré polynomial P (M b,Ma)(t)=tk. The
symbol � means existence of a polynomial Q with nonnegative coefficients such that

(2.1)
(
P (Ma)+P (M b,Ma)−P (M b)

)
(t)= (1+t)Q(t).

This implies, in particular, that P (Ma) 	=P (M b).
Hence, if f is exhaustive (in particular, if M is compact) and M b

a contains a
critical level f−1(c) with one critical point, then Ma is not homotopy equivalent to
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M b. As we have seen above, for the level sets ∂Ma=f−1(a) this is no longer the
case.

We note that if M is non-compact, it may happen that the level and sublevel
sets change their topology even in the absence of critical points. This phenomenon
occurs, for instance, in the 3-body problem and in that case is due to the so-called
critical points at infinity [2]. To avoid this situation, but to include a large class of
functions on non-compact manifolds, we shall assume throughout the paper, without
always mentioning this explicitly, that f satisfies the following assumptions; cf.
[28].

Assumptions 2.2. 1. There exists a Riemannian metric on M such that M is
complete with respect to this metric and for every S⊂M on which |f | is bounded,
but the norm ‖gradf‖ is not bounded away from zero, there is a critical point of f
in the closure of S.

2. The integer homology groups of each level set ∂M b=f−1(b) are finitely
generated.

Remark 2.3. The first assumption is known as the Palais-Smale condition [28].
Under this condition, the usual Morse theory applies, even if the level sets f−1(a)
are not compact. The second condition is technical and is needed for dimension
counting. It implies, for instance, that homology groups with coefficients in a field
F are finite-dimensional; see Lemma 2.4. We note that when f is a proper function,
that is, when all the sets M b

a=f−1[a, b] are compact (in particular, when f is ex-
haustive), Assumptions 2.2 are satisfied. Non-compact examples can be found in
Sections 3 and 4.

We will need the following lemma, where the above notation is understood.

Lemma 2.4. (2) Let xc be a non-degenerate critical point of f with

k= index(f, xc)

and let F be a field. Assume that values a and b are chosen such that xc is the only

critical point in M b
a. Then we have (under Assumptions 2.2)

dimH�(∂M b;F)=dimH�(∂Ma;F)+j�,

where j�=0 if � /∈{k−1, k,m−k−1,m−k}. Moreover,

1) if 2k<m−1, then either jk−1=0 and jk=1, or jk−1=−1 and jk=0;
2) if 2k=m−1, then jk−1=0 and jk=1, 2, or jk−1=−1 and jk=0, 1.

(2) Compare with [25, Lemma 2] and [31, Proposition 4.19].



Topology change of level sets in Morse theory 339

Example 2.5. For instance, the data j1=1, j0=0, 2k<m−1 can be realised as
a bifurcation from S3 to S2×S1. Other possibilities can be realised as bifurcations
of the following form: S3�S3→S3, S2�S2→S2, R

2�R2→S1×R, S2→T
2, and

S2→KL (here KL stands for the Klein bottle).

Proof. First we consider the case of an arbitrary index k. We will come back
to the condition 2k≤m−1 at the end of the proof.

From standard Morse theory, the space M b
a is homotopy equivalent to ∂Ma

with a k-cell Dk attached. Analogously, we have that M b
a is homotopy equivalent

to ∂M b with an m−k-cell Dm−k attached. Hence,

H�(M b
a, ∂M

a) =H�(Dk, ∂Dk)=F
δk(�) and

H�(M b
a, ∂M

b) =H�(Dm−k, ∂Dm−k)=F
δm−k(�),

where we use F as the coefficients for homology groups; δk(�) stands for the Kro-
necker delta. From the exact homology sequences of the pairs (M b

a, ∂M
a) and

(M b
a, ∂M

b), we therefore get that the following sequences are exact:

F
δk(�+1) ∂−→H�(∂Ma) ia�−→H�(M b

a) ja�−→F
δk(�),

F
δm−k(�+1) ∂−→H�(∂M b) ib�−→H�(M b

a) jb�−→F
δm−k(�).

Let
a� := dim(H�(∂Ma)) , b� := dim(H�(∂M b)) , c� := dim(H�(M b

a)).

It follows that a�=c�=b� if � /∈{k−1, k,m−k−1,m−k}. This proves the first state-
ment. To prove the remaining statements, consider the homology classes [∂Dk]∈
Hk−1(∂Ma) and [∂Dm−k]∈Hm−k−1(∂M b) under the boundary homomorphisms ∂.
There are two possibilities for each of these classes: either they represent a trivial or
non-trivial element in Hk−1(∂Ma), respectively, Hk−1(∂M b). (We note that in the
closed and orientable case, Poincaré’s duality prohibits two of these four options,
but we do not make these assumptions here; cf. Example 2.5 and Remark 2.6.)

