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On systems of non-overlapping Haar
polynomials

Grigori A. Karagulyan

Abstract. We prove that logn is an almost everywhere convergence Weyl multiplier for the
orthonormal systems of non-overlapping Haar polynomials. Moreover, it is done for the general
systems of martingale difference polynomials.

1. Introduction

Recall some definitions well-known in the theory of orthogonal series (see [4]).

Definition 1.1. Let Φ={φn : n=1, 2, ...}⊂L2(0, 1) be an orthonormal system.
A sequence of positive numbers ω(n)↗∞ is said to be an a.e. convergence Weyl
multiplier (shortly C-multiplier) if every series

∞∑
n=1

anφn(x),

with coefficients satisfying the condition
∑∞

n=1 a
2
nω(n)<∞ is a.e. convergent. If

such series converges unconditionally a.e., then we say ω(n) is an a.e unconditional
convergence Weyl multiplier (UC-multiplier) for Φ.

The Menshov-Rademacher classical theorem ([6], [10]) states that the sequence
log2 n is a C-multiplier for any orthonormal system. The sharpness of log2 n in this
theorem was proved by Menshov in the same paper [6]. That is any sequence
ω(n)=o(log2 n) fails to be C-multiplier for some orthonormal system.
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The following inequality is the basic part in the proof of the Menshov-Rade-
macher theorem.

Theorem A. (Menshov-Rademacher, [6], [10], see also [4]) If {φk : k=1, 2, ...,
n}⊂L2(0, 1) is an orthogonal system, then∥∥∥∥∥ max

1≤m≤n

∣∣∣∣∣
m∑

k=1

φk

∣∣∣∣∣
∥∥∥∥∥

2

≤ c·logn

∥∥∥∥∥
n∑

k=1

φk

∥∥∥∥∥
2

,

where c>0 is an absolute constant.

Similarly, the counterexample of Menshov is based on the following results.

Theorem B. (Menshov, [6]) For any natural number n∈N there exists an
orthogonal system φk, k=1, 2, ..., n, such that∥∥∥∥∥ max

1≤m≤n

∣∣∣∣∣
m∑

k=1

φk

∣∣∣∣∣
∥∥∥∥∥

2

≥ c·logn

∥∥∥∥∥
n∑

k=1

φk

∥∥∥∥∥
2

,

for an absolute constant c>0.

Let Φ={φk(x), k=1, 2, ...}⊂L2(0, 1) be an infinite orthogonal system of func-
tions. Denote by Pn(Φ) the family of all monotonic sequences of Φ-polynomials

pk(x)=
∑
j∈Gk

cjφj(x), k=1, 2, ..., n,

where G1⊂G2⊂...⊂Gn⊂N and
∑

j∈Gn
c2j �=0. Define

Kn(Φ)= sup
{pk}∈Pn(Φ)

‖max1≤m≤n |pm|‖2
‖pn‖2

.

From Theorem A it follows that Kn(Φ)≤c·logn for every orthogonal system Φ,
where c is an absolute constant. On the other hand, applying Theorem B, one can
also construct an infinite orthogonal system with the lower bound Kn(Φ)≥c·logn,
n=1, 2, .... Thus we conclude, in general, the logarithmic upper bound of Kn(Φ) is
optimal. We will see below that from results of Nikishin-Ulyanov [7] and Olevskii
[8] it follows that Kn(Φ)�

√
logn for any complete orthonormal system Φ.

In this paper we found the sharp rate of the growth of Kn(∼
√

logn) for the
generalized Haar systems. The classical Haar system case of the result is also new.
The upper bound Kn�

√
logn will be proved for the general systems of martingale

type.
Given martingale Fn∈L2(0, 1), n=1, 2, ..., defines an orthogonal system fn=

Fn+1−Fn that is called a martingale difference. Consider the following general
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example of martingale difference. A partition is a family of pairwise disjoint mea-
surable sets A={Ek} such that μ(Ek)>0, ∪kEk=[0, 1). A sequence of partitions
An, n=1, 2, ..., is said to be a filtration if each A∈An is a union of some elements of
An+1. A martingale difference based on a filtration {An : n=1, 2, ...} is a sequence
of functions fn∈L2(0, 1), satisfying the conditions

(1) Every function fn is constant on each A∈An.
(2) We have

∫
A
fn=0 for any A∈An−1, n≥2.

