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Invariant curves for holomorphic foliations on
singular surfaces

Edileno de Almeida Santos

Abstract. The Separatrix Theorem of C. Camacho and P. Sad says that there exists at
least one invariant curve (separatrix) passing through the singularity of a germ of holomorphic
foliation on complex surface, when the surface underlying the foliation is smooth or when it is
singular and the dual graph of resolution surface singularity is a tree. Under some assumptions,
we obtain existence of separatrix even when the resolution dual graph of the surface singular point
is not a tree. It will be necessary to require an extra condition of the foliation, namely, absence of
saddle-node in its reduction of singularities.

1. Introduction

In the local theory of holomorphic foliations, one of the first questions was
about the existence of invariant curve (separatrix) through isolated singularity of a
holomorphic vector field on (C2, 0). This problem was posed and investigated by C.
Briot and J. Bouquet in 1854. The definitive solution was given many years later,
in 1982, when C. Camacho and P. Sad showed in [4] the following

Theorem. (Separatrix Theorem) Let v be a holomorphic vector field defined

on neighbourhood of 0∈C2 and with isolated singularity at the origin. Then there

exists an invariant curve for v through 0∈C2.

In 1988, C. Camacho showed in [3] an extension of this result to include folia-
tions on some singular surfaces:
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Theorem. Let X be a complex normal irreducible surface. Suppose the dual

graph of resolution singularity at p∈X is a tree. Then any germ of holomorphic

foliation, singular at p, has an invariant curve through p.

A very elegant proof was given by M. Sebastiani in [9] (see also the exposition
of M. Brunella in [2]). In the non singular case, M. Toma in [10] and J. Cano in [5]
gives alternative proofs. Here we explore the surface singular case, but without the
hypothesis on the dual graph.

A holomorphic foliation F on a smooth complex surface X is given by an open
covering {Ui} and holomorphic vector fields with isolated singularities vi over each
Ui such that whenever Ui∩Uj �=∅ there exists an invertible holomorphic function
gij satisfying vi=gijvj . The collection {g−1

ij } defines the holomorphic line bundle
TF , called the tangent bundle of F . The dual of TF is the cotangente bundle T ∗

F ,
also called the canonical bundle KF . Recall that a reduced foliation F is a foliation
such that every singularity p is reduced in Seidenberg’s sense: there is a vector field
v generating F on neighbourhood of p such that the eigenvalues of the linear part
of v are 1 and λ, where λ is not a positive rational number. If λ=0, the singularity
p is called a saddle-node; otherwise it is called a nondegenerate singularity. The
well-known Seidenberg’s Theorem states that after a finite sequence of blowing-ups
over a singularity p the induced foliation is reduced along the strict transform of p
(see Theorem 1, [2], p. 13). This process is called reduction of singularities.

If X is a surface with only normal singularities, a holomorphic foliation on X

is a holomorphic foliation on X−Sing(X). The tangent sheaf TF and the normal
sheaf NF are defined by taking the direct images via the inclusion X−Sing(X)→X

of the tangent and normal sheaves of the underlying foliation on X−Sing(X).
In [3], C. Camacho gives an example of non existence of separatrix. Let π :

Y →X be a resolution of the normal surface singularity p∈X, where π−1(p)=E=
E1+E2+E3 is a curve with simple normal crossings and each Ej is a smooth rational
curve, with self-intersections E2

1 =−2, E2
2 =−2 and E2

3 =−3. To find a reduced
foliation without saddle-node on neighbourhood of the curve E such that E is
F-invariant and Sing(F)∩E=Sing(E), consider the dual graph Γ of E, which is a
cycle, as illustrated bellow:

˝E1
λ1,2

����
��
� λ1,3

��
��

��
�

˝E2 λ2,3

��
˝E3

where λij=CS(F , Ci, pij) is the Camacho-Sad Index (see [2]), {pij}=Ei∩Ej . Thus
λ1,2+λ1,3=E2

1 , 1
λ1,2

+λ2,3=E2
2 , 1

λ2,3
+ 1

λ1,3
=E2

3 . These conditions are enough to
construct the foliation on neighbourhood of the curve E as desired (if the λij are
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not rational numbers, then the foliation will be reduced and without saddle-nod;
see proof by Lins-Neto of the main theorem in [7]). In this way, if we contract the
exceptional curve E to the surface singular point p, we obtain a foliation without
separatrix trough the singularity p.

Hence we can ask now:

What conditions can we require from the foliation to exist separatrix even when the
resolution dual graph is not a tree?