Assume that ∂[Dk]=0 and ∂[Dm−k]=0. Then there exist αk in Hk(∂Ma) such
that jak (αk)=[Dk]. In particular, αk is not in the kernel of jak and, by exactness,
not in the image of iak. It follows that ak=ck−1. Similarly, bm−k=cm−k−1. In all
other dimensions, a�=c�=b�. Hence, jk=1, jm−k=−1 and j�=0 for � 	=k,m−k.

Let ∂[Dk] 	=0 and ∂[Dm−k] 	=0. Then ak−1=ck−1+1 and bm−k−1=cm−k−1+1.
In all other dimensions, a�=c�=b�. It follows that jk−1=−1, jm−k−1=1 and j�=0
for � 	=k−1,m−k−1.

Now let ∂[Dk]=0 and ∂[Dm−k] 	=0. Then ak=ck−1 and bm−k−1=cm−k−1+1.
In all other dimensions, a�=c�=b�. Now if k 	=m−k−1, then jk=jm−k−1=1 and
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j�=0 for � 	=k,m−k−1. If k=m−k−1, that is, if 2k=m−1, then jk=2 and j�=0
for � 	=k.

In the remaining case of ∂[Dk] 	=0 and ∂[Dm−k]=0, we have the following:
ak−1=ck−1+1 and bm−k=cm−k−1. If k−1 	=m−k, then jk−1=jm−k=−1 and j�=0
for � 	=k−1,m−k. If k−1=m−k, that is, if 2k=m+1, then jm−k=−2 and j�=0
for � 	=m−k.

Collecting the above results and assuming 2k<m−1, respectively, 2k=m−1,
yields the remaining statements of the lemma. �

Remark 2.6. If M is closed and orientable, then the change in homology groups
happens according to Poincaré duality, and we can specify Lemma 2.4 further as
follows. (As above, k stands for the index of the critical point and m is the dimension
of M .)

• If 2k 	=m,m−1,m+1, then either jk−1=jm−k=−1 and the remaining j�=0,
or jk=jm−k−1=1 and j�=0 for all � 	=k,m−k−1.

• If 2k=m−1, then jk=2 and the remaining j�=0, or jk−1=jm−k=−1 and
j�=0 for � 	=k−1,m−k.

• Similarly, if 2k=m+1, then jm−k=−2 and j�=0 for all � 	=k, or jk=jm−k−1=
1 and the remaining j�=0.

Remark 2.7. In the case of the middle dimension, we can similarly obtain the
following statement. Assume that M b

a contains a single critical point of the index
k=m/2. Then the levels ∂M b and ∂Ma have different homology groups if exactly
one of the classes [∂Dk]∈Hk−1(∂Ma) and [∂Dm−k]∈Hm−k−1(∂M b) vanishes. (Here
the above notation and Assumptions 2.2 are understood.)

Observe that the function g=−f has the same level sets as the function f ;
moreover, each index-k critical point of f is also a critical point of g of index m−k.
From Lemma 2.4, we get the following result.

Theorem 2.8. Let f be a Morse function on an m-manifold M with sublevel

sets M b=f−1(−∞, b] and M b
a=f−1[a, b]. Assume that f satisfies Assumptions 2.2

and that the set M b
a contains N≥1 critical points of the same index k and no critical

points of some other index. If the homotopy type of ∂M b and of ∂Ma coincide, then

k=m/2 (in particular, m is even).

More generally, we have the following theorem.

Theorem 2.9. Let f be a Morse function on an m-manifold M . Assume that

the set M b
a contains a critical point of index k 	=m/2 such that there exists no other

critical point in M b
a of index k−1, k+1 or m−k. Then, under Assumptions 2.2, the

homotopy types of ∂M b and of ∂Ma do not coincide.
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Proof. Let xk be a critical point of index k in M b
a. We shall assume that

k<m/2; otherwise, we consider the function g=−f , which has the same level sets
as f . Let xk′ be any other critical point in M b

a, if it exists.
Let j�(xk) denote the change that occurs in the �-th Betti numbers when f

passes xk. Then, according to Lemma 2.4, either jk−1(xk)=−1 or jk(xk)=1, 2 (these
possibilities are not mutually exclusive). Moreover, we always have jk−1(xk)≤0 and
jk(xk)≥0.