We will call such a sequence of functions to be a discrete type martingale difference.
Consider a filtration {An} such that 1) each An consists of n intervals of the form
[a, b), 2) the family An+1 is obtained from An replacing a single interval A∈An

by two disjoint intervals A′, A′′(∈An+1) with A=A′∪A′′, and 3) maxA∈An |A|→0
as n→∞. A generalized Haar system is a L2-normalized martingale difference
generated by a such filtration. If in the replacements we additionally have |A′|=|A′′|,
then the filtration produces a rearranged classical Haar system. It is well-known
that any generalized Haar system is complete.

Recall few standard notations. The relation a�b (a�b) will stand for the
inequality a≤c·b (a≥c·b), where c>0 is an absolute constant. Given two sequences
of positive numbers an, bn>0, we write an∼bn if we have c1 ·an≤bn≤c2 ·an, n=
1, 2, ... for some constants c1, c2>0. Throughout the paper, the base of log is equal 2.
The following theorems are the main results of the paper.

Theorem 1.2. If Φ is a martingale difference, then Kn(Φ)�
√

logn.

Theorem 1.3. For any generalized Haar system H we have the relation

(1.1) Kn(H)∼
√

logn.

In the class of all martingale differences the upper bound in Theorem 1.2 is
optimal that readily follows from Theorem 1.3. One can easily see that for the
Rademacher system we have Kn∼1. So relation (1.1) can not be extended for
general martingale differences. Such estimates of Kn(Φ) characterize Weyl multi-
pliers of a given orthonormal system Φ. From Theorem 1.2 we deduce the follow-
ing.

Corollary 1.4. If F={fn} is a martingale difference, then logn is a C-multi-
plier for any system of L2-normalized non-overlapping F-polynomials

pn(x)=
∑
j∈Gn

cjfj(x), n=1, 2, ...,

where Gn⊂N are finite and pairwise disjoint.
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The following result is interesting and immediately follows from Corollary 1.4.

Corollary 1.5. The sequence logn is a C-multiplier for any rearrangement of
a generalized Haar system.

Corollary 1.6. Let {pn} be a sequence of L2-normalized non-overlapping
polynomials with respect to a martingale difference. If ω(n)/ logn is increasing
and

(1.2)
∞∑

n=1

1
nω(n) <∞,

then ω(n) is an UC-multiplier for {pn}.

The only prior result in this context is due to Ulyanov (see [11], [12] or [4],
ch. 2 Theorem 17). It states that condition (1.2) is a necessary and sufficient for
ω(n) to be an UC-multiplier for the Haar classical system. The optimality of logn
in Corollary 1.5 as well as condition (1.2) in Corollary 1.6 both follows just from
this result of Ulyanov.

We prove Theorem 1.2 using a good-λ inequality due to Chang-Wilson-Wolff
[1], which is an extension of classical Azuma-Hoeffding and Bernstein inequalities
for martingales. See also [2], where the same method has been first applied in the
study of maximal functions of Mikhlin-Hörmander multipliers.

Remark. Recall that an orthonormal system Φ is said to be a convergence
system if ω(n)≡1 is a C-multiplier for Φ. It was proved by Komlós-Révész [5] that
if an orthonormal system Φ={φn}⊂L2(0, 1) satisfies ‖φn‖4≤M, n=1, 2, ..., and we
have

(1.3)
∫ 1

0
φn1φn2φn3φn4 =0

for any choice of different indexes n1, n2, n3, n4, then Φ is a convergence system.
One can check that systems of non-overlapping martingale difference polynomials
satisfy (1.3). Thus, with the extra condition ‖pn‖4≤M in Corollary 1.4 we can
claim that {pn} is a convergence system.

Question. Is the additional condition ‖pn‖p≤M in Corollary 1.4, with a fixed
2<p<4, is sufficient for {pn} to be a convergence system?