First, in Section 2 we investigate relationships between foliations and their in-
variant compact curves by means of the logarithmic co-normal bundle, in particular
we analyse the situation in which such a bundle restricted to the curve is trivial,
which leads us to the notions of residues and residual representation. From these
ideas, in Section 3 we explore the Separatrix Theorem. The main result is:

Theorem 1. (Theorem 3.13) Let F be a foliation on the normal singular

surface X. If the foliation has no saddle-node in its resolution/reduction over the

singularity p∈X and the normal sheaf NF is Q-Gorenstein, then F has a separatrix

through p.

In the above theorem, a sheaf S on a singular surface is called Q-Gorenstein if
there is a positive integer k>0 such that the kth tensor power S⊗k is locally trivial
(in particular, if S is trivial, then it is Q-Gorenstein).

In this paper we assume the reader is familiar with the theory of singular
holomorphic foliations on surfaces like presented by the first chapters of [2].

2. Residues and representation

2.1. Basic conceptions

Let X be a smooth complex surface and let C⊂X be a curve.

Definition 2.1. A logarithmic 1-form ω on an open set U⊂X with poles on C

is a meromorphic 1-form on U with the following property: for any p∈U there is a
neighborhood V ⊂U of p such that

ω |V =ω0+
n∑

i=1
gi
dfi
fi

where ω0 is a holomorphic 1-form on V , fi and gi are holomorphic functions on V

and each fi is a reduced equation of an irreducible component of C∩V .
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Generically we are interesting in the situation where C=
∑n

i=1 Ci⊂X is a simple
normal crossing divisor, in which case we have the following exact sequence:

0−→Ω1
X −→Ω1

X(logC)−→
n⊕

i=1
OCi −→ 0

where Ω1
X(logC) is the locally free sheaf (of rank 2) of logarithmic 1-forms (see

Lemma 8.16 of [12]) and the last morphism is given by the residue, defined as
follow: if locally ω |V =ω0+

∑n
i=1 gi

dfi
fi

, then the residue of ω along Ci is given by
Res(ω)|Ci =gi|{fi=0} (see [2], pp. 78 to 83). We can see easily that this definition is
independent of our choices (fi, gi, ω0 etc.).

In foliation theory we have the following definition.

Definition 2.2. Let F be a foliation on X and suppose that the curve C is
F-invariant. We say that the foliation F is logarithmic on (X,C) when given any
p∈C, ω a 1-form defining F on neighbourhood V of p and f a reduced equation of
C∩V , the meromorphic 1-form ω

f is logarithmic with poles on C.

If the curve C has only normal crossing singularities, then any reduced foliation
F on X tangent to C is logarithmic on (X,C). In that case, the bundle

L=N∗
F⊗OX(C)

is called logarithmic conormal bundle along C. If the curve is a divisor with sim-
ple normal crossing singularities, then the morphism of residue induces an exact
sequence:

0−→N∗
F −→N∗

F⊗OX(C)−→
n⊕

i=1
OCi

Observe that a collection of local sections ηj of N∗
F⊗OX(C) defined on open sets Vj

determines a collection of residues ResVj∩Ci(ηj) as local sections of N∗
F⊗OX(C)|Ci ,

i=1, ..., n.
The following normal form enable us to calculate the quotient of residues for a

reduced non degenerate singularity:

Theorem 2.3. (THÉORÈME 1, [8], p. 521) Let F be a foliation given by a

holomorphic 1-form ω on a neighbourhood of 0∈C2 with isolated singularity at 0 and

linear part λ1x dy−λ2y dx. Suppose that λ1, λ2 are not zero and λ1/λ2 and λ2/λ1
are not integers >1. Then there is a change of coordinates in a neighbourhood of

the origin such that, in the new coordinates, the foliation is given by the 1-form

λ1x(1+xy(...)) dy−λ2y(1+xy(...)) dx
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Example 2.4. As a consequence of the above theorem, we conclude that if the
foliation F has a reduced nondegenerate singularity at 0∈C2, then we can find a
logarithmic expression for the foliation:

η=λ1(1+xy(...))dy
y
−λ2(1+xy(...))dx

x

in such a way that Res{x=0}(η)=−λ2 and Res{y=0}(η)=λ1. Hence the quotient of
residues is equal to minus the quotient of eigenvalues.

Note that if the curve C is compact and ω is a section of N∗
F⊗OX(C) on neigh-

bourhood of C, then the residue along each irreducible component Ci is constant.
Fix a compact curve C⊂X with simple normal crossing singularities. Let F

be a reduced foliation tangent to C.