For the critical point xk′ of index k′, we may observe a change in the Betti
numbers only in the following dimensions: {k′−1, k′,m−k′−1,m−k′}. Thus, if
k−1 and k do not belong to {k′−1, k′,m−k′−1,m−k′}, the statement follows.
Since k′ 	=k+1, k−1,m−k, the remaining possibilities are k′=k, k′=m−k−1, and
k′=m−k+1. We observe that

• If k′=k, then by Lemma 2.4, jk−1(xk′)≤0 and jk(xk′)≥0.
• If k′=m−k+1, then m−k′=k−1. Applying Lemma 2.4 to the function

g=−f , we get that jk−1(xk′)≤0 and jk(xk′)=0.
• Finally, consider the case k′=m−k−1. If k′<m/2, then k′=k. This case was

considered earlier. If k′>m/2, then m−k′=k+1<m/2. Moreover, jk(xk′)≥0 and
jk−1(xk′)=0. The remaining case k′=m/2 is not possible since then k+1=m/2=k′.

We conclude that in all these three cases jk−1(xk′)≤0 and jk(xk′)≥0, and
the initial change that occurs in the Betti numbers when passing xk cannot be
compensated. The result follows. �

We note that the critical points in Theorems 2.8 and 2.9 may occur at different
level sets.

3. Energy levels in classical mechanics

3.1. Mechanical systems on vector bundles

Consider a rank n vector bundle

(3.1) π : E−→N

over a connected n-manifold N without boundary. The manifold N and the bundle
π : E→N are assumed to be orientable.

We will be interested in the topology change of level sets of a ‘Hamiltonian’
function on E of the following form (3.2) (which includes the class of natural me-
chanical systems and natural mechanical systems with magnetic terms)

(3.2) H =K+V ¨π,
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where K is a Riemannian bundle metric on E and V is a Morse function on N .
We shall assume that both H and V satisfy Assumptions 2.2. We will need the
following result, which specifies how the homology groups of the level sets H−1(h)
change when passing an index-n critical point.

Lemma 3.1. Let xc be a non-degenerate local maximum of V such that there

are no other critical points on V −1(hc), hc=V (xc)=H(xc, 0). Let F be a coefficient

field and ε>0 be sufficiently small. Then the (n−1)-Betti number changes according

to

bn−1
(
H−1(hc+ε);F

)
= bn−1

(
H−1(hc−ε);F

)
+jn−1,

where jn−1=−1 if xc is not a global maximum and jn−1∈{−1, 0, 1} if xc is a global

maximum.

Proof. Let xc be a local maximum of V and hc be the corresponding critical
value. By Assumptions 2.2, for all ε>0 small, hc is the only critical value of V (and
therefore also of H) in [hc−ε, hc+ε]. We observe that:

1. By applying the Morse Lemma [27, Theorem 1.12] to V , there is a closed
neighborhood U⊆N of xc and a suitable chart ψ :U→ψ(U)=Dm⊆R

m with ψ(xc)=
0, such that V ¨ψ−1(x)=hc−‖x‖2.

2. Following a proof of the Morse lemma (for the function H), we can find a
closed neighborhood Ũ of x̃c :=(xc, 0) and a local trivialization ϕ : Ũ→Dn×Dn of
(3.1) such that ψ¨π=π1¨ϕ for π1(x, y):=x and

(3.3) H ¨ϕ−1 (x, y)=hc+‖y‖2−‖x‖2 (
(x, y)∈Dn×Dn

)
.

If ε>0 is small, then the intersections with W=π−1(U) of the levels

Σ± :=H−1(hc±ε)

are contained in Ũ ; moreover, they are the images of diffeomorphisms

f̂− :Sn−1×Dn −→Σ−∩W, respectively, f̂+ :Dn×Sn−1 −→Σ+∩W ;

see Figure 3.1.
3. The (2n−1)-manifolds with boundary

T± :=Σ±\int(W )

are naturally diffeomorphic.
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Figure 3.1. The neighborhood ˜U⊂π−1(U) of the critical point x̃c for n=dim(N)=1.

The third statement follows, for instance, from the following construction.
Specifically, consider a regular level set H−1(h). It projects to the corresponding
Hill region

Bh := {x∈N |V (x)≤h},

which is a manifold with boundary. The level set H−1(h) can be viewed as a sphere
bundle with fibers Sn−1

r(x) over x∈Bh of radius r(x)=
√

2(h−V (x)), thus collapsed
over ∂Bh.

By 1) and 2), using the chart (Ũ , ϕ), we can write

Σ− ∼=T−∪f−Sn−1×Dn and Σ+ ∼=T+∪f+D
n×Sn−1

where the attaching maps for the respective boundary components are the diffeo-
morphisms

f± := f̂±|Sn−1×Sn−1 :Sn−1×Sn−1 −→ ∂T±, (x, y) �→
(
x,

√
1±ε y

)
.

From this description it follows that under the map f−, the boundary of the n-disk
{x}×Dn is mapped to a fiber of the collapsed sphere bundle π : T−→π(T−). On
the other hand, f+(∂Dn×{y}) is a cross section. We note that

[{x}×Dn] generates Hn(Sn−1×Dn, Sn−1×Sn−1;F), if x∈Sn−1;
[Dn×{y}] generates Hn(Dn×Sn−1, Sn−1×Sn−1;F), if y∈Sn−1.