2. Measure-preserving transformations

A mapping τ :[0, 1)→[0, 1) is said to be measure-preserving (MP) transforma-
tion if |τ−1(A)|=|A| for any Lebesgue measurable set A⊂[0, 1). A set in [0, 1) is
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said to be simple, if it is a finite union of intervals (of the form [α, β)). Let a be a
simple set. One can easily check, that the function

ξa(x)= |[0, x)∩a|
|a|

defines a one to one mapping from a to [0, 1), such that |ξa(E)|=|E|/|a| for any
Lebesgue measurable set E⊂a. Given integer n≥1 the mapping ηn(x)={nx} defines
an MP-transformation of [0, 1). Observe that if a is a simple set, then for any integer
n≥1 the mapping

ua,n(x)=
{

((ξa)−1
¨ηn¨ξa)(x) if x∈a,

x if x∈[0, 1)\a,

determines an MP-transformation of [0, 1) that maps the set a to itself. Moreover,
for any functions f, g∈L2(0, 1) we have

(2.1) lim
n→∞

∫
a

f(ua,n(x))g(x) dx=
∫
a

f(x) dx·
∫
a

g(x) dx

that is a well-known standard argument. Let A={aj} be a partition such that each
element aj is simple. Given integer n≥1 we consider the MP-transformation

uA,n(x)=
∑
j

uaj ,n(x)·1aj (x)

that maps every aj to itself. This is an MP-transformation of [0, 1) that maps each
set aj to itself and from (2.1) it follows that

(2.2) lim
n→∞

∫ 1

0
f(uA,n(x))g(x) dx=

∑
j

∫
aj

f(x) dx·
∫
aj

g(x) dx

for any functions f, g∈L2(0, 1). An MP-transformation τ is said to be simple if
τ−1(a) is simple set whenever a is simple. Obviously all above described MP-
transformations are simple.

We say that a function system {f̃n} is a transformation of another system {fn}
if for every choice of numbers mk∈N and λk∈R it holds the equality

|{fmk
(x)>λk, k=1, 2, ..., n}|= |{f̃mk

(x)>λk, k=1, 2, ..., n}|.

For example, this relation occurs when f̃k(x)=fk(τ(x)) for some MP-transforma-
tion τ .

The following lemma is an extension of a lemma of Olevksii [8] (see also [4],
ch. 10, Lemma 1) proving the same for the classical Haar system.
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Lemma 2.1. Let Φ={φk(x)} be a complete orthonormal system and F=
{fn} be a martingale difference. Then for any sequence of numbers εk>0 there
exists a transformation F̃={f̃n} of the system F and a sequence of non-overlapping
Φ-polynomials pk such that

(2.3) ‖f̃k−pk‖2 <εk, k=1, 2, ....

Proof. Given general martingale difference fn and numbers εn>0 one can find
a discrete type martingale difference gn such that ‖gn−fn‖2<εn. Moreover, we
can also suppose that gn is based on a filtration consisting of intervals. So without
loss of generality we can assume that fn is itself a such martingale difference. We
shall realize the constructions of sequences f̃k and pk by induction. First, we take
f̃1=f1. Approximation of f1 by a Φ-polynomial p1 gives (2.3) for k=1 that is the
base of induction. Then suppose that we have already defined f̃k, pk, k=1, 2, ..., l,
satisfying the condition (2.3) such that f̃k(x)=fk(τl(x)), k=1, 2, ..., l, where τl is
a simple MP-transformation (maps a simple set to a simple set). Let A={aj}
be the partition of [0, 1) that is formed by the maximal sets, where each function
f̃k, k=1, 2, ..., l is constant. Clearly each aj is a simple set. Since uA,n maps
each aj to itself, τl+1=τl¨uA,n determines a simple MP-transformation so that
fk(τl+1(x))=fk(τl(x))=f̃k(x), k=1, 2, ..., l, and

(2.4)
∫
αi

fl+1(τl(x)) dx=0, i=1, 2, ....

From (2.2) and (2.4) it follows that

lim
n→∞

∫ 1

0
fl+1(τl+1(x))φi(x) dx= lim

n→∞

∫ 1

0
fl+1(τl ¨uα,n)(x)φi(x) dx(2.5)

=
∑
i

∫
αi

fl+1(τl(x)) dx
∫
αi

φj(x) dx dx=0

for any i=1, 2, .... We will chose n bigger enough and define f̃l+1(x)=fl+1(τl+1(x)).
Let ci be the Fourier coefficients of the function f̃l+1 in system Φ. Suppose that each
polynomial pk, k=1, 2, ..., l, is a linear combination of functions φj , j=1, 2, ...,m.
From (2.5) it follows that for a bigger enough n we have

∑m
i=1 c

2
i <ε2

l+1/4. Then we
can chose an integer r>m such that

∑∞
i=r+1 c

2
i <ε2

l+1/4. Define

pl+1(x)=
r∑

i=m+1
ciφi(x).