Proposition 2.5. If the reduced foliation F is without saddle-node in C, then

there is a neighbourhood U of C and logarithmic 1-forms on open subsets of U

defining N∗
F⊗OX(C)|U whose residues are locally constant.

Proof. Away from the singularities Sing(F)∩C, we can choose local sections
of the logarithmic conormal bundle with any fixed residue in C∗. In neighbour-
hoods of the singular points, local sections with constant residues are obtained via
Example 2.4. �

Remember the intersection formula for normal bundle (the index Z below, also
called GSV-index, seen as a divisor, is defined in [2], pp. 24 and 25):

Theorem 2.6. (Proposition 3, [2], p. 25) Let F be a foliation on a complex

surface X and let C⊂X be a smooth compact F-invariant curve. Then we have

NF |C=NC⊗OC(Z(F , C)). If D⊂X is any invariant connected curve (not neces-

sarily smooth), then NF ·D=D2+Z(F , D).

As a consequence of Theorem 2.6, we have the following proposition:

Proposition 2.7. If the reduced foliation F is without saddle-node in the in-

variant compact curve C=
∑n

i=1 Ci, where each Ci is a smooth curve, and Sing(F)∩
C=Sing(C)=

⋃
i �=j Ci∩Cj , then N∗

F⊗OX(C)|Ci =OCi , i=1, ..., n.

Proof. The index Z is zero at any point p∈Ci−C∩Sing(C) and equal to 1 at
the points in Ci∩Sing(C). Hence

NF |Ci = NCi⊗OCi(Z(F , Ci))
= NCi⊗OCi(Ci∩Sing(C))
= NCi⊗OCi(∪j �=iCj∩Ci)
= OX(C)|Ci �
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Remark 2.8. The above Proposition is also a consequence of (the proof of)
Proposition 2.5. In fact, we note that the residues have cocycle of transition equal
to the cocycle of N∗

F⊗OX(C)|Ci . We can choose local sections defining N∗
F⊗OX(C)

along a neighbourhood of Ci with the same fixed residue in C∗ (along Ci), thus we
obtain the triviality of N∗

F⊗OX(C)|Ci .

From our discussion above we also obtain

Proposition 2.9. Suppose that the reduced foliation F is without saddle-node

at the invariant compact curve C=
∑n

i=1 Ci, where each Ci is a smooth curve, and

Sing(F)∩C=Sing(C)=
⋃

i �=j Ci∩Cj . Then N∗
F⊗OX(C)|C=OC if, and only if,

there are δ1, ..., δn∈C∗, open sets Vl whose union is a neighbourhood of C in X

and sections ηl of N
∗
F⊗OX(C)|Vl

such that

Vl∩Ci �=∅=⇒ResCi(ηl)= δi

i=1, ..., n.

Proof. Suppose that N∗
F⊗OX(C)|C=OC . Taking the product of suitable con-

stants by the local sections ηl given by Proposition 2.5, we can assume that the
co-cycle of transition of residues is constant equal to 1. Hence, in each component
Ci, we have

Vl∩Ci �=∅=⇒ResCi(ηl)= δi

for constants δi∈C∗, i=1, ..., n.
Reciprocally, suppose that there exist local sections ηl as above. Then clearly

the cocycle of transition of the residues is constant equal to 1 and hence N∗
F⊗

OX(C)|C is trivial. �

Remark 2.10. Let p∈C1∩C2, where C1 and C2 are smooth curves. If C=
C1∪C2 is invariant by a reduced foliation F with reduced non degenerate singularity
at p and η is a local section on neighbourhood of p defining N∗

F⊗OX(C), then the
quotient

ResC1η/ResC2η

is independent of η and equal to minus the quotient of eigenvalues at p. This is a
consequence of Theorem 2.3 (see Example 2.4).

2.2. Residual representation

Let F be a holomorphic foliation on the smooth complex surface X. Suppose
that F leaves invariant a curve C=

∑n
i=1 Ci with the following properties:

1. C1, ..., Cn are smooth curves;
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2. every singularity of F in C is reduced;
3. Sing(C)=

⋃
i �=j Ci∩Cj are reduced nondegenerate singularities of F .

To simplify the exposition, we assume #Ci∩Cj≤1 if i �=j (there is no loss of gener-
ality, because we can do this situation after some blow-ups). If i �=j and Ci∩Cj �=∅,
take {pij}={pji}=Ci∩Cj .