Consider the homology exact sequences of the pairs (Σ±, T±):

(3.4) F
∂∗−→Hn−1(T±;F)−→Hn−1

(
Σ±;F

)
−→ 0.
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Below we shall use this sequence, together with the information about the attaching
maps f± and some additional properties to compare the (n−1)-th homology groups
of Σ+ and Σ−.

First, consider the case of a global maximum. In this case, the statement
follows from the exactness of (3.4). Indeed, the exactness of this sequence implies
that bn−1(T±;F)=bn−1(Σ±;F) or bn−1(T±;F)=bn−1(Σ±;F)+1. (Recall that, by
the assumption, the homology groups of T± and Σ± are finite dimensional F-vector
spaces.) But by Observation 3) above, the spaces T− and T+ are diffeomorphic and,
in particular, bn−1(T+;F)=bn−1(T−;F). It follows that bn−1(Σ+;F)=bn−1(Σ−;F)+
jn−1, where jn−1∈{−1, 0, 1}.

Now consider the case when xc is a local, but not a global maximum. We
observe that the following properties hold:

A) Let B± :=Bhc±ε. The intersection ∂π(T+)∩∂B+ 	=∅.
B) For any x∈π(T−), there is a homotopy within T− between the fiber Sn−1

r(x) ↪

→T− over x (with r=
√

2(hc−ε−V (x))) and a point.
To prove A), we note that hc<hc+ε<supq V (q), so that ∂B+ 	=∅, and that

π(T+)=B+\U .
To prove B), we construct a homotopy p:Sn−1×[0, 1]→T− which projects to a

path π¨p:[0, 1]→B− from xc to a point of ∂B−\ψ−1(Sn−1√
ε

)
.

We note that properties A) and B) do not hold if xc is a global maximum. If
xc is only a local maximum, then bn−1(Σ+;F)=bn−1(Σ−;F)−1, as we now show.

• Consider the case of Σ+. The first of the maps in (3.4) is given by a
boundary homomorphism ∂∗ on Hn(Dn×Sn−1, Sn−1×Sn−1;F)∼=F. We claim that
the image of ∂∗ is non-trivial in this case. Indeed, by A), [Dn×{y}]∈Hn(Dn×
Sn−1, Sn−1×Sn−1;F)\{0}. We observed above that f+(∂Dn×{y}) is a cross sec-
tion over π(f+(∂Dn×{y})), where π is defined in (3.1). It follows that

π∗(∂∗[f+(Dn×{y})])= [∂U ].

In particular, we have that ∂∗[f+(Dn×{y})]∈Hn−1(T+) is non-zero, using B). From
the exactness of (3.4) it follows that the map Hn−1(T+)→Hn−1(Σ+) is not injective.
However, it is surjective by virtue of the last arrow in (3.4).

• Consider the remaining case of Σ−. We observe that the map

Hn−1(T−)−→Hn−1(Σ−)

is bijective; indeed, from C) it follows that image(∂∗)=0 in this case.
Recall that the homology groups of T±,Σ± are finite dimensional F-vector spaces
and that T− and T+ are diffeomorphic. By counting dimensions, we conclude that
bn−1(Σ+;F)=bn−1(Σ−;F)−1. �
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Combining Theorem 2.8 and Lemma 3.1, we get

Corollary 3.2. Consider a function on E of the form

H =K+V ¨π,

where K is a Riemannian bundle metric on E. Let xc be a non-degenerate critical

point of V that is not a global maximum. Assume that xc is the only critical point

on V −1(hc), for hc=V (xc)=H(xc, 0). Then the topology of H−1(h) changes when

h passes the critical value hc.

Remark 3.3. Assume that the base manifold N is compact and 2-dimensional.
Then for h<max V , the corresponding energy levels H−1(h) are topologically clas-
sified by the Euler characteristic of the Hill region Bh; see [3]. This gives another
proof of Corollary 3.2 in this case, since the Euler characteristic of Bh changes when
passing a Morse critical point.

Corollary 3.4. Consider a function on E of the form

H =K+V ¨π,

where K is a Riemannian bundle metric on E. Let x1, ..., xL∈V −1(hc) be the non-

degenerate global maxima of the function V on N . If L≥3, then the topology of

H−1(h) changes when h passes the critical value hc.

Remark 3.5. We note that Lemma 3.1 and Corollaries 3.2, 3.4 hold even when
the bundle (3.1) is not orientable (but the base N still is).