Since Φ is a complete system, one can easily check that (2.3) is satisfied for k=l+1
that finalizes the induction and so the proof of lemma. �
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3. Proof of Theorem 1.2

We will first prove the theorem for the classical Haar system. Let hn be the
L2-normalized classical Haar system. For a given function f∈L1(0, 1) let

∑∞
k=1 akhk

be the Fourier-Haar series of f . Recall the maximal and the square functions oper-
ators defined by

Mf(x)= sup
n≥1

∣∣∣∣∣
n∑

k=1
akhk(x)

∣∣∣∣∣ , Sf(x)=
( ∞∑

k=1
a2
kh

2
k(x)

)1/2

.

It is well known the boundedness of both operators on Lp, 1<p<∞ (see for example
[4], ch. 3, Theorems 4 and 9). A key point in the proof of Theorem 1.2 is the following
good-λ inequality due to Chang-Wilson-Wolff (see [1], Corollary 3.1):

(3.1) |{x∈ [0, 1) : Mf(x)>λ, Sf(x)<ελ}|

� exp
(
− c

ε2

)
|{Mf(x)>λ/2}|, λ> 0, 0<ε< 1.

So let pk, k=1, 2, ..., n, be a monotonic sequence of Haar polynomials. We have
|g(x)|≤Mg(x) a.e. for any function g∈L1, as well as Spk(x)≤Spn(x), k=1, 2, ..., n.
Thus, applying inequality (3.1) with εn=(c/ lnn)1/2, we obtain

|{|pk(x)|>λ, Spn(x)≤ εnλ}|(3.2)

� exp
(
− c

ε2
n

)
|{Mpk(x)>λ/2}|.

For p∗(x)=max1≤m≤n |pm(x)| we obviously have

{p∗(x)>λ}⊂{p∗(x)>λ, Spn(x)≤ εnλ}
∪{Spn(x)>εnλ}=A(λ)∪B(λ),

and thus
‖p∗‖2

2 ≤ 2
∫ ∞

0
λ|A(λ)| dλ+2

∫ ∞

0
λ|B(λ)| dλ.

From (3.2) it follows that∫ ∞

0
λ|A(λ)| dλ≤

n∑
m=1

∫ ∞

0
λ|{|pm|>λ, Spn ≤ εnλ}| dλ

≤ exp
(
− c

ε2
n

) n∑
m=1

∫ ∞

0
λ|{Mpm >λ/2}| dλ

� 1
n

n∑
m=1

‖Mpm‖2
2
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� 1
n

n∑
m=1

‖pm‖2
2

≤‖pn‖2
2.

Combining this and

2
∫ ∞

0
λ|B(λ)| dλ= ε−2

n ‖Spn‖2
2 � logn·‖pn‖2

2,

we get

‖p∗‖2 =
∥∥∥∥ max

1≤m≤n
|pm(x)|

∥∥∥∥
2
�
√

logn·‖pn‖2

that proves the theorem for the Haar system. Clearly we will have the same bound
also for any transformation of the Haar system. To proceed the general case we
suppose that F={fn} is an arbitrary martingale difference and let

Fk =
∑
j∈Gk

cjfj , k=1, 2, ..., n,

be an arbitrary monotonic sequence of F-polynomials. Apply Lemma 2.1, choosing
Φ to be the Haar classical system and εj=ε for j∈Gn. So we get (2.3) for non-
overlapping Haar polynomials pk. Denote F̃k=

∑
j∈Gk

cj f̃j . Obviously,

Pk =
∑
j∈Gk

cjpj , k=1, 2, ..., n,

forms a monotonic sequence of Haar polynomials. For a small enough ε we will
have

‖F̃k−Pk‖2 ≤

⎛⎝ ∑
j∈Gn

c2j

⎞⎠1/2 ⎛⎝ ∑
j∈Gn

ε2
j

⎞⎠1/2

= ε
√

#(Gn)

⎛⎝ ∑
j∈Gn

c2j

⎞⎠1/2

≤ ‖Pn‖2

n
.