Associated to the F-invariant divisor C we have his dual graph Γ, where each
vertex correspond to an irreducible component Ci and each edge linking two vertices
correspond to the intersection of them at the point pij . The graph is directed, with
ordering given by the ordering index from the vertices, that is, the edge pij linking
the vertex Ci to the vertex Cj has the orientation from Ci to Cj if i<j. (We make
an arbitrary choice of orientation, but this is innocuous.)

To each edge pij , with i<j, we associate the complex number δij=
−CS(F , Cj , pij)∈C∗. (Note that the foliation is reduced nondegenerate at pij ,
hence

δij =−CS(F , Cj , pij)=−αij/βij =ResCi/ResCj

where αij , βij are eigenvalues at pij associated to a generating vector field of the
foliation.)

Thus we obtain a cohomology class σ=σ(F,C)∈H1(Γ,C∗) or (equivalently) a
representation ρ=ρ(F,C) :π1(Γ)→C∗, to be called residual representation.

In some cases, the representation just presented will correspond to the obstruc-
tion for triviality of the line bundle N∗

F⊗OX(C)|C . More precisely, we have

Proposition 2.11. Suppose that the reduced foliation F is without saddle-

node in the invariant compact curve C=
∑n

i=1 Ci, where each Ci is a smooth curve,

and Sing(F)∩C=Sing(C)=
⋃

i �=j Ci∩Cj . Then N∗
F⊗OX(C)|C=OC if, and only

if, the residual representation ρ(F,C) is trivial.

Proof. If N∗
F⊗OX(C)|C=OC , then the above Proposition (2.9) plus the Re-

mark (2.10) imply that the representation ρ(F,C) is trivial.
Reciprocally, suppose the triviality of the residual representation. Then there

exist δ1, ..., δn∈C∗ such that

δi/δj = δij =ResCi/ResCj .

Thus, it is possible to choose local sections of the logarithmic conormal bundle in
neighbourhoods of the singular points of C with residue δi through Ci, i=1, ..., n
(Remark 2.10). Away from the singularities of C, we can choose any residue in C∗,
then we take local sections with residue δi along Ci. Hence, such local sections give
the trivialization of the logarithmic conormal bundle on C (by residues). �
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Example 2.12. If the dual graph Γ of C is a tree, then the graph is contractible
(that is, Γ has the homotopy type of a point), then obviously the representation
ρ(F,C) is trivial.

Definition 2.13. A cicly of smooth rational curves (or simply a cicly) is a union
of a finite number of smooth rational curves in general position (normal crossings)
Ci, i=1, ...,m, m>1, such that: if m=2, then #C1∩C2=2; if m>2, then #Ci∩
C(i+1)=#C1∩Cm=1, i=1, ...,m−1, otherwise #Ci∩Cj=0.

Example 2.14. Let F be a foliation tangent to a cycle of smooth rational curves
C=C1+C2+C3, where C2

j =1, j=1, 2, 3, and such that Sing(F)∩C=Sing(C) are
reduced nondegenerate singularities of F . (For example, consider the foliation given
by ω=x dy−λy dx on P2, where λ∈C−Q≥0.)

The dual graph of C is
˝C1

λ1,2

����
��
� λ1,3

��
��

��
�

˝C2 λ2,3

��
˝C3

where the numbers λij give the correspondent cocycle in H1(Γ,C∗) from the resid-
ual representation. Thus λ1,2+λ1,3= 1

λ1,2
+λ2,3= 1

λ2,3
+ 1

λ1,3
=−1. We can see easily

that in this case the representation ρ(F,C) is always trivial. In fact, λ1,2λ2,3λ3,1=
λ1,2(−1+λ1,2

λ1,2
)(− 1

1+λ1,2
)=1.

2.3. The Picard group of a curve

Let C=
∑n

i=1 Ci be a compact complex curve (connected!), where each Ci is a
smooth curve, and Γ be the dual graph of C. We will describe the line bundles over
C with the property of triviality over each irreducible component Ci, i=1, ..., n.

Proposition 2.15. Let T (C)={F∈Pic(C);F |Ci =OCi , i=1, ..., n}. Then

T (C)
H1(Γ,C∗)
Hom(π1(Γ),C∗).

Proof. Consider the short exact sequence

1−→O∗
C −→

n⊕

i=1
O∗

Ci
−→

⊕

p∈Sing(C)

C∗ −→ 1

where the morphism with image in
⊕

p∈Sing(C) C
∗ is given by quotient (to do this

we use the index order): if k<l and q∈Ck∩Cl, a local section of
⊕n

i=1 O∗
Ci

with



Invariant curves for holomorphic foliations on singular surfaces 187

value λk at q∈Ck and λl at q∈Cl has image with value λk/λl at q (as a section of⊕
p∈Sing(C) C

∗). Hence, we have a long exact sequence in cohomology

1−→C∗ −→
n⊕

i=1
C∗ −→

⊕

p∈Sing(C)

C∗ −→Pic(C)−→
n⊕

i=1
Pic(Ci)−→ 1.