Below we shall study in more detail the case of a global maximum of V . In
addition to the orientability of the manifold N and the bundle π : E→N , we shall
assume that the base manifold N is compact. Under these assumptions, the Euler
number e(E) of π : E→N is defined.

The following result specifies when the topology of H−1(h) changes when pass-
ing a global maximum of V or a number N of global maxima, which are on the
same energy level.

Theorem 3.6. Let N be a closed orientable n-manifold and π : E→N be an

orientable rank n vector bundle over N . Consider the function H=K+V ¨π : E→R

on E and let x1, ..., xL∈V −1(hc) be the non-degenerate global maxima of the function

V on N . Then the topology of H changes when H passes the critical value hc if one

of the following conditions is satisfied

1) L=1 and the Euler number e(E) is not equal to ±1;
2) L=2 and the Euler number e(E) does not vanish;

3) L>2.
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Proof. The case L>2 was considered earlier. The proof in the other cases relies
on the homology exact sequence of a pair. In the case L=1, a special choice of a
coefficient group is made; specifically — Zk, where k=e(E) is the Euler number.
Details are given in Appendix A; see Theorem A.5. �

Corollary 3.7. Let N be a closed orientable n-manifold and π : E→N be an

orientable rank n vector bundle over N . If the Euler number e(E) 	=±1, then the

topology of H=K+V ¨π : E→R changes whenever H passes a critical level H−1(hc)
with one (and only one) non-degenerate critical point.

For cotangent bundles, we have the following result.

Corollary 3.8. If E=T ∗N is the cotangent bundle of a closed orientable man-

ifold N and the Euler characteristic χ(N) 	=±1, then the topology of the level sets

for H=K+V ¨π : T ∗N→R always changes when H passes a simple critical level.

This is the case, in particular, if

(1) the dimension dim(N) is odd or dim(N)=2k, where k is odd;

(2) the Betti number bdim(N)/2(N) is even.

Remark 3.9.
(1) We remark that Theorem 3.6 and Corollary 3.7 do not hold if one does

not make any assumptions on N or E. For instance, consider the tautological line
bundle over N=CP

1. Then, for any smooth function V on CP
1 (with a unique

non-degenerate maximum), we have that

H−1(hmax+ε)∼=H−1(hmax−ε)∼=S3,

since π : H−1(hmax+ε)→CP
1 is isomorphic to the Hopf bundle.

(2) By considering rank 4 vector bundles π : E→S4, one can even have a situ-
ation when H−1(hmax+ε) is homeomorphic to H−1(hmax−ε)∼=S7, but not diffeo-
morphic to it; this follows from [26].

(3) For cotangent bundles, the situation is a bit different.
First, we note that Corollary 3.8 applies to all 2-dimensional orientable surfaces

(in this case, the Euler characteristic of N is even), parallelizable manifolds N (in
particular, to all Lie groups), and odd-dimensional manifolds.

Thus, there are no counterexamples in dimensions n=3 or less.
We conjecture that the 4-manifold CP

2#T
4 with Euler characteristic

χ(CP2#T
4)=χ(CP2)+χ(T4)−χ(S4)= 3−2 = 1

is a counterexample.
We note that in the non-orientable case N=RP 2, χ(RP 2)=1, but H−1(hmax−

ε) and H−1(hmax+ε) are not diffeomorphic; they are diffeomorphic to S2×S1 and
the lens space L(4, 1), respectively [18].
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In fact, for a class of bundles, including bundles over spheres, we have a much
stronger statement, which follows from Adams’ result [1].

Proposition 3.10. Consider an orientable rank n vector bundle π : E→N

over a closed orientable manifold N and a Morse function on E of the form

H =K+V ¨π.

If the restriction π : π−1(N \U)→N \U , where U is a small disk in N , is a trivial

bundle and n 	=2, 4 or 8, then the topology of H level sets changes when passing a

simple critical level.

Proof. The statement follows from Adams’ result (Sn−1 is an H-space only in
dimensions n=1, 2, 4 and 8) [1]. �

Corollary 3.11. If N is a homotopy n-sphere, a situation of no topology

change is possible only when n=2, 4 or 8.

4. Applications

4.1. Quadratic spherical pendulum

Let S2 denote the unit sphere in R
3(x, y, z). Consider the Hamiltonian system

on T ∗S2 given by the energy function

H = 1
2 〈p, p〉+V (z),

where V =z2−z/2 is the potential. This Hamiltonian system is integrable and
is called a quadratic spherical pendulum; it naturally appears in the context of
integrable Hamiltonian systems with non-trivial monodromy [9]; see also [4] for the
necessary background. The corresponding bifurcation diagram, that is, the set of
the critical values of the energy-momentum map (H, J) : T ∗S2→R

2, is depicted in
Figure 4.1; here J is the angular momentum about the z-axis — the first integral
of the system.