Therefore, taking into account that the theorem is true for the Haar system, we get∥∥∥∥ max
1≤m≤n

|Fk|
∥∥∥∥

2
=
∥∥∥∥ max

1≤m≤n

∣∣∣F̃k

∣∣∣ ∥∥∥∥
2
≤
∥∥∥∥ max

1≤m≤n
|Pk|

∥∥∥∥
2
+‖Pn‖2

�
√

logn·‖Pn‖2 �
√

logn·‖Fn‖2.

This completes the proof of theorem.
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4. Proof of Theorem 1.3

The upper bound Kn(H)�
√

logn follows from Theorem 1.2. The lower bound

(4.1) Kn(H)�
√

logn

for the classical Haar system follows from the Nikishin-Ulyanov [7] inequality∥∥∥∥∥ sup
1≤m≤n

∣∣∣∣∣
m∑

k=1

akχσ(k)

∣∣∣∣∣
∥∥∥∥∥

2

�
√

logn·
(

n∑
k=1

a2
k

)1/2

,

valid for appropriate coefficients ak and permutation σ of the numbers {1, 2, ..., n}.
We will have the same estimate (4.1) also for any transformation of the classical
Haar system. Then we apply Olevskii lemma ([4], ch. 10, Lemma 1), that is the
case of Lemma 2.1 when F coincides with the classical Haar system. So we get a
transformed Haar system {h̃n} and a sequence of non-overlapping Φ-polynomials
pk such that

‖h̃k−pk‖2 <εk, k=1, 2, ....
Since εk’s here can be arbitrarily small, one can conclude Kn(Φ)≥Kn(H). Combin-
ing this and (4.1) we get the following.

Proposition 4.1. If Φ is a complete orthonormal system, then Kn(Φ)�
√

logn.

Since any generalized Haar system is complete, the lower bound (4.1) immedi-
ately follows from Proposition 4.1.

5. Proof of corollaries

Lemma 5.1. ([3], Theorem 5.3.2) Let {φn(x)} be an orthonormal system and
ω(n)↗∞ be a sequence of positive numbers. If an increasing sequence of indexes
nk satisfy the bound ω(nk)≥k, then the condition

∑∞
k=1 a

2
kω(k)<∞ implies a.e.

convergence of sums
∑nk

j=1 ajφj(x) as k→∞.

Proof of Corollary 1.4. Consider the series
∞∑
k=1

akpk(x)

with coefficients satisfying the condition
∑∞

k=1 a
2
k log k<∞ and denote Sn=∑n

k=1 pk. Since ω(n)=logn satisfies the condition ω(2k)≥k, from Lemma 5.1 we
have a.e. convergence of subsequences S2k(x). So we just need to show that

(5.1) δk(x)= max
2k<n≤2k+1

|Sn(x)−S2k(x)| −→ 0 a.e. as k−→∞.
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We have

‖δk‖2 ≤K2k(F)

⎛⎝ 2k+1∑
j=2k+1

a2
j

⎞⎠1/2

�
√
k

⎛⎝ 2k+1∑
j=2k+1

a2
j

⎞⎠1/2

.

So we get
∞∑
k=1

‖δk‖2
2 ≤

∞∑
k=1

k

2k+1∑
j=2k+1

a2
j ≤

∞∑
j=1

a2
j log j <∞,

which implies (5.1). �

To prove the next corollary we will need another lemma.

Lemma 5.2. ([13], [9]) Let u(n) be a C-multiplier for any rearrangement of
the orthonormal system Φ={φn(x)}. If an increasing sequence of positive numbers
δ(k) satisfies the condition

(5.2)
∞∑
k=1

1
δ(k)k log k <∞,

then δ(n)u(n) turns to be a UC-multiplier for Φ.

Proof of Corollary 1.6. According to Corollary 1.4 u(n)=logn is a C-multiplier
for the systems of non-overlapping MD-polynomials and their rearrangements. By
the hypothesis of Corollary 1.6 the sequence δ(n)=ω(n)/ log n is increasing and
satisfies (5.2). Thus, the combination of Corollary 1.4 and Lemma 5.2 completes
the proof. �
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