Therefore

Hom(π1(Γ),C∗) 
 H1(Γ,C∗)



⊕

p∈Sing(C) C
∗

Im(
⊕n

i=1 C
∗ →

⊕
p∈Sing(C) C

∗)



⊕

p∈Sing(C) C
∗

Ker(
⊕

p∈Sing(C) C
∗ →Pic(C))


 Im(
⊕

p∈Sing(C)

C∗ −→Pic(C))


 Ker(Pic(C)−→
n⊕

i=1
Pic(Ci))

= T (C) �

Thus, a line bundle F∈Ker(Pic(C)→
⊕n

i=1 Pic(Ci))=Im(
⊕

p∈Sing(C) C
∗→

Pic(C))=T (C) determines an element in H1(Γ,C∗) (hence a representation ρF :
π1(Γ)→C∗) and reciprocally an element in H1(Γ,C∗) determines a line bundle in
T (C).

The interesting situation for us consists of a curve C=
∑n

i=1 Ci, with simple
normal crossing singularities, invariant by a reduced foliation F without saddle-
node and singular only at the crossing points of the curve, and the logarithmic
conormal bundle L=N∗

F⊗OX(C) in restriction to the curve C, which result F=
L|C∈Ker(Pic(C)→

⊕n
i=1 Pic(Ci)) by Proposition 2.7.

Finally, we can generalize the Proposition 2.11.

Proposition 2.16. Suppose that the reduced foliation F is without saddle-

node in the invariant compact curve C=
∑n

i=1 Ci, where each Ci is a smooth curve,

and Sing(F)∩C=Sing(C)=
⋃

i �=j Ci∩Cj . Then the line bundle F=N∗
F⊗OX(C)|C

is determined by the residual representation ρ(F,C). That is, ρF =ρ(F,C).

Proof. Let B∈T (C). Each Bi=B|Ci can be trivialized by a holomorphic mor-
phism φi to the line bundle Ci×C. Following the isomorphism T (C)
H1(Γ,C∗)
we obtain the cohomology class σB given by pij→λij , where Ci∩Cj={pij} and
λij= φi(pij ,v)

φj(pij ,v) if i<j and v �=0. If B=F , by Remark 2.8 we can trivialize each
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line bundle Fi=F |Ci taking residues of local sections of N∗
F⊗OX , in such a way

that λij=ResCi/ResCj =−CS(F , Cj , pij). We conclude that σF =σ(F,C) and hence
ρF =ρ(F,C). �

2.4. Residual divisor

If the representation ρ(F,C) is trivial, then there are δ1, ..., δn∈C∗ such that
δij=δi/δj and, in this way, we can define, unless multiplication by constant factor,
the residual divisor

R=Res(F , C)=
n∑

i=1
δiCi.

In order to make precise the definition, we determine the residual divisor by the
choice δ1=1, hence the solution is unique in δ2, ..., δn (obviously, this construction
depends on the index order from the irreducible components of C).

Example 2.17. Suppose now

D=
n∑

i=1
Ci+

m∑

k=1

Sk

with C1, ..., Cn compact smooth curves and S1, ..., Sm the germs of separatrices
which are not supported on C trough reduced nondegenerate singularities of F in
C−Sing(C). Suppose that the representation ρ(F,D) is trivial, with residual divisor

R=Res(F , D)=
n∑

i=1
μiCi+

m∑

k=1

δkSk.

Assume also that the foliation don’t have weak separatrix supported on C. Then

R·Cj =
n∑

i=1
μiCi ·Cj+

m∑

j=1
δkSk ·Cj

= μj(C2
j +

∑

i �=j

μi

μj
Ci ·Cj+

m∑

k=1

δk
μj

Sk ·Cj)

= μj(C2
j −CS(F , Cj))

= 0

for j=1, ..., n.
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3. Existence of separatrix

3.1. Trivial residual representation and separatrices

Let F be a holomorphic foliation on a smooth complex surface X. Suppose
that F leaves invariant a compact curve C=

∑n
i=1 Ci with the following properties:

1. C1, ..., Cn are smooth curves;
2. the singularities of F in C are all reduced;
3. Sing(C)=

⋃
i �=j Ci∩Cj are reduced nondegenerate singularities of F .