The Hamiltonian function H has two non-degenerate critical points, which
correspond to the two maxima of the potential V |S2 . These points give rise to
two critical level sets. From Theorem 3.6, we conclude that the topology of H−1(h)
changes when passing each of these critical levels. The same is true when we compare
the topology of H−1(h) below and above these two critical levels. Indeed, the Euler
characteristic χ(S2)=2 is different from 0 and ±1. In fact, it can be shown that
these level sets are diffeomorphic to S2×S1, S3, and RP 3. We note that a similar
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Figure 4.1. Bifurcation diagram of the energy-momentum map (H, J), and the two curves γi
corresponding to non-trivial monodromy.

result applies also to the usual spherical pendulum, that is, when the potential
V (z)=z.

One important consequence of the topology change for such system is the non-
triviality of monodromy around the corresponding singular points; see [8] and [19]
for more details and the background.

4.2. Restricted three-body problem

The planar circular restricted 3-body problem with mass ratio μ∈(0, 1) can be
written as an autonomous Hamiltonian system on R

2×
(
R

2\
{
(−μ, 0), (0, 1−μ)

})
in

a co-rotating reference frame; the Hamiltonian function is given by

H = x′ 2+y′ 2

2 − 1
2(x2+y2)−

(
1−μ

r1
+ μ

r2

)
,

ri denoting the distances to the respective centers. There are five equilibrium points
L1, ..., L5. These are the critical points of the potential function

V =−1
2(x2+y2)−

(
1−μ

r1
+ μ

r2

)
.

Each of these critical points gives rise to a bifurcation value for the energy function
H. It is known that each such value gives rise to a topology change of the energy
levels H−1(h), and it is not difficult to determine the homotopy types of these energy
levels; the corresponding Hill regions are shown in Figure 4.2. Below we show how
this result of the topology change follows from the theory developed in this paper.
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Figure 4.2. The Hill regions and their homotopy types.

First, we note that L1, L2 and L3 are index 1 critical points for V and hence
also for H. Hence the topology changes when passing these critical values by The-
orem 2.8. The critical points L4 and L5 are of index 2, which is half the dimension
of the phase space, and are on the same energy level; these points are related by the
Z2=O(2)/SO(2) symmetry of the problem. Since the base manifold is not compact
and there are two critical points, the result follows.

4.3. Planar n-body problem

Consider the Newtonian n-body problem in R
2. The Hamiltonian of this prob-

lem is given by the function

H =
n∑

i=1

‖pi‖2

2mi
−

∑
i<j

Gmimj

‖qj−qi‖
,

where G is the gravitational constant. Reducing by the translational symmetry,
we get a Hamiltonian system on T ∗Q, where Q=R

2n−2\� with � denoting the
(reduced) collision set, that is, the set of points where qi=qj for some i 	=j, reduced
by translations.

Fixing a non-zero value of the angular momentum L=
∑

i q
x
i p

y
i −qyi p

x
i and tak-

ing the quotient with respect to the SO(2) symmetry group, one gets the reduced
symplectic manifold M of dimension 4n−6. The Hamiltonian H restricts to this
manifold as a smooth function. Following Smale [32] and [33], we are interested in
the topology of the level sets of H on this reduced manifold. Specifically, we would
like to answer the general question of whether the topology of H−1(h)|M always
changes when passing a bifurcation level.

We observe that the manifold M can be viewed as a vector bundle over R+×
CP(n−2). Here R+=(0,∞) and each point of R+ corresponds to fixing the moment
of inertia

I = 1
2

∑
i

mi‖qi‖2.
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Using [2], the reduction of the Hamiltonian to M can be rewritten in the following
form:

H =K+c2/(4ρ2)−U(q)/ρ,

where K is a bundle metric, c 	=0 is the value of L, I=ρ and U denotes the reduction
of the potential to the projective space I−1(1)/S1. From this description, it follows
that the index λ of each non-degenerate critical point is at most 2n−4< 1

2 (4n−6)=
2n−3. From Theorem 2.8, we get the following result, which also follows from
McCord [22, Proposition 5.2].

Theorem 4.1. Consider the Hamiltonian H on the reduced manifold M . As-

sume that V defines a Morse function on I−1(1)/S1=CP(n−2)\Δ̃, so that H is a

Morse function as well. Assume, moreover, that a given critical level set H−1(hc)
contains a single critical point or two critical points of the same index (related by

the Z2=O(2)/SO(2) symmetry). Then the topology of H−1(h) changes when passing

this critical level.
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A. Appendix

The goal of this section is to prove Theorem 3.6 formulated in Section 3. Recall
that we consider a smooth function of the form

H =K+V ¨π

on a rank n vector bundle π : E→N . Here N is a connected n-manifold without
boundary, K is a Riemannian bundle metric on E and V is a Morse function on
N . The manifold N and the bundle π : E→N are assumed to be orientable. In this
section, the manifold N is assumed to be compact.

Observe that a section s : N→E in general position has finitely many zeros
and that, by homogeneity, they can be assumed to be arbitrary close to some point
x∈N . This shows that E admits an almost global section, which is defined and
non-zero everywhere on N \D (and also on N \{x}), where D is an arbitrary small
disk containing x.
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We observe that for the unit sphere bundle π̃=π|S1N , the degree of the map

r ¨ s : ∂D∼=Sn−1 −→Sn−1 ∼= π̃−1(x),

where r is a retraction of π̃−1(D) onto the central fiber π̃−1(x), is equal to the
intersection number of s(N) and the zero section N⊂E.

We will need the following lemma.

Lemma A.1. ([11, Section 19.6B] and [14, Section 4.D])The Euler number

e(E), that is, the pairing of the Euler class of E with N , is given by the intersection

number of the zero section N⊂E and a section in general position. If E=T ∗N is

the cotangent bundle, the Euler number equals the Euler characteristic of N .

We will also need the following result.

Lemma A.2. Let π : E→B be an orientable n-vector bundle over a manifold

B (possibly with boundary). Assume that there exists a global, everywhere non-zero

section s of π. Let π̃=π|S1B : S1B→B be the unit sphere bundle of π (with respect

to some bundle metric). Then, for any coefficient group G, the relative homology

groups of (S1B, ∂S1B) are the same as for the direct product (B×Sn−1, ∂B×Sn−1).
Moreover, for all b∈B and any G, π̃−1(b) represents a non-trivial homology class

in Hn−1(S1B;G).

Proof. Take any simplicial decomposition K of B and the standard cellular
decomposition {pt}∪Dn−1 of Sn−1. Then construct a cellular decomposition of
S1B as follows. For any simplex ck∈K, consider the preimage π−1(ck). It is
a direct product ck×R

n. Without loss of generality, the section s has the form
b �→e1=(1, 0, ..., 0)∈Sn−1

b ⊂Rn, where Sn−1
b =π̃−1(b) is the fiber of π̃ over b∈ck. The

preimage π̃−1(ck) is thus a direct product ck×Sn−1. Moreover, it admits a cellular
decomposition of the form

ck×{e1}∪ck×Dn−1.

Since for any k-cell ck∈K, the distinguished point e1 is given by the section s, we
have that the boundary operator for S1B satisfies

∂(ck×{e1})= (∂ck)×{e1}.

Moreover, since the bundle π and hence π̃ are trivial over the closure ck, we have
that

∂(ck×{Dn−1}) =
∑
i

±(−1)icik×{Dn−1},
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where ∂ck=
∑

(−1)icik is the boundary of ck with the induced orientation. We
observe that since π and hence π̃ are orientable, the sign can be chosen so that
∂(ck×{Dn−1})=∂ck×{Dn−1}. We conclude that the boundary operator is the
same as for the direct product.

To prove the last statement, consider the cell {b0}×Dn−1, where b0 is a vertex
of K. We observe that this cell is not a boundary of C1×Dn−1 or Cn×{e1} (here
C1 and Cn are some 1 and n chains in K, respectively). Indeed, ∂C1 consists of an
even number of points and the boundary ∂(Cn×{e1}) is transverse to the fibers.
�

Remark A.3. From Lemma A.2 it follows that if π|S1B : S1B→B admits a
global section, then the homology groups of S1B can be computed using a Künneth
formula.

Example A.4. As an example, consider the Stiefel manifold Vk,2. It can be
viewed as the unit tangent bundle of Sk−1. It is known that the integer homology
groups of V2k,2 are the same as for the product S2k−1×S2k−2; see [14, Section 3.D].
On the other hand, V2k,2 is not homeomorphic to the product S2k−1×S2k−2, unless
k=1, 2 or 4 [1] and [15]. We note that the integer homology groups of V2k+1,2 are
different from the homology groups of S2k×S2k−1; in this case there is no global
section since the base S2k is even-dimensional.

Let e(E) denote the Euler number of π : E→N . We are ready to prove the
desired result (Theorem 3.6).

Theorem A.5. Let N be a closed orientable n-manifold and π : E→N be an

orientable rank n vector bundle over N . Consider the function H=K+V ¨π : E→R

on E and let x1, ..., xL∈V −1(hc) be the non-degenerate global maxima of the function

V on N . Then the topology of H changes when H passes the critical value hc if one

of the following conditions is satisfied

1) L=1 and the Euler number e(E) is not equal to ±1;
2) L=2 and the Euler number e(E) does not vanish;

3) L>2.

Proof. The case L>2 was considered earlier, so we only need to consider the
cases L=1 and L=2.