Write Sep(F , C)=S1+...+Sm for the separatrices (germs) not supported on C and
passing trough reduced nondegenerate singularities in Sing(F)∩(C−Sing(C)).

Let D=C+Sep(F , C) and ρ=ρ(F,D) :π1(Γ)→C∗ be the residual representation
of F along D. Obviously, ρ(F,D) is trivial if, and only if, ρ(F,C) is trivial.

Theorem 3.1. Suppose that F has no weak separatrix supported on C and

that the residual representation ρ=ρ(F,D) is trivial, with residues μ1, ..., μn along C

and residues δ1, ..., δm along Sep(F , C), that is, the residual divisor is

R=Res(F , D)=
n∑

i=1
μiCi+

m∑

k=1
δkSk.

If the matrix of intersection [Ci ·Cj ]ij of C is invertible, then

#Sep(F , C)=m≥ dimQ(
n∑

i=1
μiQ+

m∑

k=1

δkQ)≥ 1

Proof. Consider the matrix of intersection A=[Ci ·Cj⊕Ci ·Sk] of C with D=
C+Sep(F , C). Take the C-divisor in X given by R=

∑n
j=1 μjCj+

∑m
k=1 δkSk.

Hence Ci ·R=R·Ci=0, for i=1, ..., n. Therefore

A(μ1, ..., μn, δ1, ..., δm)= (0, ..., 0)∈Cn.

Since the matrix of intersection [Ci ·Cj ] is invertible, then the matrix A has rank
n, hence the equality above correspond to n Q-linearly independent relations (with
integer coefficients) between μ1, ..., μn, δ1, ..., δm. Then

1≤ dimQ(
n∑

i=1
μiQ+

m∑

k=1

δkQ)≤m=#Sep(F , C). �

An interesting consequence is the following

Corollary 3.2. Suppose that the representation ρ(F,C) is trivial. If the ma-

trix of intersection [Ci ·Cj ]ij of C is invertible, then there is a separatrix S trough

Sing(F)∩(C−Sing(C)) not supported on C that is not a weak separatrix of saddle-

node.
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Proof. In fact, if there is no saddle-node in Sing(F)∩(C−Sing(C)) with weak
separatrix supported on C, then the Theorem 3.1 imply the existence of a singular
point of the foliation in C−Sing(C) trough which pass a separatrix not supported
on C and which is not a weak separatrix of saddle-node. Otherwise, if there is a
saddle-node in Sing(F)∩(C−Sing(C)) with weak separatrix supported on C, then
the strong separatrix is not supported on C. �

3.2. The separatrix theorem

Let F be a singular holomorphic foliation on the smooth complex surface X.
Suppose that F leaves invariant a curve C=

∑n
i=1 Ci with the following properties

(as before):
1. C1, ..., Cn are smooth curves;
2. the singularities of F in C are all reduced;
3. Sing(C)=

⋃
i �=j Ci∩Cj are reduced nondegenerate singularities of F .

A very interesting situation is when the representation ρ=ρ(F,C) associated to the
exceptional curve is trivial. Remember this notion:

Definition 3.3. (Exceptional Curves) A compact, connected, reduced curve C

in a nonsingular surface X is called exceptional if there is a bimeromorphism π :
X→Y such that C is exceptional for π, i.e., if there is an open neighbourhood U of
C in X, a point y∈Y , and a neighbourhood V of y in Y , such that Y is normal and
π sends U−C biholomorphically over V −{y}, where π(C)=y. We will also express
this situation by saying that C is contracted in y.

The following classical result is very important:

Theorem 3.4. (Grauert’s criterion, [1], p. 91) A compact, connected, reduced

curve C=
∑n

i=1 Ci with irreducible components Ci in a smooth surface is exceptional

if, and only if, the matrix of intersection [Ci ·Cj ] is negative definite.

Now we suppose triviality of the residual representation and that the curve is
exceptional. The theorem bellow is in fact a simple consequence of Corollary 3.2,
because every negative definite matrix is invertible.

Theorem 3.5. If the curve C is compact and exceptional and the represen-

tation ρ=ρ(F,C) is trivial, then there is at last one singularity p∈Sing(F)∩(C−
Sing(C)) and separatrix trough p not supported on C that is not a weak separatrix

of saddle-node.

As a consequence we have a criterion for the existence of separatrix in singular
(normal) surface.
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Corollary 3.6. Let F be a foliation on the singular normal surface X. Let

π :Y →X be a bimeromorphism which resolve the singularity p and such that the

induced foliation G=π∗F is reduced. Suppose that there exists a connected sub-

curve C=
∑n

i=1 Ci⊂E=π−1(p) such that the foliation G is reduced nondegenerated

at the crossing points Sing(C)=
⋃

i �=j Ci∩Cj and

q ∈Sing(E)∩(C−Sing(C))=⇒CS(G, C, q)= 0.