Case L=1. Let xmax be the unique non-degenerate global maximum of V and
hmax=H(xmax, 0)=V (xmax). Fix a small number ε>0. Then the level sets Σ± :=
H−1(hmax±ε) are regular. We observe that the level Σ+ is homeomorphic to the
unit sphere bundle S1N of E.
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Let T±=H−1(hc±ε)\π−1(U), where U is a small open disk containing the
maximum xmax. Observe that the sets T− and T+ are sphere bundles over L\U ,
and that these sphere bundles are isomorphic through a radial projection. Similarly
to the proof of Lemma 3.1, we have that

Σ− ∼=T−∪f−Sn−1×Dn and
Σ+ ∼=T+∪f+D

n×Sn−1,

where the attaching maps for the respective boundary components are such that
f−({x}×∂Dn) is a fiber of the sphere bundle π : T−→N \U and f+ comes from
the sphere bundle structure on Σ+. In particular, f+({x}×Sn−1) is a fiber of
π : T+→N \U and f+(∂Dn×{y}) is a section over ∂U .

Consider a part of the homology exact sequences of the pairs (Σ±, T±):

(A.1) G
∂∗−→Hn−1(T±;G)−→Hn−1

(
Σ±;G

)
−→ 0.

Observe that the map Hn−1(T−;G)→Hn−1
(
Σ−;G

)
has a non-trivial kernel, given

by the homology class of the fiber f−({x}×∂Dn); this homology class is non-trivial
in Hn−1(T−;G) by Lemma A.2. On the other hand, this map is surjective.

The bundle π : T+→N \U also has a global section. We denote it by f . We
observe that the restriction of f−1

+ ¨f to the boundary sphere ∂U∼=Sn−1 is a map
of degree k 	=±1, where k is the Euler number. (Strictly speaking, f−1

+ ¨f maps into
Dn×Sn−1, but this space deformation retracts onto Sn−1.) The section ∂Dn×{y}
gives rise to a map of degree 0.

Setting G=Zk for k 	=0 and G=R for k=0, we get that f(∂U) and f+(∂Dn×
{y}) are of the same G-homology class in ∂T+. Hence [f+(∂Dn×{y})] is trivial in
the group Hn−1(T+;G) and

Hn−1
(
Σ+, G

)∼=Hn−1(T+;G)

when G=Zk (or R when k=0). Since T− and T+ are diffeomorphic and also com-
pact, it follows that the (n−1)-th homology groups Hn−1(Σ+;G) and Hn−1(Σ−;G)
are not isomorphic for G=Zk.

Case L=2. We shall assume that the two maxima are on close, but different
level sets of V , and that we are passing both of these maxima at the same time.
Then one maximum becomes local and the other global.

Consider what happens when we pass the second (global) maximum. We ob-
serve that there is an almost global section f such that the restriction of f−1

+ ¨f

to the boundary sphere ∂U∼=Sn−1 is a map of degree k 	=±1, where k is the Eu-
ler number. By the assumption, k 	=0. Observe that f(∂U) is trivial in the group
Hn−1(T+;G). However, if G=R, then f+(∂Dn×{y}) is non-trivial in Hn−1(T+;G).
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Indeed, using a suitable cellular decomposition of T+ (see Lemma A.2), we get that
any relative n-cycle in T+ is given by linear combinations of

a) The products of relative 1-cycles in (N \U, ∂U) and Dn−1, where Dn−1∪
{pt}=Sn−1;

b) The section f(N \U).
But the boundary of any n-cycle as in a) vanishes in ∂U×Sn−1, whereas ∂f(N \U)
and f+(∂Dn×{y}) are different homology cycles in ∂U×Sn−1 since k 	=0. It follows
that f+(∂Dn×{y}) is not a boundary and that

bn−1(Σ+,R)+1 = bn−1(T+,R).

Since
bn−1(Σ−,R)+1 = bn−1(T−,R)

and since T− and T+ are homeomorphic and also compact, we get that bn−1(Σ+,R)=
bn−1(Σ−,R). But Lemma 3.1 implies that the other (local) maximum contributes
to the change of the (n−1)-Betti number, also when G=R. The result follows. �

Remark A.6. Assume that the maxima x1, ..., xL are not located on one critical
level, but belong to (the interior of) the set V −1[a, b], a<b, that contains no other
critical points. In this case, the same result holds if one compares the topology of
H−1(a) with that of H−1(b); cf. Subsection 4.1.

Remark A.7. We note that if L=1 and the Euler class vanishes, then the
(n−1)-Betti number changes according to

bn−1
(
H−1(hc+ε);F

)
= bn−1

(
H−1(hc−ε);F

)
+1,

where F is a field; cf. Lemma 3.1.
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