If the representation ρ=ρ(G,C) is trivial, then F has a separatrix trough p.

Proof. The curve C is exceptional, hence we can use Theorem 3.5. Thus, there
exists a singularity q∈C−Sing(C) and separatrix (of G) trough q but not supported
on E (by hypothesis). Such a separatrix will be projected by π to a separatrix of
F trough p. �

Remark 3.7. We must impose that X is normal to get E=π−1(p) exceptional.

Corollary 3.8. (Generalization of the Separatrix Theorem by Camacho, [3])
Consider a complex normal irreducible surface X. Suppose the resolution graph of

X at a point p is a tree, i. e., a finite contractible 1-dimensional complex. Then

any germ of holomorphic foliation, singular at p, admits an invariant analytic curve

through p.

Proof. Let E be an exceptional divisor obtained by resolution of the singularity
p∈X and reduction of singularities of the foliation. The dual graph of E is a tree, by
hypothesis. It’s enough to show the existence of a connected sub-curve C⊂E in the
conditions of the Corollary above, because such sub-curve will has also contractible
dual graph, hence the representation ρ(G,C) will be trivial.

We follow the argument of M. Toma in [10]. Let Γ be the dual graph of E

and Λ⊂Γ be the sub-graph obtained by the union of all edges in Γ that do not
connect vertices by a crossing in saddle-node, that is, we remove from Γ the edges
which correspond to crossing in saddle-node. Note that when we remove such edges
from the connected tree we divide the tree in two connected components, one is
the component of the strong separatrix and the other is the component of the weak
separatrix. Making this process and always fixing the component of the strong
separatrix, at the end we obtain a connected component Γ0⊂Λ without vertices
that are weak separatrices. Then Γ0 is the dual graph of a sub-curve C with the
desired properties. �

In particular, we have the important

Corollary 3.9. (Separatrix Theorem of Camacho and Sad, [4]) Let F be a

foliation on the smooth surface X and p∈Sing(F). Then there exists a separatrix

of F through p.
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3.3. Torsion residual representation and separatrices

We begin with the familiar covering trick in its simplest version (non-branched).

Proposition 3.10. Let X be a complex manifold and let L be a line bundle

over X of order k>0 in Pic(X), that is, k is the smaller positive integer such that

L⊗k is trivial. Then there is a regular cyclic covering of order k, g :Y →X, such

that g∗L is trivial.

Proof. See [1], p. 54. �

Remember also the following result from Complex Geometry:

Theorem 3.11. (Grauert, Satz 5, [6], p. 340) Let A be a compact connected

analytic subset of the analytic variety X. Then A is an exceptional variety if and

only if it has a strongly pseudoconvex neighbourhood G in X such that A is the

maximal compact analytic subset of G.

As a consequence, in the particular case of our interest, we obtain the following
fact: if g :Y →X is a finite covering of the complex surface X and C⊂X is an
exceptional curve, then g−1(C) is an exceptional curve in Y .

Suppose that the foliation F leaves invariant a curve C=
∑n

i=1 Ci such that:
1. C1, ..., Cn are smooth curves;
2. all singularities of F in C are reduced nondegenerated.

With this hypotheses, we obtain a version of Theorem 3.5 in the case of torsion
residual representation.

Theorem 3.12. If the F-invariante curve C=
∑n

i=1 Ci⊂X is compact and

exceptional and the representation ρ=ρ(F,C) is torsion of order k, then there is

at least one singularity p∈Sing(F)∩(C−Sing(C)) and separatrix trough p, not

supported in C.

Proof. Suppose, by contradiction, that there is no singularity of the foliation
in C−Sing(C). Let F=Fρ=N∗

F⊗OX(C)|C be the line bundle over C associated
to ρ (see the subsection 2.3). For each Ci, consider a tubular neighbourhood Ui⊂X

of Ci. If the open subsets Ui are small enough, the tubular projections can be glue
together by means of suitable “surgery” at neighbourhoods of the singular (crossing)
points, and we obtain a projection from U=∪iUi to C, that is, a deformation
retract of U onto C. Hence U and C has the same homotopy type, therefore
H1(U,C∗)
Hom(π1(U),C∗)
Hom(π1(C),C∗)
H1(C,C∗), and we can consider a
C∗-flat extension L of F for U in such a way that L⊗k is trivial. Then, by the
covering trick mentioned at the beginning, we obtain a cyclic covering of order k

from a surface Y over X, say g :Y →X, with g∗L trivial.



Invariant curves for holomorphic foliations on singular surfaces 193

Consider G=g∗F and D=
∑kn

j=1 Dj=g−1(C). Since we assume Sing(F)∩(C−
Sing(C))=∅, then also Sing(G)∩(D−Sing(D))=∅. Thus

N∗
G⊗OY (D)|D = g∗F = g∗L|D =OD

hence the representation ρ̃=ρ(G,D) is trivial (see the subsection 2.3 and the Proposi-
tion 2.16). By Theorem 3.11, the curve D is exceptional. Therefore, from Theorem
3.5, Sing(G)∩(D−Sing(D)) �=∅, a contradiction. �

3.4. Foliations with Q-Gorenstein normal bundle

A sheaf S on a singular surface is called Q-Gorenstein if there is a positive
integer k>0 such that the k-th tensor power S⊗k is locally trivial. In particular, if
the sheaf is trivial, it is Q-Gorenstein.

Now we develop the proof of the Theorem 1:

Theorem 3.13. (Theorem 1) Let F be a foliation on the normal singular

surface X. If the foliation has no saddle-node in its resolution/reduction over the

singularity p∈X and the normal sheaf NF is Q-Gorenstein, then F has a separatrix

through p.

To prove the theorem, we need some previous results.

Lemma 3.14. (Lemma 5 of [11]) Let X be a smooth compact complex surface,

K a compact subset of X and B be a holomorphic vector bundle over X. If X−K

is strictly pseudoconvex, then every section s of B over X−K can be extended as a

meromorphic section s̃ over all X.

Proposition 3.15. Let F be a foliation on the singular normal surface X. Let

f :Y →X be a resolution singularity at p∈X. If the normal sheaf NF is Q-Goren-

stein, then, in neighbourhood V of E,

N⊗k
G |V =OY (

n∑

i=1
aiEi)|V

where k is the smallest integer for which N⊗k
F is trivial in neighbourhood of p, the ai

are integers and f−1(p)=E=
∑n

i=1 Ei, where each Ei is an irreducible component.

Proof. First note that from Theorem 3.11 the exceptional divisor E has a
strictly pseudoconvex neighbourhood V . For a sufficiently small neighbourhood U

of p, the sheaf N⊗k
F is trivial. For U and V small enough, we can assume f−1(U)=V .

Since N⊗k
G =f∗N⊗k

F is trivial over V −E, then there is a holomorphic section
without zeros s of the bundle N⊗k

G over V −E. The Lemma 3.14 above imply that
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s can be extended as a meromorphic section s̃ over all V , with poles or zeros along
E. This finish the proof. �

Proof of the Theorem 3.13. Let f :Y →X be a resolution singularity at p∈X
such that the induced foliation G=π∗F is reduced along E=f−1(p). Suppose, by
contradiction, that there is no singular point of G in E−Sing(E). Since NF is a
Q-Gorenstein sheaf, it follows from Proposition 3.15 that, in neighbourhood of E,

N⊗k
G =OY (

n∑

i=1
aiEi)

where k>0, and the ai are integers, and E=
∑n

i=1 Ei, each Ei being an irreducible
component of E.

Since there is no saddle-node in E, then, by the intersection formula of the
normal bundle given by Theorem 2.6, we have NG ·Ej=E ·Ej , that is, (NG−E)·Ej=
0 for j=1, ..., n. Then (

∑n
i=1 aiEi−kE)·Ej=0, that is, (

∑n
i=1(ai−k)Ei)·Ej=0 for

j=1, ..., n. Hence

(
n∑

i=1
(ai−k)Ei)2 =0.

Therefore, since the matrix of intersection of E is negative definite (Grauert’s
Criterion 3.4), ai=k for i=1, ..., n, that is,

N⊗k
G =OY (k

n∑

i=1
Ei)=OY (kE)

Hence by Theorem 3.12 there is a singular point of G in E−Sing(E) and sepa-
ratrix trough it not supported on E, which is projected over a separatrix of F
trough p. �

The proof just presented shows something more:

Theorem 3.16. Let F be a foliation on the singular normal surface X. Let

f :Y →X be a resolution singularity at p∈X such that the induced foliation G=f∗F
is reduced along E=f−1(p). If G has no saddle-node in the exceptional divisor E

and

NG |⊗k
E =OY (

n∑

i=1
aiEi)|E

where a1, ..., an∈Z, then F has a separatrix trough p.
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